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CONSTRUCTION OF HOMOGENEOUS LAGRANGIAN

SUBMANIFOLDS IN CP
n AND HAMILTONIAN STABILITY

DAVID PETRECCA AND FABIO PODESTÀ

Abstract. We apply the concept of castling transform of prehomoge-
neous vector spaces to produce new examples of minimal homogeneous
Lagrangian submanifolds in the complex projective space. Furthermore
we verify the Hamiltonian stability of a low dimensional example that
can be obtained in this way.

1. Introduction

Given a 2n-dimensional Kähler manifold (M,g, J) with Kähler form ω, a
n-dimensional submanifold L is said to be Lagrangian if the pull back of ω to
L vanishes. If there exists a Lie group G of Kähler automorphisms ofM such
that L is a G-orbit, then L is said to be a homogeneous Lagrangian. Such a
class provides a large number of examples of Lagrangian submanifolds.

When M = CP
n and the group G is compact and simple, a full classifi-

cation of Lagrangian G-orbits has been obtained in [3], while a full classi-
fication of homogeneous Lagrangian submanifolds of the quadrics has been
achieved by Ma and Ohnita ([9]). Our first result gives a way of producing
new homogeneous Lagrangian submanifolds of the complex projective space
starting from known ones. The construction is based on the main result of
[3] and the castling transform, which will be explained in Section 2, of a
triple (G, ρ, V ) consisting of a compact Lie group G, a complex vector space
V and a representation ρ : G → GL(V ).

Theorem 1. Let (G, ρ, V ) and (G′, ρ′, V ′) be two triplets related by the
castling transformation, where G and G′ are two compact connected semisim-
ple groups. Then the induced action of G on P(V ) admits a Lagrangian orbit
if and only if the same holds for the G′-action on P(V ′).

In [13], Oh introduced the notion of Hamiltonian stability for minimal
Lagrangian submanifolds of a Kähler manifold (M,g, ω). Given a minimal
Lagrangian submanifold ı : L → M , it is said to be Hamiltonian stable if the
second variation of the volume functional through Hamiltonian variations
is nonnegative, where Hamiltonian variations correspond to normal vector
fields V such that the one form ı∗(iV ω) is exact. Hamiltonian stability for
Lagrangian submanifolds of the complex projective space turns out to be a
strictly weaker condition than the usual stability, since e.g. the standard
real projective space RP

n ⊂ CP
n is minimal and Hamiltonian stable, but
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not stable in the usual sense. If we endow CP
n with the standard Fubini-

Study metric gFS with holomorphic sectional curvature c, then Oh ([13])
proved that a minimal Lagrangian submanifold L is stable if and only if the
first eigenvalue λ1(L) for the Laplacian ∆ relative to the induced metric and
acting on C∞(L) satisfies λ1(L) ≥ n+1

2 c. Actually, since λ1(L) ≤ n+1
2 c

for every minimal Lagrangian submanifold of CPn by a result due to Ono
([15]), we see that stability is equivalent to λ1(L) =

n+1
2 c.

It is a natural and interesting problem to classify all minimal, Hamiltonian
stable Lagrangian submanifolds of CPn. In [1], Amarzaya and Ohnita prove
that every minimal Lagrangian submanifold with parallel second fundamen-
tal form is actually stable, while Bedulli and Gori ([2]) and independently
Ohnita ([14]) exhibited the first example of a Hamiltonian stable Lagrangian
submanifold which has non-parallel second fundamental form. This example
sits inside CP

3 and is homogeneous under the action of the group SU(2).
Again using the castling transform, we are able to provide a new, low di-
mensional example,

Theorem 2. The group G = SU(2) × SU(2) acts in a standard way on
V = S2(C2) ⊗ C

2 ∼= C
6 and its induced action on CP

5 has a minimal,
Hamiltonian stable Lagrangian orbit L with non-parallel second fundamental
form. The fundamental group π1(L) is isomorphic to Z4.

We remark that any Lagrangian orbit of a semisimple Lie group is min-
imal, whenever the ambient manifold is Kähler-Einstein (see [3]). We for-
mulate the following

Conjecture. If a compact (semi)simple subgroup G ⊂ SU(N) for some N
admits a Lagrangian orbit O in CP

N−1, then O is Hamiltonian stable.

In Section 2, we prove Theorem 1, while in Section 3 we prove the stability
of our new example by using Oh’s criterium and a direct computation of the
first eigenvalue λ1(L).

Notation. We use capital Latin letters for Lie groups and the corresponding
lowercase Gothic letter for their Lie algebras. If G is a group acting iso-

metrically on the manifold M , for any X ∈ g we denote by X̂ the induced
Killing field on M .

2. Proof of Theorem 1

We first recall some notions that can be found in [7, 16] and their appli-
cation used in [3].

Let U a complex algebraic group, V a complex vector space and ρ a
rational representation of U on V . The triplet (U, ρ, V ) is said to be a
prehomogeneous triplet (PVS) if V admits a Zariski-dense U -orbit Ω. The
isotropy subgroups of points in Ω are all conjugate to a subgroup H ⊆ U ,
which is called the generic isotropy subgroup. The triplet is said to be
irreducible if ρ is.

Two triplets (U, ρ, V ), (U ′, ρ′, V ′) are said to be equivalent if there is a
rational isomorphism ϕ : ρ(U) → ρ′(U ′) and a linear isomorphism τ : V →
V ′ such that for all g ∈ U we have τ ◦ ρ(g) = ϕ(ρ(g)) ◦ τ .
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We can now define the important notion of castling. Two irreducible
triplets (U, ρ, V ) and (U ′, ρ′, V ′) are castling transform of each other if there

exists a third triplet (Ũ , ρ̃, V m) and a positive integer m > n ≥ 1 such that

(U, ρ, V ) ∼= (Ũ × SL(n), ρ̃⊗ Λ1, V
m ⊗ V n)

(U ′, ρ′, V ′) ∼= (Ũ × SL(m− n), ρ̃∗ ⊗ Λ1, V
m∗ ⊗ V m−n).

A triplet is said to be reduced if it is not a castling transform of any other
triplet having a lower dimensional vector space. It is also known that two
castling-related prehomogeneous triplets have isomorphic generic isotropy
subgroups ([16, §2, Prop. 9]).

Given two compact connected groups G,G′ together with two irreducible
representations (ρ, V ) and (ρ′, V ) we say that the triplets (G, ρ, V ) and
(G′, ρ′, V ′) are castling related if the triplets (GC, ρ, V ) and (G′C, ρ′, V ) are
prehomogeneous and castling related in the sense explained above.

In order to prove Theorem 1, we first prove a lemma which has its own
interest.

Lemma 3. Let G a compact connected semisimple Lie group acting lin-
early on some complex vector space endowed with the canonical symplectic
structure. Then there are no Lagrangian G-orbits.

Proof. If L is any G-orbit, the semisimplicity of G implies that π1(L) is
finite, by the long exact homotopy sequence. Therefore H1(L,R) = 0. On
the other hand a classical result due to Gromov [4] states that any com-
pact Lagrangian submanifold of a complex vector space has nontrivial first
cohomology group. �

We now have all the tools to give the

Proof of Theorem 1. Suppose that the G-orbit through [p] ∈ P(V ) is La-
grangian. Then GC · [p] is open Stein by [3]. If U = GC × GL(1) we claim
that the orbit U · p is open Stein in V . In particular we claim that up = gC[p],

which is reductive and therefore U · p is Stein by Matsushima’s characteri-
zation [10]. Indeed

up =
{
(X, z) ∈ gC ⊕ C : Xp = −zp

}
,

in particular X ∈ gC[p], hence X ∈ (g[p])
C because G · [p] is Lagrangian. Now

consider the orbit G·p ⊂ V and note that it is isotropic by a simple argument
involving the expression of the moment map for actions in projective spaces
(see, e.g., [5]). By Lemma 3 it cannot be Lagrangian, so by dimensional
reasons, it is a finite covering of the Lagrangian orbit in P(V ). In particular
gp = g[p]. So if (X, z) ∈ up if and only if X ∈ gCp and z = 0, therefore

up = (g[p])
C as we claimed. Furthermore, U · p is open for dimensional

reasons.
Now we apply a castling transformation to get a triplet (U ′, ρ′, V ′), where

U ′ = G′C × GL(1). This triplet has generic isotropy isomorphic to the
subgroup H = Up, hence still reductive.

Let Ω = U ′/H be the open Stein orbit in V ′. This U ′-orbit projects onto
an open U ′-orbit Ω′ = U ′/H ′ ⊂ P(V ′). In order to prove that G′ admits
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a Lagrangian orbit in P(V ′), we apply the main result in [3], according to
which it is enough to show that Ω′ is Stein. Now, Ω′ is Stein because H ′

is reductive and this follows from standard arguments. Indeed we notice
that H ≤ H ′ is normal and that dimC H ′/H = 1. By reductiveness we have
h′ = h ⊕ m, for some subspace m with [m, h] ⊂ m. Also [h,m] ⊂ h being
h ⊆ h′ an ideal. Hence [h,m] = 0 and m is a one-dimensional and central in
h′. Therefore h′ is reductive as we claimed. �

3. The Example and its stability

Consider the group G = SU(2)× SU(2) acting on V = S2(C2)⊗C
2 ∼= C

6

with the standard representation ρ. We consider the induced action on
P(V ) = CP

5. Let {e1, e2} the standard basis of C2. We may define a unitary

structure on S2(C2) with orthonormal basis given by {e21,
√
2e1e2, e

2
2} with

respect to which the induced action of SU(2) becomes unitary. By tensoring
with the standard basis of C2 we get an orthonormal basis of V . It is known
that this action is Hamiltonian and that the moment map µ : CP5 → g∗ has
the form (see, e.g., again [5])

µ([v])(X,Y ) = − i

2

〈dρ(X,Y )v, v〉
〈v, v〉 ,

where v ∈ V, (X,Y ) ∈ g = su(2)⊕ su(2).
We consider the point p = 1√

2
(e21 ⊗ e1 + e22 ⊗ e2) ∈ V . A straightforward

computation shows that µ([p]) = 0 and, since g is semisimple, we conclude
that the L := G · [p] ⊂ CP

5 is isotropic.
A direct computation shows that the isotropy subgroup K := G[p] is such

that k = R ·H where

H =

((
i 0
0 −i

)
,

(
−2i 0
0 2i

))

and K/Ko = Z4, generated by the coset of the element

σ =

((
0 1
−1 0

)
,

(
0 i
i 0

))
∈ K.

By dimensional reasons L is Lagrangian and moreover π1(L) = Z4. Further-
more, being homogeneous under a semisimple group, the submanifold L is
also minimal by [3]. It is also clear that its second fundamental form is not
parallel by the classification in [12].

3.1. The metric on L. We now compute explicitly the metric g induced on
L by gFS. We denote with B the Cartan-Killing form on g and we consider
the B-orthonormal vectors of g given by

X1 = (X, 0) X2 = (0,X) Y1 = (Y, 0) Y2 = (0, Y ),

where

X =
1√
8

(
0 1
−1 0

)
Y =

1√
8

(
0 i
i 0

)
.

We also define the unitary vector

V =
1

2
√
10

((
2i 0
0 −2i

)
,

(
−i 0
0 i

))
.
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If we put mj := span{Xj , Yj} we have the B-orthogonal splitting

g = k⊕ R · V ⊕m1 ⊕m2.

We now compute the Killing fields at p ∈ S11. We see that

X̂1p =
1

2
√
2

(
−
√
2e1e2 ⊗ e1 +

√
2e1e2 ⊗ e2

)
; X̂2p =

1

4

(
−e21 ⊗ e2 + e22 ⊗ e2

)

Ŷ1p =
i

2
√
2

(√
2e1e2 ⊗ e1 +

√
2e1e2 ⊗ e2

)
; Ŷ2p =

i

4

(
e21 ⊗ e2 + e22 ⊗ e2

)

and

V̂p =
i
√
5

4

(
e21 ⊗ e1 − e22 ⊗ e2

)
.

Starting from the Riemannian submersion S11 → CP
5 for the construction

of the Fubini-Study metric gFS with c = 4 ([8, vol. 2]) we compute their
lengths with respect to the Riemannian metric g on L:

∥∥X̂1[p]

∥∥
g
=

∥∥Ŷ1[p]

∥∥
g
=

1

2

∥∥X̂2[p]

∥∥
g
=

∥∥Ŷ2[p]

∥∥
g
=

1

2
√
2

∥∥V̂[p]

∥∥
g
=

√
5

2
√
2
.

Define now

V1 =
2
√
2√
5
V

and

F1 = 2X1 F2 = 2
√
2X2 G1 = 2Y1 G2 = 2

√
2Y2.

The metric g, induced on G/K by the Fubini-Study metric on CP
5, induces

a metric go on m := R · V ⊕ m1 ⊕ m2. Note that these three submodules
are mutually Ad(K)-inequivalent and therefore mutually orthogonal and the
vectors V1, F1, F2, G1, G2 form a go-orthonormal basis.

3.2. The Laplace operator on C∞(L). We claim that the first eigenvalue
λ1(L) of the Laplacian ∆g on L is equal to the Einstein constant κ = 12 of

gFS on CP
5.

We now recall some general facts about invariant operators on homoge-
neous spaces. If Mn = G/K is a homogeneous space and g = k ⊕ m is an
orthogonal splitting with respect to some Ad(G)-invariant inner product on
g we let S(m) the symmetric algebra of m, S(m)CK the complexification of
the Ad(K)-invariant subspace of S(m) and D(M) the space of G-invariant
differential operators on M . In this notation we recall a well known result
that can be found in [6, 11].

Theorem 4. Let Y1, . . . , Yn a basis of m and identify S(m) with polynomials

in those indeterminates. Then the map λ̂ : S(m)CK −→ D(M) defined by

P (Y1, . . . , Yn)f(xK) = P

(
∂

∂y1
, . . . ,

∂

∂yn

)
f

(
x exp

(∑

i

yiYi

)
K

)
(0)

is a linear isomorphism. Furthermore if Y1, . . . , Yn is an orthonormal basis
with respect to an Ad(K)-invariant scalar product go on m and ∆g is the
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Laplacian corresponding to the G-invariant metric g on M induced by go ,
then

∆g = −λ̂

(∑

i

Y 2
i

)
.

Let ρ : G → U(V ) be a unitary representation of degree dρ of the group
G, let V K be the subspace of V of vectors fixed by the subgroup K where
mρ = dimV K . A representation such that mρ > 0 is said to be a spherical
representation of the pair (G,K). Let {v1, . . . , vdρ} an orthonormal basis of

V such that the first mρ elements are a basis of V K . Define the functions
on G/K given by ρij(xK) = 〈ρ(x)vj , vi〉 with 1 ≤ j ≤ mρ and 1 ≤ i ≤ dρ.

The Peter-Weil Theorem (see e.g. [6]) states that the set of functions
{
√

dρρij}, as ρ varies among all spherical representations of (G,K), is a

complete orthonormal system of L2(M,C) with respect to the standard L2-
norm corresponding to the G-invariant Riemannian metric g.

We now classify all the spherical irreducible representations of our pair
(G,K). Any irreducible representation space is of the form Vk,m = Sk(C2)⊗
Sm(C2) for some k,m ∈ N. Since τ = (id,− id) ∈ K we see that m must be
even, say m = 2n. We have that

H · ep1e
k−p
2 ⊗ eq1e

2n−q
2 = [(2p − k)i+ 4(n− q)i]ep1e

k−p
2 ⊗ eq1e

2n−q
2 .

Computing also σ · (ep1e
2ℓ−p
2 ⊗ eq1e

2n−q
2 ) = (−1)n+pe2ℓ−p

1 ep2 ⊗ e2n−q
1 eq2 we can

conclude that

V K
ℓ,n = span

{
vpq := ep1e

2ℓ−p
2 ⊗ eq1e

2n−q
2 + (−1)n+pe2ℓ−p

1 ep2 ⊗ e2n−q
1 eq2

}

with the relations

(1) p = ℓ+ 2(n− q), 0 ≤ q ≤ 2n, 2n− ℓ ≤ 2q ≤ 2n + ℓ.

At this point we can compute the eigenvalues for the Laplace operator.
Indeed we will explicitly write down the action of the operator

D = dρ(V 2
1 ) + dρ(F 2

1 ) + dρ(F 2
2 ) + dρ(G2

1) + dρ(G2
2)

on the vectors vpq ∈ V K
ℓ,n.

We have that, using the first equality in relations (1),

dρ(V1)
2
(
ep1e

2ℓ−p
2 ⊗ eq1e

2n−q
2

)
= −4(q − n)2

(
ep1e

2ℓ−p
2 ⊗ eq1e

2n−q
2

)
.

Also we compute

dρ(F1)
2 · (ep1e

2ℓ−p
2 ⊗ eq1e

2n−q
2 ) =

1

2

[
p(p− 1)ep−2

1 e2ℓ−p+2
2

− [p(2ℓ− p+ 1) + (2ℓ− p)(p+ 1)]ep1e
2ℓ−p
2

+ (2ℓ− p)(2ℓ− p− 1)ep+2
1 e2ℓ−p+2

2

]
⊗ eq1e

2n−q
2 .

In a similar way we compute
(
dρ(F1)

2+dρ(G1)
2
)
·
(
ep1e

2ℓ−p
2 ⊗eq1e

2n−q
2

)
= 2(p2−2ℓp−ℓ)

(
ep1e

2ℓ−p
2 ⊗eq1e

2n−q
2

)

and
(
dρ(F2)

2+dρ(G2)
2
)
·
(
ep1e

2ℓ−p
2 ⊗eq1e

2n−q
2

)
= 4(q2−2nq−n)

(
ep1e

2ℓ−p
2 ⊗eq1e

2n−q
2

)
.
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A direct check shows that the vectors vpq ∈ V K
ℓ,n are eigenvectors for the

operator D, and therefore

−∆gρpq,αβ(xK) = 〈ρ(x)Dvpq, vαβ〉
= λpqρpq,αβ(xK)

with eigenvalue

λpq = 2(2(q − n)2 − (p2 − 2ℓp− ℓ)− 2(q2 − 2nq − n))

= 2(2n2 + 2n+ ℓ2 + ℓ− (2q − 2n)2).

For any natural numbers ℓ, n let Fℓ,n the set of pairs (p, q) satisfying the
relations in (1). Define

λℓ,n
1 := min

(p,q)∈Fℓ,n

λpq

so that the least eigenvalue for the Laplace operator is

λ1(L) = min
ℓ,n

λℓ,n
1 ,

as (ℓ, n) varies among the natural numbers giving rise to a spherical repre-
sentation of (G,K).

Now note that |2q− 2n| ≤ ℓ and therefore λ1(L) ≥ 2(2n2 +2n+ ℓ2) ≥ 24
if n ≥ 2, so we analyze the following cases

• If n = 0 then q = 0 and p = ℓ so V Ko

ℓ,0 is spanned by the vector eℓ1e
ℓ
2

and this vector is fixed by σ if and only if ℓ is even. Therefore Vℓ,0

is spherical only if ℓ ≥ 2 and this implies λ1(L) ≥ 2(ℓ+ ℓ2) ≥ 12;
• If n = 1 and ℓ ≥ 2 then λ1(L) ≥ 2(4 + ℓ2) ≥ 16, so we can assume
ℓ ≤ 1.

– If ℓ = 0, then V Ko

0,1 is spanned by e1e2, but it is reversed by σ,

so V K
0,1 is trivial;

– If ℓ = 1, then p = 1 + 2q − 2 with 0 ≤ q ≤ 2, hence p = q = 1.
Then V K

1,1 is spanned by e1e2⊗e1e2 and therefore V1,1 is spherical
and

λ11 = 2(4 + 1 + 1) = 12.

So λ1(L) attains its lower bound which is equal to the Einstein constant
κ = 12.
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