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Intersection of stable and unstable
manifolds for invariant Morse functions

Hitoshi Yamanaka

Abstract

We study the structure of the smooth manifold which is defined as the
intersection of a stable manifold and an unstable manifold for an invariant
Morse-Smale function.

1 Introduction

The aim of this paper is to investigate invariant Morse functions on compact
smooth manifolds with action of compact Lie groups.

Let M be a compact n-dimensional Riemannian manifold, (-,-) its Rieman-
nian metric, and ¢ a Morse function on M. We denote by —V® the negative
gradient vector field of ® with respect to the metric (-, -), and let v,(¢) be the
corresponding negative gradient flow which passes through a point p of M at
t = 0. For a critical point p of ®, the unstable manifold and the stable
manifold of p are defined by

W(p) = {:z: eM

ti}IEloo Ve (t) - p},

We(p) = {x eM

-1}

respectively. Since ® is a Morse function, W*(p) and W?*(p) are a smoothly em-
bedded open disks of dimensions n — A(p), A(p) respectively, where A(p) denotes
the Morse index of p (see [BH, Theorem 4.2]). We say that a Morse function ® is
Morse-Smale if W*"(p) and W?(q) intersect transversally for all critical points
p,q. If the Morse function ® is Morse-Smale, then ./T/l/(p, q) == WH(p) N W2(q)
is also a submanifold of M which has dimension A(p) — A(g).

.//\/lv(p, q) has a natural R-action which is defined by ¢ -z := 7,(¢t) where
te Rz e .//\/lv(p, q). The quotient space of .//\/lv(p, q) by the R-action is denoted
by M(p, q). Witten’s Morse theory [W] asserts that in some cases, the homology
group of M with integral coefficient is recovered from the structure of M(p, q)’s
such that A(p) — A(¢) = 1. However, there is a Morse function which has no
critical points p, ¢ such that A(p) — A(¢) = 1. For example, for a certain Morse
function on the partial flag manifold, every unstable manifold is given by the
Bruhat cell BwP/P. In particular, every Morse index is even (see [A]).


http://arxiv.org/abs/1011.3213v1

This phenomenon leads us to the study of the structure of M (p,q) for p,q €
Cr(®), AMp) — Ag) = 2.

In this paper, we investigate the structure of M(p, q) for p,q € Cr(®) such
that A(p) —A(g) = 2 under the assumption that M admits an action of a compact
Lie group G and @ is G-invariant.

Our main theorem is the following.

Theorem 1.1. Let ® be a G-invariant Bott-Morse function on M. Let p,q
be critical points of ® such that A(p) — A(g) = 2. Assume the following two
conditions:

(1)MC c Cr(®).

(2)W*(p) and W#(q) intersect transversally.

Then every connected component of M (p,q) is diffeomorphic to St x R. O

We also show that the action of G on M (p,q) is given by the rotation of
sphere (see Proposition 3.6 below). By these results geometric structure of
M (p, q) in our setting is similar to the one treated in the GKM theory [GKM].

This paper is organized as follows. In Section 2, we study the critical point
set of an invariant Morse function and apply it to an invariant Morse function

on a homogenious space. In Section 3, we prove Theorem 1.1.

2 Critical points

Let G be a compact Lie group and M be a compact G-manifold. Denote by
MG the fixed point set of the action of G on M. We say a smooth function
® : M — R is G-invariant if it satisfies ®(g - p) = ®(p) for all g € G,p € M.
For a smooth function ® on M, we denote by Cr(®) the critical point set of ®.

Proposition 2.1. Let G be a compact connected Lie group, M be a compact
smooth G-manifold, and ® : M — R be a G-invariant Morse function on M.
Assume that there exist only finitely many G-fixed points on M. Then we have
Cr(®) = M. O

Since G and M are both compact, there exists a G-invariant metric (-,-) on
M. Consider the negative gradient flow equation

7(0) = p, %v(t) = —(V®), ).

Here, we denote by V& the gradient vector field for ® with respect to the G-
invariant Riemannian metric (-,-) on M. Let ~,(t) be the unique solution of
this equation. By the uniqueness of the solution we see easily the following.

Lemma 2.2. We have v4.,(t) = g-7p(t) forall g € G,p € M. O

Proof of Proposition 2.1. Take p € Cr(®). By Lemma 2.2] we have



t_lilfloo Ygp(t) = t_I}IElOOg () =g p
This means g-p is also a critical point for @, so we have G-p C Cr(®). However,
since M is compact, Cr(®) is a finite set. Thus by the connectedness of G, we
have G - p = {p}. This shows p € ME.

Take p € MY. By Lemma 22 we have

g-7p(t) =gp (t) = 7p(t)

for all g € G. This means {7,(t)|t € R} € MY. Since MY is a finite set, this
implies {7,(t)[t € R} = {p}. Thus we have p € Cr(®). O

Corollary 2.3. Let pg be a point of M and H be its stabilizer. Assume the
following three conditions:

(1) H is connected.

(2) Wy := Ng(H)/H is a finite group.

(3) The Fixed point set of the H-action on M is contained in the G-orbit of py.
Then, we have

CI‘(@) = WH * Do
for any H-invariant Morse function ® : M — R.

Proof. First, we prove M = Wy - pg. The inclusion MH > Wy - p is clear.
Take p € M. Then by the condition (3), it is contained in the G-orbit of py.
So we can write p = g - pg where ¢ is an element of G. Since p € M, we have
h-(g-po) =g-po for all h € H. So we have g-'Hg C H. Since g~'Hg and
H are connected Lie subgroups with the same Lie algebra, the inclusion implies
g 'Hg = H. Thus we have p = g - py € Wy - po, as desired.

In particular, by the condition (2), M = Wy - pg is a finite set. Thus by
Proposition 211 we have Cr(®) = Wy - po. O

As an application to homogeneous spaces, we have the following corollaries:

Corollary 2.4. Let G be a compact Lie group and H be its connected closed
subgroup. If Ng(H)/H is a finite group, we have

Cr(®) = N¢(H)/H
for any H-invariant Morse function ® : G/H — R. O
Corollary 2.5. Let G be a compact Lie group and 7' be a maximal torus. Then,

the critical point set of any T-invariant Morse function on the flag manifold G/T
is given by its Weyl group. O



3 Intersections

Let G be a compact connected Lie group and M be a compact smooth G-
manifold. The following is our main result in this paper.

Theorem 3.1. Let ® be a G-invariant Bott-Morse function on M. Let p,q
be critical points of ® such that A(p) — A(g) = 2. Assume the following two
conditions:

(1) ME C Cr(®).

(2) W*(p) and W*(q) intersect transversally.

Then every connected component of M (p,q) is diffeomorphic to S x R.

Proof. Let C be a connected component of .//\/lv(p, q). By Lemma and the
connectedness of G, C' is a G-invariant subset of M (p,q). We note that C is
non-compact. To see this, assume that C' is compact. Take ¢/ € C. Since the
negative gradient flow v (R) is connected, it must be contained in C'. Therefore

the assumption implies that p = . lim ~.(t) € C. This is a contradiction, be-
——00

cause p & .//\/lv(p, q). So C is non-compact. Since Cr(®) N C = (), the assumption
(1) implies that M% N C = (). Let us show the following.

(3.1) dimG-c=1.

Assume that dimG - ¢ = 2. Then G - ¢ is a codimension 0 submanifold of
C. Therefore G - ¢ is an open subset of C. On the other hand, by the com-
pactness of G, G - ¢ is a closed subset of C'. So we have C' = G - ¢ since C is
connected. This is a contradiction, because C' is non-compact. Assume that
dim G - ¢ = 0. Then by the connectedness of G, we have G - ¢ = {c}. This is also
a contradiction, because ¢ € M. Hence we have dim G - ¢ = 1. The proof of
(3.1) is complete.

Define an action of G x R on C by (g,t) - ¢ = g - v.(t). In fact, this gives an
action on C, because

(99"t +1t') - c=gg" - ve(t +1)
=g "Yg’~C(t + t/)
=9 Yy, (t)
= (9,t) - vgr-e(t)
=(g,t)- (¢, ') ©)

for all (g,t),(¢',t') € G x R. We next show the following.
(3.2) (G xR). =G, x {0}.
Here, (G x R). (resp. G.) is the stabilizer of ¢ for the action of G x R (resp.

G) on C. Tt is enough to show that (G x R). C G, x {0}. Let (g,t) be an
element of (G x R).. It is sufficient to show ¢ = 0. Assume that ¢ > 0. Since



(g",nt) € (G x R), for all n € N, we have lim ¢"-c= hm Ye(—nt) = p. This
n—00

implies that p € C since G - ¢ is a closed subset of C. ThlS 1s a contradiction. If
we assume that ¢ < 0, a similar argument implies the same contradiction. The
proof of (3.2) is complete.

Let us consider the natural embedding G x R/(G x R), — ﬂ(p, q). By
(3.1) and (3.2), we have dim G x R/(G x R), = dim M(p, ¢) = 2. Thus G-~.(R)
is open in ﬂ(p, q). In particular, every orbit of the action of G xR on C is open.
Since C' is connected, this implies that C' = G - 7.(R). Therefore we obtain the
following isomorphisms:

C2GExR/G.x {0} 2G/G. xR2G-cxR.

By (3.1), G - ¢ is a compact connected 1-dimensional manifold. Thus G - ¢ is
diffeomorphic to S'. Hence C is diffeomorphic to S! x R.
The proof is complete. O

Corollary 3.2. Let ® be a G-invariant Morse-Smale function on M. Let p,q
be critical points of ® such that A(p) — A(¢) = 2. If M€ is a finite set, every

connected component of M(p, q) is diffeomorphic to S* x R.

Proof. By Proposition 2.1} we have M“ = Cr(®). So this corollary follows from
Theorem [3.11 O

In the rest of this section, we study the stabilizer G.. Let G be a compact
connected Lie group which acts smoothly on S'. We denote by g the Lie algebra
of G. Consider the following commutative diagram:

G — Diff(S1)

|

g ——I(TSY).

Here, vertical arrows are exponential maps and horizontal arrows are induced
by the action of G on S!. Since G is a compact connected Lie group, the
exponential map g — G is surjective. Thus the image of G — Diff(S!) is
completely determined by the image of g — I'(T'S?). We need the following
result of Plante [P, Theorem 1.2].

Lemma 3.3. Let G be a Lie group and g be its Lie algebra. Assume that
G acts smoothly and transitively on S'. Then the image of g — ['(T'S?) is
conjugate via a diffeomorphism to one of the following subalgebras of I'(T'S?)

{52 )

(2)<(1 + cos :v)%, (sinx) 86

xX

,(1—0051)%>. O



Note that we have the isomorphism

<(1+cosx)3,(smx) 0

0
B %,(1—cosx)—> =slh(R)

ox

of Lie algebras.

Proposition 3.4. In the setting of Theorem [3.I} let C' be a connected compo-
nent of M(p, q). Then there is a surjective group homomorphism « : G — St
and a diffeomorphism C' 22 S* x R such that the action of G x R on C' = S* x R
is given by

(g,1) - (x,8) = (a(g)w, T + 5)
for all (g,t) € G x R, (z,s) € St x R.

Proof. Take ¢ € C. We consider the action of G on G - ¢ and identify G - ¢ with
St Let ap : G — Diff(S') be the representation of the action of G on S1,
af g — [(T'SY) the corresponding Lie algebra homomorphism.

Since g is the Lie algebra of the compact Lie group G, it does not admit sly
as a quotient Lie algebra . Hence by Lemma [3.3] we can take ¢ € Diff(S!) such

that
eotete) = (57 )

This shows that ¢(ag(G))¢~! consists of rotations of S1. Now we define
a group homomorphism o : G — S* by a(g) := ¢ o ap(g) o ¢~ !. This map

satisfies the required properties. O

Corollary 3.5. In the setting of Theorem [3.T} let C be a connected component
of M(p,q). Then the stabilizer of ¢ € C is independent of choice of ¢ and is a
codimension 1 closed normal Lie subgroup of G. ([l

References

[A] M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Maht.
Soc. 14 (1982), no.1, 1-15.

[BH] A. Banyaga, D. Hurtubise, Lectures on Morse Homology, Kluwer Texts in
the Mathematical Sciences, Volume 29 (2004).

[GKM] M. Goresky, Kottwitz, R. MacPherson, Equivariant cohomology, Koszul
duality and the localization theorem, Invent. Math. 131 (1998),n0.1, 25-83.

[P] J.F.Plante, Fixed points of Lie group actions on surfaces, Ergod. Th. and
Dyn. Sys. 6 (1986), 149-161.

[W] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17
(1982), no.4, 661-692.



	1 Introduction
	2 Critical points
	3 Intersections

