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CONSTRUCTION OF HOMOGENEOUS LAGRANGIAN
SUBMANIFOLDS IN CP" AND HAMILTONIAN STABILITY

DAVID PETRECCA AND FABIO PODESTA

ABSTRACT. We apply the concept of castling transform of prehomoge-
neous vector spaces to produce new examples of minimal homogeneous
Lagrangian submanifolds in the complex projective space. Furthermore
we verify the Hamiltonian stability of a low dimensional example that
can be obtained in this way.

1. INTRODUCTION

Given a 2n-dimensional Kéahler manifold (M, g, J) with Kéhler form w, a
n-dimensional submanifold L is said to be Lagrangian if the pull back of w to
L vanishes. If there exists a Lie group G of Kéhler automorphisms of M such
that L is a G-orbit, then L is said to be a homogeneous Lagrangian. Such a
class provides a large number of examples of Lagrangian submanifolds.

When M = CP" and the group G is compact and simple, a full classifi-
cation of Lagrangian G-orbits has been obtained in [3], while a full classi-
fication of homogeneous Lagrangian submanifolds of the quadrics has been
achieved by Ma and Ohnita ([9]). Our first result gives a way of producing
new homogeneous Lagrangian submanifolds of the complex projective space
starting from known ones. The construction is based on the main result of
[3] and the castling transform, which will be explained in Section [, of a
triple (G, p, V') consisting of a compact Lie group G, a complex vector space
V and a representation p : G — GL(V).

Theorem 1. Let (G,p,V) and (G',p', V') be two triplets related by the
castling transformation, where G and G' are two compact connected semisim-
ple groups. Then the induced action of G on P(V') admits a Lagrangian orbit
if and only if the same holds for the G'-action on P(V').

In [I3], Oh introduced the notion of Hamiltonian stability for minimal
Lagrangian submanifolds of a Kéhler manifold (M, ¢g,w). Given a minimal
Lagrangian submanifold ¢+ : L — M, it is said to be Hamiltonian stable if the
second variation of the volume functional through Hamiltonian variations
is nonnegative, where Hamiltonian variations correspond to normal vector
fields V' such that the one form ¢*(iyw) is exact. Hamiltonian stability for
Lagrangian submanifolds of the complex projective space turns out to be a
strictly weaker condition than the usual stability, since e.g. the standard
real projective space RP" C CP" is minimal and Hamiltonian stable, but
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not stable in the usual sense. If we endow CP™ with the standard Fubini-
Study metric grg with holomorphic sectional curvature ¢, then Oh ([13])
proved that a minimal Lagrangian submanifold L is stable if and only if the
first eigenvalue A; (L) for the Laplacian A relative to the induced metric and
acting on C*(L) satisfies A1(L) > 2 c. Actually, since \ (L) < 2 ¢
for every minimal Lagrangian submanifold of CP"™ by a result due to Ono
([15]), we see that stability is equivalent to A;(L) = 2 c.

It is a natural and interesting problem to classify all minimal, Hamiltonian
stable Lagrangian submanifolds of CP". In [1], Amarzaya and Ohnita prove
that every minimal Lagrangian submanifold with parallel second fundamen-
tal form is actually stable, while Bedulli and Gori ([2]) and independently
Ohnita ([14]) exhibited the first example of a Hamiltonian stable Lagrangian
submanifold which has non-parallel second fundamental form. This example
sits inside CP? and is homogeneous under the action of the group SU(2).
Again using the castling transform, we are able to provide a new, low di-
mensional example,

Theorem 2. The group G = SU(2) x SU(2) acts in a standard way on
V = S%(C?) ® C? = CS and its induced action on CP® has a minimal,
Hamiltonian stable Lagrangian orbit L with non-parallel second fundamental
form. The fundamental group m (L) is isomorphic to Zy.

We remark that any Lagrangian orbit of a semisimple Lie group is min-
imal, whenever the ambient manifold is Kahler-Einstein (see [3]). We for-
mulate the following

Conjecture. If a compact (semi)simple subgroup G C SU(N) for some N
admits a Lagrangian orbit © in CPN = then O is Hamiltonian stable.

In Section 2, we prove Theorem [T, while in Section [Blwe prove the stability
of our new example by using Oh’s criterium and a direct computation of the
first eigenvalue A1 (L).

Notation. We use capital Latin letters for Lie groups and the corresponding
lowercase Gothic letter for their Lie algebras. If G is a group acting iso-
metrically on the manifold M, for any X € g we denote by X the induced
Killing field on M.

2. PROOF OF THEOREM [I]

We first recall some notions that can be found in [7, [16] and their appli-
cation used in [3].

Let U a complex algebraic group, V a complex vector space and p a
rational representation of U on V. The triplet (U,p,V) is said to be a
prehomogeneous triplet (PVS) if V' admits a Zariski-dense U-orbit §). The
isotropy subgroups of points in {2 are all conjugate to a subgroup H C U,
which is called the generic isotropy subgroup. The triplet is said to be
irreducible if p is.

Two triplets (U, p, V), (U’,p/, V') are said to be equivalent if there is a
rational isomorphism ¢ : p(U) — p/(U’) and a linear isomorphism 7 : V —
V"’ such that for all g € U we have 70 p(g) = p(p(g)) o 7.
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We can now define the important notion of castling. Two irreducible
triplets (U, p, V') and (U’, p/, V') are castling transform of each other if there
exists a third triplet (U, p, V™) and a positive integer m > n > 1 such that

(U,p,V) = (U x SL(n),p @ A, V" @ V")
(U, p, V') =2 (U x SL(m —n),p* @ A, V™ @ V7).

A triplet is said to be reduced if it is not a castling transform of any other
triplet having a lower dimensional vector space. It is also known that two
castling-related prehomogeneous triplets have isomorphic generic isotropy
subgroups ([16, §2, Prop. 9]).

Given two compact connected groups G, G’ together with two irreducible
representations (p, V) and (p/,V) we say that the triplets (G,p,V) and
(G', p', V') are castling related if the triplets (G, p, V) and (G'®,p/, V) are
prehomogeneous and castling related in the sense explained above.

In order to prove Theorem [I, we first prove a lemma which has its own
interest.

Lemma 3. Let G a compact connected semisimple Lie group acting lin-
early on some complex vector space endowed with the canonical symplectic
structure. Then there are no Lagrangian G-orbits.

Proof. If L is any G-orbit, the semisimplicity of G implies that (L) is
finite, by the long exact homotopy sequence. Therefore H'(L,R) = 0. On
the other hand a classical result due to Gromov [4] states that any com-
pact Lagrangian submanifold of a complex vector space has nontrivial first
cohomology group. O

We now have all the tools to give the

Proof of Theorem[1l. Suppose that the G-orbit through [p] € P(V) is La-
grangian. Then G - [p] is open Stein by [3]. If U = G€ x GL(1) we claim
that the orbit U -p is open Stein in V. In particular we claim that u, = g%,

which is reductive and therefore U - p is Stein by Matsushima’s characteri-
zation [10]. Indeed

u, = {(X,z) cgteC:Xp= —zp},

in particular X € g%, hence X € (g[p])(c because G - [p] is Lagrangian. Now
consider the orbit G-p C V and note that it is isotropic by a simple argument
involving the expression of the moment map for actions in projective spaces
(see, e.g., [0]). By Lemma [3] it cannot be Lagrangian, so by dimensional
reasons, it is a finite covering of the Lagrangian orbit in P(V'). In particular
gp = gp- So if (X,z) € u, if and only if X € gg and z = 0, therefore
u, = (g))°
reasons.

Now we apply a castling transformation to get a triplet (U’, p/, V'), where
U' = G'® x GL(1). This triplet has generic isotropy isomorphic to the
subgroup H = U, hence still reductive.

Let Q = U’/H be the open Stein orbit in V’. This U’-orbit projects onto
an open U'-orbit ' = U’'/H' C P(V’). In order to prove that G’ admits

as we claimed. Furthermore, U - p is open for dimensional
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a Lagrangian orbit in P(V”), we apply the main result in [3], according to
which it is enough to show that € is Stein. Now, ' is Stein because H’
is reductive and this follows from standard arguments. Indeed we notice
that H < H’ is normal and that dim¢ H'/H = 1. By reductiveness we have
b’ = b & m, for some subspace m with [m,h] C m. Also [h,m] C b being
h C b’ an ideal. Hence [h,m] = 0 and m is a one-dimensional and central in
b’. Therefore b’ is reductive as we claimed. O

3. THE EXAMPLE AND ITS STABILITY

Consider the group G' = SU(2) x SU(2) acting on V = S?(C?) ® C? = CS
with the standard representation p. We consider the induced action on
P(V) = CP. Let {ey,es} the standard basis of C2. We may define a unitary
structure on S?(C?) with orthonormal basis given by {e?,1/2eje, €3} with
respect to which the induced action of SU(2) becomes unitary. By tensoring
with the standard basis of C? we get an orthonormal basis of V. It is known
that this action is Hamiltonian and that the moment map p : CP® — g* has

the form (see, e.g., again [5])
()X, Y) = _5%

where v € V, (X,Y) € g = su(2) @ su(2).

We consider the point p = %(e% ®e1+e3®ex) € V. A straightforward
computation shows that u([p]) = 0 and, since g is semisimple, we conclude
that the L := G - [p] C CP? is isotropic.

A direct computation shows that the isotropy subgroup K := G|y is such
that ¢ =R - H where

7= (o 2" 2))

and K/K° = Z,4, generated by the coset of the element

(50 ) e

By dimensional reasons L is Lagrangian and moreover m (L) = Z4. Further-
more, being homogeneous under a semisimple group, the submanifold L is
also minimal by [3]. It is also clear that its second fundamental form is not
parallel by the classification in [12].

3.1. The metric on L. We now compute explicitly the metric g induced on
L by grs. We denote with B the Cartan-Killing form on g and we consider
the B-orthonormal vectors of g given by

X, = (X,0) X, = (0, X) Y; = (Y,0) Yo =(0,Y),

where
1 0 1 1 /0 4
=500 =m0 )

We also define the unitary vector

(8 GY)
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If we put m; := span{Xj,Y;} we have the B-orthogonal splitting
g=taR-Ve&m &ms.

We now compute the Killing fields at p € S''. We see that

—~ — 1

Xip = 2\/_( V2eier @ e1 + V2162 @ €3); Xop = Z(—G% ® es + €5 ® eo)

— —_
Ylp:—(\/_eleg®61—|—\/§eleg®eg); ng:—(6%®€2+€%®62)
2V/2 4
and

‘//\}, Z\/—(61®€1 6%@62).

Starting from the Riemannian submersion S'' — CP® for the construction
of the Fubini-Study metric grpg with ¢ = 4 ([8, vol. 2]) we compute their
lengths with respect to the Riemannian metric g on L:

Tl = Tl =3 %ol = 1%, = s

5 V5

Vol = Y2,

Vil = 2
Define now 5
2v/2

Vi =—V
s

and
Fl = 2X1 F2 = 2\/§X2 Gl = 2Y1 G2 — 2\/5}/2

The metric g, induced on G/K by the Fubini-Study metric on CP?, induces
a metric g, on m := R -V @& m; @& my. Note that these three submodules
are mutually Ad(K)-inequivalent and therefore mutually orthogonal and the
vectors Vi, F1, Fo, G1,Go form a g,-orthonormal basis.

3.2. The Laplace operator on C*°(L). We claim that the first eigenvalue
A1(L) of the Laplacian A, on L is equal to the Einstein constant x = 12 of
grg on CP?.

We now recall some general facts about invariant operators on homoge-
neous spaces. If M"™ = G/K is a homogeneous space and g = £ ® m is an
orthogonal splitting with respect to some Ad(G)-invariant inner product on
g we let S(m) the symmetric algebra of m, S(m)% the complexification of
the Ad(K)-invariant subspace of S(m) and D(M) the space of G-invariant
differential operators on M. In this notation we recall a well known result
that can be found in [6, [11].

Theorem 4. Let Y1,...,Y, a basis ofm and identify S(m) with polynomials
in those mdetermmates Then the map A : S(m)§ — D(M) defined by

P(Yi,...,Y)f(zK) = P((?iyl’ . %>f<xexp<zi:ym>f(> (0)

s a linear isomorphism. Furthermore if Y1,...,Y, is an orthonormal basis
with respect to an Ad(K)-invariant scalar product g, on m and Ay is the
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Laplacian corresponding to the G-invariant metric g on M induced by g, ,

then
Ag::—X<§:yf>.

Let p: G — U(V) be a unitary representation of degree d, of the group
G, let VE be the subspace of V of vectors fixed by the subgroup K where
m, = dim VE . A representation such that m, > 0 is said to be a spherical
representation of the pair (G, K). Let {v1,...,v4,} an orthonormal basis of
V such that the first m, elements are a basis of VE. Define the functions
on G/K given by pi(xK) = (p(x)vj,v;) with 1 < j <m, and 1 < i < d,.

The Peter-Weil Theorem (see e.g. [6]) states that the set of functions
{\/d,pi;}, as p varies among all spherical representations of (G, K), is a
complete orthonormal system of L?(M, C) with respect to the standard L?-
norm corresponding to the G-invariant Riemannian metric g.

We now classify all the spherical irreducible representations of our pair
(G, K). Any irreducible representation space is of the form Vj, ,, = S¥(C?)®
S™(C?) for some k,m € N. Since 7 = (id, —id) € K we see that m must be
even, say m = 2n. We have that

H- 6162 P @eled ™ = [(2p — k)i 4 4(n — q)i ]6162 P @ele2t .
Computing also o - (Fe2 P @ ele2" ™) = (—1)Pe2 Pl @ 2" el we can
conclude that

Vh = span{qu = el P @ eled™ ™ 4 (—1)"HPe P @ o3 qeg}
with the relations
=L+ 2(n— <qg<2n n—4£< <2n +£.
1 p=~+2 q), 0<q<2n, 2 0<2q<2 14

At this point we can compute the eigenvalues for the Laplace operator.
Indeed we will explicitly write down the action of the operator

D = dp(V{’) + dp(F}) + dp(F3) + dp(GT) + dp(G3)

on the vectors vy, € V/fl
We have that, using the first equality in relations (),

dp(V7)? (e’fe; P@eley' ™) = —4(q—n)2(e€62€ P@eley ).

Also we compute

1
dp(Fy)? (611)62 P @eled ) = 5P p(p—1)ed ™2 2€ —p+2

=~ [P0 —p+1)+ 20— p)p+ Defe "
+(20-p)20—p—1)e P2, 2@ p+2 ®eq 2n—q
In a similar way we compute
(dp(F1)2+dp(G1) )- (611)62 Pele; n- 1) = 2(p2—2€p—€)(ezl’e2 Pele 2n7q)

and

(dﬂ(F2)2—|—dp(G2) ) (611)62[ p®61 2n— q) :4(q2_2nq_n)(e]1262€ p®61 2n—q).
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A direct check shows that the vectors v,, € Vf; are eigenvectors for the
operator D, and therefore

_Agpp%aﬁ(xK) = <p($)DquavaB>
= ApgPpg,ap(TK)

with eigenvalue
Apg = 2(2(q — n)® = (p? — 2p — £) — 2(¢* — 2nq — n))
=2(2n% +2n + 02 + 0 — (29 — 2n)?).

For any natural numbers ¢,n let F;,, the set of pairs (p,q) satisfying the
relations in ({I). Define
)\f’n = min )y
(P, 9)EFe,n
so that the least eigenvalue for the Laplace operator is
Ar(L) = min AP",
ln

as (¢,n) varies among the natural numbers giving rise to a spherical repre-
sentation of (G, K).

Now note that |2¢ — 2n| < £ and therefore \;(L) > 2(2n? +2n + (?) > 24

if n > 2, so we analyze the following cases

e If n=0then ¢g=0and p="/so0 VZgO is spanned by the vector eli eg

and this vector is fixed by o if and only if £ is even. Therefore Vo
is spherical only if £ > 2 and this implies A\ (L) > 2(¢ + £?) > 12;
e If n=1and ¢ > 2 then \;(L) > 2(4 + £?) > 16, so we can assume
L <1.
— If £ =0, then V(f(lo is spanned by ejeo, but it is reversed by o,
SO V()I,(l is trivial;
—If¢=1thenp=1+2¢g—2with 0 <¢g <2, hencep=qg=1.
Then ‘/1{(1 is spanned by ejea®eq ez and therefore Vi 1 is spherical
and
A1 :2(4+1+1) =12.
So A1(L) attains its lower bound which is equal to the Einstein constant
K =12.
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