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0 Intersection of stable and unstable

manifolds for invariant Morse functions

Hitoshi Yamanaka

Abstract

We study the structure of the smooth manifold which is defined as the

intersection of a stable manifold and an unstable manifold for an invariant

Morse-Smale function.

1 Introduction

The aim of this paper is to investigate invariant Morse functions on compact
smooth manifolds with action of compact Lie groups.

Let M be a compact n-dimensional Riemannian manifold, 〈·, ·〉 its Rieman-
nian metric, and Φ a Morse function on M . We denote by −∇Φ the negative
gradient vector field of Φ with respect to the metric 〈·, ·〉, and let γp(t) be the
corresponding negative gradient flow which passes through a point p of M at
t = 0. For a critical point p of Φ, the unstable manifold and the stable
manifold of p are defined by

Wu(p) =

{
x ∈ M

∣∣∣∣ lim
t→−∞

γx(t) = p

}
,

W s(p) =

{
x ∈ M

∣∣∣∣ lim
t→∞

γx(t) = p

}

respectively. Since Φ is a Morse function, Wu(p) and W s(p) are a smoothly em-
bedded open disks of dimensions n−λ(p), λ(p) respectively, where λ(p) denotes
the Morse index of p (see [BH, Theorem 4.2]). We say that a Morse function Φ is
Morse-Smale if Wu(p) and W s(q) intersect transversally for all critical points

p, q. If the Morse function Φ is Morse-Smale, then M̃(p, q) := Wu(p) ∩W s(q)
is also a submanifold of M which has dimension λ(p) − λ(q).

M̃(p, q) has a natural R-action which is defined by t · x := γx(t) where

t ∈ R, x ∈ M̃(p, q). The quotient space of M̃(p, q) by the R-action is denoted
byM(p, q). Witten’s Morse theory [W] asserts that in some cases, the homology
group of M with integral coefficient is recovered from the structure of M(p, q)’s
such that λ(p) − λ(q) = 1. However, there is a Morse function which has no
critical points p, q such that λ(p) − λ(q) = 1. For example, for a certain Morse
function on the partial flag manifold, every unstable manifold is given by the
Bruhat cell BwP/P . In particular, every Morse index is even (see [A]).
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This phenomenon leads us to the study of the structure of M̃(p, q) for p, q ∈
Cr(Φ), λ(p) − λ(q) = 2.

In this paper, we investigate the structure of M(p, q) for p, q ∈ Cr(Φ) such
that λ(p)−λ(q) = 2 under the assumption thatM admits an action of a compact
Lie group G and Φ is G-invariant.

Our main theorem is the following.

Theorem 1.1. Let Φ be a G-invariant Bott-Morse function on M . Let p, q
be critical points of Φ such that λ(p) − λ(q) = 2. Assume the following two
conditions:
(1)MG ⊂ Cr(Φ).
(2)Wu(p) and W s(q) intersect transversally.

Then every connected component of M̃(p, q) is diffeomorphic to S1×R. �

We also show that the action of G on M̃(p, q) is given by the rotation of
sphere (see Proposition 3.6 below). By these results geometric structure of

M̃(p, q) in our setting is similar to the one treated in the GKM theory [GKM].
This paper is organized as follows. In Section 2, we study the critical point

set of an invariant Morse function and apply it to an invariant Morse function
on a homogenious space. In Section 3, we prove Theorem 1.1.

2 Critical points

Let G be a compact Lie group and M be a compact G-manifold. Denote by
MG the fixed point set of the action of G on M . We say a smooth function
Φ : M −→ R is G-invariant if it satisfies Φ(g · p) = Φ(p) for all g ∈ G, p ∈ M .
For a smooth function Φ on M , we denote by Cr(Φ) the critical point set of Φ.

Proposition 2.1. Let G be a compact connected Lie group, M be a compact
smooth G-manifold, and Φ : M −→ R be a G-invariant Morse function on M .
Assume that there exist only finitely many G-fixed points on M . Then we have
Cr(Φ) = MG. �

Since G and M are both compact, there exists a G-invariant metric 〈·, ·〉 on
M . Consider the negative gradient flow equation

γ(0) = p,
d

dt
γ(t) = −(∇Φ)γ(t).

Here, we denote by ∇Φ the gradient vector field for Φ with respect to the G-
invariant Riemannian metric 〈·, ·〉 on M . Let γp(t) be the unique solution of
this equation. By the uniqueness of the solution we see easily the following.

Lemma 2.2. We have γg·p(t) = g · γp(t) for all g ∈ G, p ∈ M . �

Proof of Proposition 2.1. Take p ∈ Cr(Φ). By Lemma 2.2, we have

2



lim
t→−∞

γg·p(t) = lim
t→−∞

g · γp(t) = g · p.

This means g ·p is also a critical point for Φ, so we have G ·p ⊂ Cr(Φ). However,
since M is compact, Cr(Φ) is a finite set. Thus by the connectedness of G, we
have G · p = {p}. This shows p ∈ MG.

Take p ∈ MG. By Lemma 2.2 we have

g · γp(t) = γg·p(t) = γp(t)

for all g ∈ G. This means {γp(t)|t ∈ R} ⊂ MG. Since MG is a finite set, this
implies {γp(t)|t ∈ R} = {p}. Thus we have p ∈ Cr(Φ). �

Corollary 2.3. Let p0 be a point of M and H be its stabilizer. Assume the
following three conditions:
(1) H is connected.
(2) WH := NG(H)/H is a finite group.
(3) The Fixed point set of the H-action on M is contained in the G-orbit of p0.
Then, we have

Cr(Φ) = WH · p0

for any H-invariant Morse function Φ : M −→ R.

Proof. First, we prove MH = WH · p0. The inclusion MH ⊃ WH · p0 is clear.
Take p ∈ MH . Then by the condition (3), it is contained in the G-orbit of p0.
So we can write p = g · p0 where g is an element of G. Since p ∈ MH , we have
h · (g · p0) = g · p0 for all h ∈ H . So we have g−1Hg ⊂ H . Since g−1Hg and
H are connected Lie subgroups with the same Lie algebra, the inclusion implies
g−1Hg = H . Thus we have p = g · p0 ∈ WH · p0, as desired.

In particular, by the condition (2), MH = WH · p0 is a finite set. Thus by
Proposition 2.1, we have Cr(Φ) = WH · p0.

As an application to homogeneous spaces, we have the following corollaries:

Corollary 2.4. Let G be a compact Lie group and H be its connected closed
subgroup. If NG(H)/H is a finite group, we have

Cr(Φ) = NG(H)/H

for any H-invariant Morse function Φ : G/H −→ R. �

Corollary 2.5. Let G be a compact Lie group and T be a maximal torus. Then,
the critical point set of any T -invariant Morse function on the flag manifold G/T
is given by its Weyl group. �

3



3 Intersections

Let G be a compact connected Lie group and M be a compact smooth G-
manifold. The following is our main result in this paper.

Theorem 3.1. Let Φ be a G-invariant Bott-Morse function on M . Let p, q
be critical points of Φ such that λ(p) − λ(q) = 2. Assume the following two
conditions:
(1) MG ⊂ Cr(Φ).
(2) Wu(p) and W s(q) intersect transversally.

Then every connected component of M̃(p, q) is diffeomorphic to S1 × R.

Proof. Let C be a connected component of M̃(p, q). By Lemma 2.2 and the

connectedness of G, C is a G-invariant subset of M̃(p, q). We note that C is
non-compact. To see this, assume that C is compact. Take c′ ∈ C. Since the
negative gradient flow γc′(R) is connected, it must be contained in C. Therefore
the assumption implies that p = lim

t→−∞

γc(t) ∈ C. This is a contradiction, be-

cause p 6∈ M̃(p, q). So C is non-compact. Since Cr(Φ) ∩C = ∅, the assumption
(1) implies that MG ∩ C = ∅. Let us show the following.

(3.1) dimG · c = 1.

Assume that dimG · c = 2. Then G · c is a codimension 0 submanifold of
C. Therefore G · c is an open subset of C. On the other hand, by the com-
pactness of G, G · c is a closed subset of C. So we have C = G · c since C is
connected. This is a contradiction, because C is non-compact. Assume that
dimG · c = 0. Then by the connectedness of G, we have G · c = {c}. This is also
a contradiction, because c 6∈ MG. Hence we have dimG · c = 1. The proof of
(3.1) is complete.

Define an action of G×R on C by (g, t) · c = g · γc(t). In fact, this gives an
action on C, because

(gg′, t+ t′) · c = gg′ · γc(t+ t′)

= g · γg′·c(t+ t′)

= g · γγ
g′·c

(t′)(t)

= (g, t) · γg′·c(t
′)

= (g, t) · ((g′, t′) · c)

for all (g, t), (g′, t′) ∈ G× R. We next show the following.

(3.2) (G× R)c = Gc × {0}.

Here, (G × R)c (resp. Gc) is the stabilizer of c for the action of G × R (resp.
G) on C. It is enough to show that (G × R)c ⊂ Gc × {0}. Let (g, t) be an
element of (G × R)c. It is sufficient to show t = 0. Assume that t > 0. Since
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(gn, nt) ∈ (G× R)c for all n ∈ N, we have lim
n→∞

gn · c = lim
n→∞

γc(−nt) = p. This

implies that p ∈ C since G · c is a closed subset of C. This is a contradiction. If
we assume that t < 0, a similar argument implies the same contradiction. The
proof of (3.2) is complete.

Let us consider the natural embedding G × R/(G × R)c −→ M̃(p, q). By

(3.1) and (3.2), we have dimG×R/(G×R)c = dimM̃(p, q) = 2. Thus G ·γc(R)

is open in M̃(p, q). In particular, every orbit of the action of G×R on C is open.
Since C is connected, this implies that C = G · γc(R). Therefore we obtain the
following isomorphisms:

C ∼= G× R/Gc × {0} ∼= G/Gc × R ∼= G · c× R.

By (3.1), G · c is a compact connected 1-dimensional manifold. Thus G · c is
diffeomorphic to S1. Hence C is diffeomorphic to S1 × R.

The proof is complete.

Corollary 3.2. Let Φ be a G-invariant Morse-Smale function on M . Let p, q
be critical points of Φ such that λ(p) − λ(q) = 2. If MG is a finite set, every

connected component of M̃(p, q) is diffeomorphic to S1 × R.

Proof. By Proposition 2.1, we have MG = Cr(Φ). So this corollary follows from
Theorem 3.1.

In the rest of this section, we study the stabilizer Gc. Let G be a compact
connected Lie group which acts smoothly on S1. We denote by g the Lie algebra
of G. Consider the following commutative diagram:

G // Diff(S1)

g

OO

// Γ(TS1).

OO

Here, vertical arrows are exponential maps and horizontal arrows are induced
by the action of G on S1. Since G is a compact connected Lie group, the
exponential map g −→ G is surjective. Thus the image of G −→ Diff(S1) is
completely determined by the image of g −→ Γ(TS1). We need the following
result of Plante [P, Theorem 1.2].

Lemma 3.3. Let G be a Lie group and g be its Lie algebra. Assume that
G acts smoothly and transitively on S1. Then the image of g −→ Γ(TS1) is
conjugate via a diffeomorphism to one of the following subalgebras of Γ(TS1)

(1)

〈
∂

∂x

〉
,

(2)

〈
(1 + cosx)

∂

∂x
, (sinx)

∂

∂x
, (1− cosx)

∂

∂x

〉
. �
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Note that we have the isomorphism
〈
(1 + cosx)

∂

∂x
, (sinx)

∂

∂x
, (1− cosx)

∂

∂x

〉
∼= sl2(R)

of Lie algebras.

Proposition 3.4. In the setting of Theorem 3.1, let C be a connected compo-
nent of M̃(p, q). Then there is a surjective group homomorphism α : G −→ S1

and a diffeomorphism C ∼= S1×R such that the action of G×R on C ∼= S1×R

is given by

(g, t) · (x, s) = (α(g)x, t + s)

for all (g, t) ∈ G× R, (x, s) ∈ S1 × R.

Proof. Take c ∈ C. We consider the action of G on G · c and identify G · c with
S1. Let α0 : G −→ Diff(S1) be the representation of the action of G on S1,
α′

0 : g −→ Γ(TS1) the corresponding Lie algebra homomorphism.
Since g is the Lie algebra of the compact Lie group G, it does not admit sl2

as a quotient Lie algebra . Hence by Lemma 3.3 we can take ϕ ∈ Diff(S1) such
that

ϕ∗(α
′

0(g)) =

〈
∂

∂x

〉
.

This shows that ϕ(α0(G))ϕ−1 consists of rotations of S1. Now we define
a group homomorphism α : G −→ S1 by α(g) := ϕ ◦ α0(g) ◦ ϕ−1. This map
satisfies the required properties.

Corollary 3.5. In the setting of Theorem 3.1, let C be a connected component
of M̃(p, q). Then the stabilizer of c ∈ C is independent of choice of c and is a
codimension 1 closed normal Lie subgroup of G. �
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