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ABSTRACT. In the history of mechanics, there have been two points of view
for studying mechanical systems: Newtonian and Cartesian. According the

Descartes point of view, the motion of mechanical systems is described
by the first-order differential equations in the N dimensional configuration
space Q. In this paper we develop the Cartesian approach for mechanical

systems with constraints which are linear with respect to velocity.
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1. INTRODUCTION.

In ”Philosophiae Naturalis Principia Mathematica” (1687), Newton consid-
ers that movements of celestial bodies can be described by differential equations
of the second order. To determine their trajectory, it is necessary to give the
initial position and velocity. To reduce the equations of motion to the inves-
tigation of a dynamics system it is necessary to double the dimension of the
position space and to introduce the auxiliary phase space. Descartes in 1644

proposed that the behavior of the celestial bodies be studied from another
point of view. These ideas were stated in ”Principia Philosophiae” (1644) and
in ”Discours de la métode” (1637). According to Descarte the understanding
of cosmology starts from acceptance of the initial chaos, whose moving ele-
ments are ordered according to certain fixed laws and form the Cosmo. He
consider that the Universe is filled with a tenuous fluid matter (ether), which
is constantly in a vortex motion. This motion moves the largest particle of
matter of the vortex axis, and they subsequently form planets. Then, accord-

ing to what Descartes wrote in his ”"Treatise on Light”, "the material of the
1
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Heaven must be rotate the planets not only about the Sun but also about their
own centers...and this will hence form several small Heavens rotating in the
same direction as the great Heaven.” [I3]. Thus the equation of motion in the
Descartes theory must be of the first order equation in the configuration space
Q
x=v(z,t), z€Q

Descartes gave no principles for constructing the field v for different mechanical
systems. Hence, to determine the trajectory from Descartes’s point of view it
is necessary to give only the initial position. In the modern scientific literature

the study of the Descarte ideas we can find in the monographic of V.V. Kozlov
[13] in which the author affirms that ”solving dynamics problem is possible
inside the configuration space”.

In [I8] 21) 24] we developed the Cartesian approach for mechanical systems
with three degrees of freedom and with constraints linear with respects to
velocity. The aim of this works is to generalized the Cartesian approach for
non-holonomic mechanical system with N degrees of freedom and constraints
which are linear with respect to the velocity.

We shall present briefly the contents of the paper.

In section 2 we prove our main results (see Theorem [[I], Corollary [L.3]
Corollary [[.4] Corollary [[.5] below).

In section 3 Corollary applied to determine Cartesian and lagrangian ap-
proach for non-holonomic systems with three degree of freedom. We illustrate
the obtained results to study Chapliguin-Caratheodory’s sleigh and to study
Suslov’s problem for the rigid body around a fixed point.

In section 4 we determine Cartesian and lagrangian approach in three di-
mensional Euclidean space.

In section 5 by applying the results of the previous section we study the
integrability of the geodesic flow on the surface.

In section 6 Theorem [T applied to the study Gantmacher’s system and
Rattleback.

In section 7 Corollary [[.4] applied to solve the inverse problem in dynamics.

For simplicity we shall assume the underlying functions to be of class C*°,
although most results remain valid under weaker hypotheses.

It is well known that the behavior of constrained Lagrangian system

N N
1 .
(QL=3 > Grilw)di* —Ux), Y ap()i =0, j=12..., M)
jik=1 k=1
can be described by the differential equations deduced from the D’Alembert-
Lagrange Principle[14] [19]

doT 0T U &
M) Ok dxk  Oxk +Zﬂj0‘jk($)7 k=1,2,...N,

j=1
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where p1, o, ..., py are Lagrangian multipliers.

Our main results are the following

Theorem 1.1. Let Let Q be a smooth manifold of the dimension N with

local coordinates x = (', ...,2™) and equipped by the Riemann metric G =

(Gj(x)) = (Gyj) and let

N
o =(v(x),dr) = Gilvk,

k=1
be the 1-form associated to the vector field
04(01) Q41(0s) Q4(0n) 0
1 Qu () Qu(0s) Qpr(On) 0
(2) v= | Dra(9) Qarra(02) Qur1(0n)  Anrr |,
Qn(01)  Qn(0a) On(ON)  An
O Oy On 0
0

where T = Ql/\Q2.../\QN(81,82,...,8N), 8k = %, )‘j = )\j(l’) fOTj =

M +1,...N are arbitrary functions and Qy, fork =1,... N are 1-forms on Q
which we assume that satisfies the following conditions

N
(i) Q; forj=1,....,M are a given I-forms: Q; = Zajkdxk where o, =
k=1
ajx(x) are functions on Q,
(ii) Qx fork = M+1,..., N are arbitrary 1-forms which we choose in such
a way that T # 0.
(iii) The 2-form do admits the development

N

do = = Z Cij(SL’)Qj VAN Qk

jk=1
where A = (a;i,) is a skew symmetric matriz such that
H=M"AM

where H = (do (0}, O)) and M = (;(0k)) are N x N matriz.
(iv) The contraction of the 2-form do along the vector field v is such that

N
’Lde' = Z Aj(.ﬁlf)Qj,
j=1

where A = (A1, ..., An)" which we can be calculated as follows
(3) A=AN= M"'7,
where A= (A1, ..., An)" and 7 = (1,do(d1) , . . ., tudo (On))"
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Then the first order differential system on Q
(4) &= v(z), wunder the conditions, Aj(x) =0,

forj =M +1,...N, is invariant relationship of the second order differential
system

d oT  oT 5‘1||'v||2 M
_ 2 B
(5) dt ik Ok~ Ok + ZAjajk, k=1,2,...N,

j=1
Comparing equations (Il) and (E) we deduce that the latter can be inter-
preted as the equations describing the behavior of non-holonomic mechani-
. . . . 1 9
cal systems under the action of active forces with potential U = —||v||* +

Uy, Uy = const and under the action of the reactive forces with the compo-

nents
M M M
E AjOéjl, E AjOéjg, ey E AjOéjN s

N
generated by the constraints Q;(x) = Zajk:i:k =0, for j=1,2,..M.
k=1

Of interest is that the equations A; = 0 for j = M 4 1,..., N or, which is
the same

N
(6) Aj = Z&jk)\k = 0, A = —Qk;j
k=1

for j = M +1,..., N, represent a system of partial differential equations of
first order with respect to the functions A\, for k=1,..., N.

Definition

We call the vector field v which generated system (@) Cartesian vector field.
The vector field v we say Cartesian equivalent if there exist a nonzero function
r on Q such that kv is Cartesian vector field.

Definition

Studying the behavior of nonholonomic mechanical systems with constraints
linear with respect to the velocity using the equations (), (d]) and (&) we called
Classical, Decartes and Lagrangian approach respectively.

Conjecture 1.2. There are solutions of the equations (@) which generate a
Cartesian (or Cartesian equivalent) vector field which completely describe the
behavior of the study constrained Lagrangian system.

This conjecture supports the following facts.

First, in view of Theorem{IT] the solutions of () are solutions of (), which
is closely linked to the system (II). Second, the solutions of the equations ()
depend on the 2N — M initial conditions. The solutions of () depend on
N initial conditions and N — M functions which are solutions of the linear
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partial differential equations ([G]), therefore the solutions of the equations (@)
also depend on N — M arbitrary constants. Finally, also contribute to the
strengthening of the conjecture the large number of applications given below.

Corollary 1.3. Let us suppose that in Theorem [I.1 manifold Q is three di-
mensional smooth manifold with local coordinates € = (x,y,z) and the given
1-form is Q = aydr+asdy+asdz = (@, dx) where a; = a;(zv,y, z) for j =1,2,3
are functions on Q.

Denoting by | x | the vector product in R® and by rotv, a, w the fol-
lowing vectors fields

1
rotv = \/ﬁ ((aypi’: - azp2)> (azpl - axp3)> (axp2 - aypl))T>
1
w == ? (()\293 - >\392)(8m), ()\293 - )\392)(8?;), ()\293 - >\3QQ>(8Z))T .

3

where py, = Z Grv7, for k =1,2,3, then differential system (@) and (5) take
j=1

the form respectively

(7) r=[ax w =v(x), (a,rotlax w])=0.

1
do,r or 5llvlF

— (w, rotla x w|) a

5 Wos 0w s
0510
= s Qs A Q3(v, r0tv)a,
0 0
where%:(a,bl 0T a—m:(ﬁxl,...,@xzv)T.
Corollary 1.4. Let us introduce the notation
df1(01) ...  dfi(On)

dfy 1) .. dfv ()
o ... Oy

and suppose that in Theorem [I1 the given independent 1-form are such that

QO =df;(z) for j =1,2,...,N — 1, and the arbitrary 1-form it is also exact,

1.€. QN = di, QN(’U) = )\N, and such that T = {fl, fg, ey fN—1> fN} 7& 0.
Then the equations (dl) and (B) take the form respectively

{f1, fay - -y [n_1, *} B *
{fi, for ooy et [N} MFL, far ooy [, *),

d or oT 01|Ivll2 N-1
A Ik = g A D anydf; (0,
7=1

=1{f1, fa, .- fno1, ¥}

Z= Ay

(9)
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where Ay = An(x) is an arbitrary function and an; = anj(x) forj=1,...N—
1 are element of the skew symmetric matrixz A.

Corollary 1.5. Differential equations () are Lagrangian with Lagrangian

function L = §||a} — v(x)||?, where v is Cartesian vector field.

The proofs of Theorem [I.1], Corollary [L3] Corollary [[.4] and Corollary
are given in section [2]

2. PROOF OF THE MAIN RESULTS

Proof of Theorem[L 1. Firstly we shall introduce the following notation and
concepts. Let & € (Q) be the Lie algebra of vector fields on Q and let V be
the connection

V:E(Q) x6(Q) —£(Q),

(u,v) — Vv,

which is R lineal with respect to v and C'*° lineal with respect to u and is

compatible with metric G, i.e. V,G(v,w) =0, Vu,v,w € £(Q).
Let v € £(Q) be a vector field:
Q:1(0n) 01(0) €1(0n) A
Qu(01)  Qu(0s) Qu(Oy) Ao

<

Sl -

Qr41(01)  Qar41(02)

Qn (1)
2

Qn(On)
2

Qu+1(0n) Amsa

AN
On

where T = Ql A QQ A QN(ﬁl, 82, ey 8]\[) §£ 0.

The functions A; for 7 = 1,... N, are arbitrary functions on Q such that
Qj({/) = )\j, fOI'j = 1,N

Let ¢ be the 1-form associated with the vector field v, i.e.

N N
6= (V(x),dx) = > Gt/ (z)da* =) prda”,
k=1

jk=1

then, in view of the condition T # 0 the 2-form dé admits the development
N

1
do = 3 Z k() AQy, where A = (@) is a N X N skew-symmetric matrix
jk=1
such that

: 1 ~ ~
C~ij = (—1)j+k_1TdO' N Ql VANPPRIAN Qk VAN Qj VAN QN(al, 82, ceny 8]\/),

Qj, Qk, means that these elements are omitted.



CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS . 7

In view of the relations

N
.1 Z . Z Z
L{,dO’ = 5 ' (aijj( ) akj Qk = CijQ Qk, = a]k)\ Qk
k,j=1 k,j=1 k=1

we obtain that the contraction of do along v is
N ~
(10) wds = A,

where A = </~\1, Ao, ..., /~\N)T. It is easy to check that this vector can be cal-

culated as follows

(11) A= AN = M7,

where M = (Q(9)) and A = (Ay, ..., )", 7 = (15dG (1) , ..., 15d5(On))"
Now we prove that the differential system

(12) x=v(z), x€Q,

is invariant relationship of the Lagrangian equations with Lagrangian function

ml

~ 1., . B ;
L:§||x—v||2 ZG’W I —pd)(F — oF).

jkl

Indeed after covariant differentiation we obtain Vi(x — v) = 0, or, what is

the same )
L oL

hence , by considering that

. dor ar 1
VX(GX)— %g_ﬁ—xa T—§HX||
N N
Vib; = > # (Vo bx — Vo i) + > ' Vo, b
j=1 j=1

= Z:L’J ( ka - 0kp] + Z’U vé)kp] + Z vakpj

dov v L, X
Z (xj - U]) Vo.pj

T P

j=1

N
- 1
where pj, = ZG;W-@J, V=(x,v)— —||\7||2, and (, ) is the scalar product.
j=1
d oL 0L

Then along the solutions of (I2]) we give — o Dk 0, fork=1,2,...N.
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It is easy to show that these Lagrangian equations admits the representation

dor or
dt 0zF  Oxk

where @ = 1d||[V[|* 4 t5dd. In view of (I0) and (I2) we finally deduce the
differential equations

= 0(0k) + Vi—sDrk,

40T oT 31”9”2 N

2 ~
(13) e + 3 R,05(0).
j=1

If we determine the vector field v and functions Ay, A, ... Ay as follows
(14) V=Vnoe gm0, Aj=Ajloe ay=0, J=1,2,...N

and require that A; = 0, j = M +1,..., N, then we obtain the Cartesian
vector field and differential system (I3) coincide with system (H). In short
Theorem [Tl is proved. O

Proof of Corollary[I-3. The vector field () in this case takes the form

thus v(z) = [a x w].

On the other hand considering that
do = (rotv),dz A\ dy + (rotv),dx A dz + (rotv),dy A dz
where (rotv), = dz(rotv), (rotv), = dy(rotv), (rotv), = dz(rotv), we get

Zde' = ([V X I'OtV], dX) = A1Q1 + AQQQ + A3Q3
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which lead to
TA; = Qo AQ3(v, rotv) = X\Q3(rotv) — A3y (rotv) =
= (w, rotv),
TAy  =Q3AQ(v, rotv) = A3Q;(rotv) — A\ Q3(rotv),
= 38 (rotv) = A3 (a,rotv),
TAs = —Qs AQ(v, rotv) = =X (rotv) + A Qs (rotv),
= =2 (rotv) = —\s (a,rotv) ,

here we put Q;(v) = A\ = 0.
From the conditions Ay = A3 = 0 we obtain

(a,rotv) = (a,rot[a x w|) =0,
hence we easily deduce differential system (7)) and ().
In short Corollary [[3] is proved. O

Proof of Corollary[1.4]. In this case we obtain that the vector field v takes the
form

@) - dp(Gy) 0 dfi(61) ... dfi(On)
) : : : My : ;
V== di_l(al) ... di—l(gN) 0 = T ' '
T di(al) di(aN) )\N T di—@l(gl) di—@l(gN)
01 On 0 ! N
:_>\N {fl> f2--'>.fN—1a *} :)\{fla f2---afN—1> *}

{fl7 .f2 . 'afN—l) fN}

On the other hand by considering that A\; = 0 for j = 1,2,... N — 1, from
(IE) follows that Aj = aNj)\N, j = 1, ey N — 1, AN = CLNN)\N = 0.

Clearly the last equation is satisfied identically in view that (a;i) are ele-
ments of the skew-symmetric matrix A.

Therefore we easily deduced the differential equations generated from Carte-
sian and Lagrangian approach.

Thus Corollary [[L4] has been proven. O
Proof of Corollary[L3. Follows from the proof of Theorem [Tl by considering
ey O

3. DECARTES APPROACH FOR NON-HOLONOMIC SYSTEM WITH THREE
DEGREE OF FREEDOM AND ONE CONSTRAINTS .

In this section we apply the corollary[L.3lto study the Chapliguin-Catatheodory
sleight and Suslov’s problem for the rigid body around a fixed point.

Chapliguin-Carathodory’s sleigh

We shall now analyze one of the classical nonholonomic systems Chapliguin-
Carathodory’s sleigh (which we call a sleigh). [16]
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The idealized sleigh is a body that has three points of contact with the plane.
Two of them slide freely but the third, A, behaves like a knife edge subjected
to a constraining force R which does not allow transversal velocity. More
precisely, let yoz be an inertial frame and & An a frame moving with the sleigh.
Take as generalized coordinates the Decartes coordinates of the center of mass
C of the sleigh and the angle x between the y and the ¢ axis. The reaction
force R against the runners is exerted laterally at the point of application A
in such a way that the n component of the velocity is zero. Hence, one has the
constrained system with the configuration space Q = S x R?, with the kinetic
energy T = %(y2 +22)+ %:)‘32, and with the constraint ex +sin xy —coszz = 0,
where m is the mass of the system and I, is the moment of inertia about a
vertical axis through C' and € = |AC.

Observe that the ”javelin” (or arrow or Chapliguin’s skate) is a particular
case of a sleigh and can be obtained when ¢ = 0.

To apply the Decartes approach for this system, first we introduce the 1-form
€;, for j = 1,2,3 in such a way that the determinant Y # 0. This condition
holds in particular if

O = edr + sinxdy — cosxdz, $29 =sinxdz + cosxdy, 3 = dx,
soT = Ql N Qg VAN Qg(ax, 8y, 82) =1.

The Descartes approach produce the differential equations (see formula (7))
[24]

(15) T=2MA3, U =Ncosx—eNgsinw, Z= Aysinx+ e\zcosz,

here \; = A\3(z, v, 2, €) for j = 2,3 are solutions of the equation

(16) sinz(JO, A3 + emOyAq) + cos x(JOyAg — emO,Aa) — m(0x A2 — €A3) =0,
where J = Jo + é2m, ||[v||? = JA2 +m)s.

Now we show that there are solutions of (&) and (I@]) fully describes the
inertial movements of the sleigh.

Corollary 3.1. All the inertial trajectories of Chapliguin -Carathodory’s sleigh
can be obtained from Cartesian approach.

Proof. Let us suppose that \; = \;(z,€) for j = 2,3. Clearly that in this case
(I6)) takes the form J,\s — eA3 = 0 and all paths of the equation (I3]) can be
obtained from the formula

o / (A2(x, €) cosx — eAgsin x)dx
y - yO >\3(,’,U7 E) )

/ (A2(x,y, z,€) sinz — €Az cos x)dx
Z =20 —

As3(z,€) ’
t=t +/d—x
0 A3(z,€)
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On the other hand, the inertial motions of the sleigh can be obtained from
the equations deduce from the classical approach
JoZ =€u, my=pusinx, mzZi= —pucosr, €xr-+sinzxy—cosxz =_0.

Hence, after straightforward calculations we get the first order ordinary differ-
ential equations

& =qC cosb, y= C(sinfcosr—qgecosfsinz), 2= C(sinf sin z+qe cosf cos x),

where 0 = qex + C, q = %

This system can be obtained from (T3] if we choose
A =C'sinf), A3 =Cqcosb.
Is clear that in this case
2|[v||* = JNj(z,€) + mA3(x,e) = mC?,
therefore the sleigh moves by inertia. So the corollary is proved. U
Now we study Chapliguin’s skate. Cartesian approach in this case produce

the differential equations, which can be obtained from (I5]) and (I€]) by putting
e=0.

(17) T = )\3(%%%0), ?):Az(%ya%O)COSIa ZZAQ(I’,y,Z,O)SiHZE,
J(sin 20, A3 + cos xOyA3) — mOy e = 0

Corollary 3.2. All the trajectories of Chapliguin’s skate with the initial con-
dition i(ty) = Coy # 0 and under the action of the potential field of force with
potential function U = mgy can be obtained from the Cartesian approach.

Proof. In fact, for the case when € = 0 the classical approach for Chapliguin-
Carathodory’s sleigh gives (Chapliguin’s skate) the following equations of mo-
tion

=0, y=g+pusinz, Z=—pcosz, sinzxy—coszz=>0
Hence, integrating we deduce the following differential system of first order
(see for instance [24])
. . gsinzx gsinz
z=Cy#0, =
0 # y=( o C,

Let b be the vector field associated with this differential system, i.e.

+Ch)cosz, Z=( + C})sinzx.

b= (C’o, (gsmzc + C4) cosz, (gsmzc + C’l)sinx) :
Co 0
Whereas (a, rotb) = geont # 0.
Co
Co

Denoting by x = GsiniCo 1 Cv) we easily obtain that (a,rot(x b)) = 0,

so b is Cartesian equivalent vector field.
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The vector field kb can be obtained from (I7)) by choosing A3 = x and
)\2 - C().
Summarizing the corollary is proved. U

The rigid body around a fixed point in the Suslov case

in this section we study one classical problem of non-holonomic dynamics for-
mulated by Suslov [25] 14]. We consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints (a,w) = 0
where w = (w1, ws, w3) is a body angular velocity and a is a constant vector.
Suppose the body rotates in an force field with potential U (71, 72,73). Apply-
ing the method of Lagrange multipliers we write the equations of motion in
the form

(18) T = [{WWHW%—ZH;@ 5=y x ]
(a,w)=0

Where 7 = 71,72,73) = (sinzsinz, sinzcosx, 73 = cosz),, I is the inertial
tensor of the body, u is the Lagrange multiplier which can be expressed as a
function of w and v as follows

a, [lw, w] + [v, %—g]
== ( (a,]71a) )

It is well-known the following result [14]

Proposition 3.3. If a is an eigenvector of operator I, i.e.
(19) la=ka,

then the phase flow of system (A8)) preserves the "standard”measure in R® =
R {w} x R¥{7}.

G.K.Suslov has considered a particular case when the body is not under
action of exterior forces: U = 0. If (I9) holds then the equations (I8) have
the additional first integral Ky = ({w, Iw). E.I.Kharlamova in [11] study the
case when the body rotates in the homogenous force field with the poten-
tial U = (b,7y) where b is an orthogonal to a vector. Under these condi-
tions the equation of motion have the first integral Ky = (lw,b). V.V. Ko-
zlov in [13] consider an opposite case, when b = ea, € # 0. The integrabil-
ity problem in this case was study in particular in [I4] I7]. The case when
U = edet I(I71y, ~y) the system (I8) have the Clebsch-Tisseran first integral

1
Ky = 3(Iw, Iw) = sedet (171, ), [14].

From now on, we suppose that equality (I9) is fulfilled. We assume that
vector a coincides with one of the principal axes and without loss of generality
we can choose it as the third axis, i.e., a = (0,0, 1) (see for more details [14])
Equations of motion have the following form
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fiwy = 738“/2[] - 72873 U, ©Lwy= 71873[] - ’738«,1 U,
(20) (I — Iy)wiwa + 7205, U — 710,,U + 1 = 0,

Y= —YsWa, Y2 = YW, Y3 = YiWe — YaWi,

where I, I are the principal moments of inertia of the body with respect to
the first and the second axis. We observe that the above mentioned choice of a
guarantees that the phase flow of system (20) preserves the standard measure

in RS{wh W2, /7}
In [20] we prove the following result

Theorem 3.4. Let us suppose that the body rotates within the force field defined
by the potential

(21) U= o (B + L) =
where h is a constant and py, ps are the solutions of the following first order
partial differential equation
Oy Oug Oy Opia
(22) 73(872 - 871) — 2 s +mn 9 0,
then the following statements hold:
(I) The equations (20)) have the first integrals

(23) Liwy —po =0, ILwy+ =0,

consequently, they are integrable by quadratures. In particular
aS(’yb Y2, KQ)

Lw, = 8— + \112(’7% + 7?37 K2/Y2)
Y2
_'_/719(7% + /7%7 K27 73)7
(24) S (11, %0, K2)
Lw, = _—%8’772’ 2 W (2 412, Koy 1)
1

_’YQQ(’}/% + 7227 K2> 73)7

are constants on the solutions of [20), where Ko = v} 4+ v3 + 73 and
S, Uy, Uy, Q are arbitrary smooth functions .

(IT) The Suslov’s, Kharlamova-Zabelina’s, Kozlov’s , Clebsch-Tisseran’s and
Tisseran-Okunova’s first integrals can be obtained from (24)).

(IIT) The dependence v = ~(t) we determine by quadratures of the Poisson
equations which in this case take the form:

(25) Ay = eI Ap = Y32 Ay = i ’Y2M2'
I’ I’ I I

It is interesting to note that the proof of the Theorem [B.4] first was obtained
using Cartesian approach (for more details see [21]) which we proposed below
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Let us suppose that manifold Q is the special orthogonal group of rotations
of E?, i.e. Q = SO(3), with the Riemann metric

I3 I3 cos z 0
G=| ILicosz (Iysin®z + Iycos?x)sin®z + I3cos?z (I, — Iy) sin v cos wsin 2
0 (I, — I) sin z cos z sin 2 I, cos® x + Iysin?

det G = ]1[2[3 SiIl2 zZ.

In this case we have that the constraint is w3 = & + cos zy = 0.
Hence a = (1, cos z, 0). By choosing the 1-form Q; for j = 1,2, 3 as follow

O =dx +coszdy, 2 =dy, 3=dz.
Consequently T = d{2; A dQs A dQ3(0,, 0y, 0,) = 1, and
v = Ay(cos 20, — 0y) — A30,

Thus we obtain that

P1 = 07
py = (I3 — I, + (I, — I5) cos® z) cos zsin? z\y + (I} — I5) cos z sin z sin z\s,
p3 = (Iysin® x + I} cos? 1) A3 + (I — 1) sin z cos 2 sin z cos 2y

The differential equations ([7) in this cases take the form respectively

(26) T = COSZ)\Q, y = —)\2, z = —)\3
and
(27) (a,rotv) = 0,p2 — Oyps + cos 20,p3 = 0

After the change v; = sinzsinz, 7, = sinzcosx, <3 = cosz the system
(26) and condition (27) can be written as follow

1

: 1 . , 1
(28) Vi = =Y, Yo = TH2Ys, V3= —— (Lipn + Lapiaye)
I, L LI

(29) sin Z(’}/g(g—l;;; — g—'zf) — 72% + 71%) — oS TOyptg — sinzypy =0

where ps = —I1(cosxAz +sinxdy), 1 = Ir(—sinxAz + cosxAs).

Clearly if p; = pj(x,2), for j = 1,2, then the equation (29) coincide with
equation ([22) and (28) coincide with (25).
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4. CARTESIAN VECTOR FIELD IN THREE DIMENSIONAL EUCLIDEAN SPACE

Let E2 be the three dimensional Euclidian space with Cartesian coordinates
X = (,Tl, X, x3)’
We consider a particle with Lagrangian function

1.
L= 5|%IP - U(w),

and constraint (a,x) = 0, where (, ) denotes the scalar product in E3, x =
(%1, 2, 23) and a = a(x) = (ai(x),az(x), az(x)) is a smooth vector field in
[E3. Below we shall use the following notation Oy f = (0y, f, Opy f+ Ous [) T

The equations of motion in particular for constrained particle in R3, can be
deduced from the d’Alembert-Lagrange Principle and are such that

X =0xU + pa, (a,x)=0,

where p is the Lagrangian multiplier.

Cartesian and Lagrangian approach produces the following differential equa-
tions respectively (see formula (7)) and (8]))

x = [axw (a,rotla x w]) =0,
(30) . 1 2
%= o (glllax wli2) + (rotfa x w], wa.
Ezample
Suppose that a= fy,, w= %,

where f =71+ (x,b) = ¢* and b and ¢ are constants vector field such that
(x,¢) =0, (b,c)=0, [e][*=c"r=]x]|.

Then Cartesian and Lagrangian approach generate the following differential
equations respectively

[fx x €] . _ X

2 r3’

¢
Indeed in view of the relation rot[fx X c] = —, we get
r

(a,rotla x w|) = (fx, é) =0

thus the given vector field is Cartesian.

1 1
From the relations (rotla x w|,w) = - (c,rot[fx X c]) = ——, we
rc

obtain that the second order differential system (B0) in this case takes the

form
_ ! (ax(i) _ %) __fx__x

c? r r
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Below we study the particular case when the vector field a satisfies the
equation

(31) rot(a) = v(z)a,
where v is certain function.

Optical-mechanical analogy

From the standpoint of geometric optics, propagation of light in E3 can be
represented as a flow of particles. Trajectories of particle are called rays.
It is known [13] that the vector field K of an arbitrary system of rays an a
homogeneous optical medium satisfies the relation K x rotK = 0. System of
rays such that rotK # 0 are called Kummer systems

Proposition 4.1. Let a be the Kummer vector field i.e., satisfies the partial
differential equation ([31)) with v # 0. Then Cartesian and Lagrangian approach
generate the following differential equations respectively

(32) r=V—ya= ||i||2[ax rot W) = v(z)
and
(33 o0, (llax ull?) + (R [ axui)a

where v = (a, V), V and R are the vector fields:
lal[?

(34) rotV=vV+[ax V), R= V-0,
where V is an arbitrary smooth vector field.

Proof. Indeed, taking the well-known relations

div[A x B| = (A, rotB) — (rotA, B).
into account, we obtain
divfa x [a x w]] = (a,rot[a x w]) — (rota, [a x w])

Hence in view of this identity, and considering that (a,rot[a x w]) = 0 and
(B1)) we obtain that [a x [a x w]] is a solenoidal vector field, so

(35) [ax [ax w|]]=(a,a)w — (a,w)a =rotW,

where W is a smooth vector field such that (a, rotW) = 0, consequently
rotW = [a x V], for a smooth vector field V which must satisfy the partial
differential equation

div(rotW) = div(ja x V])
= (a,rotV) — (V,rota) = (a,rotV —v'V) = 0,

hence we obtain the representation (34))
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In view of relation (B5) we get the following representation for w
(a,w) [ax V] (a,w) rotW
w== gat 2 zat 2
|all |all |all lall

From the relation v = [a x w] we get formula (32]).

On the other hand, after some calculations we obtain
rotv = rotV — [Oxy X a] —yrota
= v(V —~a) + [V — 9y x a]

or, what is the same

(36) rotv =vv + [R x a].
Inserting (B6) in the relation (w,rotv) we obtain
(w,rotv) = (w,vv+[R x a])
= (w, [R xa]) = (-[ wxa],R)
=([axw|,R).

Hence from (B0) we obtain the second order differential equations (B3)). O

Corollary 4.2. Let us suppose that Cartesian vector field is such that
(37) rotv = vv, v #0,

then Lagrangian approach generated the differential system

&= 0, (%Hsz)

which describe the motion of a material point of unit mass in the potential field

1
with the force function §H’UH2

Proof. From (37) and (B8] follows that [R x a] = 0, based on this relation and
considering that

(R, [a x w])) = (w, [R x a]))
we deduce that (R, [a x w])) = 0, thus, in view of (B3], we obtain the proof
of the proposition.

This results coincide with theorem J.Bernoulli (1696.) ” Light rays in an
isotropic optical medium with the refraction index n(z) coincide with the
trajectories of a material point in a potential field with the force function

1
U=-n?(x).” O
2
Example
1
Consider a particle with Lagrangian function L = 5(2:2 + U + 2’2) and

constraint we =sinzy — cosx 2 = 0,

The vector field a = (0, sinz, — cosx), satisfies the equation rota = a.
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Classical approach generates the differential equations
=0, y=psinr, Z=—pcoszw.
Integrating these equations we obtain
(38) z=C1, 9y=Cycosx, Z=Cysinz,

where C7 and C5 are arbitrary constants. The vector field associated to this
system is Cartesian type.

Cartesian approach generate the differential system
T=M\ Yy=opcosr, Z=opsinx
where A = wssin x 4+ wy cosx, 0 = —wy, and wy, ws, ws are components of the
arbitrary vector field w.

From the condition (a,rot[a x w]) = 0 follows that the functions A and p
are solutions of the linear partial differential equation

(39) O, Asinx + dyAcosz — 0,0 = 0.

In particular the vector field
(40) v =(A(z), oy, z) cosz, o(y, z) sinz),,
satisfies ([B9), where A = A(z) and p = p(y, z) are arbitrary real functions, .

Solving equations A(z) = wssinx + wy cosz, o(y, z) = —w;, with respect to
the components of the vector w we obtain

w = (—o(y, 2), Mz)cosz —¢(x,y, z)sinz, A\(x)sinx + (z,y, 2) cos )

where ) = 9(z,y, z) is an arbitrary function on Q.

It is easy to check that
rotv =v +u,

where u = (9,0 cosx — Jyosinz — X, 0,0)7, is a vector orthogonal to vector a.
Hence we obtain the relations

[Rxa] =u, (w,[Rxa])=0(d,0sinz+\—0d,0cosx), ||[wxa]l|*= 0+

Lagrangian approach generates the equations

1
X = Ox <§(92 + )\2)> — 0(0,0cosx — Oyosinx — \)a

The vector field (38]) can be obtained from (0) if we choose A = C}, p =
Cs. For these parameter values Lagrangian approach generates the differential
equations x = (1Csa.

If we choose g and A: (0,0cosx — Oyosinx — A = 0 Then rotv = v and as a

1
consequence Lagrangian approach generate the equation X = 0y (5 (0 + >\2)) .

Below we study the case when the constraints are integrable.



CARTESIAN APPROACH FOR CONSTRAINED MECHANICAL SYSTEMS . 19

Corollary 4.3. Let V and a are the vector field such that
(41) rota =0, V=0;G0,®

where G = G(f, ®) and ® are an arbitrary smooth functions, then Cartesian
and Lagrangian approach for a particle in E* which is constrained to move on
the surface f = f(x) = ¢ generate the following differential equations

and
2
=0, (%Hamf % am‘b||2)
(43) 9
_afG (a?fGﬁwq) - amf)/ ) 0,® — 78:1:.]0) amf?
where g = ||8me2’ and v = w’

If v =0 then the equations (A2)) and ([43) take the form respectively
G2
(44) &= 0;G0,®, =0, (7f||axq>||2) — (GG||0:2|) O f

Proof. Suppose that (41]) hold, then
a=0f, 10tV =[0cf x (07,G0®) = [Of x V],
, hence the vector fields W, V and R admit the representation
W = GO0, V =07,G0®+vdif, R=07,GOP+vixf — 0x7,

where v is an arbitrary function, hence we easily obtain ([43]).

If v =0 then (R, 9;G (0x® — 70y f)) = 907G} ;G||0x®||*, thus formula (@)
follow . U

5. INTEGRABILITY OF THE GEODESIC FLOW ON THE SURFACE.

It is well known that the differential equations X = pu 0y f, where p is La-
grangian multiplier, determine the geodesic flows on the surface f = ¢, and
admits the energy integral

[1%[|* = 2A(f).
If there is an additional first integral, functionally independent with the energy
integral , then the geodesic flow is integrable.

Proposition 5.1. Let us suppose that (A1) holds. Then Lagrangian geodesic
flow of the constrained particle on the surface f = ¢, g = ||0:f]|*> > 0 is
integrable if there exist a solution of the following non-lineal partial differential
equation respectively

(45) GH(f. @)0af x 0:0]|1* = 20(f)g, if (Duf,0x®) # O,

and

(46)  GH(f,2)||0:2|* = 2h(f), if (Ouf. 0:2) =0, 0, # Kz
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Proof. Indeed, if (@3] holds then the system (43])takes the form
(47> X = (afh(f> - 8fG (8J2”fGax(I) - 8x7 ) axq) - fyﬁxf)) ava

which determine the geodesic Lagrangian flow and admits the following com-
plementary first integral

g|l[0x® x X]||?
F = = (4,
BECN X Sl
which it is easy to obtain from (42]). Clearly this first integral is independent
of energy integral.

If (Oxf, 0x®) = 0 then Cartesian and Lagrangian approach generated the
differential equations respectively

= Gy(f,0)0x2, &= (hy = Gy(f,®)Grs(f, ®)||0xP|*) O,
The condition (45) under the given condition of orthogonality takes the form

(E0).

The complementary first integral is

|| D] ] [x > x][|*
F2 - = CQa
[I[x x Ox][?
which we can obtain from (42)), by considering that v = 0. This complete the

proof of the proposition. O

Now we apply the above results.
Now we consider the surface

(48) fl@)=c, (x,0cf)=mf, c#0
which we call homogeneous surface of degree m.

We are interested in studying the integrability of Lagrangian geodesic flow
on the homogenous surface.

Euler’s formula shows that ¢ = 0 is the unique critical value of f, hence for
¢ # 0 the function g = ||0xf||* > 0, on the surface f(z) = c.

Taking into account formula (48] it follows that
(X> axg) = 2(m - 1)9
Below we use the notation
0. F 0,F O,F
{F.G,H}=| 0,G 0,G 0.G
o.H 0,H 0.H
Clearly, if F, G, H are independent functions then {F, G, H} # 0.

The integrability of the geodesic flow on the homogeneous surface we study
in the following two cases

(49) {f,9.7°y =0, {f,9.7°} #0,

where r? = 22 + 3% + 2%
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We analyze the first case. We study only the particular subcase when the
homogeneous surface satisfies the condition

(50) 9=g9(f,r).
Hence, in view of (@8]) we obtain mfdrg + ro,g = 2(m — 1)g.

We assume that function ® is such that ®, = x, thus the differential equation
generated by the Cartesian and Lagrangian approach are respectively

.G . mogfh(f
651) x= S (gx—myong), x="09MDy f
g r°g
Proposition 5.2. Lagrangian geodesic flow on the homogeneous surface under
the assumption (BQ) is integrable

Proof. Let us suppose that 0,® = x, then (0x®, 0xf) = mf # 0. On the other
hand if we choose G(f,r) as
2h(f)g(f.r)

G2 =
T T
then we obtain that (43]) holds. Thus there exist an additional first integral
g(f, )l x ][> = m*f*h(f)

O
Example
Lagrangian geodesic flow on the homogeneous surface of degree one
flz)=r+(b,x)=c¢, c#0
is integrable, where b is a constant vector field.
2
Proof. In this case we have g = 2/ +||bl? =1 =g(f,7).
r
The complementary first integrals is
2f .
(== + B[P = D)Ilx > K[| = 21 (f).
O

We have studied the case in which {f, g,7?} = 0. Now we study the case
in which the functions f, g, r? are independent, i.e., {f, g,7?} # 0. Hence, we
obtain that

(52) v=ux(r,f,9), y=ylr fg), z=z20r/f9).

To establish the integrability or non-integrability of the Lagrangian geodesic
flow on the surface in this case it is necessary to determine de existence or non-
existence of the solution of the equation (@H) or ([@f). We illustrate this case
for the third-order surface

(53) flx)=zyz=r¢, c#0.
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First we determine the dependence z = x(r, f, g), y = y(r, f,9), z = z(r, f, 9).
By considering that in this case

g=(zy)*+ (x2)" + (y2)*
thus the functions f, g and r? are independent. Indeed if we introduce the
cubic polynomial in Z :
P(2) =2 = 1?2+ 9Z — * = (Z = 2*)(Z — y*)(Z — 2°),
then by using Cardano’s formula we obtain the dependence (52)).

This case was examined already by Riemann in his study of motion of a ho-
mogeneous liquid ellipsoid. More exactly, Riemann examined the integrability
of the geodesic flow on (B3]).

In [I5] the author raised the problem.

"Is it true that the geodesic flow on a generic third-order algebraic sur-
face is not integrable?. In particular I do not know a rigorous proof of non-
integrability for the surface (53)”

To prove the integrability of Lagrangian geodesic flow it is necessary to solve
the non-lineal partial differential equation

Gr(f, @) (g]|@xl* — (y 2@, + z2®, + 2 y®.)") = 2h(f)g

Now we are not able to provide an answer to this question.

6. DECARTES APPROACH FOR NON-HOLONOMIC SYSTEM WITH FOUR AND
FIVE DEGREE OF FREEDOM AND TWO CONSTRAINTS

In this section we apply Theorem [I.1] to study the non-holonomic system
study in [8] and the well known non-holonomic system-the rattleback .

Gantmacher’s system

Two material points My, M, with equal mass are linked by a metal rod with
fixed long and small mass. The system can move only in the vertical plane
and so that the speed of the midpoint of the rod is directed along the rod. It
is necessary to determine the trajectories of material points M;, Ms.

Let (21, y1) and (9, y2) are the coordinates of the points My, Ms.
Introducing the following change of coordinates

2uy =20 — w1, 2up=Y1 — Y2, 2u3=Y2 T Y1, 2ug=T1+ T2
we obtain the mechanical system with configuration space Q = R%, and La-
4
1
grangian function L = 5 Z u? — gus.
j=1
The equations of the constraints can be rewritten as

ulﬂl + UQﬂg = O, Ul’llg — Ug’ll4 =0.
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To construct Cartesian approach in this case we firstly determine the 1-forms
Q; for j =1,2,3,4 as follow

Ql = uldul + UQdUQ, Qg = UldU3 — UgdU4,
Qg = UldUQ — Ugdul, Q4 = ’lLQdU3 + UldU4

hence we obtain that T = u? + u3.

After some calculations we obtain that the vector field (2) takes the form
vV = I/3(U182 — Ugal) + V4(U283 -+ U184), T = (U% + u§)2,

where v; = \;(uf + u3) for j = 3, 4.

The 1-form associated to vector v is the following
0 = v3(—ugduy + uydug) + vy(usdus + urduy).
Thus the 1-form tydo admits the representation

Lde' = Algl + AQQQ + A3Qg + A4Q4

I/2+I/2 I/2+I/2
= (u} 4+ 13) (= oy () — iy () — 208 — 1)
1/2—|—l/2 I/2+I/2
+(u%+u§)<uﬁu4( : 5 L) — w18y, (2 5 4)+V3V4>Qz

+(uf + u3)vy <U28u3V3 + w10y, V3 + U0y, Vs — U0y, V4) Q3
_l_(u% + u%)ljg <u28u31/3 + u18u47/3 + u28u11/4 — u10u21/4) Q4.

If Ag = A4 = 0 then u20u31/3 + U18u41/3 + Ugaull/4 — U18u21/4 = 0.

Cartesian approach generate the following differential equations respectively

(54) Uy = —V3Ug, Uz = V3Uy, Ug= Vslly, Us = Vsl
and
(55) UQ&B V3 + U18u4l/3 + Ugaul V) — u18u2 V) = 0

It is easy to show that the functions vs, vy :

2(—gU3 + h)

(u% T u%) - g%(u% + u%)v

(56) vs = gs(u? +u3), vy = \/

where g, h are constants, are solutions of (B3, (54])as a consequence
2||[vI* = (uf +u3) (v +vf) = 2(~guz + h).
Under these restrictions Lagrangian approach generate the differential system

(57) ﬁl = Alul, ﬁg = A1u2, ’dg = —g + Agul, ’d4 = A2u2.
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The solutions of (B3]) are

Uy =Trcosa, Uy =rsina, o=aqy+ 93(7“)t,

V29C
uz = uf + I_4_ 2g sin 20 — — Y7 cos a,
295(r)  4g3(r) g3(r)

) (VT

Uy = —h+
! 2g V2g5(r)

sina + O)?,

where C, r, ag, u3, h, are arbitrary constants, g3 is an arbitrary on 7 function.

To compare these solutions with the solutions obtained from the classical
approach, we determine the equations of motion obtained from the d’Alembert-
lagrange principle

(58) Uy = piuy, Uz = fiuz, Uz = —¢g+ foUi, Ug = — [l

where p, po are the Lagrangian multipliers.

After the integration of the system (58]) we obtain [§]

S S

(59) U = —Qug, Uy = Quy, U= T2, 4=l

where (p, ) are the polar coordinates: u; = rcosy, us =rsing and f is
a solution of the equation

(60) f:—?w

2g cos

The solution of ([60) is f = + 27 where «y is an arbitrary constants.

Clearly if we choose v3 = ¢, vy = / then we the vector field associated to

,
system (B9) can be obtained from Cartesian vector field.
The rattleback.

The rattleback’s amazing mechanical behaviour is a convex asymmetric rigid
body rolling without sliding on a horizontal plane. It is known for its ability to
spin in one direction and to resist spinning in the opposite direction for some
parameters values, and for others values to exhibit multiple reversals. Basic
references on the rattleback are [28, [9] 12} 2].

Introduce the Euler angles 1, ¢, 6 using the principal axis body frame rela-
tive to an inertial reference frame. These angles together with two horizontal

coordinates x, y of the center of mass are coordinates in the configuration
space Q = SO(3) x R? of the rattleback.
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The Lagrangian of the rattleback is computed to be
L= i(Iycos?y + Iysin®¢ + m(T'; cos§ — (sin6)?)6?
(I sin®¢ + I cos? ) sin? 0) + I cos? ) ¢°
+1(I; + mI2sin® 0)y)? + 2 (32 + 9?)
+m(Ty cos 0 — ¢ sin )Ty sin 004 + (I, — I,) sin 0 sin 1 cos 10
C cos 0¢np + mg(T'y sin @ + ¢ cos 0)

where I, I5, I3 are the principal moments of inertia of the body, m is the total
mass of the body,

'y =¢&siny +ncosy, D'y =Ecosyy —nsiny

and (£ =€(0,¢), n=n(0,v), ¢ = ((0,7)) are the coordinates of the point of
contact relative to the body frame.The shape of the body is encoded by the
functions &, n and (.

The constraints are
i — 01— agth — azd =0, G+ 10+ Borh + B3 = 0,
where
ay = (—=I'ysinf — (cosf)sing, ay=T5cosbsing+ 'y cos ¢,

: : 0 0 0
az =Iysin¢+ (I'y cos@ — (sinf)cosp, [ = 8i¢1’ By = 8i¢2’ B3 = 8i¢3’

Clearly that the rattleback equations of motion in this particular case for-
mally contain the equations of the heavy rigid body in the singular case
m—0, mg—1I [#0

To determine Cartesian approach for the rattleback we first determine the
1-forms €}, for j = 1,...,5. In this case we determine as follows

O = dr — a1df — asdy) — asdp, Qo = dy + 51dO + Podip + [3do,
Q3 =db, Qu=dy, Q5=do¢
Hence T =1 and the vector field v :
(61) v = A3 X3+ M Xy + A5 X,
where
X3 =010, — 10y + 0y, Xu = a0, — 20y + 0y, X5 = 30, — B30, + Op.

We now proceed to the consideration of the particular case for which &, n and
¢ admits the development

5250_'_651(97 w>7 77:7704‘6771(‘97 w>7 C:gO_'_ECl(Hv w>

where &y, n9, (o, are constants and € is a small parameter. Under this con-
sideration we obtain that the Lagrangian function can be represented as follow

L= LO + ELl + €2L2.
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Below we study the case when e = 0.

Let (x!, 2%, 23, 2%, 2°) be a new set of variables derived from z,, y, 0, 1, ¢
by the transformation

¢:x17 ¢:$2’ 9:.]}'3’
y + Cosinfcos ¢ + ' cos O sin ¢ — I'Ysin ¢ = x?,
r+ (psinfsing — 'Y cosfcos ¢ + I'§ cos ¢ = 2°,

where T'Y = £ysiny) + ngcostp, T = & costh — ngsin 1.

The vector field v and the constraints on account of this change, take re-
spectively the form respectively

v=_(a,b¢c 0,0 =0 >=0

where a = a(z!,..,2%)), b =b(a', .., 2%)), c = c(x!, .., 2%)) are the C' functions.

In the coordinates x = (z', 22, 3, 2%, 2°) the Lagrangian function L, be-

comes to the function

5
L= Z Gt i" + mg(T{sin2® + ¢y cos 2%),

J,k=1

where G = (G,x(z)) = (G,i) is the Riemann metric.

We shall now determine Cartesian approach under the given conditions.
Proposition 6.1. The vector field v(x) = (a, b, ¢) is a Kummer vector field.
Proof. Indeed the 1-form associated to the vector field v is

o = prdat + poda® + psydz®,  pp = Gra+ Grob+ Grse, k=1,2,...5

then

5
1wdo = Z Ajda:j

j=1

where

0 0 0 0 0 0 0 0
M= (5 — 2+ (5 — m)e, Ao = (52 — 22)e+ (52 — =o3)

ox?  Ox! ox3  Ox! ox3  0x? oxt  0x?
A p 22 dps Oy \ Op1 Op2 I Ops
’ (mg 07 ) ( oxt  Ox3 )e, ox?t Ox? ox?t ¢

—8p1a _ Op2 _ apsc
oxd 0xd oxd

A5:
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We have therefore that the differential equations generated by Cartesian ap-

proach are respectively
ilt=a, 2*2=0, i%=c,

0 0 0 0
Ay = (S2L P2y, (OPL O3y )

(62) or?  Oxt ox3  Oxt
62 Op2 Ops Op2 Op
b=~ o)t GG ~ 52 =0
_ Ops  Opa dps  Op; -
Ay = (0332 8:53)6 + (8:171 Ox3 Ja=0,

where a = a(x!, 2%, 23, Cy, C5), b = b(x, 22, 23, Cy, Cs), ¢ = c(at, 22, 23, Cy, Cs)
Let rotv(z) be the vector field

1 Ops Op» Op  Ops Op2  Op
rotv = — -

VdetG 0z 013 823 Oz dr' a2 )
then the last three equations in (62) can be rewritten as
[V(z) x rotv(z)] = 0.
Thus the vector field v(x) = (a, b, ¢) is a Kummer vector field. O

For the general case, i.e., when the &,  and ¢ are functions on the variables
f and v Cartesian approach produce the following equations respectively

X =v(zx)

(o N X D) Y

WE

‘= oxri  Ox! oxri  Ox? oxry  Oxd
5

Opa _ Op; Ops _0pjy 5 Ops _ Opj\\ i _
;(&ﬂ 5at + 0l ~ ) Pl — ) =0
5

Ops _ Op; Ops _ Opiy 5 Ops _ OpiN i _
;<axj a1 T (55~ gpr) T Bilg, 8x5))v =0

where ¢ = 2!, ¢ =22 0 =23 y=2a', 2z =2°and v is given by the

formula (G1).

7. INVERSE PROBLEM OF DYNAMICS

Introduction

This section is devoted to apply Corollary [L4]to study the problem of finding
the field of force that generates a given (N — 1)-parametric family of orbits
for a mechanical system with N degrees of freedom. This problem is usually
referred to as the inverse problem of dynamics. We study this problem in
relation to the problems of Celestial Mechanics.
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One of the fundamental classical problems in celestial mechanics is to de-
termine the potential-energy function U such that every curve from a given
family of curves will be a possible trajectory of a particle moving under the

action of potential forces F, admitting U; i. e. F = —.

In the modern scientific literature the importance >(§f this problem was al-
ready acknowledged by Szebehely [3], [27]

The first inverse problem in Celestial Mechanics was stated and solved by
Newton (1687) and concerns the determination of the potential field of force
that ensures the planetary motion in accordance to the observed properties,
namely to Kepler’s laws.

Bertrand (1877) [I] proved that the expression for Newton’s force of attrac-
tion can be obtained directly from the Kepler first law to within a constant
multiplier.

Bertrand stated also a more general problem of determining a positional
force, under which a particle describes a conic section under any initial condi-
tions. Bertarnd’s ideas were developed by [5] [26], [10], [6], and [7].

Dainelli in [5] essentially states a more general problem of how to determine
the most general field of force (the force being supposed to depend only on the
position of the particle on which it acts) under which a given family of planar
curves is a family of orbits of a particle.

The solution proposed by Dainelli is the following .

Theorem 7.1. The most general field of force F = (F,, F,) capable of gener-
ating the family of planar orbits f(x,y) = const can be determine as follows
51, [29]

(63) Fx = _)‘2{fa ayf} - )‘{f> )\}ayf, Fy = )‘2{fa a:cf} + )‘{fa )‘}a:c.fa

where {f, } = 0,f0, — 0,f0, and X is an arbitrary function which depends
on the velocity with which the given orbits are described.

By considering that the components F, and F, are to be functions of the
position of the particle, we can take \ to be an arbitrary function on x and y.

The above expressions for the field of force under which the curves of the
given family are orbits were first given by Dainelli [5].
After some calculations we can prove that (63]) can be rewritten as follows

051Vl
(64) Fe 2 A (@.000) +8,00,0) 2

where v = (=A0, f, A0, f).

Suslov in [26] stated and solved a problem which was a further develop-
ment of Bertrand’s problem. He shows that, given a (N — 1)-parametric
family of orbits f; = f;(z) = ¢; for j = 1,2,...N — 1 in the configuration
space of a holonomic system with N degrees of freedom and a kinetic energy
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N
1 , 1
T = 3 Z Gn(z)i7ih = §Hx| |2, it is necessary to determine the potential field
jk=1
of force under which any trajectory of the family can be traced by the repre-
sentative point of the system. Suslov deduced the following system of linear
partial differential equations with respect to the require potential function:

09 ou 08 oU _U+h<89 09 06 99
0N 0xN 0Ny OzF 0 \9ANOzF 0N, OzN
N
a0 0% 00 020
A" -
+ 2 Ao aayae ~ a0 580
for k=1,2,.., N — 1. where §, A', A2, ..., AN are functions:
N N
Of (T)a pr _ 1 N
]; S =0, 0= ikglc;k](mm A

N
Np=) Gu(x), k=12 N a=12,N-1,
j=1

and proved that theses equations represented the necessary and sufficient
conditions under which the equations of motion of the study mechanical system
admits the given N — 1 partial integrals.

Assuming that given trajectories admit a family of the orthogonal surfaces,
Joukovski in [10] constructed the potential-energy functions in explicit forms
for systems with two and three degrees of freedom.

The following theorem was enunciated by Joukovsky in 1890

Theorem 7.2. If ¢ = const is the equation of the family of curves on a
surface, and p = const denotes the family of curves orthogonal to these, then
the curves q = const can be freely described by a particle under the influence
of forces derived from the potential-energy function

V=80 (9000 + [ ) o))

where h and g are arbitrary functions, and A; denotes the first differential
parameter.

A new approach to the problem of constructing the potential field of force
was proposed by Ermakov in [6], who integrated the equations for the potential-
energy function for several particular cases.

In the most general form the inverse problem in dynamics was studied in [24]
22]. By applying the results presented in that work we propose the following
new results:

(i) Statement and solution of inverse Dainelli’s problem for a mechanical
system with N degree of freedom.
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(ii) New approach to solve the Suslov problem.

(iii) Statement and solution of inverse Joukovski’s problem for mechanical
system with N > 3 degree of freedom.

(iv) Generalization of Theorem [7.2 for mechanical system with N > 3 de-
gree of freedom

(v) Statement and solution of inverse Stéckel’s problem.

(vi) General solution of Bertrand’s inverse problem.

The results listed above are obtained by applying Corollary [L.4

Statement of the generalized inverse Dainelli problem.

Given a N — 1 -parametric family of orbits f; = fj(z) = ¢; for j =
1,2,...,N — 1 in the configuration space Q of a holonomic system with N

degrees of freedom and kinetic energy 17" = 3 ||x||?. Generalized Dainelli’s prob-

lem is the problem of determining the most general field of force that depends
only on the position of the system under which any trajectory of the family
can be traced by a representative point of the system.

Solution of the generalized inverse Dainelli problem

The following proposition provides a solution to the problem above

Proposition 7.3. Given a mechanical system with a configuration space Q and

1
a kinetic energy T = §||m| |2, then the most general field of force F that depends

only on the position of the system and is capable of generating the given orbits
filx) =c¢;, for j=1,...,N —1 where fi,..., fn_1 are independent functions
can be determine from the formula

1
3<—||v||2) N-1
B 2 of;
(63) P =G T gy

=1
where

{fl>"'a fN—la *}
{fiooos fnoa, Ik

an; = an;(z) for j=1,2,...N are functions:
anj; = (—1)N+j_1d0' N df1 VAN dfg VANPIRIAN dfj—l N dfj+1 VANPIRAN di—1(817 ey 8]\[),
and Ay and fn are arbitrary functions such that {f1,..., fn_1, fn} #0.

(66) v = _)\N

= )\{fl,..., fN—la *}7

Proof. Let us suppose that are given the N —1 parametric family of trajectories,
hence (0xfj, X) =0 for j =1,... N — 1. In view of independence of functions
f1, ..., fnv—1 we can solve these equations respect to velocity, thus we obtain
the system x = v(x), where v is determine by the formula (G6]).

After covariant derivation we obtain the equations of motion of the mechan-
ical system (see proof of Theorem [L.1])
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a(luvw)
doT oT 2 — 0
P i v R DX A vl &

j=1
therefore the proposition has been proved. O

The following proposition shows that Theorem [[.1] is a particular case of
Proposition [7.3]

Corollary 7.4. For N = 2 and Q = R? the force field (65) coincides with the
solution proposed by Dainelli .

Proof. Indeed for N = 2 the field of force F takes the form

1 2
- o (51 oy
B ox " ox

On the other hand by considering that v = (—=Ad, f, A0, f) thus
VIE = 00 + 00,1, an = do(dy, 8,) = 0.(30,f) + 0,00, )
hence we obtain the formula (64)). O
Corollary 7.5. For N = 3 the force field (65]) takes the form

o (5l1o°)
(67) F= 2L A (dfy(rotw)df, — df(rot)df,)

Ezxample
1 . .
Given a particle with Q = R3 and kinetic energy T = 5(52 + 7%+ ¢?).

Construct the field of force capable of generating the two-parametric family of

trajectories defined as intersections of the two families of surfaces

(68) fi=(=ci, f2:H(£7n7C>:C2-

The solution of this problem can easily be derived from Corollary The
vector field v, rotv are the following

(aHg OH 9

Vv —_=

on 06 O€ on

o _ O (\OHY O O (0H\ D D
mv_8_6<8_£)8_5 8_<<8_n)8_n "ac
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Hence the require field of force is such that

'3
0 (N[ OH oOH oOH
; (? <<a—5>2 ¥ (0—77)2)) My

o€
"=

(=0
where p = %(A%—?) %(A%—Z)

In the next section we make use of the solution of the generalized Dainelli
inverse problem for solving the Suslov and generalized Joukovski problems.

(69)

Statement of Suslov’s problem  [26]

Given a N — 1 -parametric family of orbits f; = fj(z) = ¢; for j =
1,2,...,N — 1 in the configuration space Q of a holonomic system with N
degrees of freedom and kinetic energy T = —||x||%. Suslov’s problem is the
problem of determining the potential field of force that under which any tra-
jectory of the family can be traced by a representative point of the system.

Solution of Suslov’s problem

We now propose a new solution to the Suslov problem. This solution we have
obtained as a special case of the previous solution to the generalized inverse
Dainelli problem.

Proposition 7.6. Given a mechanical system with a configuration space Q

1
and a kinetic energy T = §Haz||2, then the potential field of force F = B’
T
capable of generating the given orbits f;(z) =c¢;, forj=1,...,N —1, can be
determine from the formula

1 2
w (§||v|| ) .,

70 — =" 2 4N ay
(70) ox ox * ; NiToe”
if and only if
N-1
(71) A anj(@)df; = dh(fi, fo, .- fy-1)
j=1

Clearly if (T1) holds then the potential function U is such that

UG) = Sllol + h(fu, For o o),

where v is determined by the formula ([G8), and A is an arbitrary function.
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N-1

Proof. From (68) follows that F = (?)_Z’ if and only if A Z an;(z)df; is exact
j=1

1-form dh. In view of the relations df;(v) = 0 we deduce that dh(v) = 0,
hence in view of independence of functions f; for j = 1,2,..., N — 1 we get

h=(fi,for - fno1) O

Ezample(Ermakov’s problem).
Given a mechanical system with configuration space Q = R* and kinetic
energy

1 . . . .
7= (om (@ + ) + malid + ) ).

Construct the potential field of force capable of generating the three-parametric
family of trajectories defined as intersections of the families of hyper-surfaces
fi=a 4+ =, fo= x5+ 15 = s, fa=(z1 = 22)* + (1 — 12)* = c3

Corollary 7.7. Under the assumptions of Proposition[7.¢ for N = 2 we obtain
that

o (3l1o1°)
ou T \2 of
(72) - s T (0( A0 f) + 0y (A0 f) e
if and only iof
(73) A(0x(ADi f) + 0y(A0, f)) df = dh(f)

where v = (=0, f, \O..f)

Another interesting application of the solution to the generalized Dainelli
problem is the determination of the solution of the generalized Joukovski prob-
lem.

Statement of generalized Joukovski problem
Given a N — 1 -parametric family of orbits f; = fj(z) = ¢; for j =
1,2,...,N — 1 in the configuration space Q of a holonomic system with N

degrees of freedom and kinetic energy 1T' = §||x||2 Assuming complemen-

tary that the given trajectories admit a family of orthogonal hyper-surface
S = S(x) = cy then Generalized Joukovski problem is the problem of deter-
mining the potential field of force that under which any trajectory of the family
can be traced by a representative point of the system.

Solution of Generalized Joukovski problem
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Proposition 7.8. Given a mechanical system with a configuration space Q

1
and kinetic energy T = §||m||2, then the potential field of force F = e
T
capable of generating the given orbits f;(z) = ¢;, for j=1,...,N —1 , which
admit a family of orthogonal hyper-surface S = S(x) = ¢y can be determine
from the formula

Z 1) v v
U _ vl +<82 0505 _ 05,77
ox ox oz’ Oz Oz ox" Oz

if and only if

o? 9S8 0S 5, 9
(%a %)dS - ||%|| dv® = —=2dh(f1, fa,..., fn-1)

where v is an arbitrary function. Clearly if ({4]) holds then the potential
function U can be determined as follow

2
U= <%H%H) + h(f1, fo,-- ) fn-1)-

Proof. In view of the condition that there is an orthogonal hyper-surface to

(74)

oS 0Of;
the given trajectories then the following relations hold <8_x’ a—‘fi) = 0 for
7=1,2,...,N —1, thus
oS
(75) PG_I— ={f1, fos- s [no1, %)

where p is an arbitrary nonzero function and G = (G’*) is the inverse matrix
of the Riemann metric G. Hence we obtain that the vector field (66l takes the
form

108

v =vG ! I

where v = A\p, therefore the 1-form associated to this vector field is such that
oS

oc=v <—, dx) consequently
ox

ov 0S8
ox’ 0x

hence we easily obtain the proof of the proposition (see for more details proof
of Theorem (LLT)). O

As a first application of the above proposition we have the following results

4o (5S)
ds

tydo = dv(v)dS — dS(v)dv = v(=—, —)dS — 1/|—|| dv

Corollary 7.9. If in Proposition [7.§ we suppose that v = then the

potential function U can be determine as follows

v= (122

where hg is an arbitrary constant.
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4o (S)

Proof. Indeed if v = then then the 1-form o associated to vector field

v is exact, thus 1ydo == 0, consequently (see formula (74)) dh = 0. Hence

o A ) R ) R

Example( Bertrand’s Problema [I])
Given a particle with configuration space Q = R3 and kinetic energy

1. .
T = 5(52 +77 4+ ¢%).
Construct the potential field of force capable of generating the two-parametric
family of trajectories defined as intersections of the two families of surfaces

fi=C=a, fo=VE+ 1>+ b6 = oo
From ([75]) we obtain that the function S :

o5 1 » o8_1( &

0  pyE+n2 O p\ JE@+? '
Hence, by choosing p = 1 we obtain that S = In(§ + /&2 +n?) — (b+1)Inp
and v = nA. Clearly the field of force is potential in particular if v = ®(.5).
The general solution of this problem we give below.

Example
Given a particle with configuration space Q = R?® and kinetic energy

1. .
T= 5(52 +17 + ).
Construct the potential field of force capable of generating the two-parametric
family of trajectories defined as intersections of the two families of surfaces
fi=zz=a, fi=yz=0
1
From ([78]) we obtain that the function S = 5(1’2 +y? — 2?), thus the condition
(74) takes the form
(20,1 + yO,v* — 20,%)(xdx + ydy — 2dz) — (2% + y? + 22)dv?
- —2dh(f1, fg)

There are two obvious solutions v = v(z? + y? — 2?) and v = z. The first
solution produces the potential function U = U(z? + y* + 2%) — hg, h = hy
which coincide with the solution obtained by Joukovski and the second gives

1 1
the potential U = 524 —hg, h= §(f12 + f3) = ho.

The following result is a generalization of Theorem [7.2]
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Corollary 7.10. If 27 = C; = const, for j = 1,2,..,N — 1 are the equations
of the N — 1 parametric family of curves on Q, and ¥ = const denotes the
family of curves orthogonal to these, then the curves 7 = C; = const can
be freely described by a particle under the influence of forces derived from the
potential-energy function

N-1
= 1 N 1 2 N1 OGN (zt 22, 2 ;
= G 0 [

N—l)

where h = h(x!, 2%, ... @ and g = g(z™) are arbitrary functions.
Clearly, for N = 2 we obtain the Joukovski theorem given in the introduction.

Proof. Whereas in the study case f; =27, j =1,2,...N —1 and S = 2" then
from Proposition [T.§ we obtain that the relations hold

U d(GYY) o
0 = g O a5 i=Ll2..N-1

92U a( 2GNN
orN (Z N] )

where Gy; = Gyj(z!, 22,...2") for k,j = 1,2,... N, if and only if

N
L Ov?
N N NN .2 _
(76) (;GJ o)A = Gyt = 2dh(fu, fa.., fyn),
assuming that the Riemann metric is orthogonal then
1
dv? = —2Gnydh, where GNY = ——|
GnnN

v?:=2g(zV) — Q/GNNdh

= oG
_ Ny _ NN ,
= QQ(I ) 2Gnnh + ]221 2 / h EY% dxj’

where g = g(2V) is an arbitrary function.

2

2G Ny
obtain the proof of the proposition. O

+ h we

1
Consequently in view of the formula U = §I/2GN Nt h =

Now we apply Theorem [7.§ to solve the inverse problem which we will call
the inverse Stdckel problem.

Statement of inverse Stackel problem.

Given a N — 1 -parametric family of orbits

Pk
(77) Z/ \/[?1670&)3’€ =cu p=12,..,N—1,
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where K (z%) = 20, (2%) +2 Z ajri(2”), ag, for k=1,2,..N are constants,

in the configuration space Q of a holonomic system with /N degrees of freedom
and kinetic energy

N .
_1 . 2_1 (55])2
(78) == 3

J=1

where A7 = A’(x) for j =1,2,..., N are functions such that

N
{o, @2, o, ¥} S g,
{1, @2, .. on-1, on} ’

dp, = Zgoka(xk)d:ck, Oka = Pralz¥), for k = 1,...,N,a = 1,...,N are

arbitrary_functions.

The inverse Stackel problem is the problem of determining the potential
field of force that under which any trajectory of the family can be traced by a
representative point of the system.

Solution of inverse Stdckel problem

Proposition 7.11. Given a mechanical system with a configuration space Q

U
and kinetic energy ([8]), then the potential field of force F = s capable of
generating the given orbits (7)) is the field of force with potential function

1, U
(79) U = 1/2(5) ( {Spla Y2, ; PN-1, } ‘I‘Oél) _ h0>

{<P1> P2, +- -y PN-1, @N}

N N
where S = 2/2 Uy (2F) + Zajapkj(xk) da®.
=1 =1

Proof. In view of the equality

q(z')dei(01) ... qn(z™N)dpi(On)
a1(@)don-1 (D) .. ax(@™)den-1(0n)
{fis for oo o #} _ O On
{fi, for oo fv—ns fND vazl q;(x7){e1, P2, -, N-1, PN}
> (%) -3 (v 59)

J=1 J=1
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, 1
where g;(27) = ——===, consequently from (75) and (77) follows that
Ki(a*)
a8 oS
- _ -1 _ 17~
v=-\vG I vG o’
hence
N N
VI = 12> AV(K;(a?) VQZAk (2‘1’k +QZ%%J )
j=1 k=
N N N
= 2V2ZAk\Ifk( sza]ZAkgo (z*)
k=1 j=1 k=1

{9017 P2, -y PN-1, ()ON} ]{9017 P2, « -y PN-1, ()ON}

— 21/2 ( {S017 @2y -y PN-1, \Il} _l_al)
{@17 @27 ceey (pN_l’ ()ON}

1, ¥ _ ;
:2V2<{S01’S027 y PN-1, } +ZO&‘{801’S027 y PN-1, gpj})

N
where d¥ = ) " W (a")da

On the oth;r hand if we choose v = v(S) then from Corollary follows
the proof of the proposition. O

Corollary 7.12. If in the previous proposition we suppose that v(S) =1 and
ay = hg then the potential function ([[9) coincide with the Stickel potential [4].

Proof. Indeed, if v(S) =1 and oy = hg then [4]

{1, 0 onot, U &
U= WP ONL T NT kg (k)
{8017 ¥2;, « -5 PN-1, SON} Z k( )

Statement of Bertrand’s problem

Let a particle with configuration space @@ = R? and kinetic energy T =
3 (#® +9%) . Bertrand’s inverse problem is the problem of determining the
most general potential field of force capable of generating the one-parametric
family of conics f = \/Wy2 + bz = ¢, where b is the eccentricity.

Solution of Bertrand’s inverse problem

Now we study the problem of constructing the potential field of force, which
is capable to generate given conics. We prove the following proposition.
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Proposition 7.13. The potential-energy function U capable of generating a
one-parameter family of conics with eccentricity b is the function

U=a_1H 1(cos@)+ K_jlogr(l+ bcosh)
, 1+ bcosh)itt
+ Z a;ritt Hj(COSQ)+Kj( : )
. Jj+1
jez\{-1}

if b # 0 where a; j € Z, K; are real constants and Hj, j € Z are solutions of
the Heun equations with singularities at the points

1+
O, 1,2—b,OO
and with the exponents
+34+06(7+1 . J+3+0b(+1 4 4 .
(0,1 F3FVGHL ) 5 THBHOGHED ) o 51y (o1 -1 )
2b 2b
and (cos )
WU (cos 2
= - —ﬁ/h(r)dr

if b =0, where ¥ = W(cos ) and h = h(r) are arbitrary functions.

Proof. From Proposition [I.7] follows that the require potential field of force
exist if and only if

< x )m? y  ONT 202 9k

+b .

Ox +\/x2+y2 dy - r :25_f

By introducing the polar coordinates x = rcosf, y = rsinf, we find that
previous condition condition takes the form

ON?  bsin @ ON? 2)\2_2@

(14 bcosb) . o0 +T a7

or, equivalently,

ON? b(1—72) 9N 2\? oh
1 =9

(80) (1+67) or * r or * r of

where f = r(1 +b7), 7 = cosf. We embark now upon the study of the case

when b # 0 and h is such that

it
(81) h(f) =voaIn[f]+ jEZZijﬁa
pos)

where v}, j € Z, are real constants, and A is determined in such a way that

(82) A= ai(r) Hy(r)

JEZ

It is clear that the series (BI]) and (82]) are formal series.
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By inserting (81]) and (82) into (80) we obtain
3 ((1 + bT)d%T)Hj () + %T(T) (b(l - 72)70”%7) + 2) — 209 (1 + bT)J‘) —0

JEZ

This equation holds if
Ui(r) = ar? v = —a;K;
for j € Z and we determine H; as a solution to the equation
(83) b(1 — 7)) Hj() + ((j + 1)bT + j + 3) H;(7) + 2K;(1 4+ br)! = 0

for j € Z.
The general solution of this equation is

K; bT)
H;(r) = &(7) <C—2 /1i;g T)

j*1 43 jHl j+3
Gi)=(1-7) 2 2 (r+1) 2

where C;, j € Z are arbitrary constants.

Under these conditions, the required potential-energy function U results in
the form

U(r,7) = —)\2(1—|—b2+267' Za]
JEZ
where
1 j+1 2 KJ’ i+1 e
Ui(r,7) = =r!MH;(1)(1+ 0" +2br) + ——= 7 if j # -1
2 J+1
1
U_1(r,7) =_H_ (1) (1+b*+2b7) + K_1In|f].

2
We will study the subcase when b = 1 separately from the subcase when b # 1.
ftb=1,

Ulr,7) = N1+7)— Za]
JEZL
where
I TR B B
U_i(r,7) =(1-r7) (0_1—2K_1/ ar ) + K_yIn|f].
’ (I—=7)2(1+71)

Easily verifies that

. C_2 K_2 dr 1 . 0_2 K_2
Ume = r 2 r (/(1+T)2(1—T)+1+7'>_ r + r 9(7)
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1= T Therefore, if b =1,
1+

where g(7) = In

_oC_ K_
U(r,7’)=a2 2+a2 29(7 +Za§

r

JEZ
JF—2
If b# 1, b# 0, it is easy to prove that
1—-0b
(1 - T) 2b 2K_2
H_ =" (C 45—
2(7) 1+b " (br+1)(1—1)
(1+7) 20
H, K, 2K C_,
U_ = —(1+b*+2b7) — = G
2(r,7) 2r (14574 2br) r(br+1) r*—1) * r (7)
where
1 1 ! 1
_’7— -
= b 2
() =3\ (5=) b=+ ¥ + 207)

Under these conditions, the potential function U takes the form

a_sC_ 2a_9K
Ulr,) = ——G0) + Ty + 2 ailil

JEZ
J#—2

Summarizing the above computations, we deduce that if b # 0 the function
U is represented as follows:

Ul(r,T) :%+@+ Z a;U;(r, 7
jez
A2

where « is a constant and § = §(7) is a certain function.
If b =0, then f = and condition (80) takes the form

N2 2)\—2—28h
+ h(f).

Therefore,
r?A\? = 2/7’2&,h(r)dr + 2W(7),

which rearranged results in the expression:

=2 [ onmar+ 2210 Zopy - 2 /h(r)rdr+ 20(r)

2 r2 r2 T

where U is an arbitrary function.
Hence,
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To end the proof of the claim will establish the relationship between the
functions H; for j € Z and the solutions of Heuns equations.
The canonical form of Heun’s general equation will be taken as [23]

d*x i 5 e \dz N afz — B
dz? z z—1 z—a)dz z(z—-1)(z—a)

here x and z are regarded as complex variables and «, 3,7, d, €, a, b are param-
eters, generally complex and arbitrary, with the only condition that a # 0, 1.
The first five parameters are linked by the relation o+ +1 =749 +e.

The equation is, therefore, of the Fuchsian type , with regular singularities at
the points z = 0, 1, a, co. The exponents at these singularities are, respectively,

(Oa 1- 7)) (O> 1- €)> (Oa 1- 5)> (O‘aﬁ)

Now we establish the relation between equation (83) and Heun’s equation.
By fulfilling the replacement

(84) x =0,

1
z= 5(7‘ +1)
we can easily obtain the following representation for (83)):
dH; 1 K; -
2(z — 1)d—J + %((1 +b—2b2)(j + 1)+ 2)H;(2) — 7”(1 +b—2b2)7 =0
z

By differentiating and fulfilling some straightforward calculations, we deduce
that the functions
dH; 1

Fi(z) = (z(z—l)d—;+2—b((1+b—2b2’)(j+1)—|—2)Hj(z))(1+b—262)_j (j € Z)

are first integral of the Heun equation:

, 1 , 1 .
d2H. 1—a(1+j)—g a(l—i-j)—f‘g—j —j dH.
L+ + + ’
dz? z z—1 z—a | dz
(85)
(7 =)z = —al(* = 1)
Hi(z)=0
* 2(z—1)(z —a) i(2)
1
where a = ib

By comparison with classical Heuns equation, we obtain:

L+0 L1 L+0 N
=10+ g) =gy 4= ()4 =
%‘ﬁjI.jzzlbz—(lJFQ)(?—%‘—(Sj)a €6 =]

J +0,.
Bj:5+T(J2—1):—a(2—%‘—5j)—(1—%‘)63'

Evidently, when the given conics are parabolas then in (85) we have the
confluence of singularities. In fact, in this case b = 1 so a = 1, and as a
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consequence the Heun equation is transformed into hypergeometric differential
equation

H;  (—1—j 2-j\di; (°-1)kE-1)—j
H:(z) =
dz? +( P dz * z2(z —1)2 i(2) =0,
for j € Z. Which completed the proof of Proposition. O
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