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Abstract. In the history of mechanics, there have been two points of view
for studying mechanical systems: Newtonian and Cartesian. According the

Descartes point of view, the motion of mechanical systems is described
by the first-order differential equations in the N dimensional configuration
space Q. In this paper we develop the Cartesian approach for mechanical

systems with constraints which are linear with respect to velocity.
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1. Introduction.

In ”Philosophiae Naturalis Principia Mathematica” (1687), Newton consid-
ers that movements of celestial bodies can be described by differential equations
of the second order. To determine their trajectory, it is necessary to give the
initial position and velocity. To reduce the equations of motion to the inves-
tigation of a dynamics system it is necessary to double the dimension of the
position space and to introduce the auxiliary phase space. Descartes in 1644

proposed that the behavior of the celestial bodies be studied from another
point of view. These ideas were stated in ”Principia Philosophiae” (1644) and
in ”Discours de la métode” (1637). According to Descarte the understanding
of cosmology starts from acceptance of the initial chaos, whose moving ele-
ments are ordered according to certain fixed laws and form the Cosmo. He
consider that the Universe is filled with a tenuous fluid matter (ether), which
is constantly in a vortex motion. This motion moves the largest particle of
matter of the vortex axis, and they subsequently form planets. Then, accord-
ing to what Descartes wrote in his ”Treatise on Light”, ”the material of the
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2 CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS .

Heaven must be rotate the planets not only about the Sun but also about their
own centers...and this will hence form several small Heavens rotating in the
same direction as the great Heaven.”[13]. Thus the equation of motion in the
Descartes theory must be of the first order equation in the configuration space
Q

ẋ = v(x, t), x ∈ Q

Descartes gave no principles for constructing the field v for different mechanical
systems. Hence, to determine the trajectory from Descartes’s point of view it
is necessary to give only the initial position. In the modern scientific literature

the study of the Descarte ideas we can find in the monographic of V.V. Kozlov
[13] in which the author affirms that ”solving dynamics problem is possible
inside the configuration space”.

In [18, 21, 24] we developed the Cartesian approach for mechanical systems
with three degrees of freedom and with constraints linear with respects to
velocity. The aim of this works is to generalized the Cartesian approach for
non-holonomic mechanical system with N degrees of freedom and constraints
which are linear with respect to the velocity.

We shall present briefly the contents of the paper.

In section 2 we prove our main results (see Theorem 1.1, Corollary 1.3,
Corollary 1.4, Corollary 1.5 below).

In section 3 Corollary 1.3 applied to determine Cartesian and lagrangian ap-
proach for non-holonomic systems with three degree of freedom. We illustrate
the obtained results to study Chapliguin-Caratheodory’s sleigh and to study
Suslov’s problem for the rigid body around a fixed point.

In section 4 we determine Cartesian and lagrangian approach in three di-
mensional Euclidean space.

In section 5 by applying the results of the previous section we study the
integrability of the geodesic flow on the surface.

In section 6 Theorem 1.1 applied to the study Gantmacher’s system and
Rattleback.

In section 7 Corollary 1.4 applied to solve the inverse problem in dynamics.

For simplicity we shall assume the underlying functions to be of class C∞,

although most results remain valid under weaker hypotheses.

It is well known that the behavior of constrained Lagrangian system

〈 Q, L =
1

2

N∑

j,k=1

Gkj(x)ẋ
j ẋk − U(x),

N∑

k=1

αjk(x)ẋ
k = 0, j = 1, 2, . . . ,M, 〉

can be described by the differential equations deduced from the D’Alembert-
Lagrange Principle[14, 19]

(1)
d

dt

∂T

∂ẋk
− ∂T

∂xk
=
∂U

∂xk
+

M∑

j=1

µjαjk(x), k = 1, 2, . . .N,
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where µ1, µ2, . . . , µM are Lagrangian multipliers.

Our main results are the following

Theorem 1.1. Let Let Q be a smooth manifold of the dimension N with
local coordinates x = (x1, ..., xN ) and equipped by the Riemann metric G =
(Gkj(x)) = (Gkj) and let

σ = ( v(x), dx) =
N∑

j,k=1

Gkjẋ
jvk,

be the 1-form associated to the vector field

(2) v =
1

Υ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) Ω1(∂2) . . . Ω1(∂N ) 0
...

... . . .
...

...
ΩM(∂1) ΩM (∂2) . . . ΩM (∂N) 0
ΩM+1(∂1) ΩM+1(∂2) . . . ΩM+1(∂N) λM+1

...
... . . .

...
...

ΩN(∂1) ΩN (∂2) . . . ΩN (∂N) λN
∂1 ∂2 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where Υ = Ω1 ∧ Ω2... ∧ ΩN(∂1, ∂2, ..., ∂N), ∂k =
∂

∂xk
, λj = λj(x) for j =

M +1, . . . N are arbitrary functions and Ωk for k = 1, . . .N are 1-forms on Q

which we assume that satisfies the following conditions

(i) Ωj for j = 1, . . . ,M are a given 1-forms: Ωj =
N∑

k=1

αjkdx
k where αjk =

αjk(x) are functions on Q,

(ii) Ωk for k =M+1, . . . , N are arbitrary 1-forms which we choose in such
a way that Υ 6= 0.

(iii) The 2-form dσ admits the development

dσ =
1

2

N∑

j,k=1

ajk(x)Ωj ∧ Ωk

where A = (ajk) is a skew symmetric matrix such that

H =MTAM

where H = (dσ(∂j , ∂k)) and M = (Ωj(∂k)) are N ×N matrix.
(iv) The contraction of the 2-form dσ along the vector field v is such that

ıvdσ =
N∑

j=1

Λj(x)Ωj ,

where Λ = (Λ1, . . . ,ΛN)
T which we can be calculated as follows

(3) Λ = Aλ̃ =M−1τ,

where λ̃ = (λ1, . . . , λN)
T and τ = (ιvdσ(∂1) , . . . , ιvdσ(∂N))

T
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Then the first order differential system on Q

(4) ẋ = v(x), under the conditions, Λj(x) = 0,

for j = M + 1, . . .N, is invariant relationship of the second order differential
system

(5)
d

dt

∂T

∂ẋk
− ∂T

∂xk
=
∂
1

2
||v||2

∂xk
+

M∑

j=1

Λjαjk, k = 1, 2, . . .N,

Comparing equations (1) and (5) we deduce that the latter can be inter-
preted as the equations describing the behavior of non-holonomic mechani-

cal systems under the action of active forces with potential U =
1

2
||v||2 +

U0, U0 = const and under the action of the reactive forces with the compo-
nents (

M∑

j=1

Λjαj1,

M∑

j=1

Λjαj2, ....,

M∑

j=1

ΛjαjN

)
,

generated by the constraints Ωj(ẋ) =
N∑

k=1

αjkẋ
k = 0, for j = 1, 2, ...M.

Of interest is that the equations Λj = 0 for j = M + 1, . . . , N or, which is
the same

(6) Λj =

N∑

k=1

ajkλk = 0, ajk = −akj

for j = M + 1, . . . , N, represent a system of partial differential equations of
first order with respect to the functions λk for k = 1, . . . , N.

Definition

We call the vector field v which generated system (4) Cartesian vector field.
The vector field v̆ we say Cartesian equivalent if there exist a nonzero function
κ on Q such that κv̆ is Cartesian vector field.

Definition

Studying the behavior of nonholonomic mechanical systems with constraints
linear with respect to the velocity using the equations (1), (4) and (5) we called
Classical, Decartes and Lagrangian approach respectively.

Conjecture 1.2. There are solutions of the equations (6) which generate a
Cartesian (or Cartesian equivalent) vector field which completely describe the
behavior of the study constrained Lagrangian system.

This conjecture supports the following facts.
First, in view of Theorem1.1 the solutions of (4) are solutions of (5), which

is closely linked to the system (1). Second, the solutions of the equations (1)
depend on the 2N − M initial conditions. The solutions of (4) depend on
N initial conditions and N − M functions which are solutions of the linear
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partial differential equations (6), therefore the solutions of the equations (6)
also depend on N − M arbitrary constants. Finally, also contribute to the
strengthening of the conjecture the large number of applications given below.

Corollary 1.3. Let us suppose that in Theorem 1.1 manifold Q is three di-
mensional smooth manifold with local coordinates x = (x, y, z) and the given
1-form is Ω = a1dx+a2dy+a3dz = (a, dx) where aj = aj(x, y, z) for j = 1, 2, 3
are functions on Q.

Denoting by [ × ] the vector product in R3 and by rotv, a, w the fol-
lowing vectors fields

rotv =
1√
detG

((∂yp3 − ∂zp2), (∂zp1 − ∂xp3), (∂xp2 − ∂yp1))
T
,

w ==
1

Υ
((λ2Ω3 − λ3Ω2)(∂x), (λ2Ω3 − λ3Ω2)(∂y), (λ2Ω3 − λ3Ω2)(∂z))

T
.

where pk =

3∑

j=1

Gkjv
j, for k = 1, 2, 3, then differential system (4) and (5) take

the form respectively

(7) ẋ = [a×w] = v(x), (a, rot[a×w]) = 0.

(8)

d

dt

∂, T

∂ẋ
− ∂T

∂x
=
∂
1

2
||v||2

∂x
− (w, rot[a×w])a

=
∂
1

2
||v||2

∂x
− Ω2 ∧ Ω3(v, rotv)a,

where
∂

∂ẋ
= (∂ẋ1 , . . . , ∂ẋN )

T
,

∂

∂x
= (∂x1 , . . . , ∂xN )

T
.

Corollary 1.4. Let us introduce the notation
∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N )
...

...
dfN−1(∂1) . . . dfN−1(∂N )

∂1 . . . ∂N

∣∣∣∣∣∣∣∣
= {f1, f2, . . . , fN−1, ∗}

and suppose that in Theorem 1.1 the given independent 1-form are such that
Ωj = dfj(x) for j = 1, 2, ..., N − 1, and the arbitrary 1-form it is also exact,
i.e. ΩN = dfN , ΩN (v) = λN , and such that Υ = {f1, f2, . . . , fN−1, fN} 6= 0.
Then the equations (4) and (5) take the form respectively

(9)

ẋ = −λN
{f1, f2, . . . , fN−1, ∗}
{f1, f2, . . . , fN−1, fN}

= λ{f1, f2, . . . , fN−1, ∗},

d

dt

∂T

∂ẋk
− ∂T

∂xk
=
∂
1

2
||v||2

∂xk
+ λ

N−1∑

j=1

aNjdfj(∂k),
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where λN = λN(x) is an arbitrary function and aNj = aNj(x) for j = 1, . . . N−
1 are element of the skew symmetric matrix A.

Corollary 1.5. Differential equations (5) are Lagrangian with Lagrangian

function L =
1

2
||ẋ− v(x)||2, where v is Cartesian vector field.

The proofs of Theorem 1.1 , Corollary 1.3, Corollary 1.4, and Corollary 1.5
are given in section 2.

2. Proof of the main results

Proof of Theorem 1.1. Firstly we shall introduce the following notation and
concepts. Let ξ ∈ (Q) be the Lie algebra of vector fields on Q and let ∇ be
the connection

∇ : ξ(Q) ×ξ(Q) 7−→ ξ(Q),
(u,v) 7−→ ∇u v,

which is R lineal with respect to v and C∞ lineal with respect to u and is
compatible with metric G, i.e. ∇uG(v,w) = 0, ∀u,v,w ∈ ξ(Q).
Let ṽ ∈ ξ(Q) be a vector field:

ṽ =
1

Υ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) Ω1(∂2) . . . Ω1(∂N) λ1
...

... . . .
...

...
ΩM(∂1) ΩM (∂2) . . . ΩM(∂N ) λ2
ΩM+1(∂1) ΩM+1(∂2) . . . ΩM+1(∂N) λM+1

...
... . . .

...
...

ΩN(∂1) ΩN (∂N ) λN
∂1 ∂2 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where Υ ≡ Ω1 ∧ Ω2... ∧ ΩN(∂1, ∂2, ..., ∂N) 6= 0.
The functions λj for j = 1, . . .N, are arbitrary functions on Q such that

Ωj(ṽ) = λj, for j = 1, . . . N.
Let σ̃ be the 1-form associated with the vector field ṽ, i.e.

σ̃ = (ṽ(x), dx) =
N∑

j,k=1

Gjkṽ
j(x)dxk ≡

N∑

k=1

p̃kdx
k,

then, in view of the condition Υ 6= 0 the 2-form dσ̃ admits the development

dσ̃ =
1

2

N∑

j,k=1

ãjk(x)Ωj∧Ωk, where A = (ãjk) is a N×N skew-symmetric matrix

such that

ãjk = (−1)j+k−1
1

Υ
dσ ∧ Ω1 ∧ ... ∧ Ω̂k.... ∧ Ω̂j .... ∧ ΩN(∂1, ∂2, ..., ∂N),

Ω̂j , Ω̂k, means that these elements are omitted.
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In view of the relations

ιṽdσ̃ =
1

2

N∑

k,j=1

(ãjkΩj(ṽ)− ãkjΩj(ṽ)) Ωk =

N∑

k,j=1

ãjkΩj(ṽ)Ωk,=

N∑

k,j=1

ãjkλjΩk

we obtain that the contraction of dσ̃ along ṽ is

(10) ιṽdσ̃ =

N∑

j=1

Λ̃jΩj ,

where Λ̃ =
(
Λ̃1, Λ̃2, ..., Λ̃N

)T
. It is easy to check that this vector can be cal-

culated as follows

(11) Λ̃ = Aλ̃ =M−1τ̃ ,

where M = (Ωj(∂k)) and λ̃ = (λ1, . . . , λN)
T
, τ̃ = (ιṽdσ̃(∂1) , . . . , ιṽdσ̃(∂N))

T
.

Now we prove that the differential system

(12) ẋ = ṽ(x), x ∈ Q,

is invariant relationship of the Lagrangian equations with Lagrangian function

L̃ =
1

2
||ẋ− ṽ||2 = 1

2

N∑

j,k=1

Gkj(ẋ
j − ṽj)(ẋk − ṽk).

Indeed after covariant differentiation we obtain ∇ẋ(ẋ − ṽ) = 0, or, what is
the same

∇ẋG (ẋ− ṽ) = ∇ẋ

(
∂L̃

∂ẋ

)
= 0,

hence , by considering that

∇ẋ (Gẋ) =
d

dt

∂T

∂ẋ
− ∂T

∂x
, T =

1

2
||ẋ||2

∇ẋp̃j =
N∑

j=1

ẋj
(
∇∂j p̃k −∇∂k p̃j

)
+

N∑

j=1

ẋj∇∂k p̃j

=

N∑

j=1

ẋj (∂j p̃k − ∂kp̃j) +

N∑

j=1

vj∇∂k p̃j +

N∑

j=1

(
ẋj − ṽj

)
∇∂k p̃j

=
d

dt

∂V

∂ẋk
− ∂V

∂xk
+

N∑

j=1

(
ẋj − ṽj

)
∇∂k p̃j

where p̃k =

N∑

j=1

Gkj ṽ
j, V = (ẋ, ṽ) − 1

2
||ṽ||2, and ( , ) is the scalar product.

Then along the solutions of (12) we give
d

dt

∂L̃

∂ẋk
− ∂L̃

∂xk
= 0, for k = 1, 2, . . .N.
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It is easy to show that these Lagrangian equations admits the representation

d

dt

∂T

∂ẋk
− ∂T

∂xk
= ω̃(∂k) +∇ẋ−ṽp̃k,

where ω̃ = 1

2
d||ṽ||2 + ιṽdσ̃. In view of (10) and (12) we finally deduce the

differential equations

(13)
d

dt

∂T

∂ẋk
− ∂T

∂xk
=
∂
1

2
||ṽ||2

∂xk
+

N∑

j=1

Λ̃jΩj(∂k).

If we determine the vector field v and functions Λ1, Λ2, . . .ΛN as follows

(14) v = ṽ|λ1=λ2=...=λM=0, Λj = Λ̃j |λ1=λ2=...=λM=0, j = 1, 2, . . .N

and require that Λj = 0, j = M + 1, ..., N, then we obtain the Cartesian
vector field and differential system (13) coincide with system (5). In short
Theorem 1.1 is proved. �

Proof of Corollary 1.3. The vector field (2) in this case takes the form

Υv =

∣∣∣∣∣∣∣∣

Ω1(∂x) Ω1(∂y) Ω1(∂z) 0
Ω2(∂x) Ω2(∂y) Ω2(∂z) λ2
Ω3(∂x) Ω3(∂y) Ω3(∂z) λ3
∂x ∂y ∂z 0

∣∣∣∣∣∣∣∣

= λ2

∣∣∣∣∣∣

Ω1(∂x) Ω1(∂y) Ω1(∂z)
Ω3(∂x) Ω3(∂y) Ω3(∂z)
∂x ∂y ∂z

∣∣∣∣∣∣

−λ3

∣∣∣∣∣∣

Ω1(∂x) Ω1(∂y) Ω1(∂z)
Ω2(∂x) Ω2(∂y) Ω2(∂z)
∂x ∂y ∂z

∣∣∣∣∣∣

=

∣∣∣∣∣∣

a1 a2 a3
w1 w2 w3

∂x ∂y ∂z

∣∣∣∣∣∣
,

thus v(x) = [a×w].

On the other hand considering that

dσ = (rotv)xdz ∧ dy + (rotv)ydx ∧ dz + (rotv)zdy ∧ dx

where (rotv)x = dx(rotv), (rotv)y = dy(rotv), (rotv)z = dz(rotv), we get

ıvdσ = ([v× rotv], dx) = Λ1Ω1 + Λ2Ω2 + Λ3Ω3
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which lead to

ΥΛ1 = Ω2 ∧ Ω3(v, rotv) = λ2Ω3(rotv)− λ3Ω2(rotv) =

= (w, rotv) ,

ΥΛ2 = Ω3 ∧ Ω1(v, rotv) = λ3Ω1(rotv)− λ1Ω3(rotv),

= λ3Ω1(rotv) = λ3 (a, rotv) ,

ΥΛ3 = −Ω2 ∧ Ω1(v, rotv) = −λ2Ω1(rotv) + λ1Ω2(rotv),

= −λ2Ω1(rotv) = −λ2 (a, rotv) ,
here we put Ω1(v) = λ1 = 0.
From the conditions Λ2 = Λ3 = 0 we obtain

(a, rotv) = (a, rot[a×w]) = 0,

hence we easily deduce differential system (7) and (8).

In short Corollary 1.3 is proved. �

Proof of Corollary 1.4. In this case we obtain that the vector field v takes the
form

v =
1

Υ

∣∣∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N) 0
... . . .

...
...

dfN−1(∂1) . . . dfN−1(∂N) 0
dfN(∂1) . . . dfN(∂N) λN
∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣

= −λN
Υ

∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N)
...

...
dfN−1(∂1) . . . dfN−1(∂N)

∂1 . . . ∂N

∣∣∣∣∣∣∣∣

= −λN
{f1, f2 . . . , fN−1, ∗}
{f1, f2 . . . , fN−1, fN}

= λ{f1, f2 . . . , fN−1, ∗}.

On the other hand by considering that λj = 0 for j = 1, 2, . . .N − 1, from
(3) follows that Λj = aNjλN , j = 1, . . . , N − 1, ΛN = aNNλN = 0.
Clearly the last equation is satisfied identically in view that (ajk) are ele-

ments of the skew-symmetric matrix A.

Therefore we easily deduced the differential equations generated from Carte-
sian and Lagrangian approach.
Thus Corollary 1.4 has been proven. �

Proof of Corollary 1.5. Follows from the proof of Theorem 1.1 by considering
(14) �

3. Decartes approach for non-holonomic system with three

degree of freedom and one constraints .

In this section we apply the corollary 1.3 to study the Chapliguin-Catatheodory
sleight and Suslov’s problem for the rigid body around a fixed point.
Chapliguin-Carathodory’s sleigh

We shall now analyze one of the classical nonholonomic systems Chapliguin-
Carathodory’s sleigh (which we call a sleigh). [16]
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The idealized sleigh is a body that has three points of contact with the plane.
Two of them slide freely but the third, A, behaves like a knife edge subjected
to a constraining force R which does not allow transversal velocity. More
precisely, let yoz be an inertial frame and ξ Aη a frame moving with the sleigh.
Take as generalized coordinates the Decartes coordinates of the center of mass
C of the sleigh and the angle x between the y and the ξ axis. The reaction
force R against the runners is exerted laterally at the point of application A
in such a way that the η component of the velocity is zero. Hence, one has the
constrained system with the configuration space Q = S1×R

2, with the kinetic
energy T = m

2
(ẏ2+ ż2)+ Ic

2
ẋ2, and with the constraint ǫẋ+sin xẏ−cosxż = 0,

where m is the mass of the system and Ic is the moment of inertia about a
vertical axis through C and ǫ = |AC|.
Observe that the ”javelin” (or arrow or Chapliguin’s skate) is a particular

case of a sleigh and can be obtained when ǫ = 0.

To apply the Decartes approach for this system, first we introduce the 1-form
Ωj , for j = 1, 2, 3 in such a way that the determinant Υ 6= 0. This condition
holds in particular if

Ω1 = ǫdx+ sin xdy − cosxdz, Ω2 = sin xdz + cosxdy, Ω3 = dx,

so Υ = Ω1 ∧ Ω2 ∧ Ω3(∂x, ∂y, ∂z) = 1.

The Descartes approach produce the differential equations (see formula (7))
[24]

(15) ẋ = λ3, ẏ = λ2 cosx− ǫλ3 sin x, ż = λ2 sin x+ ǫλ3 cosx,

here λj = λ3(x, y, z, ǫ) for j = 2, 3 are solutions of the equation

(16) sin x(J∂zλ3 + ǫm∂yλ2) + cos x(J∂yλ3 − ǫm∂zλ2)−m(∂xλ2 − ǫλ3) = 0,

where J = JC + ǫ2m, ||v||2 = Jλ23 +mλ22.

Now we show that there are solutions of (15) and (16) fully describes the
inertial movements of the sleigh.

Corollary 3.1. All the inertial trajectories of Chapliguin -Carathodory’s sleigh
can be obtained from Cartesian approach.

Proof. Let us suppose that λj = λj(x, ǫ) for j = 2, 3. Clearly that in this case
(16) takes the form ∂xλ2 − ǫλ3 = 0 and all paths of the equation (15) can be
obtained from the formula

y = y0 +

∫
(λ2(x, ǫ) cosx− ǫλ3 sin x)dx

λ3(x, ǫ)
,

z = z0 −
∫

(λ2(x, y, z, ǫ) sinx− ǫλ3 cosx)dx

λ3(x, ǫ)
,

t = t0 +

∫
dx

λ3(x, ǫ)
.
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On the other hand, the inertial motions of the sleigh can be obtained from
the equations deduce from the classical approach

JC ẍ = ǫµ, mÿ = µ sin x, mz̈ = −µ cosx, ǫẋ+ sin xẏ − cosxż = 0.

Hence, after straightforward calculations we get the first order ordinary differ-
ential equations

ẋ = qC cos θ, ẏ = C(sin θ cosx−qǫ cos θ sin x), ż = C(sin θ sin x+qǫ cos θ cosx),

where θ = qǫx+ C, q =

√
m

J

This system can be obtained from (15) if we choose

λ2 = C sin θ, λ3 = Cq cos θ.

Is clear that in this case

2||v||2 = Jλ23(x, ǫ ) +mλ22(x, ǫ ) = mC2,

therefore the sleigh moves by inertia. So the corollary is proved. �

Now we study Chapliguin’s skate. Cartesian approach in this case produce
the differential equations, which can be obtained from (15) and (16) by putting
ǫ = 0.

(17)
ẋ = λ3(x, y, z, 0), ẏ = λ2(x, y, z, 0) cosx, ż = λ2(x, y, z, 0) sinx,

J(sin x∂zλ3 + cosx∂yλ3)−m∂xλ2 = 0

Corollary 3.2. All the trajectories of Chapliguin’s skate with the initial con-
dition ẋ(t0) = C0 6= 0 and under the action of the potential field of force with
potential function U = mgy can be obtained from the Cartesian approach.

Proof. In fact, for the case when ǫ = 0 the classical approach for Chapliguin-
Carathodory’s sleigh gives (Chapliguin’s skate) the following equations of mo-
tion

ẍ = 0, ÿ = g + µ sin x, z̈ = −µ cosx, sin xẏ − cosxż = 0

Hence, integrating we deduce the following differential system of first order
(see for instance [24])

ẋ = C0 6= 0, ẏ = (
g sin x

C0

+ C1) cosx, ż = (
g sin x

C0

+ C1) sin x.

Let b be the vector field associated with this differential system, i.e.

b =

(
C0, (

g sin x

C0

+ C1) cosx, (
g sin x

C0

+ C1) sin x

)
.

Whereas (a, rotb) =
g cosx

C0

6= 0.

Denoting by κ =
C0

g sin xC0 + C1)
, we easily obtain that (a, rot(κ b)) = 0,

so b is Cartesian equivalent vector field.
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The vector field κb can be obtained from (17) by choosing λ3 = κ and
λ2 = C0.

Summarizing the corollary is proved. �

The rigid body around a fixed point in the Suslov case

in this section we study one classical problem of non-holonomic dynamics for-
mulated by Suslov [25, 14]. We consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints (ã, ω) = 0
where ω = (ω1, ω2, ω3) is a body angular velocity and ã is a constant vector.
Suppose the body rotates in an force field with potential U(γ1, γ2, γ3). Apply-
ing the method of Lagrange multipliers we write the equations of motion in
the form

(18)
Iω̇ = [Iω × ω] + [γ × ∂U

∂γ
] + µã, γ̇ = [γ × ω]

(ã, ω) = 0

Where γ = γ1, γ2, γ3) = (sin z sin x, sin z cosx, γ3 = cos z),, I is the inertial
tensor of the body, µ is the Lagrange multiplier which can be expressed as a
function of ω and γ as follows

µ = −

(
a, [Iω, ω] + [γ, ∂U

∂γ
]
)

(a, I−1a)
.

It is well-known the following result [14]

Proposition 3.3. If a is an eigenvector of operator I, i.e.

(19) Ia = κa,

then the phase flow of system (18) preserves the ”standard”measure in R
6 =

R
3{ω} × R

3{γ}.
G.K.Suslov has considered a particular case when the body is not under

action of exterior forces: U ≡ 0. If (19) holds then the equations (18) have
the additional first integral K4 = (Iω, Iω). E.I.Kharlamova in [11] study the
case when the body rotates in the homogenous force field with the poten-
tial U = (b, γ) where b is an orthogonal to a vector. Under these condi-
tions the equation of motion have the first integral K4 = (Iω,b). V.V. Ko-
zlov in [13] consider an opposite case, when b = ǫa, ǫ 6= 0. The integrabil-
ity problem in this case was study in particular in [14, 17]. The case when
U = ǫ det I(I−1γ, γ) the system (18) have the Clebsch-Tisseran first integral

K4 =
1

2
(Iω, Iω)− 1

2
ǫ det I(I−1γ, γ), [14].

From now on, we suppose that equality (19) is fulfilled. We assume that
vector a coincides with one of the principal axes and without loss of generality
we can choose it as the third axis, i.e., a = (0, 0, 1) (see for more details [14])
Equations of motion have the following form
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(20)





I1ω̇1 = γ3∂γ2U − γ2∂γ3U, I2ω̇2 = γ1∂γ3U − γ3∂γ1U,

(I1 − I2)ω1ω2 + γ2∂γ1U − γ1∂γ2U + µ = 0,

γ̇1 = −γ3ω2, γ̇2 = γ3ω1, γ̇3 = γ1ω2 − γ2ω1,

where I1, I2 are the principal moments of inertia of the body with respect to
the first and the second axis. We observe that the above mentioned choice of a
guarantees that the phase flow of system (20) preserves the standard measure
in R

5{ω1, ω2, γ}.
In [20] we prove the following result

Theorem 3.4. Let us suppose that the body rotates within the force field defined
by the potential

(21) U =
1

2I1I2
(I1µ

2

1 + I2µ
2

2)− h,

where h is a constant and µ1, µ2 are the solutions of the following first order
partial differential equation

(22) γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
)− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
= 0,

then the following statements hold:

(I) The equations (20) have the first integrals

(23) I1ω1 − µ2 = 0, I2ω2 + µ1 = 0,

consequently, they are integrable by quadratures. In particular

(24)

I1ω1 =
∂S(γ1, γ2, K2)

∂γ2
+Ψ2(γ

2

1 + γ23 , K2, γ2)

+γ1Ω(γ
2
1 + γ22 , K2, γ3),

I2ω2 = −∂S(γ1, γ2, K2)

∂γ1
−Ψ1(γ

2

1 + γ23 , K2, γ1)

−γ2Ω(γ21 + γ22 , K2, γ3),

are constants on the solutions of (20), where K2 = γ21 + γ22 + γ23 and
S,Ψ1, Ψ2, Ω are arbitrary smooth functions .

(II) The Suslov’s,Kharlamova-Zabelina’s,Kozlov’s , Clebsch-Tisseran’s and
Tisseran-Okunova’s first integrals can be obtained from (24).

(III) The dependence γ = γ(t) we determine by quadratures of the Poisson
equations which in this case take the form:

(25) γ̇1 =
γ3µ1

I2
, γ̇2 =

γ3µ2

I1
, γ̇3 = −γ1µ1

I2
− γ2µ2

I1
.

It is interesting to note that the proof of the Theorem 3.4 first was obtained
using Cartesian approach (for more details see [21]) which we proposed below
.
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Let us suppose that manifold Q is the special orthogonal group of rotations
of E3, i.e. Q = SO(3), with the Riemann metric

G =




I3 I3 cos z 0
I3 cos z (I1 sin

2 x+ I2 cos
2 x) sin2 z + I3 cos

2 z (I1 − I2) sin x cos x sin z
0 (I1 − I2) sin x cosx sin z I1 cos

2 x+ I2 sin
2 x




detG = I1I2I3 sin
2 z.

In this case we have that the constraint is ω3 = ẋ+ cos zẏ = 0.
Hence a = (1, cos z, 0). By choosing the 1-form Ωj for j = 1, 2, 3 as follow

Ω1 = dx+ cos zdy, Ω2 = dy, Ω3 = dz.

Consequently Υ = dΩ1 ∧ dΩ2 ∧ dΩ3(∂x, ∂y, ∂z) = 1, and

v = λ2(cos z ∂x − ∂y)− λ3∂z

Thus we obtain that

p1 = 0,

p2 = (I3 − I1 + (I1 − I2) cos
2 x) cos z sin2 zλ2 + (I1 − I2) cosx sin x sin zλ3,

p3 = (I2 sin
2 x+ I1 cos

2 x)λ3 + (I2 − I1) sin x cosx sin z cos zλ2

The differential equations (7) in this cases take the form respectively

(26) ẋ = cos z λ2, ẏ = −λ2, ż = −λ3

and

(27) (a, rotv) = ∂zp2 − ∂yp3 + cos z∂xp3 = 0

After the change γ1 = sin z sin x, γ2 = sin z cosx, γ3 = cos z the system
(26) and condition (27) can be written as follow

(28) γ̇1 =
1

I2
µ1γ3, γ̇2 =

1

I1
µ2γ3, γ̇3 = − 1

I1I2
(I1µ1γ1 + I2µ2γ2)

(29) sin z(γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
)− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
)− cosx∂yµ2 − sin x∂yµ1 = 0

where µ2 = −I1(cosxλ3 + sin xλ2), µ1 = I2(− sin xλ3 + cosxλ2).

Clearly if µj = µj(x, z), for j = 1, 2, then the equation (29) coincide with
equation (22) and (28) coincide with (25).
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4. Cartesian vector field in three dimensional Euclidean space

Let E3 be the three dimensional Euclidian space with Cartesian coordinates
x = (x1, x2, x3).
We consider a particle with Lagrangian function

L =
1

2
||ẋ||2 − U(x),

and constraint (a, ẋ) = 0, where ( , ) denotes the scalar product in E
3, ẋ =

(ẋ1, ẋ2, ẋ3) and a = a(x) = (a1(x) , a2(x), a3(x)) is a smooth vector field in
E
3. Below we shall use the following notation ∂xf = (∂x1f, ∂x2f, ∂x3f)

T .

The equations of motion in particular for constrained particle in R
3, can be

deduced from the d
′

Alembert-Lagrange Principle and are such that

ẍ = ∂xU + µa, (a, ẋ) = 0,

where µ is the Lagrangian multiplier.

Cartesian and Lagrangian approach produces the following differential equa-
tions respectively (see formula (7) and (8))

(30)

ẋ = [a×w], (a, rot[a×w]) = 0,

ẍ = ∂x

(
1

2
||[a×w]||2

)
+ (rot[a×w],w)a,

Example

Suppose that a = fx, w =
c

c2
,

where f = r + (x,b) = c2 and b and c are constants vector field such that

(x, c) = 0, (b, c) = 0, ||c||2 = c2, r = ||x||.
Then Cartesian and Lagrangian approach generate the following differential
equations respectively

ẋ =
[fx × c]

c2
, ẍ = − x

r3
.

Indeed in view of the relation rot[fx × c] =
c

r
, we get

(a, rot[a×w]) =
(
fx,

c

c2

)
= 0

thus the given vector field is Cartesian.

From the relations (rot[a × w],w) = − 1

c4
(c, rot[fx × c]) = − 1

rc2
, we

obtain that the second order differential system (30) in this case takes the
form

ẍ =
1

c2

(
∂x(

f

r
)− ∂xf

r

)
= − f

c2
x

r3
= − x

r3
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Below we study the particular case when the vector field a satisfies the
equation

(31) rot(a) = ν(x)a,

where ν is certain function.

Optical-mechanical analogy

From the standpoint of geometric optics, propagation of light in E
3 can be

represented as a flow of particles. Trajectories of particle are called rays.
It is known [13] that the vector field K of an arbitrary system of rays an a
homogeneous optical medium satisfies the relation K × rotK = 0. System of
rays such that rotK 6= 0 are called Kummer systems

Proposition 4.1. Let a be the Kummer vector field i.e., satisfies the partial
differential equation (31) with ν 6= 0. Then Cartesian and Lagrangian approach
generate the following differential equations respectively

(32) ẋ = V− γa =
1

||a||2 [a× rotW] = v(x)

and

(33) ẍ = ∂x

(
1

2
||[a×w]||2

)
+ (R, [ a×w]))a,

where γ =
(a,V)

||a||2 , V and R are the vector fields:

(34) rotV = νV + [a× Ṽ], R = Ṽ− ∂xγ,

where Ṽ is an arbitrary smooth vector field.

Proof. Indeed, taking the well-known relations

div[A×B] = (A, rotB)− (rotA,B).

into account, we obtain

div[a× [a×w]] =
(
a, rot[a×w]

)
−
(
rota, [a×w]

)

Hence in view of this identity, and considering that (a, rot[a × w]) = 0 and
(31) we obtain that [a× [a×w]] is a solenoidal vector field, so

(35) [a× [a×w]] = (a, a)w− (a,w)a = rotW,

where W is a smooth vector field such that (a, rotW) = 0, consequently
rotW = [a × V], for a smooth vector field V which must satisfy the partial
differential equation

div(rotW) = div([a×V])
= (a, rotV)− (V, rota) = (a, rotV− νV) = 0,

hence we obtain the representation (34)
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In view of relation (35) we get the following representation for w

w ==
(a,w)

||a||2 a+
[a×V]

||a||2 =
(a,w)

||a||2 a+
rotW

||a||2

From the relation v = [a×w] we get formula (32).

On the other hand, after some calculations we obtain

rotv = rotV− [∂xγ × a]− γrota

= ν (V− γa) + [Ṽ− ∂xγ × a]

or, what is the same

(36) rotv = νv + [R× a].

Inserting (36) in the relation (w, rotv) we obtain

(w, rotv) = (w, νv+ [R× a])
= (w, [R× a]) = (−[ w× a],R)
= ([ a×w],R) .

Hence from (30) we obtain the second order differential equations (33). �

Corollary 4.2. Let us suppose that Cartesian vector field is such that

(37) rotv = νv, ν 6= 0,

then Lagrangian approach generated the differential system

ẍ = ∂x

(
1

2
||v||2

)

which describe the motion of a material point of unit mass in the potential field

with the force function
1

2
||v||2.

Proof. From (37) and (36) follows that [R×a] = 0, based on this relation and
considering that

(R, [a×w])) = (w, [R× a]))

we deduce that (R, [a×w])) = 0, thus, in view of (33), we obtain the proof
of the proposition.

This results coincide with theorem J.Bernoulli (1696.) ” Light rays in an
isotropic optical medium with the refraction index n(x) coincide with the
trajectories of a material point in a potential field with the force function

U =
1

2
n2(x).” �

Example

Consider a particle with Lagrangian function L =
1

2

(
ẋ2 + ẏ2 + ż2

)
and

constraint ω2 = sin x ẏ − cosx ż = 0,

The vector field a = (0, sin x, − cosx), satisfies the equation rota = a.
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Classical approach generates the differential equations

ẍ = 0, ÿ = µ sinx, z̈ = −µ cosx.
Integrating these equations we obtain

(38) ẋ = C1, ẏ = C2 cosx, ż = C2 sin x,

where C1 and C2 are arbitrary constants. The vector field associated to this
system is Cartesian type.

Cartesian approach generate the differential system

ẋ = λ, ẏ = ̺ cos x, ż = ̺ sin x

where λ = w3 sin x+w2 cosx, ̺ = −w1, and w1, w2, w3 are components of the
arbitrary vector field w.

From the condition (a, rot[a × w]) = 0 follows that the functions λ and ̺

are solutions of the linear partial differential equation

(39) ∂zλ sin x+ ∂yλ cosx− ∂x̺ = 0.

In particular the vector field

(40) v = (λ(x), ̺(y, z) cosx, ̺(y, z) sin x) ,

satisfies (39), where λ = λ(x) and ̺ = ̺(y, z) are arbitrary real functions, .

Solving equations λ(x) = w3 sin x+w2 cosx, ̺(y, z) = −w1, with respect to
the components of the vector w we obtain

w = (−̺(y, z), λ(x) cosx− ψ(x, y, z) sin x, λ(x) sin x+ ψ(x, y, z) cosx)

where ψ = ψ(x, y, z) is an arbitrary function on Q.

It is easy to check that

rotv = v + u,

where u = (∂z̺ cosx− ∂y̺ sin x− λ, 0, 0)T , is a vector orthogonal to vector a.
Hence we obtain the relations

[R×a] = u, (w, [R×a]) = ̺ (∂y̺ sin x+ λ− ∂z̺ cosx) , ||[w×a]||2 = ̺2+λ2.

Lagrangian approach generates the equations

ẍ = ∂x

(
1

2
(̺2 + λ2)

)
− ̺ (∂z̺ cosx− ∂y̺ sin x− λ)a

The vector field (38) can be obtained from (40) if we choose λ = C1, ̺ =
C2. For these parameter values Lagrangian approach generates the differential
equations ẍ = C1C2a.

If we choose ̺ and λ: (∂z̺ cosx− ∂y̺ sin x− λ = 0 Then rotv = v and as a

consequence Lagrangian approach generate the equation ẍ = ∂x

(
1

2
(̺2 + λ2)

)
.

Below we study the case when the constraints are integrable.
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Corollary 4.3. Let V and a are the vector field such that

(41) rota = 0, V = ∂fG∂xΦ

where G = G(f,Φ) and Φ are an arbitrary smooth functions, then Cartesian
and Lagrangian approach for a particle in E

3 which is constrained to move on
the surface f = f(x) = c generate the following differential equations

(42) ẋ = ∂fG (∂xΦ− γ∂xf) = v(x),

and

(43)
ẍ = ∂x

(
∂fG

2

2
||∂xf × ∂xΦ||2

)

−∂fG
(
∂2ffG∂xΦ− ∂xγ , ∂xΦ− γ∂xf

)
∂xf,

where g = ||∂xf ||2, and γ =
(∂xf, ∂xΦ)

g
,

If γ = 0 then the equations (42) and (43) take the form respectively

(44) ẋ = ∂fG∂xΦ, ẍ = ∂x

(
G2
f

2
||∂xΦ||2

)
−
(
GffG||∂xΦ||2

)
∂xf

Proof. Suppose that (41) hold, then

a = ∂xf, rotV = [∂xf ×
(
∂2ffG∂xΦ

)
= [∂xf × Ṽ ],

, hence the vector fields W, Ṽ and R admit the representation

W = G∂xΦ, Ṽ = ∂2ffG∂xΦ + υ∂xf, R = ∂2ffG∂xΦ + υ∂xf − ∂xγ,

where υ is an arbitrary function, hence we easily obtain (43).

If γ = 0 then (R, ∂fG (∂xΦ− γ∂xf)) = ∂fG∂
2
ffG||∂xΦ||2, thus formula (44)

follow . �

5. Integrability of the geodesic flow on the surface.

It is well known that the differential equations ẍ = µ ∂xf, where µ is La-
grangian multiplier, determine the geodesic flows on the surface f = c, and
admits the energy integral

||ẋ||2 = 2h(f).

If there is an additional first integral, functionally independent with the energy
integral , then the geodesic flow is integrable.

Proposition 5.1. Let us suppose that (41) holds. Then Lagrangian geodesic
flow of the constrained particle on the surface f = c, g = ||∂xf ||2 > 0 is
integrable if there exist a solution of the following non-lineal partial differential
equation respectively

(45) G2

f(f,Φ )||[∂xf × ∂xΦ]||2 = 2h(f)g, if (∂xf, ∂xΦ) 6= 0,

and

(46) G2

f (f,Φ )||∂xΦ||2 = 2h(f), if (∂xf, ∂xΦ) = 0, ∂xΦ 6= κx.
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Proof. Indeed, if (45) holds then the system (43)takes the form

(47) ẍ =
(
∂fh(f)− ∂fG

(
∂2ffG∂xΦ− ∂xγ , ∂xΦ− γ∂xf

))
∂xf,

which determine the geodesic Lagrangian flow and admits the following com-
plementary first integral

F1 =
g||[∂xΦ× ẋ]||2
(∂xf, ∂xΦ)2

= C1,

which it is easy to obtain from (42). Clearly this first integral is independent
of energy integral.

If (∂xf, ∂xΦ) = 0 then Cartesian and Lagrangian approach generated the
differential equations respectively

ẋ = Gf(f,Φ )∂xΦ, ẍ =
(
hf −Gf(f,Φ )Gff (f,Φ )||∂xΦ||2

)
∂xf,

The condition (45) under the given condition of orthogonality takes the form
(46).

The complementary first integral is

F2 =
||Φx||2||[x× ẋ]||2
||[x× ∂xΦ]||2

= C2,

which we can obtain from (42), by considering that γ = 0. This complete the
proof of the proposition. �

Now we apply the above results.

Now we consider the surface

(48) f(x) = c, (x, ∂xf) = mf, c 6= 0

which we call homogeneous surface of degree m.

We are interested in studying the integrability of Lagrangian geodesic flow
on the homogenous surface.

Euler’s formula shows that c = 0 is the unique critical value of f, hence for
c 6= 0 the function g = ||∂xf ||2 > 0, on the surface f(x) = c.

Taking into account formula (48) it follows that

(x, ∂xg) = 2(m− 1)g.

Below we use the notation

{F,G,H} =

∣∣∣∣∣∣

∂xF ∂yF ∂zF

∂xG ∂yG ∂zG

∂xH ∂yH ∂zH

∣∣∣∣∣∣
.

Clearly, if F, G, H are independent functions then {F,G,H} 6= 0.

The integrability of the geodesic flow on the homogeneous surface we study
in the following two cases

(49) {f, g, r2} = 0, {f, g, r2} 6= 0,

where r2 = x2 + y2 + z2.
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We analyze the first case. We study only the particular subcase when the
homogeneous surface satisfies the condition

(50) g = g(f, r).

Hence, in view of (48) we obtain mf∂fg + r∂rg = 2(m− 1)g.

We assume that function Φ is such that Φx = x, thus the differential equation
generated by the Cartesian and Lagrangian approach are respectively

(51) ẋ =
Gf

g

(
gx−mf∂xf

)
, ẍ =

m∂rgfh(f)

r2g2
∂xf,

Proposition 5.2. Lagrangian geodesic flow on the homogeneous surface under
the assumption (50) is integrable

Proof. Let us suppose that ∂xΦ = x, then (∂xΦ, ∂xf) = mf 6= 0. On the other
hand if we choose G(f, r) as

G2

f(f, r) =
2h(f)g(f, r)

g(f, r)r2 −m2f 2
,

then we obtain that (45) holds. Thus there exist an additional first integral

g(f, r)||[x× ẋ]||2 = m2f 2h(f)

�

Example

Lagrangian geodesic flow on the homogeneous surface of degree one

f(x) = r + (b,x) = c, c 6= 0

is integrable, where b is a constant vector field.

Proof. In this case we have g =
2f

r
+ ||b||2 − 1 = g(f, r).

The complementary first integrals is

(2f
r

+ ||b||2 − 1
)
||[x× ẋ]||2 = 2f 2h(f).

�

We have studied the case in which {f, g, r2} = 0. Now we study the case
in which the functions f, g, r2 are independent, i.e., {f, g, r2} 6= 0. Hence, we
obtain that

(52) x = x(r, f, g), y = y(r, f, g), z = z(r, f, g).

To establish the integrability or non-integrability of the Lagrangian geodesic
flow on the surface in this case it is necessary to determine de existence or non-
existence of the solution of the equation (45) or (46). We illustrate this case
for the third-order surface

(53) f(x) = x y z = c, c 6= 0.
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First we determine the dependence x = x(r, f, g), y = y(r, f, g), z = z(r, f, g).
By considering that in this case

g = (x y)2 + (x z)2 + (y z)2

thus the functions f, g and r2 are independent. Indeed if we introduce the
cubic polynomial in Z :

P (z) = Z3 − r2Z2 + gZ − f 2 = (Z − x2)(Z − y2)(Z − z2),

then by using Cardano’s formula we obtain the dependence (52).

This case was examined already by Riemann in his study of motion of a ho-
mogeneous liquid ellipsoid. More exactly, Riemann examined the integrability
of the geodesic flow on (53).

In [15] the author raised the problem.

”Is it true that the geodesic flow on a generic third-order algebraic sur-
face is not integrable?. In particular I do not know a rigorous proof of non-
integrability for the surface (53)”

To prove the integrability of Lagrangian geodesic flow it is necessary to solve
the non-lineal partial differential equation

Gf (f,Φ)
(
g||Φx||2 −

(
y zΦx + z xΦy + x yΦz

)2)
= 2h(f)g

Now we are not able to provide an answer to this question.

6. Decartes approach for non-holonomic system with four and

five degree of freedom and two constraints

In this section we apply Theorem 1.1 to study the non-holonomic system
study in [8] and the well known non-holonomic system-the rattleback .

Gantmacher’s system

Two material pointsM1, M2 with equal mass are linked by a metal rod with
fixed long and small mass. The system can move only in the vertical plane
and so that the speed of the midpoint of the rod is directed along the rod. It
is necessary to determine the trajectories of material points M1, M2.

Let (x1, y1) and (x2, y2) are the coordinates of the points M1, M2.

Introducing the following change of coordinates

2u1 = x2 − x1, 2u2 = y1 − y2, 2u3 = y2 + y1, 2u4 = x1 + x2

we obtain the mechanical system with configuration space Q = R
4, and La-

grangian function L =
1

2

4∑

j=1

u̇2j − gu3.

The equations of the constraints can be rewritten as

u1u̇1 + u2u̇2 = 0, u1u̇3 − u2u̇4 = 0.
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To construct Cartesian approach in this case we firstly determine the 1-forms
Ωj for j = 1, 2, 3, 4 as follow

Ω1 = u1du1 + u2du2, Ω2 = u1du3 − u2du4,

Ω3 = u1du2 − u2du1, Ω4 = u2du3 + u1du4

hence we obtain that Υ = u21 + u22.

After some calculations we obtain that the vector field (2) takes the form

v = ν3(u1∂2 − u2∂1) + ν4(u2∂3 + u1∂4), Υ = (u21 + u22)
2,

where νj = λj(u
2
1 + u22) for j = 3, 4.

The 1-form associated to vector v is the following

σ = ν3(−u2du1 + u1du2) + ν4(u2du3 + u1du4).

Thus the 1-form ιvdσ admits the representation

ιvdσ = Λ1Ω1 + Λ2Ω2 + Λ3Ω3 + Λ4Ω4

= (u21 + u22)
(
− u2∂u2(

ν23 + ν24
2

)− u1∂u1(
ν23 + ν24

2
)− 2ν23 − ν24

)
Ω1

+(u21 + u22)
(
u2∂u4(

ν23 + ν24
2

)− u1∂u3(
ν23 + ν24

2
) + ν3ν4

)
Ω2

+(u21 + u22)ν4

(
u2∂u3ν3 + u1∂u4ν3 + u2∂u1ν4 − u1∂u2ν4

)
Ω3

+(u21 + u22)ν3

(
u2∂u3ν3 + u1∂u4ν3 + u2∂u1ν4 − u1∂u2ν4

)
Ω4.

If Λ3 = Λ4 = 0 then u2∂u3ν3 + u1∂u4ν3 + u2∂u1ν4 − u1∂u2ν4 = 0.

Cartesian approach generate the following differential equations respectively

(54) u̇1 = −ν3u2, u̇2 = ν3u1, u̇3 = ν4u2, u̇4 = ν4u1

and

(55) u2∂u3ν3 + u1∂u4ν3 + u2∂u1ν4 − u1∂u2ν4 = 0

It is easy to show that the functions ν3, ν4 :

(56) ν3 = g3(u
2

1 + u22), ν4 =

√
2(−gu3 + h)

(u21 + u22)
− g23(u

2
1 + u22),

where g, h are constants, are solutions of (55), (54)as a consequence

2||v||2 = (u21 + u22)(ν
2

3 + ν24) = 2(−gu3 + h).

Under these restrictions Lagrangian approach generate the differential system

(57) ü1 = Λ1u1, ü2 = Λ1u2, ü3 = −g + Λ2u1, ü4 = Λ2u2.
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The solutions of (55) are

u1 = r cosα, u2 = r sinα, α = α0 + g3(r)t,

u3 = u03 +
g

2g3(r)
t− g

4g23(r)
sin 2α−−

√
2gC

g3(r)
cosα,

u4 = −h +
r2g23(r)

2g
+
( √

g√
2g3(r)

sinα + C)2,

where C, r, α0, u
0
3, h, are arbitrary constants, g3 is an arbitrary on r function.

To compare these solutions with the solutions obtained from the classical
approach, we determine the equations of motion obtained from the d’Alembert-
lagrange principle

(58) ü1 = µ1u1, ü2 = µ1u2, ü3 = −g + µ2u1, ü4 = −µ2u2

where µ1, µ2 are the Lagrangian multipliers.

After the integration of the system (58) we obtain [8]

(59) u̇1 = −ϕ̇u2, u̇2 = ϕ̇u1, u̇3 =
f

r
u2, u̇4 =

f

r
u1

where (ϕ, r) are the polar coordinates: u1 = r cosϕ, u2 = r sinϕ and f is
a solution of the equation

(60) ḟ = −2g

r
u2

The solution of (60) is f =
2g cosϕ

ϕ̇
+ 2γ where γ is an arbitrary constants.

Clearly if we choose ν3 = ϕ̇, ν4 =
f

r
then we the vector field associated to

system (59) can be obtained from Cartesian vector field.

The rattleback.

The rattleback’s amazing mechanical behaviour is a convex asymmetric rigid
body rolling without sliding on a horizontal plane. It is known for its ability to
spin in one direction and to resist spinning in the opposite direction for some
parameters values, and for others values to exhibit multiple reversals. Basic
references on the rattleback are [28, 9, 12, 2].
Introduce the Euler angles ψ, φ, θ using the principal axis body frame rela-

tive to an inertial reference frame. These angles together with two horizontal
coordinates x, y of the center of mass are coordinates in the configuration
space Q = SO(3)× R

2 of the rattleback.
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The Lagrangian of the rattleback is computed to be

L = 1

2
(I1 cos

2 ψ + I2 sin
2 ψ +m(Γ1 cos θ − ζ sin θ)2)θ̇2

1

2
(I1 sin

2 ψ + I2 cos
2 ψ) sin2 θ) + I3 cos

2 θ)φ̇2

+1

2
(I3 +mΓ2

2 sin
2 θ)ψ̇2 + m

2
(ẋ2 + ẏ2)

+m(Γ1 cos θ − ζ sin θ)Γ2 sin θθ̇ψ̇ + (I1 − I2) sin θ sinψ cosψθ̇φ̇

C cos θφ̇ψ̇ +mg(Γ1 sin θ + ζ cos θ)

where I1, I2, I3 are the principal moments of inertia of the body, m is the total
mass of the body,

Γ1 = ξ sinψ + η cosψ, Γ2 = ξ cosψ − η sinψ

and (ξ = ξ(θ, ψ), η = η(θ, ψ), ζ = ζ(θ, ψ)) are the coordinates of the point of
contact relative to the body frame.The shape of the body is encoded by the
functions ξ, η and ζ.

The constraints are

ẋ− α1θ̇ − α2ψ̇ − α3φ̇ = 0, ẏ + β1θ̇ + β2ψ̇ + β3φ̇ = 0,

where

α1 = (−Γ1 sin θ − ζ cos θ) sinφ, α2 = Γ2 cos θ sinφ+ Γ1 cos φ,

α3 = Γ2 sinφ+ (Γ1 cos θ − ζ sin θ) cosφ, β1 =
∂α1

∂φ
, β2 =

∂α2

∂φ
, β3 =

∂α3

∂φ
.

Clearly that the rattleback equations of motion in this particular case for-
mally contain the equations of the heavy rigid body in the singular case
m→ 0, mg → l, l 6= 0

To determine Cartesian approach for the rattleback we first determine the
1-forms Ωj , for j = 1, . . . , 5. In this case we determine as follows

Ω1 = dx− α1dθ − α2dψ − α3dφ, Ω2 = dy + β1dθ + β2dψ + β3dφ,

Ω3 = dθ, Ω4 = dψ, Ω5 = dφ

Hence Υ = 1 and the vector field v :

(61) v = λ3X3 + λ4X4 + λ5X5,

where

X3 = α1∂x − β1∂y + ∂θ, X4 = α2∂x − β2∂y + ∂ψ, X5 = α3∂x − β3∂y + ∂φ.

We now proceed to the consideration of the particular case for which ξ, η and
ζ admits the development

ξ = ξ0 + ǫξ1(θ, ψ), η = η0 + ǫη1(θ, ψ), ζ = ζ0 + ǫζ1(θ, ψ)

where ξ0, η0, ζ0, are constants and ǫ is a small parameter. Under this con-
sideration we obtain that the Lagrangian function can be represented as follow

L = L0 + ǫL1 + ǫ2L2.
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Below we study the case when ǫ = 0.

Let (x1, x2, x3, x4, x5) be a new set of variables derived from x, , y, θ, ψ, φ

by the transformation

ψ = x1, φ = x2, θ = x3,

y + ζ0 sin θ cosφ+ Γ0
1 cos θ sin φ− Γ0

2 sinφ = x4,

x+ ζ0 sin θ sinφ− Γ0
1 cos θ cosφ+ Γ0

2 cosφ = x5,

where Γ0
1 = ξ0 sinψ + η0 cosψ, Γ0

2 = ξ0 cosψ − η0 sinψ.

The vector field v and the constraints on account of this change, take re-
spectively the form respectively

v = (a, b, c, 0, 0) ẋ4 = 0, ẋ5 = 0

where a = a(x1, .., x5)), b = b(x1, .., x5)), c = c(x1, .., x5)) are the C1 functions.

In the coordinates x = (x1, x2, x3, x4, x5) the Lagrangian function L0 be-
comes to the function

L̃ =
1

2

5∑

j,k=1

Gjkẋ
j ẋk +mg(Γ0

1 sin x
3 + ζ0 cosx

3),

where G = (Gjk(x)) = (Gjk) is the Riemann metric.

We shall now determine Cartesian approach under the given conditions.

Proposition 6.1. The vector field ṽ(x) = (a, b, c) is a Kummer vector field.

Proof. Indeed the 1-form associated to the vector field v is

σ = p1dx
1 + p2dx

2 + p3dx
3, pk = Gk1a +Gk2b+Gk3c, k = 1, 2, .., 5

then

ıvdσ =

5∑

j=1

Λjdx
j

where

Λ1 = (
∂p1

∂x2
− ∂p2

∂x1
)b+ (

∂p1

∂x3
− ∂p3

∂x1
)c, Λ2 = (

∂p2

∂x3
− ∂p3

∂x2
)c+ (

∂p2

∂x1
− ∂p1

∂x2
)a

Λ3 = ( ∂p3
∂x2

− ∂p2
∂x3

)b+ (
∂p3

∂x1
− ∂p1

∂x3
)a, Λ4 = −∂p1

∂x4
a− ∂p2

∂x4
b− ∂p3

∂x4
c

Λ5 = −∂p1
∂x5

a− ∂p2

∂x5
b− ∂p3

∂x5
c



CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS . 27

We have therefore that the differential equations generated by Cartesian ap-
proach are respectively

(62)

ẋ1 = a, ẋ2 = b, ẋ3 = c,

Λ1 = (
∂p1

∂x2
− ∂p2

∂x1
)b+ (

∂p1

∂x3
− ∂p3

∂x1
)c = 0,

Λ2 = (
∂p2

∂x3
− ∂p3

∂x2
)c+ (

∂p2

∂x1
− ∂p1

∂x2
)a = 0,

Λ3 = (
∂p3

∂x2
− ∂p2

∂x3
)b+ (

∂p3

∂x1
− ∂p1

∂x3
)a = 0,

where a = a(x1, x2, x3, C4, C5), b = b(x1, x2, x3, C4, C5), c = c(x1, x2, x3, C4, C5)
Let rotṽ(x) be the vector field

rotṽ =
1√
detG

(
∂p3

∂x2
− ∂p2

∂x3
,
∂p1

∂x3
− ∂p3

∂x1
,
∂p2

∂x1
− ∂p1

∂x2
)T ,

then the last three equations in (62) can be rewritten as

[ṽ(x)× rotṽ(x)] = 0.

Thus the vector field ṽ(x) = (a, b, c) is a Kummer vector field. �

For the general case, i.e., when the ξ, η and ζ are functions on the variables
θ and ψ Cartesian approach produce the following equations respectively

ẋ = v(x)

5∑

j=1

(∂p1
∂xj

− ∂pj

∂x1
+ α2(

∂p4

∂xj
− ∂pj

∂x4
)− β2(

∂p5

∂xj
− ∂pj

∂x5
)
)
vj = 0,

5∑

j=1

(∂p2
∂xj

− ∂pj

∂x2
+ α3(

∂p4

∂xj
− ∂pj

∂x4
)− β3(

∂p5

∂xj
− ∂pj

∂x5
)
)
vj = 0,

5∑

j=1

(∂p3
∂xj

− ∂pj

∂x1
+ α1(

∂p4

∂xj
− ∂pj

∂x4
)− β1(

∂p5

∂xj
− ∂pj

∂x5
)
)
vj = 0

where ψ = x1, φ = x2, θ = x3, y = x4, x = x5 and v is given by the
formula (61).

7. Inverse problem of dynamics

Introduction

This section is devoted to apply Corollary 1.4 to study the problem of finding
the field of force that generates a given (N − 1)-parametric family of orbits
for a mechanical system with N degrees of freedom. This problem is usually
referred to as the inverse problem of dynamics. We study this problem in
relation to the problems of Celestial Mechanics.
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One of the fundamental classical problems in celestial mechanics is to de-
termine the potential-energy function U such that every curve from a given
family of curves will be a possible trajectory of a particle moving under the

action of potential forces F, admitting U ; i. e. F =
∂U

∂x
.

In the modern scientific literature the importance of this problem was al-
ready acknowledged by Szebehely [3], [27]
The first inverse problem in Celestial Mechanics was stated and solved by

Newton (1687) and concerns the determination of the potential field of force
that ensures the planetary motion in accordance to the observed properties,
namely to Kepler’s laws.
Bertrand (1877) [1] proved that the expression for Newton’s force of attrac-

tion can be obtained directly from the Kepler first law to within a constant
multiplier.
Bertrand stated also a more general problem of determining a positional

force, under which a particle describes a conic section under any initial condi-
tions. Bertarnd’s ideas were developed by [5] [26], [10], [6], and [7].
Dainelli in [5] essentially states a more general problem of how to determine

the most general field of force (the force being supposed to depend only on the
position of the particle on which it acts) under which a given family of planar
curves is a family of orbits of a particle.
The solution proposed by Dainelli is the following .

Theorem 7.1. The most general field of force F = (Fx, Fy) capable of gener-
ating the family of planar orbits f(x, y) = const can be determine as follows
[5], [29]

(63) Fx = −λ2{f, ∂yf} − λ{f, λ}∂yf, Fy = λ2{f, ∂xf}+ λ{f, λ}∂xf,
where {f, } = ∂xf∂y − ∂yf∂x and λ is an arbitrary function which depends
on the velocity with which the given orbits are described.

By considering that the components Fx and Fy are to be functions of the
position of the particle, we can take λ to be an arbitrary function on x and y.

The above expressions for the field of force under which the curves of the
given family are orbits were first given by Dainelli [5].
After some calculations we can prove that (63) can be rewritten as follows

(64) F =
∂
1

2
‖v‖2

∂x
− λ (∂x(λ∂xf) + ∂y(λ∂yf))

∂f

∂x

where v = (−λ∂yf, λ∂xf) .
Suslov in [26] stated and solved a problem which was a further develop-

ment of Bertrand’s problem. He shows that, given a (N − 1)-parametric
family of orbits fj = fj(x) = cj for j = 1, 2, . . . N − 1 in the configuration
space of a holonomic system with N degrees of freedom and a kinetic energy
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T =
1

2

N∑

j,k=1

Gjk(x)ẋ
j ẋk =

1

2
||ẋ||2, it is necessary to determine the potential field

of force under which any trajectory of the family can be traced by the repre-
sentative point of the system. Suslov deduced the following system of linear
partial differential equations with respect to the require potential function:

∂θ

∂△k

∂U

∂xN
− ∂θ

∂△N

∂U

∂xk
=
U + h

θ

( ∂θ

∂△N

∂θ

∂xk
− ∂θ

∂△k

∂θ

∂xN

+
N∑

m=1

△m(
∂θ

∂△k

∂2θ

∂△N∂xm
− ∂θ

∂△N

∂2θ

∂△k∂xm
)
)

for k = 1, 2, .., N − 1. where θ, △1, △2, ...,△N are functions:

N∑

k=1

∂f(x)α
∂xk

△k = 0, θ =
1

2

N∑

k,j=1

Gkj(x)△k△j

△k =

N∑

j=1

Gjk(x)△j, k = 1, 2, .., N, α = 1, 2, .., N − 1,

and proved that theses equations represented the necessary and sufficient
conditions under which the equations of motion of the study mechanical system
admits the given N − 1 partial integrals.
Assuming that given trajectories admit a family of the orthogonal surfaces,

Joukovski in [10] constructed the potential-energy functions in explicit forms
for systems with two and three degrees of freedom.
The following theorem was enunciated by Joukovsky in 1890

Theorem 7.2. If q = const is the equation of the family of curves on a
surface, and p = const denotes the family of curves orthogonal to these, then
the curves q = const can be freely described by a particle under the influence
of forces derived from the potential-energy function

V = ∆1(p)
(
g(p) +

∫
h(q)

∂

∂q
(

1

∆1(p)
)dq
)

where h and g are arbitrary functions, and ∆1 denotes the first differential
parameter.

A new approach to the problem of constructing the potential field of force
was proposed by Ermakov in [6], who integrated the equations for the potential-
energy function for several particular cases.
In the most general form the inverse problem in dynamics was studied in [24,

22]. By applying the results presented in that work we propose the following
new results:

(i) Statement and solution of inverse Dainelli’s problem for a mechanical
system with N degree of freedom.
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(ii) New approach to solve the Suslov problem.
(iii) Statement and solution of inverse Joukovski’s problem for mechanical

system with N ≥ 3 degree of freedom.
(iv) Generalization of Theorem 7.2 for mechanical system with N ≥ 3 de-

gree of freedom
(v) Statement and solution of inverse Stäckel’s problem.
(vi) General solution of Bertrand’s inverse problem.

The results listed above are obtained by applying Corollary 1.4.

Statement of the generalized inverse Dainelli problem.

Given a N − 1 -parametric family of orbits fj = fj(x) = cj for j =
1, 2, . . . , N − 1 in the configuration space Q of a holonomic system with N

degrees of freedom and kinetic energy T =
1

2
||ẋ||2. Generalized Dainelli’s prob-

lem is the problem of determining the most general field of force that depends
only on the position of the system under which any trajectory of the family
can be traced by a representative point of the system.

Solution of the generalized inverse Dainelli problem

The following proposition provides a solution to the problem above

Proposition 7.3. Given a mechanical system with a configuration spaceQ and

a kinetic energy T =
1

2
||ẋ||2, then the most general field of force F that depends

only on the position of the system and is capable of generating the given orbits
fj(x) = cj, for j = 1, . . . , N − 1 where f1, . . . , fN−1 are independent functions
can be determine from the formula

(65) F =

∂

(
1

2
||v||2

)

∂x
+ λ

N−1∑

j=1

aNj
∂fj

∂x
,

where

(66) v = −λN
{f1, . . . , fN−1, ∗}
{f1, . . . , fN−1, fN}

= λ{f1, . . . , fN−1, ∗},

aNj = aNj(x) for j = 1, 2, . . . N are functions:

aNj = (−1)N+j−1dσ ∧ df1 ∧ df2 ∧ . . . ∧ dfj−1 ∧ dfj+1 ∧ . . . ∧ dfN−1(∂1, . . . , ∂N),

and λN and fN are arbitrary functions such that {f1, . . . , fN−1, fN} 6= 0.

Proof. Let us suppose that are given theN−1 parametric family of trajectories,
hence (∂xfj , ẋ) = 0 for j = 1, . . .N − 1. In view of independence of functions
f1, . . . , fN−1 we can solve these equations respect to velocity, thus we obtain
the system ẋ = v(x), where v is determine by the formula (66).

After covariant derivation we obtain the equations of motion of the mechan-
ical system (see proof of Theorem 1.1)
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d

dt

∂T

∂ẋ
− ∂T

∂x
=

∂

(
1

2
||v||2

)

∂x
+ λ

N−1∑

j=1

aNj
∂fj

∂x
= F,

therefore the proposition has been proved. �

The following proposition shows that Theorem 7.1 is a particular case of
Proposition 7.3.

Corollary 7.4. For N = 2 and Q = R
2 the force field (65) coincides with the

solution proposed by Dainelli .

Proof. Indeed for N = 2 the field of force F takes the form

F =

∂

(
1

2
||v||2

)

∂x
+ λ a21

∂f

∂x
.

On the other hand by considering that v = (−λ∂yf, λ∂xf) thus

|v||2 = (λ∂xf)
2 + (λ∂yf)

2, a21 = dσ(∂x, ∂y) = ∂x(λ∂xf) + ∂y(λ∂yf)

hence we obtain the formula (64). �

Corollary 7.5. For N = 3 the force field (65) takes the form

(67) F =

∂

(
1

2
||v||2

)

∂x
+ λ (df1(rotv)df2 − df2(rotv)df1)

Example

Given a particle with Q = R
3 and kinetic energy T =

1

2
(ξ̇2 + η̇2 + ζ̇2).

Construct the field of force capable of generating the two-parametric family of

trajectories defined as intersections of the two families of surfaces

(68) f1 = ζ = c1, f2 = H(ξ, η, ζ) = c2.

The solution of this problem can easily be derived from Corollary 7.5. The
vector field v, rotv are the following

v = λ

(
∂H

∂η

∂

∂ξ
− ∂H

∂ξ

∂

∂η

)

rotv =
∂

∂ζ

(
λ
∂H

∂ξ

)
∂

∂ξ
+

∂

∂ζ

(
λ
∂H

∂η

)
∂

∂η
− µ

∂

∂ζ
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Hence the require field of force is such that

(69)

ξ̈ =
∂

∂ξ

(
λ2

2

(
(
∂H

∂ξ
)2 + (

∂H

∂η
)2
))

+ λµ
∂H

∂ξ

η̈ =
∂

∂η

(
λ2

2

(
(
∂H

∂ξ
)2 + (

∂H

∂η
)2
))

+ λµ
∂H

∂η

ζ̈ = 0,

where µ =
∂

∂ξ

(
λ
∂H

∂ξ

)
+

∂

∂η

(
λ
∂H

∂η

)

In the next section we make use of the solution of the generalized Dainelli
inverse problem for solving the Suslov and generalized Joukovski problems.

Statement of Suslov’s problem [26]

Given a N − 1 -parametric family of orbits fj = fj(x) = cj for j =
1, 2, . . . , N − 1 in the configuration space Q of a holonomic system with N

degrees of freedom and kinetic energy T =
1

2
||ẋ||2. Suslov’s problem is the

problem of determining the potential field of force that under which any tra-
jectory of the family can be traced by a representative point of the system.

Solution of Suslov’s problem

We now propose a new solution to the Suslov problem. This solution we have
obtained as a special case of the previous solution to the generalized inverse
Dainelli problem.

Proposition 7.6. Given a mechanical system with a configuration space Q

and a kinetic energy T =
1

2
||ẋ||2, then the potential field of force F =

∂U

∂x
,

capable of generating the given orbits fj(x) = cj, for j = 1, . . . , N − 1 , can be
determine from the formula

(70)
∂U

∂x
=

∂

(
1

2
||v||2

)

∂x
+ λ

N−1∑

j=1

aNj
∂fj

∂x
,

if and only if

(71) λ

N−1∑

j=1

aNj(x)dfj = dh(f1, f2, . . . , fN−1)

Clearly if (71) holds then the potential function U is such that

U(x) =
1

2
‖v‖2 + h(f1, f2, . . . , fN−1) ,

where v is determined by the formula (66), and λ is an arbitrary function.
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Proof. From (65) follows that F =
∂U

∂x
, if and only if λ

N−1∑

j=1

aNj(x)dfj is exact

1-form dh. In view of the relations dfj(v) = 0 we deduce that dh(v) = 0,
hence in view of independence of functions fj for j = 1, 2, . . . , N − 1 we get
h = (f1, f2, . . . , fN−1).

�

Example(Ermakov’s problem).
Given a mechanical system with configuration space Q = R

4 and kinetic
energy

T =

(
1

2
(m1(ẋ

2

1 + ẏ21) +m2(ẋ
2

2 + ẏ22)

)
.

Construct the potential field of force capable of generating the three-parametric

family of trajectories defined as intersections of the families of hyper-surfaces

f1 = x21 + y21 = c1, f2 = x22 + y22 = c2, f3 = (x1 − x2)
2 + (y1 − y2)

2 = c3

Corollary 7.7. Under the assumptions of Proposition 7.6 for N = 2 we obtain
that

(72)
∂U

∂x
=

∂

(
1

2
||v||2

)

∂x
+ λ (∂x(λ∂xf) + ∂y(λ∂yf)

∂f

∂x
.

if and only if

(73) λ (∂x(λ∂xf) + ∂y(λ∂yf)) df = dh(f)

where v = (−λ∂yf, λ∂xf)

Another interesting application of the solution to the generalized Dainelli
problem is the determination of the solution of the generalized Joukovski prob-
lem.

Statement of generalized Joukovski problem

Given a N − 1 -parametric family of orbits fj = fj(x) = cj for j =
1, 2, . . . , N − 1 in the configuration space Q of a holonomic system with N

degrees of freedom and kinetic energy T =
1

2
||ẋ||2. Assuming complemen-

tary that the given trajectories admit a family of orthogonal hyper-surface
S = S(x) = cN then Generalized Joukovski problem is the problem of deter-
mining the potential field of force that under which any trajectory of the family
can be traced by a representative point of the system.

Solution of Generalized Joukovski problem
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Proposition 7.8. Given a mechanical system with a configuration space Q

and kinetic energy T =
1

2
‖ẋ‖2, then the potential field of force F =

∂U

∂x
,

capable of generating the given orbits fj(x) = cj , for j = 1, . . . , N − 1 , which
admit a family of orthogonal hyper-surface S = S(x) = cN can be determine
from the formula

∂U

∂x
=

∂

(
ν√
2
‖∂S
∂x

‖
)2

∂x
+ (

∂
ν2

2
∂x

,
∂S

∂x
)
∂S

∂x
− ‖∂S

∂x
‖2
∂
ν2

2
∂x

if and only if

(74) (
∂ν2

∂x
,
∂S

∂x
)dS − ‖∂S

∂x
‖2dν2 = −2dh(f1, f2, . . . , fN−1)

where ν is an arbitrary function. Clearly if (74) holds then the potential
function U can be determined as follow

U =

(
ν√
2
‖∂S
∂x

‖
)2

+ h(f1, f2, . . . , fN−1).

Proof. In view of the condition that there is an orthogonal hyper-surface to

the given trajectories then the following relations hold

(
∂S

∂x
,
∂fj

∂x

)
= 0 for

j = 1, 2, . . . , N − 1, thus

(75) ρG−1
∂S

∂x
= {f1, f2, . . . , fN−1, ∗}

where ρ is an arbitrary nonzero function and G−1 = (Gjk) is the inverse matrix
of the Riemann metric G. Hence we obtain that the vector field (66) takes the
form

v = νG−1
∂S

∂x
,

where ν = λρ, therefore the 1-form associated to this vector field is such that

σ = ν

(
∂S

∂x
, dx

)
consequently

ıvdσ = dν(v)dS − dS(v)dν = ν(
∂ν

∂x
,
∂S

∂x
)dS − ν|∂S

∂x
‖2dν

hence we easily obtain the proof of the proposition (see for more details proof
of Theorem (1.1)). �

As a first application of the above proposition we have the following results

Corollary 7.9. If in Proposition 7.8 we suppose that ν =
dΦ(S)

dS
then the

potential function U can be determine as follows

U =

(
1√
2
‖∂Φ(S)

∂x
‖
)2

− h0,

where h0 is an arbitrary constant.
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Proof. Indeed if ν =
dΦ(S)

dS
then then the 1-form σ associated to vector field

v is exact, thus ıvdσ == 0, consequently (see formula (74)) dh = 0. Hence

U =

(
ν√
2
‖∂S
∂x

‖
)2

− h =

(
1√
2
‖∂Φ(S)

∂x
‖
)2

− h0.

�

Example( Bertrand’s Problema [1])
Given a particle with configuration space Q = R

3 and kinetic energy

T =
1

2
(ξ̇2 + η̇2 + ζ̇2).

Construct the potential field of force capable of generating the two-parametric

family of trajectories defined as intersections of the two families of surfaces

f1 = ζ = c1, f2 =
√
ξ2 + η2 + bξ = c2.

From (75) we obtain that the function S :

∂S

∂ξ
=

1

ρ

η√
ξ2 + η2

,
∂S

∂η
=

1

ρ

(
− ξ√

ξ2 + η2
− b

)
.

Hence, by choosing ρ = η we obtain that S = ln(ξ +
√
ξ2 + η2) − (b + 1) ln η

and ν = ηλ. Clearly the field of force is potential in particular if ν = Φ(S).
The general solution of this problem we give below.

Example
Given a particle with configuration space Q = R

3 and kinetic energy

T =
1

2
(ξ̇2 + η̇2 + ζ̇2).

Construct the potential field of force capable of generating the two-parametric

family of trajectories defined as intersections of the two families of surfaces

f1 = xz = c1, f2 = yz = c2

From (75) we obtain that the function S =
1

2
(x2+ y2− z2), thus the condition

(74) takes the form

(x∂xν
2 + y∂yν

2 − z∂zν
2)(xdx+ ydy − zdz) − (x2 + y2 + z2)dν2

= −2dh(f1, f2).

There are two obvious solutions ν = ν(x2 + y2 − z2) and ν = z. The first
solution produces the potential function U = U(x2 + y2 + z2) − h0, h = h0
which coincide with the solution obtained by Joukovski and the second gives

the potential U =
1

2
z4 − h0, h =

1

2
(f 2

1 + f 2
2 )− h0.

The following result is a generalization of Theorem 7.2.
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Corollary 7.10. If xj = Cj = const, for j = 1, 2, .., N − 1 are the equations
of the N − 1 parametric family of curves on Q, and xN = const denotes the
family of curves orthogonal to these, then the curves xj = Cj = const can
be freely described by a particle under the influence of forces derived from the
potential-energy function

U =
1

GNN (x1, x2, .., xN)

(
g(xN)+

N−1∑

j=1

∫
h(x1, x2, .., xN−1)

∂GNN (x
1, x2, ..xN )

∂xj
dxj
)

where h = h(x1, x2, . . . , xN−1) and g = g(xN) are arbitrary functions.
Clearly, for N = 2 we obtain the Joukovski theorem given in the introduction.

Proof. Whereas in the study case fj = xj , j = 1, 2, . . .N − 1 and S = xN then
from Proposition 7.8 we obtain that the relations hold

∂2U

∂xj
=
∂
(
ν2GNN

)

∂xj
−GNN ∂ν

2

∂xj
, j = 1, 2, . . .N − 1,

∂2U

∂xN
=
∂
(
ν2GNN

)

∂xN
−
(
N−1∑

j=1

GNj ∂ν
2

∂xj

)

where Gkj = Gkj(x
1, x2, . . . xN ) for k, j = 1, 2, . . . N, if and only if

(76) (

N∑

j=1

GjN ∂ν
2

∂xj
)dxN −GNNdν2 = 2dh(f1, f2, . . . , fN−1),

assuming that the Riemann metric is orthogonal then

dν2 = −2GNNdh, where GNN =
1

GNN

.

ν2 = 2g(xN)− 2

∫
GNNdh

= 2g(xN)− 2GNNh+
N−1∑

j=1

2

∫
h
∂GNN

∂xj
dxj,

where g = g(xN) is an arbitrary function.

Consequently in view of the formula U =
1

2
ν2GNN + h =

ν2

2GNN

+ h we

obtain the proof of the proposition. �

Now we apply Theorem 7.8 to solve the inverse problem which we will call
the inverse Stäckel problem.

Statement of inverse Stäckel problem.

Given a N − 1 -parametric family of orbits

(77) fµ = fµ(x) ≡
n∑

k=1

∫
ϕkµ(x

k)√
Kk(xk)

dxk = cµ, µ = 1, 2, ..., N − 1,
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where Kk(x
k) = 2Ψk(x

k)+2

N∑

j=1

αjϕkj(x
k), αk, for k = 1, 2, ..N are constants,

in the configuration space Q of a holonomic system with N degrees of freedom
and kinetic energy

(78) T =
1

2
||ẋ||2 = 1

2

N∑

j=1

(ẋj)2

Aj
,

where Aj = Aj(x) for j = 1, 2, . . . , N are functions such that

{ϕ1, ϕ2, . . . , ϕN−1, ∗}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

=
N∑

j=1

Aj∂j

dϕα =

N∑

k=1

ϕkα(x
k)dxk, ϕkα = ϕkα(x

k), for k = 1, ..., N, α = 1, . . . , N are

arbitrary functions.

The inverse Stäckel problem is the problem of determining the potential
field of force that under which any trajectory of the family can be traced by a
representative point of the system.

Solution of inverse Stäckel problem

Proposition 7.11. Given a mechanical system with a configuration space Q

and kinetic energy (78), then the potential field of force F =
∂U

∂x
, capable of

generating the given orbits (77) is the field of force with potential function

(79) U = ν2(S)

( {ϕ1, ϕ2, . . . , ϕN−1, Ψ}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

+ α1

)
− h0,

where S = 2

∫ N∑

j=1

√√√√Ψk(xk) +
N∑

j=1

αjϕkj(x
k) dxk.

Proof. In view of the equality

{f1, f2, . . . , fN−1, ∗}
{f1, f2, . . . , fN−1, fN}

=

∣∣∣∣∣∣∣∣

q1(x
1)dϕ1(∂1) . . . qN(x

N )dϕ1(∂N )
...

...
q1(x

1)dϕN−1(∂1) . . . qN(x
N )dϕN−1(∂N )

∂1 . . . ∂N

∣∣∣∣∣∣∣∣
∏N

j=1
qj(xj){ϕ1, ϕ2, . . . , ϕN−1, ϕN}

=

N∑

j=1

(
Aj

qj(xj)
∂j

)
=

N∑

j=1

(
Aj

∂S

∂xj
∂j

)
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where qj(x
j) =

1√
Kk(xk)

, consequently from (75) and (77) follows that

v = −λNG−1
∂S

∂x
= νG−1

∂S

∂x
,

hence

‖v‖2 = ν2
N∑

j=1

Aj(Kj(x
j))2 = ν2

N∑

k=1

Ak

(
2Ψk(x

k) + 2

N∑

j=1

αjϕkj(x
k)

)

= 2ν2
N∑

k=1

AkΨk(x
k) + 2ν2

N∑

j=1

αj

N∑

k=1

Akϕkj(x
k)

= 2ν2

(
{ϕ1, ϕ2, . . . , ϕN−1, Ψ}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

+

N∑

j=1

αj
{ϕ1, ϕ2, . . . , ϕN−1, ϕj}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

)

= .2ν2
( {ϕ1, ϕ2, . . . , ϕN−1, Ψ}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

+ α1

)
.

where dΨ =

N∑

j=1

Ψk(x
k)dxk.

On the other hand if we choose ν = ν(S) then from Corollary 7.9 follows
the proof of the proposition. �

Corollary 7.12. If in the previous proposition we suppose that ν(S) = 1 and
α1 = h0 then the potential function (79) coincide with the Stäckel potential [4].

Proof. Indeed, if ν(S) = 1 and α1 = h0 then [4]

U =
{ϕ1, ϕ2, . . . , ϕN−1, Ψ}
{ϕ1, ϕ2, . . . , ϕN−1, ϕN}

=

N∑

k=1

AkΨk(x
k),

�

Statement of Bertrand’s problem

Let a particle with configuration space Q = R
2 and kinetic energy T =

1

2
(ẋ2 + ẏ2) . Bertrand’s inverse problem is the problem of determining the

most general potential field of force capable of generating the one-parametric
family of conics f =

√
x2 + y2 + bx = c,where b is the eccentricity.

Solution of Bertrand’s inverse problem

Now we study the problem of constructing the potential field of force, which
is capable to generate given conics. We prove the following proposition.
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Proposition 7.13. The potential-energy function U capable of generating a
one-parameter family of conics with eccentricity b is the function

U = a−1H−1(cos θ) +K−1 log r(1 + b cos θ)

+
∑

j∈Z\{−1}

ajr
j+1

(
Hj(cos θ) +Kj

(1 + b cos θ)j+1

j + 1

)

if b 6= 0 where aj j ∈ Z, Kj are real constants and Hj, j ∈ Z are solutions of
the Heun equations with singularities at the points

0, 1 ,
1 + b

2b
,∞

and with the exponents

(0,
j + 3 + b(j + 1)

2b
); (0, j − j + 3 + b(j + 1)

2b
); (0, j + 1); (−1− j, 1− j)

and

U =
Ψ(cos θ)

r2
− 2

r2

∫
h(r)dr

if b = 0, where Ψ = Ψ(cos θ) and h = h(r) are arbitrary functions.

Proof. From Proposition 7.7 follows that the require potential field of force
exist if and only if

(
x√

x2 + y2
+ b

)
∂λ2

∂x
+

y√
x2 + y2

∂λ2

∂y
+

2λ2

r
= 2

∂h

∂f

By introducing the polar coordinates x = r cos θ, y = r sin θ, we find that
previous condition condition takes the form

(1 + b cos θ)
∂λ2

∂r
− b sin θ

r

∂λ2

∂θ
+

2λ2

r
= 2

∂h

∂f

or, equivalently,

(80) (1 + bτ)
∂λ2

∂r
+
b(1 − τ 2)

r

∂λ2

∂τ
+

2λ2

r
= 2

∂h

∂f

where f = r(1 + bτ), τ = cos θ. We embark now upon the study of the case
when b 6= 0 and h is such that

(81) h(f) = ν−1 ln |f |+
∑

j∈Z
j 6=−1

νj
f j+1

j + 1
,

where νj , j ∈ Z, are real constants, and λ is determined in such a way that

(82) λ2 =
∑

j∈Z

ψj(r)Hj(τ)

It is clear that the series (81) and (82) are formal series.



40 CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS .

By inserting (81) and (82) into (80) we obtain

∑

j∈Z

(
(1 + bτ)

dψj(r)

dr
Hj(τ) +

ψj(r)

r

(
b(1− τ 2)

dHj(τ)

dτ
+ 2

)
− 2νjr

j(1 + bτ)j
)

= 0

This equation holds if

ψj(r) = ajr
j+1, νj = −ajKj

for j ∈ Z and we determine Hj as a solution to the equation

(83) b(1 − τ 2)H ′
j(τ) +

(
(j + 1)bτ + j + 3

)
Hj(τ) + 2Kj(1 + bτ)j = 0

for j ∈ Z.

The general solution of this equation is

Hj(τ) = ξj(τ)

(
Cj −

2Kj

b

∫
(1 + bτ)j

(1− τ 2)ξj(τ)
dτ

)

ξj(τ) = (1− τ)

j + 1

2
+

j + 3

2b (τ + 1)

j + 1

2
−
j + 3

2b

where Cj , j ∈ Z are arbitrary constants.

Under these conditions, the required potential-energy function U results in
the form

U(r, τ) =
1

2
λ2(1 + b2 + 2bτ)− h(f) =

∑

j∈Z

ajUj(r, τ)

where

Uj(r, τ) =
1

2
rj+1Hj(τ)(1 + b2 + 2bτ) +

Kj

j + 1
f j+1 if j 6= −1

U−1(r, τ) =
1

2
H−1(τ)(1 + b2 + 2bτ) +K−1 ln |f |.

We will study the subcase when b = 1 separately from the subcase when b 6= 1.

If b = 1,

U(r, τ) = λ2(1 + τ)− h(f) =
∑

j∈Z

ajUj(r, τ).

where

Uj(r, τ) = rj+1(1− τ)j+2

(
Cj − 2Kj

∫
(1 + τ)j

(1− τ)j+3
dτ

)
+

Kj

j + 1
f j+1, if j 6= −1

U−1(r, τ) = (1− τ)

(
C−1 − 2K−1

∫
dτ

(1− τ)2(1 + τ)

)
+K−1 ln |f |.

Easily verifies that

U−2 =
C−2

r
− 2

K−2

r

(∫ dτ

(1 + τ)2(1− τ)
+

1

1 + τ

)
=
C−2

r
+
K−2

r
g(τ)



CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS . 41

where g(τ) = ln

√
1− τ

1 + τ
. Therefore, if b = 1,

U(r, τ) =
a−2C−2

r
+
a−2K−2g(τ)

r
+
∑

j∈Z
j 6=−2

ajUj(r, τ)

If b 6= 1, b 6= 0, it is easy to prove that

H−2(τ) =
(1− τ)

1− b

2b

(1 + τ)

1 + b

2b

C−2 −
2K−2

(bτ + 1)(1− b2)

U−2(r, τ) =
H−2

2r
(1 + b2 + 2bτ)− K−2

r(bτ + 1)
=

2K−2

r(b2 − 1)
+
C−2

r
G(τ)

where

G(τ) =
1

2

√√√√(1− τ

1 + τ

)1
b

1

1− τ 2
(1 + b2 + 2bτ)

Under these conditions, the potential function U takes the form

U(r, τ) =
a−2C−2

r
G(τ) +

2a−2K−2

r(b2 − 1)
+
∑

j∈Z
j 6=−2

ajUj(r, τ)

Summarizing the above computations, we deduce that if b 6= 0 the function
U is represented as follows:

U(r, τ) =
α

r
+
β(τ)

r
+
∑

j∈Z
j 6=−2

ajUj(r, τ)

where α is a constant and β = β(τ) is a certain function.

If b = 0, then f = r and condition (80) takes the form

∂rλ
2 + 2

λ2

r
= 2∂fh(f) .

Therefore,

r2λ2 = 2

∫
r2∂rh(r)dr + 2Ψ(τ),

which rearranged results in the expression:

λ2 =
2

r2

∫
r2∂rh(r)dr +

2Ψ(τ)

r2
= 2h(r)− 4

r2

∫
h(r)rdr +

2Ψ(τ)

r2

where Ψ is an arbitrary function.
Hence,

U(r, τ) =
Ψ(τ)

r2
− 2

r2

∫
h(r)dr.
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To end the proof of the claim will establish the relationship between the
functions Hj for j ∈ Z and the solutions of Heuns equations.
The canonical form of Heun’s general equation will be taken as [23]

(84)
d2x

dz2
+

(
γ

z
+

δ

z − 1
+

ǫ

z − a

)
dx

dz
+

αβz − B

z(z − 1)(z − a)
x = 0,

here x and z are regarded as complex variables and α, β, γ, δ, ǫ, a, b are param-
eters, generally complex and arbitrary, with the only condition that a 6= 0, 1.
The first five parameters are linked by the relation α+ β + 1 = γ + δ + ǫ.
The equation is, therefore, of the Fuchsian type , with regular singularities at

the points z = 0, 1, a,∞. The exponents at these singularities are, respectively,
(0, 1− γ), (0, 1− ǫ), (0, 1− δ), (α, β)

Now we establish the relation between equation (83) and Heun’s equation.
By fulfilling the replacement

z =
1

2
(τ + 1)

we can easily obtain the following representation for (83):

z(z − 1)
dHj

dz
+

1

2b

(
(1 + b− 2bz)(j + 1) + 2

)
Hj(z)−

Kj

b
(1 + b− 2bz)j = 0

By differentiating and fulfilling some straightforward calculations, we deduce
that the functions

Fj(z) =
(
z(z−1)

dHj

dz
+

1

2b

(
(1+b−2bz)(j+1)+2

)
Hj(z)

)
(1+b−2bz)−j (j ∈ Z)

are first integral of the Heun equation:

(85)

d2Hj

dz2
+



1− a(1 + j)− 1

b
z

+
a(1 + j) +

1

b
− j

z − 1
+

−j
z − a



dHj

dz

+
(j2 − 1)z − j

b
− a(j2 − 1)

z(z − 1)(z − a)
Hj(z) = 0

where a =
1 + b

2b
.

By comparison with classical Heuns equation, we obtain:

γj = 1− 1 + b

2b
(1 + j)− 1

b
, δj =

1 + b

2b
(1 + j) +

1

b
− j,

αjβj = j2 − 1 = −(1 + ǫj)(2− γj − δj), ǫj = −j
Bj =

j

b
+

1 + b

2b
(j2 − 1) = −a(2 − γj − δj)− (1− γj)ǫj

Evidently, when the given conics are parabolas then in (85) we have the
confluence of singularities. In fact, in this case b = 1 so a = 1, and as a
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consequence the Heun equation is transformed into hypergeometric differential
equation

d2Hj

dz2
+

(−1− j

z
+

2− j

z − 1

)
dHj

dz
+

(j2 − 1)(z − 1)− j

z(z − 1)2
Hj(z) = 0,

for j ∈ Z. Which completed the proof of Proposition. �
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