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TORIC PLURISUBHARMONIC FUNCTIONS AND ANALYTIC ADJOINT

IDEAL SHEAVES

HENRI GUENANCIA

Abstract. In the first part of this paper, we study the properties of some particular plurisub-
harmonic functions, namely the toric ones. The main result of this part is a precise description
of their multiplier ideal sheaves, which generalizes the algebraic case studied by Howald. In
the second part, almost entirely independent of the first one, we generalize the notion of the

adjoint ideal sheaf used in algebraic geometry to the analytic setting. This enables us to give
an analogue of Howald’s theorem for adjoint ideals attached to monomial ideals. Finally,
using the local Ohsawa-Takegoshi-Manivel theorem, we prove the existence of the so-called
generalized adjunction exact sequence, which, combined with a Nadel-like vanishing result,
enables us to recover a global extension theorem of Manivel, for weakly pseudoconvex Kähler
manifolds.
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Introduction

Multiplier ideal sheaves are a fundamental tool in complex analytic geometry, for example
through Nadel’s vanishing theorem : attached to a plurisubharmonic (psh) function ϕ on a
complex manifold X by J (ϕ)x = {f ∈ OX,x; ||f ||ϕ = |f |e−ϕ ∈ L2

loc(Leb)}, they measure the
singularity of ϕ.
Lazarsfeld introduced their algebraic analogue for an ideal a using a log-resolution of a; of course
both ideals coincide whenever ϕ is attached to a (this means that ϕ = 1

2 log(|f1|2+ · · ·+ |fr|2)+
O(1) if a = (f1, . . . , fr) locally), but the conceptual gap between the analytic and algebraic
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2 HENRI GUENANCIA

definitions suggests that both approaches may be useful, and in some sense complementary to
each others.

In the first part of this paper, we give a different analytic approach of Howald’s theorem, that
extends to plurisubharmonic functions.
More precisely, Howald’s theorem states that the multiplier ideal J (a) attached to a monomial

ideal a = (zα1 , . . . , zαr) ⊂ C[z1, . . . zr] is generated by monomials zα satisfying α + 1 ∈
˚

P̄ (a),
where P (a) is the Newton polyhedron attached to the αi’s. Extending the notion of Newton
polyhedron attached to a monomial ideal to any toric psh function ϕ – by a toric psh function
we mean a psh function that is pointwise invariant under the compact unit torus Tn – and using
integrability properties for concave functions, we prove the generalization of Howald’s theorem
concerning the description of I (ϕ) :

Theorem A. Let ϕ be a toric psh function on some polydisk of Cn centered at 0, and let us set
1 = (1, . . . , 1). Then I (ϕ) is a monomial ideal, and we have :

zα = zα1
1 · · · zαn

n ∈ I(ϕ) ⇐⇒ α+ 1 ∈
˚

P̆ (ϕ).

This shows in passing that the (generalized) openness conjecture stated in [DK01] holds for
toric psh functions. Finally, we give one example of usual psh function for which we use this
result to characterize very precisely the multiplier ideal.
Let us notice that J. McNeal and Y. Zeytuncu recently gave a new proof of Howald’s theorem
in [MZ10] using basic analytic techniques.

In the second part of this paper, we focus on another ideal sheaf, related to the multiplier
ideal sheaf, namely the adjoint ideal sheaf attached to smooth hypersurface, say H . This ideal,
well-known in complex algebraic geometry, is a subsheaf of the multiplier ideal sheaf which
measures how largely the restricted ideal J (a)|H contains J (a|H), as expressed in [Laz04].

Our goal is to define an analytic analogue AdjH(ϕ) attached to any psh function on a smooth
complex manifold X . In view of the Ohsawa-Takegoshi-Manivel theorem, the natural candidate
for AdjH(ϕ) would be defined by its stalks

Adj0H(ϕ)x =
{
f ∈ OX,x ; ||f ||ϕ ∈ L2

loc(PoinH)
}

where PoinH is the standard Poincaré volume form attached to H ; namely if H is locally given
by {h = 0}, then PoinH = 1

|h|2 log2 |h|
Leb.

Unfortunately, the ideal Adj0H(ϕ) doesn’t coincide in general with the algebraic adjoint :
indeed, even in the algebraic case, Adj0H(ϕ) fails to satisfy the expected openness property (in
general, Adj0H((1 + ǫ)ϕ) 6= Adj0H(ϕ) for any ǫ > 0). So we have to perturb a bit this ideal by
setting

AdjH(ϕ) =
⋃

ǫ>0

Adj0H((1 + ǫ)ϕ).

Once we have introduced our ideal, we need to make sure that this new ideal is coherent, and that
it coincides with the algebraic adjoint ideal whenever ϕ is associated to an ideal a = (f1, . . . , fr),
namely ϕ = 1

2 log(|f1|2+ · · ·+ |fr|2)+O(1) where the fi’s are polynomials (or even holomorphic
functions).
This new point of view allows us to show an analogue of Howald’s theorem for (algebraic) adjoint
ideals :
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Theorem B. Let a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn] be a monomial ideal, H = {z1 = 0} such
that a * (z1). We denote by ri(F1) the relative interior of the (infinite) face of P (a) contained

in {x1 = 0} and we set 1̃ = (0, 1, . . . , 1). Then for every c > 0, Adj(ac, H) is a monomial ideal
and

zβ ∈ Adj(ac, H) ⇐⇒ β + 1̃ ∈ c ·
˚
P̄ (a) ∪ c · ri(F1).

We then prove that the fundamental adjunction exact sequence given in [Laz04] extends to
our setting, under the additional hypothesis that eϕ is Hölder continuous :

Theorem C. Let X be a complex manifold, H ⊂ X a smooth hypersurface, and ϕ a psh function
on X, ϕ|H 6= −∞, such that eϕ is locally Hölder continuous. Then the natural restriction map
induces the following exact sequence :

0 −→ I+(ϕ)⊗OX(−H) −→ AdjH(ϕ) −→ I+(ϕ|H) −→ 0

Finally, we give some properties of the sheaf Adj0H(ϕ), and explain what can be expected of
it.
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1. Toric plurisubharmonic functions

1.1. Multiplier ideal sheaves. In this section, we recall the notion of multiplier ideal sheaves,
introduced by Nadel, and which measures the singularity of a psh function. Their definition is
rather simple :

Definition 1.1. Let X be a complex manifold, ϕ a psh function on X. The multiplier ideal
sheaf attached to ϕ, I (ϕ), consists in the germs of holomorphic functions f ∈ OX,x such that
|f |2e−2ϕ is integrable with respect to the Lebesgue measure in any local coordinates chart near
x.

Let’s recall the following fundamental result, even if we won’t use it directly (for a proof, see
e.g [DBIP96]) :

Theorem 1.1 (Nadel, 1989). For every psh function ϕ on X, the sheaf I (ϕ) is a coherent
ideal sheaf on X.

Now we would like to get briefly onto the openness conjecture. We need to recall the definition
of a right-regularized version of the multiplier ideal sheaf I(ϕ), and introduced in [DEL00] :

Definition 1.2. Let X be a complex manifold, and ϕ a psh function on X. We define

I+(ϕ) =
⋃

ǫ>0

I ((1 + ǫ)ϕ)

Remark 1.1. By the strong noetherian property for coherent sheaves, for all Ω ⋐ X, there exists
ǫϕ,Ω > 0 such that for all 0 < ǫ 6 ǫϕ,Ω, we have I+(ϕ)|Ω = I ((1 + ǫ)ϕ)|Ω = I ((1 + ǫϕ,Ω)ϕ)|Ω.

The famous openness conjecture expressed in [DK01] admits a natural generalization in terms
of these right-regularized multiplier ideals :
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Conjecture 1.1 (Strong openness conjecture). Let ϕ be a plurisubharmonic function on X, the
the following equality of sheaves holds :

I+(ϕ) = I(ϕ).

The only non-trivial case where this conjecture is known is the 2-dimensional one, as C. Favre
and M. Jonsson proved it in their paper [FJ05], using the so-called valuation tree.
We now seize the opportunity to discuss briefly the valuative point of view concerning multiplier
ideals of psh functions. This approach has been widely developed in [FJ05] in the two-variable
case, and in [BFJ08] in higher dimensions. We will only evoke one important result.

We consider a psh germ with isolated singularities at 0 ∈ Cn, and we want to describe I(ϕ)
or I+(ϕ) in terms of valuations. Let us denote by Vm the space of monomial valuations, or
equivalently Kiselman numbers vw for w ∈ Rn+, defined by :

vw(ϕ) = sup

ß
γ > 0, ϕ(z) 6 γmax

i

Å
1

wi
log |zi|

ã
+ O
z→0

(1)

™
.

For example, vw(z
α) := vw(log |zα|) = 〈w,α〉 =

∑
wiαi. Note that the thinness of those

valuations is : A(vw) = |w| = ∑
wi. The following characterization of the multiplier ideal is

given in [BFJ08]:

f ∈ I(ϕ) =⇒ ∀v ∈ Vm ,
v(ϕ)

v(f) +A(v)
< 1.

If we consider now the quasi-monomial valuations v ∈ Vqm (this means monomial valuations on
some birational model of (Cn, 0)), one can also define their thinness, and get a full description
of I+(ϕ):

Theorem 1.2 ([BFJ08]). Let ϕ be a psh germ at 0 ∈ Cn. Then

f ∈ I+(ϕ) ⇐⇒ sup
v∈Vqm

v(ϕ)

v(f) +A(v)
< 1.

1.2. Integrability of the exponential of a concave function. In the next section, we are
going to focus on a very particular type of functions, the toric psh functions. The results we will
state about them involve convergence properties for integrals of the form

∫
D
eg where D = Rn+

is the first octant, and g is any concave function on D. So this part is devoted to the study of
such integrals.
The key-object appears in the following definition :

Definition 1.3. Let g be a concave function on D = {(x1, . . . , xn) ∈ Rn, ∀i, xi > 0}. The
Newton convex body P (g) is :

P (g) = {λ ∈ Rn; g − 〈λ, · 〉 6 O(1)} .
Remark 1.2. The set P (g) is the domain of the Legendre transform g∗(y) = supx(g(x)−〈y, x〉).

It is clear that for any real number c > 0, P (cg) = c · P (g). Moreover, it is important to
notice that P (g) is a convex set, which is in general neither open nor closed (take g(x) = −1

x+1

and g(x) = log(x+ 1) respectively).

Before going into the important results of this section, let us fix some convenient notations :

(1) We define a partial ordering on Rn by

(x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ ∀i ∈ {1, . . . , n}, xi 6 yi.

In the same way we define

(x1, . . . , xn) ≺ (y1, . . . , yn) ⇐⇒ ∀i ∈ {1, . . . , n}, xi < yi.
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(2) We set D = Rn+ and 1 := (1, . . . , 1) ∈ Rn.

(3) We know that the set E of points v ∈ D such that g is differentiable at v has full measure
in D (see [RV73] e.g.).

(4) We set Gr(g) := Conv
({

∇g(v) + µ; (v, µ) ∈ E × (R∗
+)
n
})

.

Now take some λ = ∇g(v) + µ ∈ Gr(g). Then for every x ∈ D, we have g(x) − g(v) 6

〈∇g(v), x− v〉 so that λ ∈
˚

P̄ (g). By convexity of
˚

P̄ (g), we thus have Gr(g) ⊂
˚

P̄ (g). The crucial
result of this section is given in the next proposition :

Proposition 1.1. Let g be a concave function on D. Then :

∫

D

eg < +∞ ⇐⇒ 0 ∈
˚

P̄ (g).

Proof. The direction ⇐ is easy : there exists ǫ > 0 and some constant C > 0 such that for all
x, g(x) + 〈ǫ1, x〉 6 C. Therefore we have :

∫

D

eg 6 C′

∫

D

e−ǫ
∑

i
xidx1 · · · dxn

= C′
n∏

i=1

∫

D

e−ǫxidxi

< +∞.

As for the other direction, we suppose that the integral
∫
D
eg converges. If 0 /∈

˚
P̄ (g), by

Hahn-Banach’s theorem we can find some vector w ∈ Rn such that for all u ∈
˚

P̄ (g), we have
〈u,w〉 > 0 (this implies that w has positive coordinates since P (g) contains a translated of Rn+).
By Fubini’s theorem we may find a ∈ D such that g is differentiable at almost every point of the
ray R = a+R+w and

∫
R
eg < +∞. As g is a 1-variable concave function on R, it is easy to see

that Dgx(w) (Gâteaux-derivative along w at x) decreases to some ℓ ∈ R ∪ {−∞} when x ∈ R
tends to infinity. Then the integrability of eg along R shows that ℓ < 0, so that there exists
some x ∈ R, at which g is differentiable, and which satisfies 〈∇g(x), w〉 = Dgx(w) < 0. Thus

we can find ǫ > 0 with 〈∇g(x) + ǫ1, w〉 < 0; this is absurd because ∇g(x) + ǫ1 ∈ Gr(g) ⊂
˚

P̄ (g)
and the linear form 〈· , w〉 is non-negative on P (g). �

Rewriting the proof using the open convex set Gr(g) instead of
˚
P̄ (g), we see that the conver-

gence of
∫
D
eg implies that 0 ∈ Gr(g). As P (g+〈λ, · 〉) = λ+P (g) and Gr(g+〈λ, · 〉) = λ+Gr(g)

for all λ ∈ Rn, we see that
˚

P̄ (g) ⊂ Gr(g). So we have proved :

Proposition 1.2. For any concave function g on D, we have :

Gr(g) =
˚

P̄ (g).

To finish this section, let us stress that what we proved is an openness property; namely if
eg ∈ L1(D), then e(1+ǫ)g ∈ L1(D) for ǫ small enough. As any locally uniformly upper bounded
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sequence of psh functions converging pointwise to a psh function converges in fact in the topology
of psh functions, the argument given in section 5.4 of [DK01] applies here to show that any small
perturbation g + h, where h is any sufficiently small concave function, satisfies the integrability
condition eg+h ∈ L1(D).

1.3. Toric plurisubharmonic functions. Now we get back to toric plurisubharmonic func-
tions on a polydisk D(0, r) = {(z1, . . . , zn) ∈ Cn | ∀i ∈ {1, . . . , n}, |zi| < r}. This is a special
kind of polydisk (we fix the same radius r for every coordinate), but since all the upcoming
results are purely local, there will not be any loss of generality (we could even fix r = 1). The
dimension, n, is fixed for the rest of the paper.
Let us recall that a toric function ϕ on D(0, r) is a function which is invariant under the torus
action on Cn : (eiθ1 , . . . , eiθn) · z := (eiθ1z1, . . . , e

iθnzn). In more elementary terms, ϕ(z) depends
only on |z1|, . . . , |zn|. In the psh case, we can say more (e.g. [Dem]) :

Proposition 1.3. Let ϕ be a toric psh function on D(0, r). Then there exists a convex function
f , non-decreasing in each variable, defined on ]−∞, log r[n such that for all z = (z1, . . . , zn) ∈
D(0, r), we have ϕ(z) = f(log |z1|, . . . , log |zn|).

For the convenience of the reader, we now state and give an elementary proof of the following
well-known result, that will be useful in the following.

Lemma 1.1. IfI is an ideal of the ring OCn,0 of the germs of holomorphic functions at 0 ∈ Cn

such that for every f ∈I, all monomials appearing in f are also in I, then I is generated by
monomials (ie it is a monomial ideal).

Proof. The first step is to see that, given a (countable) set I of monomials in n variables, we can
always extract some finite subset J such that each element of I can be divided by an element
of J .
To see this, we use a reductio ad absurdum. So, if this property fails, there exists a sequence
(uk)k>1 with values in Nn such that zuk+1 cannot be divided by any zup with p 6 k. Stated
with quantifiers, the property becomes :

∃σ : N2 → {1, . . . , n}; ∀k > 2, ∀j < k, (uk)σ(j,k) < (uj)σ(j,k),

where (uk)i denotes the i-th component of the vector uk.
As the sequence σ(k − 1, k) has values in a finite set, we can extract some subsequence, given
by ψ : N∗ → N∗ increasing, such that σ(ψ(k) − 1, ψ(k)) is a constant, say 1. But then, for
every k > 2, we have : (uψ(k))1 < (uψ(k)−1)1, which is impossible because (uk)1 is always a
non-negative integer.
The second step is the result of the lemma itself.
As OCn,0 is noetherian, I is finitely generated, so we can consider a finite generating family
(f1, . . . , fp). For each index k, we consider the monomial ideal Ik of C[z1, . . . , zn] generated by
the monomials appearing in fk. From the first point, there exists a finite number of minimal
monomials appearing in fk, such that the others ones can be divided by the minimal ones.
Therefore we have shown that each fk lies in the ideal of OCn,0 generated by a finite number
of monomials appearing in the expansion of fk. If we put all those minimal monomials for
f1, . . . , fk together, we see thatI is generated by (a finite number of) monomials.

�

For the following, if ϕ is a toric psh function on D(0, r) attached to the convex function f ,
we denote by g the concave function defined on [log(r),+∞[n by g(x) = −f(−x). Moreover, if
g is attached to ϕ, we define P (ϕ) to be the Newton convex body P (g) of g.



TORIC PLURISUBHARMONIC FUNCTIONS AND ANALYTIC ADJOINT IDEAL SHEAVES 7

Now we can state the precise description of the multiplier ideal sheaf attached to any toric psh
function, which can be seen as the analogue or generalization in the analytic setting of Howald’s
theorem (see [Laz04]) :

Theorem 1.3. Let ϕ be a toric psh function on D(0, r) ⊂ Cn. Then the multiplier ideal I (ϕ)
is a monomial ideal, and we have :

zα = zα1
1 · · · zαn

n ∈ I(ϕ) ⇐⇒ α+ 1 ∈
˚

P̆ (ϕ).

We want to apply this theorem to the psh function attached to g = mini〈αi, · 〉 for some
αi ∈ Rn. But thanks to proposition 1.2, P (a) and P (g) have same interiors, so we obtain :

Corollary 1.1 (Howald’s theorem, [How01]). Let a = (zα1 , . . . , zαk) be a monomial ideal of
C[z1, . . . , zn], and let P (a) be the Newton polyhedron attached to the set {α1, . . . , αk}. Then for
every c > 0 :

zβ ∈ J (ac) ⇐⇒ β + 1 ∈ c
˚
P̄ (a).

Remark 1.3. J. McNeal and Y. Zeytuncu gave recently another analytic proof of this last result
in [MZ10].

Proof of theorem 1.3. We first have to check that I (ϕ) is monomial, so we consider f =∑
aIz

I ∈ I(ϕ). This means that for some r > 0,
∫

D(0,r)

|f |2e−2ϕ(|z1|,...,|zn|)dV (z)

is finite. Thanks to Parseval’s theorem, this is equivalent to
∑

I

|aI |2
∫

D(0,r)

|zI |2e−2ϕ(|z1|,...,|zn|)dV (z) < +∞

so that each monomial of f already belongs to I(ϕ). Then we are done applying lemma 1.1.
We are now interested in the convergence of the integral

∫

D(0,r)

|z1|2α1 · · · |zn|2αne−2ϕ(z1,...,zn)dV (z).

So we first perform the change of variables variables zj = rje
iθj , and up to a multiplicative

factor, the integral equals :
∫

[0,r]n
r2α1+1
1 · · · r2αn+1

n e−2f(log r1,...,log rn)dr1 · · · drn

We set then ti = − log(ri) so that the previous integral becomes
∫

[log(r),+∞[n
e−(2α1+2)u1 · · · e−(2αn+2)une2g(u1,...,un)du1 · · · dun

or also ∫

[log(r),+∞[n
e2g(x)−2〈A,x〉dx.

Now we just have to apply proposition 1.1 to the concave function 2(g − 〈A, ·〉), and we are
done. �

As P ((1 + ǫ)ϕ) = (1 + ǫ)·P (ϕ), the characterization of the multiplier ideal given in theorem
1.3 implies a (very) particular case of the generalized openness conjecture, recalled in this paper
as the conjecture 1.1 :
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Corollary 1.2. The generalized openness conjecture I+(ϕ) = I (ϕ) holds for any toric psh
function ϕ.

Remark 1.4. If X = (Cn, 0) and z = z1 · · · zn, then for any toric psh germ ϕ and any holo-
morphic germ f on X, theorem 1.3 implies the following property :

f e−ϕ ∈ L2(X) =⇒ (z · f) e−ϕ ∈ L∞(X).

1.4. Valuative interpretation. We now want give the valuative interpretation of theorem 1.3,
keeping in mind the end of section 1.1.
For this, let us briefly recall some classical facts about Kiselman numbers, that can be found in
[Dem]. We fix ϕ a psh germ at 0 ∈ Cn, w ∈ Rn+, and we define ψw(z) = maxi

1
wi

log |zi| and also

χw(t) = sup{ψw<t} ϕ, which is a convex function. Then we have :

vw(ϕ) = sup {µ > 0, ϕ 6 µψw +O(1)}
= max {µ > 0, ϕ 6 µψw +O(1)}
= χ′

w(−∞)

= lim
−∞

χw(t)

t
.

Definition 1.4. Let g be a concave function on D = Rn+. Then we define ĝ the homogenization
of g on D r {0} by

ĝ(w) = lim
t→+∞

g(tw)

t
.

One reason for which we introduced the homogenization function lies in the following lemma
:

Lemma 1.2. Let ϕ be a toric psh function on D(0, r) ⊂ Cn, and g its attached concave function.
Then

vw(ϕ) = ĝ(w).

Proof. We write

χw(t) = sup{ϕ(z); ∀i, log |zi| < twi}
= sup{−g(x); ∀i, xi > −twi)} [xi := − log |zi|]
= − inf{g(x); ∀i, xi > −twi}
= −g(−tw)

because g is non-decreasing in each variable. Therefore χw(t)
t = g(−tw)

−t and passing to the limit
when t→ −∞, we obtain the desired result. �

The next result gives a precise description of the closure P (g) of the Newton convex body
attached to g in terms of P (ĝ).

Lemma 1.3. Let ga be a non-decreasing in each variable concave function on Da = a+Rn+ for
some a ≺ 0. Setting g = ga|D, we have the following equalities :

P (g) = P (ĝ) = {λ ∈ Rn; ĝ 6 〈λ, · 〉}.
Proof. As ĝ is homogeneous, if λ ∈ P (ĝ), then there exists C > 0 such that for all x ∈ D r {0}
and all t > 0, we have ĝ(x) = 1

t ĝ(tx) 6 〈λ, x〉 + C
t so that when t tends to +∞, we obtain the

second identity of the lemma, which shows that P (ĝ) is closed.
Now, we choose λ ∈ P (g), and write for all x ∈ D, and t > 0 : 1

t g(tx) 6 〈λ, x〉 + C
t , and then

λ ∈ P (ĝ). So we have proved P (g) ⊂ P (ĝ).
As any convex set with non-empty interior has the same closure than its interior, it is enough to
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show that P (g) and P (ĝ) have the same interior. So we choose λ in the interior of P (ĝ). This
means that there exists ǫ > 0 such that for all x ∈ D, ĝ(x) 6 〈λ − ǫ1, x〉. We write x = tw
where t > 0 and w ∈ ∆n = {(w1, . . . , wn) ∈ Rn+;

∑
wi = 1} is the standard n-simplex, which is

obviously compact. An important remark is that g and ĝ are restrictions of concave functions

ga and “ga to D ⊂
˚
D̂a, so they are both continuous on D.

We know that g is non-decreasing in each variable, so t 7→ g(tw) is a non-decreasing concave
function. Clearly, g is bounded below on D, thus there exists C such that h = g + C is non-
negative on D. Then ht(w) :=

1
th(tw) for t > 0, w ∈ ∆n, defines a non-increasing (in t) family

of continuous functions on ∆n converging to ĥ = ĝ. Indeed, if t2 > t1, then ht1(w) − ht2(w) >
h(0)( 1

t1
− 1

t2
).

By Dini’s theorem, the convergence is uniform, as |ht(w) − gt(w)| 6 C/t, then for t > t0(ǫ),
||ĝ − gt||∆n,∞ 6 ǫ. Thus, for such a t, we have :

gt(w) 6 ĝ(w) + ǫ

6 〈λ− ǫ1, w〉+ ǫ

= 〈λ,w〉.

If C = sup{g(x) − 〈λ, x〉; x ∈ D and
∑
xi 6 t0}, then we have for all x ∈ D, g(x) 6 〈λ, x〉 + C

and therefore λ ∈ P (g). So the interior of P (ĝ) is contained in P (g) thus in
˚

P̄ (g), and as
P (g) ⊂ P (ĝ), this concludes the proof of the lemma. �

These two lemmas give now almost immediately the valuative version of theorem 1.3 :

Theorem 1.4. Let ϕ be a toric psh germ at 0 ∈ Cn. Then I(ϕ) is monomial, and :

zα ∈ I(ϕ) ⇐⇒ sup
w∈Rn

+

vw(ϕ)

vw(zα) +A(w)
< 1.

Proof. First of all, we attach to ϕ its concave function g, and as the singularity is isolated at 0,
we may suppose (by shrinking the domain of ϕ) that g is the restriction to D = Rn+ of a concave
function on some Da = a + Rn+ with a ≺ 0, so that the preceding lemma applies here, and in
particular, P (g) and P (ĝ) have same interiors.
Thus, using theorem 1.3 and both preceding lemmas, we have :

zα ∈ I(ϕ) ⇐⇒ α+ 1 ∈
˚

P̄ (g)

⇐⇒ ∃δ ∈]0, 1[; ∀w ∈ D, ĝ(w) 6 (1− δ)〈α+ 1, w〉
⇐⇒ ∃δ ∈]0, 1[; ∀w ∈ D, vw(ϕ) 6 (1− δ)〈α+ 1, w〉

⇐⇒ ∃δ ∈]0, 1[; sup
w∈D

vw(ϕ)

vw(zα) +A(w)
6 1− δ

which concludes the proof of the theorem. �

Remark 1.5. Compared to theorem 1.2, this result tells us that for toric psh functions, multiplier
ideals satisfy the openness property, and that they are totally determined by the datum of all
monomial valuations; namely we don’t need to look at divisors lying in some birational model of
(Cn, 0) to understand the singularities of toric psh functions.
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1.5. An example. To finish this first part, we illustrate theorem 1.3 with a particular example,
for which some computations lead to a rather simple result.
Let us define g(x1, . . . , xn) = k xα1

1 · · ·xαn
n , with k > 0 and αi > 0 for all i. First, we must know

whether this function is concave or not. But we can see rather easily that g is concave if and
only if α1 + · · ·+ αn 6 1.
Then, following the method suggested by theorem 1.3 and proposition 1.2, some computations
give rise to the following description of the multiplier ideal :

Proposition 1.4. Let ϕ(z) = −k |log |z1||α1 · · · |log |zn||αn where the αi are non-negative real
numbers, of sum less or equal than 1, and k > 0 be a real number. Then ϕ is psh on D(0, 1),
and :

(i) Either
∑
αi < 1, and then I (ϕ) = OD(0,1);

(ii) Or
∑
αi = 1 and then I (ϕ)0 is generated by the zβ such that :

∏

αi>0

Å
βi + 1

kαi

ãαi

> 1.

2. The analytic adjoint ideal sheaf

2.1. Preliminaries. The adjoint ideal attached to an ideal was introduced in the algebraic
setting to deal with extension problems for functions belonging to some multiplier ideals. A
general and detailed approach can be found in [Tak07] or [Eis10], so we are just going to recall
some elementary facts about adjoint ideals.

Definition 2.1. Let a ⊂ OX be a non-zero ideal sheaf on a complex variety X, c > 0 a real
number, and D a reduced divisor on X such that a is not included in any ideal IDi

of Di an

irreducible component of D. We fix µ : ‹X → X a log resolution of a such as a · O
X̃

= O
X̃
(−F )

is such that F + µ∗D +K
X̃/X

+ Exc(µ) is a simple normal crossing divisor. Then the adjoint

ideal Adj(ac, D) attached to c and a is defined by :

Adj(ac, D) = µ∗OX̃
(K

X̃/X
− [c · F ]− µ∗D +D′)

where K
X̃/X

= K
X̃

− µ∗KX , [ ] denotes the integral part of a divisor, and D′ is the strict

transform of D, defined by linearity.

Remark 2.1. To obtain such a resolution, we compose a log resolution (µ′, X ′,OX′(−F ′)) of
a with a log resolution of F ′ + µ′∗D.
Furthermore, one can show that the previously defined sheaf does not depend on such a log
resolution.

We then have the so-called adjunction exact sequence, given in [Laz04], theorem 9.5.1 :

Theorem 2.1. With the previous notations, and in the case where D = H is a non-singular
hypersurface, the following short sequence is exact :

0 −→ I (ac)⊗OX(−H) −→ Adj(ac, H) −→ I ((ac)|H) −→ 0

So what we are willing to construct is an analogue of the adjoint ideal which would be attached
to any psh function ϕ. Just as multiplier ideals can be defined using the space of holomorphic
germs in L2(e−ϕ,Leb) (it is even their original definition), we would like to find some volume
form Ω such that the space of holomorphic germs in L2(e−ϕ,Ω) defines adjoint ideals. To find
Ω, the intuition is given by the famous Ohsawa-Takegoshi-Manivel theorem ([Dem01]) :
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Theorem 2.2 (Ohsawa-Takegoshi-Manivel). Let X ⊂ Cn be a bounded pseudoconvex open set,
and let Y ⊂ X be a complex submanifold of codimension r, defined by a section s of a holomorphic
hermitian line bundle with bounded curvature tensor. We suppose that s is everywhere transverse
to the zero section, and that the inequality |s| 6 e−1 holds on X. Then there exists a constant
C > 0 (depending only on E) such that : for all psh function ϕ on X, for all holomorphic
function f on Y such that

∫
Y
|f |2|Λr(ds)|−2e−2ϕdVY < +∞, there exists a holomorphic function

F on X extending f such that
∫

X

|F |2
|s|2 log2 |s|

e−2ϕdVX 6 C

∫

Y

|f |2
|Λr(ds)|2 e

−2ϕdVY .

So it seems very natural that choosing Ω to be the standard Poincaré volume form attached
to H (this means that if H is locally given by {h = 0}, then PoinH = 1

|h|2 log2 |h|
Leb) will be the

right way to define the analytic adjoint ideal. In this section, we are going to check if things
happen as well as predicted.

Let us now give more general and precise setting. We take a complex manifold X and a simple
normal crossing (SNC) divisor D =

∑
Di; in the following, we will identify the divisor with its

support. Then, for all x ∈ X , there exists a neighborhood Ux of x, an integer 0 6 p 6 n and
coordinates z1, . . . zn such that D∩Ux = {(z1, . . . , zn) ∈ Ux; z1 · · · zp = 0}. In these coordinates,
we have obviously :

Ux rD ≃ (∆∗)p ×∆n−p,

where ∆ is the open unit disk in C, and ∆∗ the punctured disk. If x /∈ D, then p = 0.

The fundamental object, which is a growth’s class of volume forms, is described in the fol-
lowing definition :

Definition 2.2. Let X be a complex manifold of dimension n, D =
∑
Di a simple normal

crossing divisor on X, and X0 = X r D. We say that a positive (1, 1)-form ωP on X0 is D-
Poincaré if for all sufficiently small open set U ⊂ X there exists some coordinates z1, . . . , zn,
U ∩D = {(z1, . . . , zn) ∈ U ; z1 · · · zp = 0}, and some positive constant C such that :

C−1ωP 6
i

2

(
p∑

i=1

dzi ∧ dz̄i
|zi|2 log2 |zi|

+

n∑

i=p+1

dzi ∧ dz̄i
)

6 CωP .

The associated volume form
ωn

P

n! , which we will denote by ΩP , is then said to be D-Poincaré. So
locally, we have up to equivalence :

ΩP =

p∏

i=1

1

|zi|2 log2 |zi|
Leb ,

and the density of ΩP is integrable with respect to the Lebesgue measure on R2n.

Remark 2.2. According to the definition, it is clear that there is a unique D-Poincaré volume
form on X, up to equivalence.

Let us remark that for a sufficiently small open set U ⊂ X , if we set U0 = U ∩X0, then the
manifold (U0, ωP ) is complete and Kähler.

Definition 2.3. Let ϕ be a psh function on a complex manifold X, D an SNC divisor. We
define the ideal sheaf Adj0D(ϕ) to be made up of the germs f ∈ OX,x such that |f |2e−2ϕ is
integrable with respect to some (hence any) D-Poincaré volume form near x.



12 HENRI GUENANCIA

Remark 2.3. We always have Adj0D(ϕ) ⊂ I (ϕ), and if x /∈ D, then Adj0D(ϕ)x = I (ϕ)x.

The next result, which tells us that our new tool is a reasonable object for analytic geometry,
has a similar proof to the one of Nadel’s theorem on the coherence of the multiplier ideal sheaves
given in [DBIP96].

Proposition 2.1. For any function ϕ on X and for all SNC divisor D on X, the sheaf Adj0D(ϕ)
is a coherent ideal sheaf.

Proof. To simplify the notations, we set A := Adj0H(ϕ).
As the result is purely local, we may suppose that X is the ball B(0, 12 ) in Cn and that D =

{(z1, . . . , zn) ∈ X | z1 · · · zp = 0}, we fix then Ωp =
∏p
i=1

1
|zi|2 log2 |zi|

Leb the canonical D-

Poincaré volume form on X . For the following, H(X,ϕ) will refer to the set of holomorphic
function f on X such that

∫
X
|f(z)|2e−2ϕ(z)ΩP (z) < +∞. By the strong noetherian property

for coherent sheaves, the set H(X,ϕ) generates a coherent ideal sheaf J ⊂ OX . Clearly,

J ⊂ A . To show the converse, we are going to check that the equality Jx +Ax ∩ m
s+1
X,x = Ax

holds for all x ∈ X and for all integer s, . The Krull lemma will then show that the intersection
on all integer s of the left hand side is equal to Jx, which will conclude.
To do this, we pick up a germ fx ∈ Ax defined on a neighborhood V of x, and then we choose χ
a smooth function with support included in V identically equal to 1 near x. As ∂̄(χf) = (∂̄χ)f
is L2 with respect to e−2ϕΩP , we may use Hörmander estimates (cf [DBIP96]) on the complete
Kähler manifold (XrD,ωP ) equipped with the trivial line bundle (XrD)×C and the strictly
psh weight (thanks to |z|2)

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x|+ |z|2

thus we find u on X rD satisfying ∂̄u = ∂̄(χf) such that
∫

XrD

|u|2e−2ϕ

|z − x|2(n+s)ΩP (z) < +∞.

Furthermore, F = χf −u is holomorphic on XrD. It extends to the whole Ω : in fact, we only
need to see that F is holomorphic in each variable z1, . . . , zp near D. We do it for z1, using the
classical approach : setting z′ = (z2, . . . , zn), we write the Laurent series expansion F (z1, z

′) =∑+∞
−∞ an(z

′)zn1 . As the integral
∫
XrD

|F |2e−2ϕΩP converges, the integral
∫
XrD

|F |2ΩP con-

verges too, and using Fubini’s theorem, the integral
∫
BC(0,ǫ)r{0}

|F |2

|z1|2 log2 |z1|
dV (z1) is convergent.

But then, thanks to Parseval’s theorem :

∫

BC(0,ǫ)r{0}

|F |2
|z1|2 log2 |z1|

dV (z1) = C
+∞∑

−∞

|an(z′)|2
∫

B(0,1)

|z1|2(n−1)

log2 |z1|
dV (z1)

and necessarily, we have : ∀n 6 −1, an(z
′) = 0, which shows that F (· , z′) admits an holomorphic

continuation at 0.
Therefore, F ∈ H(X,ϕ), and as ϕ is has an upper bound near x, fx − Fx = ux ∈ Ax ∩ m

s+1
X,x,

which concludes. �

Unfortunately, our sheaf Adj0D(ϕ) fails to coincide in general with the algebraic adjoint, as
the next example shows :

Counterexample. Let X = (C2, 0), a = m
6, H = {z1 = 0}, and f(z1, z2) = z31z

3
2 . If ϕa =

3 log(|z1|2 + |z2|2) is a psh function attached to a, then we have :

f ∈ AdjH(ϕa)rAdj(a, H).
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Indeed, we are in case (ii) of the next proposition 2.2, with equality in the first large inequality.

Therefore, setting D = D(0, 1),
∫
D

|f |2e−2ϕ

|z1|2 log2 |z1|
dV < +∞ but for all ǫ > 0,

∫

D

|f |2
|z1|2 log2 |z1|

e−2(1+ǫ)ϕdV = +∞.

As the algebraic adjoint satisfies the openness property, f cannot belong to Adj(a, H).

Let us now give the following result we used in our counterexample, and which gives a precise
description of the ”zero” adjoint ideal attached to some coordinates monomials :

Proposition 2.2. Let ϕ = k
2 log(

∑n
i=1 |zi|2αi), with αi some positive real numbers, just as k,

and let H be the hyperplane {z1 = 0}. Then the stalk at 0 of Adj0H(ϕ) is a monomial ideal,
generated by the zβ satisfying one of the following conditions :

(i)
∑ βi+1

αi
> k + 1

α1

(ii)
∑ βi+1

αi
> k + 1

α1
and β1 > 0.

Proof. The fact that the ideal is monomial can be easily deduced from the same reasoning as
the one made to show that multiplier ideals attached to toric psh functions are monomial.
We set N =

∑ βi+1
αi

.
As for the computation of the ideal, after a first polar, then toric change of variables, it boils
down to the convergence, for U ⊂ D(0, δ), δ < 1 (resp. V ) nieghborhood of 0 in Cn (resp. Rn+)
of the integral :
∫

U

∏n
i=1 |zi|2βi

|z1|2 log2 |z1| (
∑n
i=1 |zi|2αi)

k
dVCn = C

∫

V

∏n
i=1 r

2βi+1
i

r21 log
2 r1

(∑n
i=1 r

2αi

i

)k dVRn

= C′

∫ δ

t=0

∫

u∈S
n−1
+

t2(N−k−1/α1)−1∏n
i=1 u

2(βi+1)/αi−1
i

u
2/α1

1 log2(tu1)
du dt

où Sn−1
+ = {(x1, . . . , xn) ∈ Rn+;x

2
1 + · · ·+ x2n = 1}.

To simplify the computations, we introduce the following notations : r = 2(N − k − 1/α1)− 1,
λ1 = 2β1/α1 − 1, and for i > 2, λi = 2(βi + 1)/αi − 1. So we always have λ1 > −1, and for
i > 2, λi > −1. We now have to estimate the following integral :

I(r, λ) =

∫ δ

t=0

∫

u∈S
n−1
+

tr
∏n
i=1 u

λi

i

log2(tu1)
du dt

An obvious necessary condition of convergence is r > −1, which is equivalent to N > k + 1
α1

.

• Let us suppose that we have r > −1. Then the integral is bounded above by :
∫ δ

t=0

∫

u∈[0,1]n

tr
∏n
i=2 u

λi

i

u1 log
2(tu1)

du dt

and integrating with respect to u1, the last integral becomes :
∫ δ

t=0

∫

u∈[0,1]n−1

tr
∏n
i=2 u

λi

i

− log t
du dt < +∞

• We now suppose that r > −1 and λ1 > 0. Then the integral I(r, λ) is less than :
∫ δ

t=0

∫

u∈[0,1]n

∏n
i=1 u

λi

i

t log2(tu1)
du dt
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which in its turn equals to
∫

u∈[0,1]n

∏n
i=1 u

λi

i

− log(δu1)
du dt < +∞

• Reciprocally, let us assume that I(r, λ) is finite. Thus r > −1, and it remains to show that
if r = −1, then we necessarily have λ1 > −1. We use the following equality :

I(−1, λ) =

∫

u∈S
n−1
+

∏n
i=1 u

λi

i

− log(δu1)
du

Then, fixing ǫ =
√
3/2

√
n− 1, if u = (u1, . . . , un) ∈ Sn−1

+ satisfies u1 ∈ [0, ǫ] and u2, . . . , un−1 ∈
[ǫ/2, ǫ], then xn > 1/2. In fact, x2n > 1− (n− 1)ǫ2 = 1/4.
So we have the minoration :

I(−1, λ) >

∫ ǫ

u1=0

∫ ǫ

u2=ǫ/2

· · ·
∫ ǫ

un−1=ǫ/2

2−λn

∏n−1
i=1 u

λi

i

− log(δu1)
du1 · · · dun−1

> C

∫ δǫ

u1=0

uλ1
1

− log(u1)
du1

where C is a positive constant. But the right hand side is finite if and only if λ1 > −1, which
concludes the proof of the proposition. �

The last counterexample shows us that we have to modify the definition of the analytic adjoint
ideal if we want it to extend the usual algebraic adjoint. The goal of the next section is thus to
find the correct way to define analytically the adjoint ideal, and to check if this new ideal fits
to the generalized adjunction exact sequence.

2.2. Adjoint ideal attached to a plurisubharmonic function. As we saw in the preceding
counterexample, our ”zero” adjoint ideal doesn’t satisfy the expected openness property even in
the algebraic case. So the idea is to regularize our ideal : more precisely, we know that on our
complex manifold X , every non-decreasing sequence of coherent sheaves is stationary on every
compact set because of the coherence of OX . Therefore, for Ω ⋐ X , there exists ǫϕ,Ω > 0 such
that for all 0 < ǫ 6 ǫϕ,Ω, we have Adj0D((1 + ǫ)ϕ)|Ω = Adj0D((1 + ǫϕ)ϕ)|Ω.

Definition 2.4. With the preceding notations, and those from definition 2.3, we define the
analytic adjoint sheaf AdjD(ϕ) to be :

AdjD(ϕ) =
⋃

ǫ>0

Adj0D((1 + ǫ)ϕ).

In more analytic terms, we can rephrase the definition by saying that AdjD(ϕ) is made up of
the germs f ∈ OX,x such that for ǫ > 0 small enough, |f |2e−2(1+ǫ)ϕ is integrable with respect
to any D-Poincaré volume form near x.

Since coherence is checked locally, the next proposition is a straightforward consequence of
the previous proposition 2.1 :

Proposition 2.3. For all psh function ϕ on X a complex manifold, and for all SNC divisor D
on X, the sheaf AdjD(ϕ) is a coherent ideal sheaf.

We are now going to show that the sheaf AdjD(ϕ) generalizes the usual adjoint ideal sheaf,
in the sense that AdjH(ϕ) coincides with the algebraic adjoint ideal whenever ϕ has analytic
singularities, and that it fits the adjunction exact sequence.
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Proposition 2.4. Let D be an SNC divisor on a smooth complex manifold X, and ϕ be a psh
function attached to an analytic ideal sheaf a, non identically −∞ on any irreducible component
of D. Then the following equality of sheaves holds :

AdjD(ϕ) = Adj(a, D).

Proof. We write

ϕ =
1

2
log(|f1|2 + · · ·+ |fN |2) +O(1)

in the neighborhood of the poles, for fi local generators of a, and we write D =
∑p

i=1Di.
There exists a modification µ : X ′ → X , with exceptional divisors E1, . . . , Em such as µ∗

a =
OX′(F ) where F =

∑m
j=p+1 ajEj is such that F + µ∗D +KX′/X + Exc(µ) has simple normal

crossings, and satisfies for all j > p+1, aj > 0 (for j ∈ {1, . . . , p}, we set aj = 0). Moreover, for
i ∈ {1, . . . , p}, Ei denotes the strict transform of Di. To sum up, we use the following notations
:

µ∗
a =

m∑

j=p+1

ajEj

µ∗Di = Ei +
m∑

j=p+1

bi,jEj

KX′ = µ∗KX +
m∑

j=1

cjEj

We choose x ∈ X , which will be 0 in our chart. To simplify the notations, we suppose
that p is chosen such that x ∈ D1 ∩ · · · ∩ Dp. We take the local generators x1, . . . , xp of
OX(−D1), . . . ,OX(−Dp) respectively. Similarly, zk will be a local generator of OX′(−Ek).
If f is a germ of holomorphic function near x, defined on a sufficiently small neighborhood U of
0, we have to compute the following expression :

∫

U

|f |2e−2(1+ǫ)ϕ

∏p
k=1 |xk|2 log2 |xk|

dV =

∫

U ′=µ−1(U)

|f ◦ µ|2e−2(1+ǫ)ϕ◦µ

∏p
k=1 |xk ◦ µ|2 log2 |xk ◦ µ|

|Jµ|2 dV ′

Thanks to Parseval’s theorem, if a function f is such that the right hand side is finite, then
all monomials in the Taylor expansion of f satisfy the same property. So there is no loss of

generality in supposing that f ◦ µ =
∏
z
dj
j . Thus, up to a non-zero multiplicative constant, the

right hand side is (we may suppose that U ′ is a included in a polydisk D(0, R) with R < 1) :

∫

U ′

∏m
k=1 |zk|2(ck+dk−(1+ǫ)cak)

∏p
k=1

[
|zk|2 log2(|zk|

∏
j>p |zj |bk,j )

]
·∏k>p |zk|2ek

dV ′

where we set, for k > p, ek =
∑p

i=1 bi,k. Setting then k ∈ {1, . . . , p}, ek = 1, the previous
integral can be written : ∫

U ′

∏m
k=1 |zk|2(ck+dk−ek−(1+ǫ)cak)

∏p
k=1 log

2(|zk|
∏m
j=1 |zj |bk,j )

dV ′

We set λk(ǫ) = 2(ck + dk − ek − (1 + ǫ)cak) + 1 for all 1 6 k 6 m, and changing to polar
coordinates leads us to estimate the following integral, on V a neighborhood of 0 in Rm+ :

I(ǫ) =

∫

V

∏m
k=1 x

λk(ǫ)
k∏p

k=1 log
2(xk

∏
bk,j>0 xj)

dx1 . . . dxm
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and V ⊂ B(0, r) for some r < 1. The question of the convergence is answered by the lemma 2.1
given at the end of the proof.

Furthermore, we already know that for k ∈ {1, . . . , p}, we have λk(ǫ) = 2(ck + dk − 1) + 1 =
2(ck + dk)− 1 > −1. About the condition concerning k > p, it is equivalent to :

ck + dk > ek + [(1 + ǫ)cak].

But for all real number x > 0, we have [(1+ǫ)x] = [x] for ǫ > 0 small enough, and more precisely
for ǫ < ([x] + 1)/x− 1.
Putting all these results together, we have shown that f ∈ AdjD(ϕ) if and only if for all k, we
have dk > −(ck − [cak] − ek). Now, let us remind that µ∗D − D′ =

∑
k>p ekEk, so that the

previous condition is equivalent to : f ∈ µ∗OX̃
(K

X̃/X
− [c · F ] − µ∗D +D′), which shows the

proposition.
�

Lemma 2.1. The integral I(ǫ′) converges for all 0 < ǫ′ 6 ǫ if and only if for all k ∈ {1, . . . ,m},
we have λk(ǫ) > −1.

Proof. The condition is obviously necessary by the Bertrand criterion .
Reciprocally, we suppose that for all k, we have λk(ǫ) > −1. Then, as for all k > p, we have
ak > 0, the following inequality holds for all 0 < ǫ′ < ǫ : λk(ǫ

′) > −1. To conclude, we are going
to use the identity

∫

]0,δ[2

xay−1

log2(xy)
dydx =

∫ δ

0

xa

− log(δx)
dx = −δ1−a

∫ δ2

0

xa

log x
dx

in the following computation :

I(ǫ′) =

∫

V

∏m
k=1 x

λk(ǫ
′)

k∏p
k=1 log

2(xk
∏
bk,j>0 xj)

dx1 . . . dxm

6

∫

V

∏p
k=1 x

−1
k

∏
k>p x

λk(ǫ
′)

k∏p
k=1 log

2(xk
∏
bk,j>0 xj)

dx1 . . . dxm

6 C

∫

V ′

∏
k>p x

λk(ǫ
′)

k

|∏p
k=1 log(

∏
bk,j>0 xj)|

dxp+1 . . . dxm

< +∞

where V ′ is a neighborhood of 0 in Rm−p
+ . �

2.3. Adjoint ideal of a monomial ideal. We would like to give a precise description of the
adjoint ideal attached to a monomial ideal, just as Howald’s theorem does for multiplier ideals.
Unfortunately, the statement corresponding to the adjoint ideal is a little more complicated.
So we work locally and we are given an ideal a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn], together with the
hypersurfaceH ⊂ Cn defined by {z1 = 0}. We know that the Newton polyhedron P (a) attached
to a has exactly n infinite faces F1, . . . , Fn which are orthogonal to e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1) respectively, and all other faces of P (a) are finite and not included in any affine
hyperplane {xp = const}. We recall that the relative interior ri(Fp) of a face Fp is the interior

of Fp as embedded in some affine hyperplane {xp = const}. Finally, we define 1̃ := (0, 1, . . . , 1).
Now we can state the desired result :
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Theorem 2.3. Let a = (zα1 , . . . , zαk) ⊂ C[z1, . . . , zn] be a monomial ideal, H = {z1 = 0} such
that a * (z1) . Then, for every c > 0, Adj(ac, H) is a monomial ideal, and

zβ ∈ Adj(ac, H) ⇐⇒ β + 1̃ ∈ c ·
˚
P̄ (a) ∪ c · ri(F1).

Proof. We are going to use the analytic definition of Adj(a, H) = AdjH(ϕ) where ϕ is attached
to the concave function g = c mini〈αi, · 〉. Then zβ ∈ AdjH(ϕ) if and only if there exists ǫ > 0
such that on a neighborhood U of 0 in Cn, the integral

∫

V

|z|2βe−2(1+ǫ)g(− log |z1|,...,− log |zn|)

|z1|2 log2 |z1|
dV

converges. But after performing the usual changes of variables, the convergence of this integral
is equivalent to the one of

∫

[1,+∞[n

e2((1+ǫ)g(t)−〈A,t〉)

t21
dt1 · · · dtn,

where A = β+ 1̃. There is no loss of generality in replacing αi by c αi, so we shall suppose that
c = 1 in the following.

• First, we suppose that this integral converges for some ǫ > 0. This implies that for all
η > 0, the integral ∫

[1,+∞[n
e2((1+ǫ)g−〈A+(η,0,...,0),·〉)dt

converges, so that, thanks to proposition 1.1, we have :

(1) ∀η > 0, A+ (η, 0, . . . , 0) ∈ (1 + ǫ)
˚

P̄ (g)

We claim that (1) is equivalent to

(2) A ∈
˚
P̄ (a) ∪ ri(F1)

The implication (2) ⇒ (1) is clear because as a * (z1), F1 ⊂ {z1 = 0} contains thus the
infinite face orthogonal to e1 attached to (1 + ǫ)P (a), so that (1) holds.
As for the other direction, we first show that if A belongs to some finite (closed) face of P (a),
then for all ǫ > 0, (1) fails to be true. Indeed, as each αi has non-negative components, any finite
face of P (a) is included in some affine hyperplane a+w⊥ where a, w have positive components.
Thus the corresponding face for (1 + ǫ)P (a) is included in (1 + ǫ)a+w⊥, and we have of course

(1 + ǫ)
˚
P̄ (a) ⊂ {x; 〈w, x〉 > (1 + ǫ)〈w, a〉}.

Therefore we should have for all η > 0 : 〈A + (η, 0, . . . , 0), w〉 > (1 + ǫ)〈w, a〉, or equivalently
ηw1 > ǫ〈w, a〉, which is absurd because η can be arbitrarily small.
The case where A belongs to one of the faces F2, . . . , Fn is immediate, so we have proved that
if zβ ∈ AdjH(ϕ), then (2) holds.

• Conversely, if A ∈
˚
P̄ (a), then A ∈ (1 + ǫ)

˚
P̄ (a) for ǫ > 0 sufficiently small, so that

e2[(1+ǫ)g−〈A,·〉] is integrable. In the case whereA ∈ ri(F1), then there exists some λ = (0, λ2, . . . , λn) ∈
R× (R∗

+)
n−1 and some barycentric coefficients ti such that A =

∑
tiαi + λ. As g 6

∑
tiαi, we
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have : (1 + ǫ)g − 〈A, · 〉 6 〈ǫA− λ, · 〉. As F1 ⊂ {z1 = 0}, the first component A1 of A is zero, so
that if we choose 0 < ǫ < min{ λi

2Ai
; i > 2}, then

e(1+ǫ)g(t)−〈A,t〉
6 e−λ2t2/2 · · · e−λntn/2

and thus the integral ∫

[1,+∞[n

e2((1+ǫ)g(t)−〈A,t〉)

t21
dt1 · · · dtn

is convergent. Therefore zβ ∈ AdjH(ϕ), which concludes the proof of the theorem. �

2.4. The adjunction exact sequence. We turn now to the generalized adjunction exact
sequence. To prove the validity of the adjunction exact sequence in the analytic setting, we
are going to use in a essential manner the proof of the so-called inversion of adjunction, that we
may find in [DK01]. We will face two difficulties : the first one is to show that the restriction
map is well-defined, and the second one is to show that this restriction induces a surjection,
which is a consequence of the Ohsawa-Takegoshi-Manivel theorem.
Before going into the proof, we give an easy but useful result :

Lemma 2.2. Let Ω ⊂ Cn an open set that is relatively compact in the unit polydisk, let ϕ a psh
function on Ω such that for all z ∈ Ω, ϕ(z) 6 −1, let f be an holomorphic function on Ω, and
α > 0 a real number.

If there exists ǫ > 0 such that
∫
Ω

|f |2e−2(1+ǫ)ϕ

(−ϕ)α dVΩ converges, then there exists ǫ′ > 0 such that

the integral
∫
Ω
|f |2e−2(1+ǫ′)ϕdVΩ converges.

In particular, if
∫
Ω

|f |2e−2(1+ǫ)ϕ

log2 |zn|
dVΩ converges, then

∫
Ω′

|f |2e−2(1+ǫ′)ϕdVΩ converges too, for some

ǫ′ > 0 and all Ω′ ⋐ Ω.

Proof. We set C = inf{eǫx/xα;x > 1}, it is a positive number. Then the inequality
∫

Ω

|f |2e−2(1+ǫ)ϕ

(−ϕ)α dVΩ > C

∫

Ω

|f |2e−2(1+ǫ/2)ϕdVΩ

shows the first assertion.
As for the second, we define A = {z ∈ Ω;ϕ(z) 6 1

4 log |zn|} and B = {z ∈ Ω;ϕ(z) > 1
4 log |zn|}.

Then ∫

A

|f |2e−2(1+ǫ)ϕ

log2 |zn|
dVΩ >

∫

A

|f |2e−2(1+ǫ)ϕ

16ϕ2
dVΩ

and using the first part, this implies that
∫
A
|f |2e−2(1+ǫ′)ϕdVΩ is finite for some ǫ′ > 0.

Furthermore, setting δ = min(ǫ′, 1), the following inequality holds on B : −2(1 + δ)ϕ 6 −(1 +
δ)/2 log |zn|, thus :

∫

B∩Ω′

|f |2e−2(1+δ)ϕdVΩ 6 ||f ||L∞(Ω′)

∫

Ω

|zn|−
1+δ
2 dVΩ < +∞

which concludes the proof of the lemma. �

Now we can prove the main result of this section :

Theorem 2.4. Let X be a complex manifold, H ⊂ X a smooth hypersurface, and ϕ a psh
function on X, ϕ|H 6= −∞, such that eϕ is locally Hölder continuous, and let i : H →֒ X be the
inclusion. The the natural restriction map induces the following exact sequence :

0 −→ I+(ϕ)⊗OX(−H) −→ AdjH(ϕ) −→ i∗I+(ϕ|H) −→ 0



TORIC PLURISUBHARMONIC FUNCTIONS AND ANALYTIC ADJOINT IDEAL SHEAVES 19

Proof. What we have to check is that the restriction map is well-defined, that it is surjective,
and that this sequence is exact. We proceed in the order we just described. As everything is
purely local, we may assume that H is the hyperplane zn = 0 in the polydisk U = D(0, r), r < 1
in Cn. Moreover, since changing ϕ into ϕ−C does not affect the questions of integrability, and
since ϕ is locally upper bounded, we may assume that ϕ 6 −1 on U , so that we can apply the
preceding lemma 2.2.
So, we choose a holomorphic non-zero function F , defined on a neighborhood U of 0, and
satisfying F ∈ AdjH(ϕ)(U). We write then F (z) = F (z′, zn) = (F (z′, zn)− F (z′, 0)) + F (z′, 0),
and as F is holomorphic, there exists a constant C1 > 0 such that |F (z′, 0)|2 6 C1|zn|2+ |F (z)|2
and therefore |F (z)|2 > |F (z′, 0)|2 − C1|zn|2.
Furthermore, as eϕ is Hölder, there exists α ∈]0, 1] and C2 > 0 such that

e2ϕ(z) 6
Ä
eϕ(z

′,0) + C2|zn|α
ä2

6 C3(e
2ϕ(z′,0) + |zn|2α)

with C3 = 4max(1, C2). Setting f(z
′) = F (z′, 0), we obtain the following inequalities :

|F (z)|2e−2(1+ǫ)ϕ(z)

|zn|2 log2 |zn|
> C−1

3

|F (z)|2
log2 |zn|

· 1

|zn|2(e2ϕ(z′,0) + |zn|2α)1+ǫ

>
C−1

3 |f(z′)|2
|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ

− C−1
3 C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ
Now we suppose that U = U ′ ×D(0, rn) (if it’s not the case, we just have to restrict U a bit),
and we partially integrate with respect to the last variable, in the family of disks |zn| < ρ(z′)

with ρ(z′) = δe(1+ǫ)α
−1ϕ(z′,0) where δ > 0 is small enough so that ρ(z′) < rn for all z′ ∈ U ′.

The right term in the right hand side is easily estimated when integrated, because log2 |zn| >
log2 r > 0, zn being of module 6 r < 1, we have :∫

|zn|<ρ(z′)

C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ
dV (zn) 6 C4δ

2e(
2
α
−2)(1+ǫ)ϕ(z′,0)

which is bounded because α 6 1.
As for the remaining term, we write :

∫

|zn|<ρ(z′)

dV (zn)

|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)1+ǫ
> C5

∫

|zn|<ρ(z′)

e−2(1+ǫ)ϕ(z′,0)dV (zn)

|zn|2 log2 |zn|

> C6e
−2(1+ǫ)ϕ(z′,0)

∫ ρ(z′)

0

dt

t log2 t

= −C6
e−2(1+ǫ)ϕ(z′,0)

log ρ(z′)

Then, as log ρ(z′) = log δ + (1 + ǫ)α−1ϕ(z′, 0), the lemma 2.2 gives the expected result (instead

of integrating, we could have written directly (|zn|2 log2 |zn|)−1 > (ρ(z′)2 log2 ρ(z′))−1).
To show the surjectivity of the last map, we use the local version of Ohsawa-Takegoshi-Manivel,
with the weight (1 + ǫ)ϕ.
Finally, to show that the sequence is exact, if f ∈ AdjH(ϕ) vanishes on H ∩ U , then we write
locally f = g · zn where g is holomorphic, and satisfies on an open set W ⊂ U :

∫

W

|g|2e−2(1+ǫ)ϕ

log2 |zn|
dV < +∞

and using again lemma 2.2, we can conclude that g ∈ I+(ϕ)(W ), which had to be proved. �
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Remark 2.4. In the case where eϕ is not Hölder continuous, the restriction map may not be
well-defined anymore : on the polydisk of radius 1

2 in C2, we choose f = 1 and

ϕ(z1, z2) = max(−λ log(− log |z1|), log |z2|)

with 0 < λ < 1
2 . We then have ϕ(z) > −λ log(− log |z1|) thus e−2ϕ(z)

|z1|2 log2 |z1|
6 1

|z1|2|log |z1||
2(1−λ)

which is integrable on the polydisk. But on the hyperplane {z1 = 0}, e−2ϕ(z) = |z2|−2 is not
integrable.

Remark 2.5. If ϕ has analytic singularities, we know that I+(ϕ) = I(ϕ), and we have proved
previously that AdjH(ϕ) coincide with the algebraic ideal. Moreover, eϕ is clearly Hölder contin-
uous near the poles, so theorem 2.4 is a generalization of the algebraic adjunction exact sequence
given in [Laz04].

Definition 2.5. Let X be a complex manifold, and H an hypersurface of X. We pick an
almost-psh function ϕ (ie it is locally the sum of a psh function and of a smooth function) non
identically equal to −∞ on H, T a positive closed current of bidegree (1, 1) on X well-defined on
H, and h a singular hermitian metric of some holomorphic line bundle, satisfying h|H 6≡ +∞.
The we define :

• If locally, ϕ = ψ+ f with ψ psh and f smooth, then we set AdjH(ϕ) := AdjH(ψ), which
makes sense globally;

• If locally T = S+ddcϕ where S is smooth, and thus ϕ is almost-psh, we set AdjH(T ) :=
AdjH(ϕ), which makes sense globally;

• If the metric h has an almost positive curvature current Θh, we set AdjH(h) := AdjH(Θh).

Of course, we can make the same definition with the multiplier ideals instead of the adjoint
ideals.

Combining the adjunction exact sequence and a variant of Nadel vanishing theorem, we can
give a global result for extending holomorphic functions with some finite L2 norms. So we have
to prove the following result, which seems very natural in view of the openness conjecture :

Proposition 2.5. Let (X,ω) be a weakly pseudoconvex Kähler manifold, and let (E, h) be a
line bundle on X, where h is a singular hermitian metric, whose curvature tensor T satisfies
T > η ω for some number η > 0. Then

∀q > 0, Hq(X,OX(KX + E)⊗ I+(h)) = 0.

Proof. We are going to show that we can solve the ∂̄-operator with L2
+(ϕ)-estimates; then it

will suffice to follow the proof of Nadel’s theorem in [DBIP96] to conclude. So we want to prove
that provided an E-valued ∂̄-closed (n, q)-form g with coefficients in I+(T ) –this property does
not depend of the trivialisation of course–, there exists some E-valued (n, q − 1)-form f with
coefficients in I+(T ) such that g = ∂̄f .
We write X as an increasing reunion X =

⋃
i Ui of relatively compact open subsets Ui. By the

strong noetherian property, we know that there exists ǫi > 0 such that gi := g|Ui
has coefficients

in I ((1 + ǫi)T )|Ui
, so that the classical Hörmander’s estimates applied to (E, h1+ǫi ⊗ h−ǫi0 )

(for some smooth metric h0 on E, with local weight ϕ0, and choosing ǫi sufficiently small so
that ǫi i∂∂̄ϕ0 > − η

2 ) give a (n, q − 1)-form fi on Ui (which is Kähler pseudoconvex) satisfying

gi = ∂̄fi and
∫

Ui

|fi|2e−2(1+ǫi)ϕ+2ǫiϕ0dVω 6
2

qη

∫

Ui

|g|2e−2(1+ǫi)ϕ+2ǫiϕ0dVω
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if ϕ is a local weight for h.
What we want to do is to glue all fi’s together, but a priori, they do not coincide on com-
mon definition sets. So we start by considering v1,i := (fi − f1)|U1

; as ϕ0 is smooth, the v1,i’s

form a L2(U1, e
−2(1+ǫ1)ϕ)-bounded family of holomorphic forms, so that we can find some sub-

sequence (v1,σ(i))i uniformly converging on U1 to some holomorphic form v1 which has finite

L2(U1, e
−2(1+ǫ1)ϕ) norm too.

Now we iterate : we consider v2,i := (fσ(i) − f2)|U2
for i > 2. We can extract a subsequence

(v2,ψ(i))i converging uniformly on U2 to an holomorphic form v2 with finite L2(U2, e
−2(1+ǫ2)ϕd)

norm. Moreover, passing to the limit in the equation

(v2,ψ(i) + f2)|U1
= fσ(ψ(i))|U1

= v1,σ(ψ(i)) + f1

we obtain (v2 + f2)|U1
= v1 + f1.

By repeating the construction, we can construct (vn) a sequence of holomorphic forms on Un
with finite L2(Un, e

−2(1+ǫn)ϕ) norm such that

∀i 6 n, (vn + fn)|Ui
= vi + fi

∂̄(vn + fn) = g|Un
.

Therefore there exists some E-valued (n, q − 1)-form f with coefficients in I+(T ) such that
g = ∂̄f , which concludes. �

Corollary 2.1. Let (X,ω) be a weakly pseudoconvex Kähler manifold, H ⊂ X a smooth
hypersurface, (E, h) a holomorphic line bundle equipped with a singular hermitian metric h,
h|H 6≡ +∞, whose curvature current has local potentials ϕ such that eϕ is Hölder continuous,

and such that there exists η > 0 satisfying i∂∂̄ϕ > η ω.
Then every holomorphic section s ∈ H0(H,OH(KH + EH) ⊗ I+(h|H)) extends to a section

s̃ ∈ H0(X,OX(KX +H + E)⊗AdjH(h)).

Proof. Tensorizing the adjunction exact sequence by KX + E +H , we obtain :

0 −→I+(h)⊗OX(KX+E) −→ AdjH(h)⊗OX(KX+E+H) −→ i∗I+(h|H)⊗OH(KH+EH) −→ 0

If T is the Chern curvature of (E, h), then the last proposition show that :

H1(X,OX(KX + E)⊗I+(h)) = H1(X,OX(KX + E)⊗I+(T )) = 0

Therefore the restriction maps induces a surjection

H0(X,OX(KX + E +H)⊗AdjH(h)) −։ H0(H,OH(KH + EH)⊗ I+(h|H))

which had to be proved. �

The approached we used to show this result, which relies in a essential manner on the local
version of Manivel’s theorem, is a natural way to obtain the global version of Manivel’s theorem
[Dem01]. Nevertheless, the result we obtain is a quite weaker version of the original Manivel’s
theorem, in the sense that it is qualitative (we don’t have any control on the L2 norm anymore),
and is only given for ”regular” currents (more precisely with Hölder psh local potentials).

2.5. Back to the sheaf Adj0H(ϕ). To finish, we would like to give one positive result concerning
the ideal Adj0H(ϕ). For this, the crucial fact is given in the following lemma, which assumptions
are unfortunately really restrictive :

Lemma 2.3. Let ϕ be a psh function which has only analytic or toric singularities on a bounded
open set B ⊂ Cn, satisfying ϕ < C < 0 on B, and let f be an holomorphic function on B. If
the integral ∫

B

|f |2 e
−2ϕ

ϕ
dV
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converges, then so does the integral ∫

B

|f |2e−2ϕdV.

Proof. We start with the case where ϕ has analytic singularities. As B is bounded, the question is
actually local, and using a log resolution, and using the notations of section 2.2, the integrability
assumption becomes : ∫

U ′

∏ |zj |2(cj+dj−aj)
| log(∏ |zj |aj )|

dV ′ < +∞,

and performing a toric change of variable, the Bertrand criterion shows that
∫

U ′

∏
|zj |2(cj+dj−aj)dV ′ < +∞,

which we had to show.

Let us now get to the toric case. Again, the question is local, so we borrow the techniques
of the first part. The calculus appearing in the proof of theorem 1.3 shows that we are boiled
down to show the integrability of eh for some h concave (more precisely, f can be chosen to be
a monomial zα, and h = g − 〈α, · 〉 for g the concave function attached to ϕ). As for non-zero
concave function h of 1-variable (say on R+) the integrability of eh/g for g a non-zero concave
function implies the one of eh (indeed, h(x) = Ox→+∞(x) or more precisely, either h(x) tends

to 0 when x goes to +∞, or it is equivalent to ℓx where ℓ = lim d+

dxh(x, ·) is non-zero; idem for
g), we can follow the proof of proposition 1.1 to show that this extends to all dimensions.

�

Denoting flI (ϕ) the analogue of the multiplier ideal sheaf where we replace the integrability

condition by the local integrability of |f |2e−2ϕ

log2 |s|
, where s is a (local) section defining H , with ds|H

never zero. Then we have the following result :

Theorem 2.5. Let ϕ be a Hölder psh function whose singularities are only analytic or toric,
and let i : H →֒ X the inclusion. The the natural restriction map induces the following exact
sequence :

0 −→ flI (ϕ)⊗OX(−H) −→ Adj0H(ϕ) −→ i∗I (ϕ|H) −→ 0

Remark 2.6. In particular, under these assumptions, flI (ϕ) is a coherent ideal sheaf.

Proof. The proof is very similar to the one of the adjunction exact sequence. The only difference
appearing here concerns the restriction map, which has a priori no reason to be well-defined.
So we take F ∈ Adj0H(ϕ), and as previously, we have :

|F (z)|2e−2ϕ(z)

|zn|2 log2 |zn|
> C−1

3

|F (z)|2
log2 |zn|

· 1

|zn|2(e2ϕ(z′,0) + |zn|2α)

>
C−1

3 |f(z′)|2
|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)

− C−1
3 C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)
We also suppose that U = U ′ × D(0, rn), and we partially integrate with respect to the last

variable, in the family of disks |zn| < ρ(z′) avec ρ(z′) = ǫeα
−1ϕ(z′,0) with ǫ > 0 small enough so

that ρ(z′) < rn for all z′ ∈ U ′.

The right term in the right hand side is easily estimated when integrated, because log2 |zn| >
log2 r > 0, zn being of module 6 r < 1, we have :∫

|zn|<ρ(z′)

C1

log2 |zn|(e2ϕ(z′,0) + |zn|2α)
dV (zn) 6 C4ǫ

2e(
2
α
−2)ϕ(z′,0)
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which is bounded because α 6 1 and ϕ is upper bounded. For the remaining term :
∫

|zn|<ρ(z′)

dV (zn)

|zn|2 log2 |zn|(e2ϕ(z′,0) + |zn|2α)
> C5

∫

|zn|<ρ(z′)

e−2ϕ(z′,0)dV (zn)

|zn|2 log2 |zn|

> C6e
−2ϕ(z′,0)

∫ ρ(z′)

0

dt

t log2 t

= −C6
e−2ϕ(z′,0)

log ρ(z′)

Then we write log ρ(z′) = log ǫ+ α−1ϕ(z′, 0), and using the lemma 2.3, the proof is finished.
�

Remark 2.7. So if we knew that the lemma 2.3 still holds under the general assumption that eϕ

is Hölder continuous, we would have a general twisted adjunction exact sequence for Adj0H(ϕ).
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