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Abstract

In this paper, we aim to study solutions of reflected generalized BSDEs, involv-
ing the integral with respect to a continuous process, whichis the local time of the
diffusion on the boundary. We consider both a finite random terminal and a infinite
horizon. In both case, we establish an existence and uniqueness result. Next, as an
application, we get an American pricing option in infinite horizon and we give a prob-
abilistic formula for the viscosity solution of an obstacleproblem for elliptic PDEs
with a nonlinear Neumann boundary condition.
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1 Introduction

Generalized backward stochastic differential equations (for short GBSDEs ) has been con-
sidered by Pardoux and Zhang [16] as an extension of nonlinear BSDE which involves an
integral with respect to an increasing process. They provide probabilistic representation of
viscosity solutions of both parabolic and elliptic PDE withNeumann boundary condition.
Let us mention that the now well- known theory of nonlinear backward stochastic differ-
ential equations was formulated by Pardoux and Peng [15]. Since, they have found several
fields of applications. Namely, we refer to Pardoux [13] and [14], El Karoui et al [6], Cvi-
tanic and Ma [2] for the applications in mathematical financeand to Hamadène, Lepeltier
[8] for the applications in stochastic control and stochastic games. On other hand, El Karoui
et al [7] have considered reflected BSDEs where the “reflection” keeps the solution above
a given stochastic process called an obstacle. In this setting, many others results have been
established in the literature, among others, we note the work of Hamadène et al [9, 10],
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Cvitanic and Ma [3], Hamadène and Ouknine [11]. Recently, Ren and Xia [17] give a prob-
abilistic formula for the viscosity solution of an obstacleproblem for parabolic PDEs with a
nonlinear Neumann boundary condition. They use the connection with such PDEs and the
reflected GBSDEs. We notice that above result is with deterministic horizon and Lipschitz
condition on the coefficients.

To fill the gap, this paper is devoted to derive existence and uniqueness result to reflected
GBSDEs with random terminal time which may be infinite and nonLipchitz coefficients. In
application, we give an optimal stopping time problem related to American pricing option,
using a infinite horizon reflected GBSDEs. With a finite randomtime one, we derive a
probabilistic formula for the viscosity solution of an obstacle problem for elliptic PDEs with
a nonlinear Neumann boundary condition. The rest of this paper is organized as follows.
We precise our problem in section 2. Section 3 and Section 4 are devoted to the main results.
In section 5, we give as an application, the connection with American option pricing and an
obstacle problem for a elliptic PDEs with nonlinear Neumannboundary condition.

2 Formulation of the problem

Let (Ω,F ,P) be a complete probability space and(Wt ,F t)t≥0 be ad-dimensional Wiener
process defined on it.{F t} denotes is natural filtration augmented with allP-null sets ofF
andF∞ =

⋃
t≥0F t . Let us consider the following objects:

(A1)





(i) τ is aF t -stopping time.

(ii) (Gt)t≥0 is a continuous real valued increasingF t -progressively measurable
process verifyingG0 = 0

(A2) f andg are IR-values measurable functions defined respectively onΩ×R+× IR× IRd

andΩ× IR+× IR such that there are constantsα ∈ R, β < 0, K > 0, λ > 2|α|+K2

andµ> 2|β| and[1,+∞)-valued process{ϕt , ψt}t≤0 verifying

(i) ∀t,∀z,y 7−→ ( f (t,y,z),g(t,y)) is continuous

(ii) (ω, t) 7−→ ( f (ω, t,y,z),g(ω, t,y)) is F t -progressively measurable

(iii ) ∀t,∀y,∀(z,z′) , | f (t,y,z)− f (t,y,z′)| ≤ K|z−z′|

(iv) ∀t,∀z,∀(y,y′), (y−y′) ( f (t,y,z)− f (t,y′,z))≤ α|y−y′|2

(v) ∀t, ∀(y,y′), (y−y′) (g(t,y)−g(t,y′))≤ β|y−y′|2

(vi) ∀t,∀y,∀z, | f (t,y,z)| ≤ ϕt +K(|y|+ |z|), |g(t,y)| ≤ ψt +K|y|

(vii) E
[∫ τ

0 eλs+µG(s)[ϕ(s)2ds+ψ(s)2]dGs
]
< ∞.

(A3)ξ is aF τ-measurable variable such thatE(eλτ+µG(τ)|ξ|2)<+∞

2



(A4) (St)t≥0 is a continuous progressively measurable real-valued process satisfying:
(i) E

(
sup0≤t≤τ eλt+µGt (S+t )

2
)
<+∞

(ii) Sτ ≤ ξ P a.s.

Let (τ,ξ, f ,g,S) be the data satisfying the previous conditions. We want to construct an
adapted processes(Yt ,Zt ,Kt)t≥0 solution of the reflected GBSDE

−dYt = 1t≤τ f (t,Yt ,Zt)dt+1t≤τg(t,Yt)dGt +dKt −ZtdWt , Yτ = ξ (2.1)

or equivalently

Yt∧τ = ξ+
∫ τ

t∧τ
f (t,Yt ,Zt)dt+

∫ τ

t∧τ
g(t,Yt)dGt −

∫ τ

t∧τ
ZtdWt +Kτ−Kt∧τ. (2.2)

Let us first recall that a solution to the equation(2.1) is a triplet of progressively measurable
processes(Yt ,Zt ,Kt)t≥0 with values inR×R

d×R such that

1. Y is a continuous process,P-a.s., for eachT, t 7→ Zt belongs toL2((0,T);Rd) and
t 7→ ( f (t,Yt ,Zt),g(t,Yt )) ∈ L1((0,T);R)×L1((0,T);R);

2. For allt ≥ τ a.s.,Yt = ξ, Zt = 0, Kt = Kτ;

3. for each nonnegative realT, ∀t ∈ [0,T],

Yt =YT∧τ +

∫ T∧τ

t∧τ
f (s,Ys,Zs)ds+

∫ T∧τ

t∧τ
g(s,Ys)dGs−

∫ T∧τ

t∧τ
ZsdWs+KT∧τ −Kt∧τ.

4. Yt ≥ St , t ≥ 0

5. E
(

sup0≤t≤τ eλt+µG(t) |Yt |
2+

∫ τ
0 eλs+µG(s)

[(
|Ys|

2+ |Zs|
2
)

ds+ |Ys|
2dGs

])
<+∞

6. K is a non-decreasing process such thatK0 = 0 and
∫ τ

0 (Yt −St)dKt = 0 a.s.

3 Reflected GBSDEs with finite random terminal time

The aim of this section is to prove the first main result of thispaper, concerning the existence
and uniqueness result for reflected GBSDEs(2.1) when the random timeτ is suppose to be
finite.

Theorem 3.1. Assume that(A1)-(A4) hold. Moreover if the obstacle process(St)t≥0 is the
Itô process in the form dSt = mt1[0,τ]dt+vt1[0,τ]dWt ,

with E

(∫ τ

0
eλs+µG(s) (|ms|

2+ |vs|
2)ds

)
<+∞ . Then there exists a unique triple(Y,Z,K)

solution of reflected GBSDE(2.1).
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Proof. We adopt this strategy for the proof.
Existence.For each integern, let us denoteξn = E(ξ|Fn) and consider the data

(ξn,1[0,τ] f ,1[0,τ]g,S.∧τ). Under(A1)-(A4), one can show, using the same argument as in
[17] that there exists a unique process(Y

n
,Z

n
,K

n
), solution of the classical (deterministic

terminal time) reflected GBSDE

Y
n
t = ξn+

∫ n

t
1[0,τ] f (s,Y

n
s,Z

n
s)ds+

∫ n

t
1[0,τ]g(s,Y

n
s)dGs

−
∫ n

t
Z

n
sdWs+K

n
n−K

n
t , 0≤ t ≤ n, (3.1)

satisfying:

Y
n
t ≥ St and

∫ n∧τ
0 (Y

n
t −St)dK

n
t = 0.

Sinceξ belongs toL2(F τ), there exists a process(ηt)t≥0 in M2(0,τ;Rd) such that

ξ = E[ξ]+
∫ τ

0
ηsdWs

and, we define(Y
n
,Z

n
,K

n
) on the whole time axis by setting:

∀ t > n,Y
n
t = E(ξ|F t) = ξt Z

n
t = ηt1[0,τ] and K

n
t = K

n
n.

In the sequel, we consider the process(Yn,Zn,Kn) defined by:Yn
t = Y

n
t∧τ, Zn

t = Zn
t∧τ and

Kn
t = K

n
t∧τ.

The rest of the proof will be split in several steps and,C denotes a positive constant
which may vary from one line to another.

Step 1: A priori estimates uniform in n.
First, there exists a constantC> 0 such that for alls≥ 0,

E

(
sup

0≤t≤τ
eλt+µGt |Yn

t |
2+

∫ τ

0
eλs+µGs

[
(|Yn

s |
2+ |Zn

s |
2)ds+ |Yn

s |
2 dGs

]
+ |Kn

τ |
2
)

(3.2)

≤ CE

(
eλτ+µGτ |ξ|2+

∫ τ

0
eλs+µGs

[
ϕ2(s)ds+ψ2(s)dGs

]
+ sup

0≤t≤τ
eλt+µGt

∣∣(St)
+
∣∣2
)
.

Indeed, for any arbitrarily smallε > 0 and anyρ < 1 arbitrarily close to one, there exists a
constantC> 0 such that for alls> 0, y∈R, z∈ R

d,

2〈y, f (s,y,z)〉 ≤ (2α+ρ−1K2+ ε)|y|2+ρ|z|2+cϕ2(s),

2〈y,g(s,y)〉 ≤ (2β+ ε)|y|2+cψ2(s).

From these and Itô’s formula, we deduce that for any arbitrarily small δ > 0

E

(
eλt+µGt |Yn

t |
2+

∫ τ

t∧τ
eλs+µGs[(λ̄|Yn

s |
2+ ρ̄|Zn

s |
2)ds+ µ̄|Yn

s |
2dGs]

)

≤ E

(
eλτ+µGτ |ξ|2+2c

∫ τ

t∧τ
eλs+µGs

[
ϕ2(s)ds+ψ2(s)dGs

]
+2

∫ τ

t∧τ
eλs+µGs〈Ss,dKn

s 〉

)

≤ E

(
eλτ+µGτ |ξ|2+2c

∫ τ

t∧τ
eλs+µGs

[
ϕ2(s)ds+ψ2(s)dGs

]

+δ−1 sup
0≤t≤τ

eλs+µGs(S+s )
2+δ(Kn

τ −Kn
t )

2
)
, (3.3)
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whereλ̄ = λ−2α−ρ−1K2−ε, ρ̄ = 1−ρ andµ̄= µ−2β−ε. We may chooseε andρ such
that λ̄ > 0, ρ̄ > 0 andµ̄> 0. From the reflected GBSDE(3.1), estimate(3.3) and for every
λ′ such that 0< λ′ < min(λ,µ), we have

δE |Kn
τ −Kn

t |
2

≤ δE
(
|Yn

t |
2+ |ξ|2+(λ′)−1

∫ τ

t∧τ
eλ′s
(

ϕ2(s)+ |Yn
s |

2+ |Zn
s |

2
)

ds

+(λ′)−1
∫ τ

t∧τ
eλ′Gs

(
ψ2(s)+ |Yn

s |
2
)

dGs

)

≤ δE
(

eλt+µGt |Yn
t |

2+eλτ+µGτ |ξ|2
)

+δ(λ′)−1
E

(∫ τ

t∧τ
eλs+µG(s)

[
|Yn

s |
2+ϕ2(s)+ |Zn

s |
2
]

ds

)

+δ(λ′)−1
E

(∫ τ

t∧τ
eλs+µG(s)(|Yn

s |
2+ψ2(s))dGs

)
.

Chosenδ small enough such that 1−δ(λ′)−1 > 0, ¯̄λ= λ̄−δ(λ′)−1 > 0, ¯̄ρ = ρ̄−δ(λ′)−1 > 0
and¯̄µ= µ̄−δ(λ′)−1 > 0, we get

E

[
(1−δ(λ′)−1)eλt+µGt |Yn

t |
2+

∫ τ

t∧τ
eλs+µGs

(
[¯̄λ|Yn

s |
2+ ¯̄ρ|Zn

s |
2]ds+ ¯̄µ|Yn

s |
2dGs

)]

≤ CE

(
eλτ+µGτ |ξ|2+

∫ τ

t∧τ
eλs+µGs[ϕ2(s)ds+ψ2(s)dGs]+ sup

0≤t≤τ
eλt+µG(t)(S+t )

2
)
.

Therefore, the result follows by using Burkhölder-Davis-Gundy inequality.
Step 2: Convergence of the sequence(Yn,Zn,Kn) .

For m> n, let us set∆Yt =Ym
t −Yn

t , ∆Zt = Zm
t −Zn

t , ∆Kt = Km
t −Kn

t . In view of (3.1), we
get

−d(∆Y)t = ( f (s,Yn
s ,Z

n
s)− f (s,Ym

s ,Zm
s ))ds+(g(s,Yn

s )−g(s,Ym
s ))dGs

−∆ZtdWt +d(∆K)s,

from which, Itô’s formula and above assumptions yield

eλt+µGt |∆Yt |
2+

∫ m∧τ

t∧τ
eλs+µGs[(λ̄|∆Ys|

2+ ρ̄|∆Zs|)ds+ µ̄|∆Ys|
2dGs]

≤ eλm+µGm|∆Ym|
2+

∫ m∧τ

t∧τ
〈∆Ys,d(∆Ks)〉−2

∫ m∧τ

t∧τ
eλs+µGs〈∆Ys,∆ZsdWs〉. (3.4)

Furthermore, since one can show that∫ m∧τ

t∧τ
〈∆Ys,d(∆Ks)〉 ≤ 0,

by taking expectation in both side of (3.4) and using Burkhölder-Davis-Gundy inequality,
we get

E

(
sup

0≤t≤τ
eλt+µGt |∆Yt |

2+

∫ τ

0
eλs+µGs[(λ̄|∆Ys|

2+ ρ̄|∆Zs|)ds+ µ̄|∆Ys|
2dGs]

)

≤ E

(
eλ(m∧τ)+µGm∧τ |∆Ym|

2
)
.
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But, since∆Ym = ξm∧τ −ξn∧τ,

E

(
sup

0≤t≤τ
eλt+µGt |∆Yt |

2+
∫ τ

0
eλs+µGs[(λ̄|∆Ys|

2+ ρ̄|∆Zs|)ds+ µ̄|∆Ys|
2dGs]

)

tends to zero asn,m goes to infinity. Therefore,(Yn,Zn) is a Cauchy sequence and con-
verges to(Y,Z). In virtue of (3.1), the convergence ofYn, Zn (for a subsequence), the
continuity of f andg and

• supn≥0 | f (s,Y
n
s ,Zs)| ≤ fs+K

{
(supn≥0 |Y

n
s |)+‖Zs‖

}
,

• supn≥0 |φ(s,Yn
s )| ≤ φs+K

{
(supn≥0 |Y

n
s |)
}

,

• E
∫ T

0 | f (s,Yn
s ,Z

n
s)− f (s,Yn

s ,Zs)|
2ds≤CE

∫ T
0 ‖Zn

s −Zs‖
2ds,

there exists a processK such that for allt ∈ [0,T]

E |Kn
t −Kt|

2 −→ 0

asn goes to infinity.
Step 4The limit process(Y,Z,K) solves our reflected GBSDE(τ,ξ, f ,g,S) .
Taking the limit in BSDE(3.1), we getP-a.s. for anyT > 0,

Yt = ξ+
∫ τ∧T

t
f (s,Ys,Zs)ds+

∫ τ∧T

t
g(s,Ys)dGs+Kτ∧T −Kt −

∫ τ∧T

t
ZsdWs, ∀t ∈ [0,T ∧ τ]

and for allt ≥ τ,Yt = ξ, Zt = 0, Kt =Kτ. Moreover, since(Yn
t ,K

n
t )0≤t≤T tends to(Yt ,Kt)0≤t≤T

in probability, the measuredKn converges todK in probability, so that
∫ n∧τ

0 (Yn
s −Ss)dKn

s →∫ τ
0 (Ys−Ss)dKs in probability asn→ ∞. Hence,

∫ τ
0 (Ys−Ss)dKs = 0.

Uniqueness
Let (Yt ,Zt ,Kt) and(Y′

t ,Z
′
t ,K

′
t ) be two solutions of the reflected GBSDE(2.1), and(Ȳt , Z̄t , K̄t)=

(Yt −Y′
t ,Zt −Z′

t ,Kt −K′
t ). It follows from Itô’s formula, the assumptions(iii ), (iv) and(v)

of (A2) that

eλ(t∧τ)+µGt∧τ |Ȳt∧τ|
2+

∫ T∧τ

t∧τ
eλs+µGs[λ|Ȳs|

2ds+µ|Ȳs|
2dGs+ |Z̄s|

2ds]

≤ eλ(T∧τ)+µGT∧τ |ȲT∧τ|
2
+2

∫ T∧τ

t∧τ
eλs+µG(s)[α|Ȳs|

2+K|Ȳs|× |Z̄s|
2]ds

2β
∫ T∧τ

t∧τ
eλs+µG(s)|Ȳs|

2dGs−2
∫ T∧τ

t∧τ
eλs+µG(s)〈Ȳs, Z̄sdWs〉.

Hence, withρ < 1, λ̄ = λ−2α−ρ−1K2 > 0, µ̄= µ−2β > 0,

E

(
eλ(t∧τ)+µGt∧τ |Ȳt∧τ|

2+
∫ T∧τ

t∧τ
eλs+µGs[λ|Ȳs|

2ds+µ|Ȳs|
2dGs+(1−ρ)|Z̄s|

2ds]

)

≤ E

(
eλ(T∧τ)+µGT∧τ |ȲT∧τ|

2
)
,

and consequently, lettingT → ∞, dominated convergence theorem yields

E

(
eλ(t∧τ)+µG(t∧τ) |Ȳt∧τ|

2
)
= 0.
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Then for allt, Ȳt∧τ = 0 andZ̄t∧τ = 0. Moreover, since

K̄t∧τ = Ȳ0−Ȳt∧τ −
∫ t∧τ

0
f (s,Ys,Zs)− f (s,Y′

s,Z
′
s)ds

−
∫ t∧τ

0
g(s,Ys)−g(s,Y′

s)dGs+
∫ t∧τ

0
Z̄sdWs,

K̄t∧τ = 0 for all t.

4 Infinite horizon reflected GBSDEs

In this section, we study the following infinite horizon reflected GBSDE:

Yt = ξ+
∫ ∞

t
f (s,Ys,Zs)ds+

∫ ∞

t
g(s,Ys)ds−

∫ ∞

t
ZsdWs+K∞ −Kt, 0≤ t ≤ ∞. (4.1)

Let us introduce some spaces which our discussion will be carried on.

S
2 =

{
ϕt , 0≤ t ≤ ∞, is anF t -adapted process such that,E

(
sup

0≤t≤∞
|ϕt |

2
)
< ∞

}
,

H
2 =

{
ϕt , 0≤ t ≤ ∞, is anF t-adapted process such that, E

(∫ ∞

0
|ϕt |

2dt

)
< ∞

}
,

Throughout the paper, we propose the following assumptions:

(A2′) f : Ω× [0,∞)×R×R
d → R andg : Ω× [0,∞)×R→R measurable mappings and

three positives deterministic processesu, v andv′ verifying∫ ∞

0
[(vt +v′2t )dt+utdGt ]<+∞. (4.2)

such that

(i) | f (t,y,z)− f (t,y′,z′)| ≤ vt |y−y′|+v′t‖z−z′‖,

(ii) |g(t,y)−g(t,y′)| ≤ ut |y−y′|

(iii )〈y−y′,g(t,y)−g(t,y′)〉 ≤ β|y−y′|2

(iii ) | f (t,y,z)| ≤ ϕt +K(|y|+‖z‖), |g(t,y)| ≤ ψt +K|y|

(iv)E
(∫ ∞

0 ϕ2
t ds+ψ2

t dGt
)
< ∞.

(A3′) a terminal valueξ ∈ L2(Ω,F∞,P)

(A4′) The barrier(St , t ≥ 0) is a continuous progressively measurable real-valued process
such that

(i)E[supt≥0(S
+
t )

2]< ∞

(ii) limsuptր∞ St ≤ ξ, a.s.
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With all the above preparations, we have

Definition 4.1. A solution to reflected GBSDE associated with the data(ξ, f ,g,S) is a triple
(Yt ,Zt ,Kt) of F t progressively measurable processes such that(4.1) holds and

(i)Y ∈ S 2, Z ∈ H 2, K∞ ∈ L2;

(ii) Yt ≥ St , t ≥ ∞;

(iii ) Kt is continuous and increasing,K0 = 0, and
∫ ∞

0 (Yt −St)dKt = 0.

Our approach to solve above reflected GBSDEs with infinite horizon is to use the snell
envelope theory connected to the contraction method. For this, we consider first the special
case that is the functionf andg do not depend on(Y,Z) such that

E

(∫ ∞

0
| f (t)|2dt+

∫ ∞

0
|g(t)|2dGt

)
< ∞. (4.3)

More precisely we have the following reflected GBSDE:

Yt = ξ+
∫ ∞

t
f (s)ds+

∫ ∞

t
g(s)dGs−

∫ ∞

t
ZsdWs+K∞ −Kt, t ∈ [0,∞]. (4.4)

Proposition 4.2. Assume that(A3′),(A4′) and (4.3) hold. Then reflected GBSDE(4.4)
associated with(ξ, f ,g,S) has a unique solution(Y,Z,K).

Proof. Let (Ft)0≤t≤∞ be the process defined as follows:

Ft =
∫ t

0
f (s)ds+

∫ t

0
g(s)dGs+St1t<∞ +ξ1t=∞.

Then fort < ∞, F is continuousF t -adapted process and sup0≤t≤∞ Ft ∈ L2(Ω,F∞). So, the
Snell envelope ofF is the smallest continuous supermartingale which dominates the process
F and it is given by:

S t(F) = esssup
ν∈K t

E(Fν|F t) ,

whereK t is the set of allFs-stopping times taking values in[t,∞]. Then, we have

E

(
sup

0≤t≤∞
[S t(F)]

2
)
< ∞

hence(S t(F))0≤t≤∞ is of class [D]. Therefore, it has the following Doob-Meyer decompo-
sition:

S t(F) = E

(
ξ+

∫ ∞

0
f (t)ds+

∫ ∞

0
g(t)dGt +K∞|F t

)
−Kt

where(Kt)0≤t≤∞ is anF t -adapted continuous non-decreasing process such thatK0 = 0. By
the theory of Snell envelope (see Ren and Hu, [18]) we haveE(K∞)

2 < ∞. Therefore we
derive

E

[
sup

0≤t≤∞

∣∣∣∣E
(

ξ+
∫ ∞

0
f (t)ds+

∫ ∞

0
g(t)dGt +K∞|F t

)∣∣∣∣
2
]
< ∞

8



and then, through the martingale representation there exists a continuous uniformly inte-
grable process(Zs)0≤s≤∞such that

Mt = E

(
ξ+

∫ ∞

0
f (t)ds+

∫ ∞

0
g(t)dGt +K∞|F t

)

= M0+
∫ t

0
ZsdWs.

Now let us set

Yt = esssup
ν∈K t

E

[∫ ν

t
f (s)ds+

∫ ν

t
g(s)dGs+Sν1ν<∞ +ξ1ν=∞

]
.

Then

Yt +
∫ t

0
f (s)ds+

∫ t

0
g(s)dGs = S t(F)

= Mt −Kt

henceforth, we have

Yt +

∫ ∞

0
f (s)ds+

∫ ∞

0
g(s)dGs = ξ+

∫ ∞

0
f (s)ds+

∫ ∞

0
g(s)dGs+

∫ t

0
ZsdWs−Kt .

So, we obtain

Yt = ξ+
∫ ∞

t
f (s)ds+

∫ ∞

t
g(s)dGs+K∞−Kt −

∫ ∞

t
ZsdWs, 0≤ t ≤ ∞.

Since,Yt +
∫ t

0 f (s)ds+
∫ t

0 g(s)dGs= S t(F) andS t(F)≥Ft =
∫ t

0 f (s)ds+
∫ t

0 g(s)dGs+St1t<∞+
ξ1t=∞, thenYt ≥ St .

Finally, use again the theory of Snell envelope, we know
∫ ∞

0 (S t(F)−Ft)dKt = 0 i.e.
∫ ∞

0
(Yt −St)dKt =

∫ ∞

0
(S t(F)−Ft)dKt = 0.

Therefore, the triple(Y,Z,K) satisfies the reflected GBSDE(4.4) and properties(i)-(iii )
above.

Let us prove uniqueness. If(Y′,Z′,K′) is another solution of the reflected generalized
GBSDE(4.4) associated with(ξ, f ,g,S) satisfying properties(i)-(iii ) above, definēY =
Y−Y′, Z̄ = Z−Z′, andK = K−K′. Using Itô’s formula to|Ȳt |

2,

|Ȳt |
2+

∫ ∞

t
|Z̄s|

2ds= 2
∫ ∞

t
ȲsdK̄s−2

∫ ∞

t
ȲsZ̄sdWs, (4.5)

by the integrable conditions(i)-(iii ) and Burkholder-Davis-Gundy’s inequality, we have

E

(
|Ȳt |

2+

∫ ∞

t
|Z̄s|

2ds

)
= 2E

(∫ ∞

t
ȲsdK̄s

)
≤ 0.

SoE(Ȳt) = 0 a.s. for allt ∈ [0,∞] andE
(∫ ∞

t |Z̄s|
2ds
)
= 0. Then|Ȳt |

2 = |Z̄t |
2 = 0 a.s., so

thatY =Y′ by the continuity ofȲt andZ = Z′. Finally, it is easy to getK = K′ a.s.

9



We now establish the main result of this section.

Theorem 4.3. Assume that(A2′), (A3′) and (A4′) hold. Then the reflected GBSDE(4.1)
associated with(ξ, f ,g,S) has a unique solution(Y,Z,K).

Proof. We first prove the uniqueness. Let(Y,Z,K) and (Y′,Z′,K′) be two solutions of
the reflected GBSDE(4.1) associated with(ξ, f ,g,S). By use the same notation as in
Proposition 3.1 and applying Itô’s formula to|Ȳt |

2, we have

|Ȳt |
2+

∫ ∞

t
|Z̄s|

2ds = 2
∫ ∞

t
Ȳs( f (s,Ys,Zs)− f (s,Y′

s,Z
′
s))ds+2

∫ ∞

t
Ȳs(g(s,Ys)−g(s,Y′

s))dGs

+2
∫ ∞

t
ȲsdK̄s−2

∫ ∞

t
ȲsZ̄dWs.

Then

E

(
|Ȳt |

2+
∫ ∞

t
|Z̄s|

2ds

)
≤ 2E

∫ ∞

t
|Ȳs|(vs|Ȳs|+v′s|Z̄s|)ds

+2βE
∫ ∞

t
|Ȳs|

2dGs+2E
∫ ∞

t
ȲsdK̄s

≤
1
2
E

∫ ∞

t
|Z̄s|

2ds+E

∫ ∞

t
(2vs+2v′2s )|Ȳs|

2ds (4.6)

From Gronwall’s lemma we obtainE|Ȳt |
2 = 0 for all t ∈ [0,∞]. Then|Ȳt |

2 = 0 as., soY =Y′

by the continuity ofȲt . Now, going back to(4.6), we have

E

∫ ∞

0
|Z̄s|

2ds≤ E sup
0≤t≤∞

|Ȳs|
2
∫ ∞

0
(2vs+2v′2s )ds,

soE
∫ ∞

0 |Z̄s|
2ds= 0. Then it is easy to getKt = K′

t .
At last, we prove the existence of (4.1). It is divided into two steps.
Step 1.Assume(

∫ ∞
0 vsds+usdGs)

2+
∫ ∞

0 v′2s ds< 1
24.

Let us denoteD = S 2×H 2 and‖(Y,Z)‖D = ‖Y‖2
S 2+‖Z‖2

H 2. We define a mappingΨ :D →
D as follows: for any(U,V) ∈ D , (Y,Z) = Ψ(U,V) is a element ofD such that(Y,Z,K) is
a unique solution to reflected GBSDE associated with(ξ, f (s,Us,Vs),g(s,Us),S). Similarly
we define(Y′,Z′) = Ψ(U ′,V ′) for (U ′,V ′) ∈ D and setŪ = U −U ′, V̄ = V −V ′, Ȳ =
Y−Y′, Z̄ = Z−Z′, K̄ = K−K′, f̄ = f (s,Us,Vs)− f (s,U ′

s,V
′
s) andḡ= g(s,Us)−g(s,U ′

s).
From above we have

Yt = esssup
ν∈K t

E

(∫ ν

t
f (s,Us,Vs)ds+

∫ ν

t
g(s,Us)dGs+Sν1ν<∞ +ξ1ν=∞|F t

)
,

Y′
t = esssup

ν∈K t

E

(∫ ν

t
f (s,U ′

s,V
′
s)ds+

∫ ν

t
g(s,U ′

s)dGs+Sν1ν<∞ +ξ1ν=∞|F t

)
.

Then

|Ȳt | ≤ esssup
ν∈K t

E

(∫ ν

t
| f̄ (s)|ds+

∫ ν

t
|ḡ(s)|dGs|F t

)

≤ E

(∫ ∞

0
| f̄ (s)|ds+

∫ ∞

0
|ḡ(s)|dGs|F t

)

10



which provides

E

(
sup

0≤t≤∞
|Ȳt |

2
)

≤ E

[
sup

0≤t≤∞
E

(∫ ∞

0
| f̄ (s)|ds+

∫ ∞

0
|ḡ(s)|dGs|F t

)2
]

≤ 4E

(∫ ∞

0
| f̄ (s)|ds+

∫ ∞

0
|ḡ(s)|dGs

)2

by Doob’s inequality. Using Itô’s formula to|Ȳt |
2, we get

|Ȳt |
2+

∫ ∞

t
|Z̄s|

2ds = 2
∫ ∞

t
Ȳs f̄ (s)ds+2

∫ ∞

t
Ȳsḡ(s)ds+2

∫ ∞

t
ȲsdK̄s−2

∫ ∞

t
ȲsZ̄sdWs.

≤ 2
∫ ∞

t
Ȳs f̄ (s)ds−2

∫ ∞

t
ȲsZ̄sdWs.

Then

E

(∫ ∞

t
|Z̄s|

2ds

)
≤ 2

∫ ∞

0
Ȳs f̄ (s)ds

≤ E

(
sup

0≤t≤∞
|Yt |

2
)
+E

(∫ ∞

0
| f̄ (s)|ds

)2

.

≤ 4E

(∫ ∞

0
[| f̄ (s)|ds+ |ḡ(s)|dGs]

)2

+E

(∫ ∞

0
| f̄ (s)|ds

)2

.

From(A2′) we get

E

(∫ ∞

0
[| f̄ (s)|ds+ |ḡ(s)|dGs]

)2

+E

(∫ ∞

0
| f̄ (s)|ds

)2

≤ E

(∫ ∞

0
(vs|Ūs|+v′s|V̄s|)ds+us|Ūs|dGs

)2

≤ 4

[(∫ ∞

0
vsds+usdGs

)2

+

∫ ∞

0
v′2ds

]
‖(Ū ,V̄)‖D .

At last, we have

‖(Ȳ, Z̄)‖D ≤ 24

[(∫ ∞

0
vsds+usdGs

)2

+

∫ ∞

0
v′2ds

]
‖(Ū ,V̄)‖D . (4.7)

From the inequality(
∫ ∞

0 vsds+usdGs)
2+

∫ ∞
0 v′2s ds< 1

24 we infer thatΨ is a strict contrac-
tion and has a unique fixed point, which is a unique solution ofthe reflected GBSDE(4.1).

Step 2.For the general case i.e (4.2), there existsT0 > 0 such that
(∫ ∞

T0

vsds+usdGs

)2

+
∫ ∞

T0

v′2s ds<
1
24

.

From Step 1 we know that the reflected GBSDE

Ŷt = ξ+
∫ ∞

t
1{s≥T0} f (s,Ŷs, Ẑs)ds+

∫ ∞

t
1{s≥T0}g(s,Ŷs)ds

−

∫ ∞

t
ẐsdWs+ K̂∞ − K̂t, 0≤ t ≤ ∞, (4.8)
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has a unique solution(Ŷ, Ẑ, K̂). Then we consider the reflected GBSDE

Ỹt = ξ+
∫ T0

t
f (s,Ỹs, Z̃s)ds+

∫ T0

t
g(s,Ỹs)ds

−
∫ T0

t
Z̃sdWs+ K̃T0 − K̃t, 0≤ t ≤ T0. (4.9)

It follows from [17], the existence of a unique solution(Ỹ, Z̃, K̃) of reflected GBSDE(4.9).
Let us set

Yt =





Ỹt , t ∈ [0,T0],

Ŷt , t ∈ [T0,∞],

Zt =





Z̃t , t ∈ [0,T0],

Ẑt , t ∈ [T0,∞],

Kt =





K̃t , t ∈ [0,T0]

K̃T0 + K̂t − K̂T0, t ∈ [T0,∞].

If t ∈ [T0,∞], (Ŷt , Ẑt , K̂t) is the solution of(4.8), and then(Ŷt , Ẑt , K̃T0+ K̂t − K̂T0) also satisfies
(4.8). Now, if t ∈ [0,T0] , (Ỹt , Z̃t , K̃t) is the solution of(4.9) andỸT0 = ŶT0, K̃T0 = K̃T0+ K̂T0−
K̂T0. SoY andK are continuous, and(Y,Z,K) is a unique solution of reflected GBSDE
(4.1).

Remark4.4. If the random variableξ ≡ 0 a.s, the condition(A3) remain true and Theorem
4.2 is available with assumptions(A1)-(A4). The proof follows steps of proof of Theorem
3.1 takingτ = ∞

5 Applications

In this section, we consider reflected GBSDEs in Markovian framework and stated is related
to an American option pricing as well as is related to a probabilistic representation of the
viscosity solution of an obstacle problem of elliptic type.

5.1 A class of reflected diffusion process

Let b : Rd −→ R
d, σ : Rd −→ R

d×d be functions such that

∣∣b(x)−b
(
x′
)∣∣+

∣∣σ(x)−σ
(
x′
)∣∣≤ K

∣∣x−x′
∣∣ .

LetΘ be an open connected bounded subset ofR
d, which is that for a functionφ∈ C 2

b (R
d),Θ=

{φ > 0} , ∂Θ = {φ = 0} , and|▽φ(x)|= 1, x∈ ∂Θ. Note that at any boundary pointx∈ ∂Θ,

▽φ(x) is a unit normal vector to the boundary, pointing towards theinterior of ∂Θ.

By Lions and Szitman [12] (see also Saisho [19]) for eachx∈ Θ there exists a unique pair of
progressively measurable continuous processes{(Xx

s ,G
x
s) : t ≥ 0}, with values inΘ×R+,

such that

s 7→Gx
s is increasing,

Xx
s = x+

∫ s

0
b(Xx

r )dr+
∫ s

0
σ(Xx

r )dWr +
∫ s

0
∇φ(Xx

r )dGx
r , s≥ 0,

12



Gx
s =

∫ s

0
1{Xx

r ∈∂Θ}dGx
r . (5.1)

Let state some properties of processes{(Xx
s ,G

x
s),s≥ 0} . We refer the reader to Pardoux

and Zhang, [16].

Proposition 5.1. For each T≥ 0, there exits a constant CT such that for all x,x
′
∈ Θ

E

(
sup

0≤s≤T
|Xx

s −Xx
′

s |4
)
≤CT |x−x

′
|4

and

E

(
sup

0≤s≤T
|Gx

s−Gx
′

s |
4
)
≤CT |x−x

′
|4.

Moreover, there exists a constant Cp such that for all(t,x) ∈ R+×Θ,

E(|Gx
t |

p)≤Cp(1+ tp) ,

and for each µ, t > 0, there exists Cµ,t such that for all x∈ Θ,

E

(
eµGx

t

)
≤Cµ,t .

Since we state in Markovian framework, the(ξ, f ,g,S) are defined as follows:

f (s,y,z) = f (s,Xx
s ,y,z), g(s,y) = g(s,Xx

s ,y), Ss = h(Xx
s ),

where f , g satisfy the previous assumptions as we have in random finite horizon or infinite
horizon andh∈ C (Rd;R) with most polynomial growth at infinity.

5.2 American option pricing revisited

In this section, we use the result on infinite horizon reflected GBSDEs with one barrier to
deal with optimal stopping time problem. Roughly speaking,let us consider the following
reflected GBSDE:

1.

Yx
s = ξ+

∫ ∞

s
f (r,Xx

r ,Y
x
r ,Z

x
r )dr+

∫ ∞

s
g(r,Xx

r ,Y
x
r )dGx

r

−
∫ ∞

s
Zx

r dWr +Kx
∞−Kx

s, 0≤ s≤ ∞, (5.2)

2. Yx
s ≥ h(Xx

s ),

3. E
(

sup0≤t≤∞ |Yx
t |

2+
∫ ∞

0 |Zx
r |

2dr
)
<+∞,

4. Kx
s is an increasing process such thatK0 = 0 and

∫ ∞
0 (Yx

s −h(Xx
s ))dKx

s = 0.
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From Theorem 4.1, the previous reflected GBSDE has a unique solution (Yx,Zx,Kx). Un-
like of the work of Cvitanic and Ma, [2], we interpretXx in (5.1) as a price process of
financial assets which might affect the wealth of a controller and forced to live in a bounded
domain;Yx andZx are the wealth process and the trading strategy, respectively, of a "small"
investor or a "small" shareholder in the market in the sense that bothYx andZx might no
affect the priceXx. The investor acts to protect his advantages so that he has possibility at
any timeθ ∈ K (set of allFs-stopping time with values in[0,∞]) to stop controlling. The
control is not free. We define the pay off by

R(θ) = E

{∫ θ

0
f (r,Xx

r ,Y
x
r ,Z

x
r )dr+

∫ θ

0
g(r,Xx

r ,Y
x
r )dGx

r

+h(Xx
θ)1{θ<∞}+ξ1{θ=∞}

}

for all θ ∈ K . For the investor,f (Xx,Yx,Zx), (resp. f (Xx,Yx,Zx) + g(Xx,Yx)Ġx) is the
instantaneous reward onΘ (resp. on∂Θ), andh(Xx) andξ are respectively the rewards if he
decides to stop before or until infinite time. The problem is to look for an optimal strategy
for the investor, i.e. a strategŷθ such that

R(θ)≤ R(θ̂) for all θ ∈ K .

Now we give the main result of this section, an analogue of that in Cvitanic and Ma,
[2].

Theorem 5.2. Let (Yx
. ,Z

x
. ,K

x
. ) be a unique solution of reflected GBSDE(5.4). Then there

exists an optimal stopping time given by

θ̂ =





in f {t ∈ [0,∞), Yx
t ≤ h(Xx

t )} ,

∞ otherwise.

Then Yx
0 = R(θ̂), andθ̂ is an optimal strategy for the investor.

Proof. Since(Yx,Zx,Kx) is a unique solution of reflected GBSDE(5.4), Yx
0 is deterministic

and we have

Yx
0 = E(Yx

0 ) = E

(
ξ+

∫ ∞

0
f (Xx

r ,Y
x
r ,Z

x
r )dr+

∫ ∞

0
g(r,Xx

r ,Y
x
r )dGx

r

−
∫ ∞

0
Zx

r dWr +Kx
∞

)

= E

(
Yx

θ̂ +

∫ θ̂

0
f (Xx

r ,Y
x
r ,Z

x
r )dr+

∫ θ̂

0
g(r,Xx

r ,Y
x
r )dGx

r

−

∫ θ̂

0
Zx

r dWr +Kx
θ̂

)
(5.3)

In view of θ̂ and reflected GBSDE’s properties one knows that the processKt does not
increase between 0 and̂θ, hence thenKθ̂ = 0.
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On the other hand, since
∫ θ̂

0 Zx
r dWr is a martingale, we get

Yx
0 = E

(
Yx

θ̂ +

∫ θ̂

0
f (Xx

r ,Y
x
r ,Z

x
r )dr+

∫ θ̂

0
g(r,Xx

r ,Y
x
r )dGx

r

)
.

Next,Yx
θ̂ = h(Xx

θ̂t
)1{θ̂<∞}+ξ1{θ̂=∞} a.s., impliesYx

0 = R(θ̂).
Now from (5.3), we deduce that for everyθ ∈ K ,

Yx
0 = E

{
Yx

θ +
∫ θ

0
f (r,Xx

r ,Y
x
r ,Z

x
r )dr

+

∫ θ

0
g(r,Xx

r ,Y
x
r )dGx

r +Kx
θ

}
.

But Kx
θ ≥ 0 andYx

θ ≥ h(Xx
θ)1{θ<∞}+ξ1{θ=∞}. Then,

R(θ̂) =Yx
0 ≥ E

{∫ θ

0
f (r,Xx

r ,Y
x
r ,Z

x
r )dr+

∫ θ

0
g(r,Xx

r ,Y
x
r )dGx

r +h(Xx
θ)1{θ<∞}+ξ1{θ=∞}

}

≥ R(θ).

Hence the stopping timêθ is optimal.

5.3 An obstacle problem for elliptic PDEs with nonlinear Neumann bound-
ary condition

In this subsection, we will show that in the Markovian case the solution of the reflected
GBSDEs with random terminal time is a solution of an obstacleproblem for elliptic PDEs
with a nonlinear Neumann boundary condition. It follows from the results of the Section
3 that for allx ∈ Θ, there exists a unique triple(Yx,Zx,Kx) be the unique solution of the
following reflected GBSDE:

1.

Yx
s = h(Xx

τ )+

∫ τ

s
f (r,Xx

r ,Y
x
r ,Z

x
r )dr+

∫ τ

s
g(r,Xx

r ,Y
x
r )dGx

r

−

∫ τ

s
Zx

r dWr +Kx
τ −Kx

s, 0≤ s≤ τ, (5.4)

2. Yx
s ≥ h(Xx

s ),

3. E
(

sup0≤t≤τ |Y
x
t |

2+
∫ τ

0 |Z
x
r |

2 dr
)
<+∞,

4. Kx
s is an increasing process such thatK0 = 0 and

∫ τ
0 (Y

x
s −h(Xx

s ))dKx
s = 0.

We now consider the related obstacle problem for elliptic PDEs with a nonlinear Neu-
mann boundary condition. Roughly speaking, a solution of the obstacle problem is a func-
tion u∈C(Θ;R) which satisfies:

min{u(x)−h(x),Lu(x)+ f (x, u(x),(∇u)∗σ(x))} = 0, x∈ Θ,

15



(5.5)

∂u
∂n

(x)+g(x,u(x)) = 0, x∈ ∂Θ,

where

L =
1
2

d

∑
i, j=1

(σσ∗)i j (x)
∂2

∂xi∂x j
+

d

∑
i=1

bi (x)
∂

∂xi

and at pointx∈ ∂Θ
∂
∂n

=
d

∑
i=1

∂ψ
∂xi

(x)
∂

∂xi
.

More precisely, solutions of Equation(5.5) is take in viscosity sense.

Definition 5.3. (a) u ∈ C
(
Θ,Rd

)
is said to be a viscosity subsolution of (5.5) if for any

point x0 ∈ Θ, such thatu(x0) > h(x0) and for anyϕ ∈C2(Θ) such thatϕ(x0) = u(x0) and
u−ϕ attains its minimum atx0, then

−Lu(x0)− f (x,u(x0),(∇uσ)(x0))≤ 0, if x0 ∈ Θ

min
(
−Lu(x0)− f (x,u(x0),(∇uσ)(x0)), −

∂ϕ
∂n(x0)−g(x0, −ϕ(x0))

)
≤ 0, if x∈ ∂Θ.

(5.6)

(b) u∈ C
(
Θ,Rd

)
is said to be a viscosity supersolution of (5.5) if for any point x0 ∈ Θ,

such thatu(x0)≥ h(x0) and for anyϕ ∈C2(Θ) such thatϕ(x0) = u(x0) andu−ϕ attains its
maximum atx0, then

−Lu(x0)− f (x,u(x0),(∇uσ)(x0))≥ 0, if x0 ∈ Θ

min
(
−Lu(x0)− f (x,u(x0),(∇uσ)(x0)), −

∂ϕ
∂n(x0)−g(x0,ϕ(x0))

)
≥ 0, if x∈ ∂Θ.

(5.7)

(c) u is a viscosity solution of (5.5) if it is both a viscosity subsolution and supersolution.

We define

u(x) =Yx
0 , x∈ Θ (5.8)

which is a deterministic quantity sinceYx
0 is measurable with respect to theσ-algebra

σ(Wr : 0≤ r ≤ ∞) . For standards estimates for reflected GBSDEs and Proposition 4.1, we
deduce

Proposition 5.4. The function u∈C(Θ;R) such that u(x) ≥ h(x) ∀ x∈ Θ

The main result in this subsection is the following.

Theorem 5.5. The function defined by(5.8) is a viscosity solution of(5.5).
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Proof. First, let us show thatu is a viscosity subsolution of(5.5). Let x0 ∈ Θ and ϕ ∈
C2(Θ;Rd) be such thatϕ(x0) = u(x0) andϕ(x0)≥ u(x) for all x∈ Θ.

Step 1: Suppose thatu(x0)> h(x0) andx0 ∈ Θ and

−Lϕ(x0)− f (x,ϕ(x0),(∇ϕσ)(x0))> 0,

and we will find a contradiction.
Indeed, by continuity, we can suppose that there existε > 0 andηε > 0 such that for

eachx∈ {y : |y−x0|< ηε ⊂ Θ, we haveu(x)≥ h(x)+ ε and

−Lu(x)− f (x,ϕ(x),(∇ϕσ)(x)) ≥ ε. (5.9)

Define

τ = inf {s≥ 0 : |Xx0
s −x0|> ηε} (5.10)

Note that, for alls∈ [0,∞]

u(Xx0
s )≥ h(Xx0

s )+ ε.

Consequently, the processKx0
s is constant on[0,τ] and, hence,

Yx
s = Yx0

τ +

∫ τ

s
f (Xx0

r ,Yx0
r ,Zx0

r )dr−
∫ τ

s
Zx0

r dWr , 0≤ s≤ τ.

On the other hand, applying Itô’s formula toϕ(Xx0
s ) gives

ϕ(Xx0
s ) = ϕ(Xx0

τ )−
∫ τ

s
Lϕ(Xx0

r )dr−
∫ τ

s
∇ϕσ(Xx0

r )dWr , 0≤ s≤ τ.

Now, by inequality(5.9),

−Lϕ(Xx0
s )− f (Xx0

s ,ϕ(Xx0
s ),(∇ϕσ)(Xx0

s ))≥ ε.

Also,

ϕ(Xx0
τ )≥ u(Xx0

τ ) =Yx0
τ .

Consequently, comparison theorem for GBSDEs (see [16]) implies

ϕ(x0)> ϕ(Xx0
τ )− τε ≥ u(x0),

which leads to a contradictions.
Step 2: If we further suppose thatu(x0)> h(x0) andx0 ∈ ∂Θ and

min

(
−Lϕ(x0)− f (x,ϕ(x0),(∇ϕσ)(x0)), −

∂ϕ
∂n

−g(x0,ϕ(x0))

)
> 0. (5.11)

By continuity, we can suppose that there existε > 0 andηε > 0 such that for eachx∈ {y :
|y−x0|< ηε ⊂ Θ, we haveu(x) ≥ h(x)+ ε and

min

(
−Lu(x)− f (x,ϕ(x),(∇ϕσ)(x)), −

∂ϕ
∂n

−g(x,ϕ(x))
)
≥ ε. (5.12)
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Let τ be the stopping time defined as above by(5.10) and note that, for alls∈ [0,τ]

u(Xx0
s )≥ h(Xx0

s )+ ε.

Consequently, the processKx0
s is constant on[0,τ] and, hence,

Yx
s = Yx0

τ +

∫ τ

s
f (Xx0

r ,Yx0
r ,Zx0

r )dr+
∫ τ

s
g(r,Xx0

r ,Yx0
r )dGx0

r

−

∫ τ

s
Zx0

r dWr , 0≤ s≤ τ.

On the other hand, applying Itô’s formula toϕ(Xx0
s ) gives

ϕ(Xx0
s ) = ϕ(Xx0

τ )−

∫ τ

s
Lϕ(Xx0

r )dr−
∫ τ

s

∂ϕ
∂n

(Xx0
r )dGx0

r −

∫ τ

s
∇ϕσ(Xx0

r )dWr , 0≤ s≤ τ.

Now, by (5.12),

min

(
−Lϕ(Xx0

s )− f (Xx0
s ,ϕ(Xx0

s ),(∇ϕσ)(Xx0
s )), −

∂ϕ
∂n

(Xx0
s )−g(r,Xx0

r ,Yx0
r )

)
≥ ε.

Also,

ϕ(Xx0
τ )≥ u(Xx0

τ ) =Yx0
τ .

Consequently, comparison theorem for GBSDEs (see [16]) implies

ϕ(x0)> ϕ(Xx0
τ )− τε ≥ u(x0),

which leads to a contradiction.
By the same argument as above one can show thatu given by(5.8) is also a viscosity

supersolution of elliptic refected PDEs(5.5) and ends the proof.
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