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PHYLOGENETIC INVARIANTS FOR GROUP-BASED
MODELS

MARIA DONTEN-BURY AND MATEUSZ MICHA LEK

Abstract. In this paper we investigate properties of algebraic va-
rieties representing group-based phylogenetic models. We give the
(first) example of a nonnormal general group-based model for an
abelian group. Following Kaie Kubjas [Kub10] we also determine
some invariants of group-based models showing that the associated
varieties do not have to be deformation equivalent. We propose a
method of generating many phylogenetic invariants and in partic-
ular we show that our approach gives the whole ideal of the claw
tree for 3-Kimura model under the assumption of the conjecture of
Sturmfels and Sullivant [SS05]. This, combined with the results in
[SS05], would enable to determine all phylogenetic invariants for
any tree for 3-Kimura model and possibly for other group-based
models.

1. Introduction

Phylogenetics is a science that tries to reconstruct the history of
evolution. It is strongly connected with many branches of mathematics
including algebraic geometry. To each possible history of evolution,
represented by a tree, one can associate an algebraic variety, whose
points correspond to possible probability distributions on the DNA
states of the living species. For a detailed introduction the reader is
advised to look in [PS05] and for an algebraic point of view in [ERSS04].

Biologists are mostly interested in phylogenetic invariants, that are
polynomials defining the variety. It is very hard to find them in general,
however for some special models of evolution much progress has been
made. In this paper we are dealing with a large class of equivariant
models [DK09] – so called G-models, that are represented by toric
varieties (see [Mic10]). The most influential paper in this area is [SS05],
where the authors gave the description of the generators of the ideal,
assuming that the ideal of the claw tree is known. Unfortunately not
much is known on the ideals of the claw trees. In particular we do
not even know if the degree in which they are generated is bounded
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while the number of leaves grows to infinity (Conjecture 1 and 2 in
[SS05]). In this paper we propose a method of finding the ideals of the
claw trees using a geometric approach. We conjecture that the varieties
associated to large claw trees are intersections of varieties

associated to trees of smaller valency. This would enable to recur-
sively generate ideals. An interesting fact is that we can show that our
conjecture is equivalent to the one made by Sturmfels and Sullivant for
the 3-Kimura model (for the details see section 4).

We also try to investigate properties of algebraic varieties represent-
ing phylogenetic models. In particular we give an example of a model
associated to an abelian group that gives a non-normal variety. The re-
sults on normality are strongly connected to deformation problems. It
is well-known that algebraic varieties representing trivalent trees with
the same number of leaves are deformation equivalent for the binary
model. The original geometric proof can be found in [BW07] and a
new, more combinatorial one, in [Ilt10]. A new result of Kaie Kubjas
shows that this is not true for the 3-Kimura model [Kub10]. The idea
of the proof is to calculate the number of integer points in nP , where P
is the polytope associated to the algebraic model of phylogenetic tree.
This task is much easier for normal varieties (in this case we obtain
Hilbert-Ehrhart polynomial of the algebraic model).

One of the tools that we use is a program that computes the polytope
defining a toric variety for a given tree and a group (see section 2.1).
Our program, implementing the algorithm described in [Mic10], can
be found at http://www.mimuw.edu.pl/~marysia/polytopes (with
a detailed instruction and specification of the input and output data
format).
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2. G-models

The first idea of G-models appears in [BDW09] and precise defi-
nitions can be found in [Mic10]. A G-model is an algebraic variety
associated to a tree and a group G with a normal, abelian subgroup H .
We assume that the tree is rooted and the edges are directed away from
the root. In phylogenetics the tree describes the history of evolution.
The groups encode possible mutation mechanism. We assume that G
acts on the set of states A and that by this action the subgroup H acts
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transitively and freely. The case when G = H is classical and was a
subject of many studies – see [SS05] and references therein.

In the general case the G-model is known to be toric (but not neces-
sarily normal) and the vertices of the defining polytope correspond to
networks [Mic10].

Definition 2.1. Let O be the set of orbits of the action of G on the
dual group H∗. A network is a function n : E → O, where E is the set
of edges of the tree. Moreover we require that for any inner vertex v
of the tree, e0 an incoming edge and e1, . . . , ek outcoming edges, there
exist characters χi ∈ n(ei) such that

χ0 = χ1 + · · · + χk.

We say that the signed sum of characters around each inner vertex is
the trivial character.

Let us note that given a network n we can choose representatives
χe ∈ n(e) for each edge, such that the signed sum of characters χe

around each inner vertex is trivial. We see also that if G = H then
the set of orbits is the same as H∗. Moreover in this case to define a
network it is enough to define it on all but one leaves, and then expand
it using inner vertices. In this case the sum of characters associated to
leaves is trivial.

2.1. Algorithm of finding the polytope. In [Mic10, Sect. 4] there
is a description of a simple algorithm which for a given G-model com-
putes the coordinates of the vertices of the polytope related to this
model. For all our computations we need to pass from an abstract
model to a polytope as a first step. Hence we start describing the com-
putational results from a few remarks about the implementation of this
algorithm for G abelian.

There are two non obvious points in the implementation. One is
step 2 of the algorithm: making a choice of an outcoming edge from
each vertex (the tree is rooted and the edges are directed from the root).
It is much easier to choose incoming edge for each vertex except the
root, as this choice is almost canonical (depends only on the rooting), so
does not have to be stored in the memory. The second interesting point
is how to write the program to obtain the complexity O(|N ||G||E\N |)
(E is the set of edges and N is the set of inner vertices of the tree), as
predicted in [Mic10]. This requires group operations being performed in
unit time. We can easily achieve this by precomputing group operations
and storing the table of results – groups we want to work with are small
enough. At the moment the program can operate only on a few groups
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defined in the source, but it is not very complicated to make it possible
to read the permutation group from the file (and precompute group
operations).

As a result we have a fast program which takes a tree in a simple
text format as an input and allows to choose one of the groups from
the library. It computes the list of vertices of a polytope associated to
the input model and writes it to a file. It also enables the user to work
with this polytope, given as an object of an inner class, in the further
computations.

However the current version is correct only for abelian groups, there
is also a procedure of determining the polytope for a general G-model.
An example is given in [Mic10] (and in general the algorithm works in
a very similar way). We will probably implement the extended version
in the future. By now we needed it only in a few cases, simple enough
to proceed without a program.

3. Computational results

3.1. Example of non-normal G-model. Knowing that the projec-
tive variety associated to a G-model is toric, it is natural to ask whether
it is normal. Computations described in [Mic10] have shown that G-
models for the groups Z2, Z3, Z4 and Z2×Z2 are normal, but 2-Kimura
model is not normal. We are interested in the question whether all
models for abelian (or at least cyclic) groups are normal. Now, using
the previously described program and Polymake (see [GJ00]) we are
able to check normality for a few more models.

More precisely, because of Lemma 5.1 from [Mic10], it is enough to
check normality for the tripod (a tree with one inner vertex and three
leaves). Hence if we check normality for the chosen group and the
tripod, we know whether all algebraic varieties for this group and any
trivalent tree are normal. Using our program we can obtain the set
of vertices of the polytope related to the investigated group and the
tripod. Finally we apply Polymake [GJ00] to check the normality of
this polytope (in the lattice generated by its vertices). Thus we obtain

Computation 3.1. The polytope associated with G-model for the tri-
pod and the group G = H = Z6 is not normal. Hence the algebraic
variety representing this model is not normal.

In particular, the class of abelian models contains non-normal mod-
els. We believe it can be difficult to characterize the class of groups for
which G-models are normal, or even to determine a big (infinite) class
of normal, toric G-models. On the other hand one has the following
result:



PHYLOGENETIC INVARIANTS FOR GROUP-BASED MODELS 5

Proposition 3.2. Let T be a phylogenetic tree and let G1 be a subgroup
of an abelian group G2. If the variety corresponding to the tree T and
group G1 is not normal then the variety correpsonding to the tree T
and group G2 is also not normal.

Proof. Let Mi be a lattice whose basis is indexed by pairs of an edge
of a tree and an element of the group Gi. The inclusion G1 ⊆ G2 gives
us a natural injective morphism f : M1 → M2. Let Pi ⊂ Mi be the
polytope associated to the model for the tree T and group Gi. Let
M̃i ⊂ Mi be a sublattice spanned by vertices of the polytope Pi.

As P1 is not normal in the lattice spanned by its vertices, there exists
a point x ∈ nP1∩M̃1, that is not a sum of n vertices of the polytope P1.
Let us consider y = f(x). The vertices of P1 are mapped to vertices of
P2. We see that y ∈ nP2 ∩ M̃2. If P2 was normal in M̃2 we would be
able to write y =

∑n

i=1
qi with qi ∈ P2.

Let us notice that each point in the image f(M1) has got zero on
each entry of the coordinates indexed by any edge and any element of
the group g ∈ G2 \ G1. In particular y has got zero on these entries.
As all entries of all vertices of P2 are nonnegative, this proves that all
entries indexed by any edge and any element of the group g ∈ G2 \G1

are zero for qi. However, we see that vertices of P2 that have got all non
zero entries on coordinates indexed by pairs of an edge and an element
g ∈ G1 are in the image of P1. Hence qi = f(pi) for pi ∈ P1. We see
that x =

∑
pi, which is impossible. �

In particular we see that all abelian groups G such that |G| is divisible
by 6 give rise to non-normal models.

3.2. Hilbert-Ehrhart polynomials. The binary model (for trivalent
trees) has an interesting property, stated and proved in [BW07]: an
elementary mutation of a tree gives a deformation of the associated
varieties (see Construction 3.23). This implies that binary models of
trivalent trees with the same number of leaves are deformation equiva-
lent (Theorem 3.26 in [BW07]). As it was not obvious what to expect
for other G-models, we computed Hilbert-Ehrhart polynomials, which
are invariants of deformation, in some simple cases.

3.2.1. Numerical results. We checked models for two different trees
with six leaves (this is the least number of leaves for which there are
non-isomorphic trees, exactly two), the snowflake and the 3-caterpillar.
The most interesting ones were the cases of the biologically meaningful
2-Kimura and 3-Kimura models.
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The value of the Ehrhart polynomial of a polytope P for a natural
number n is the number of lattice points in nP . Thus one way to de-
termine the Hilbert-Ehrhart polynomial of a G-model is to compute
numbers of lattice points in some multiples of its polytope. Even if it
is not possible to get enough data to determine the polynomials (eg.
because numbers are too big), sometimes we can say that polynomi-
als for two models are not equal, because their values for some n are
different.

Before we completed our computations, Kaie Kubjas computed num-
bers of lattice points in the third dilations of the polytopes for 3-Kimura
model on the snowflake and the 3-caterpillar with 6 leaves and got
69248000 and 69324800 points respectively ([Kub10]). Thus she proved
that varieties associated with these models are not deformation equiv-
alent.

Our computations confirm her results as for the 3-Kimura model and
also give the following

Computation 3.3. The varieties associated with 2-Kimura models for
the snowflake and the 3-caterpillar trees have different Ehrhart polyno-
mials. In the second dilations of the polytopes there are 56992 lattice
points for the snowflake and 57024 for the 3-caterpillar.
Also the pairs of varieties associated with G-models for the snowflake

and the 3-caterpillar trees and

(1) G = H = Z3,
(2) G = H = Z4,
(3) G = H = Z5,
(4) G = H = Z7

have different Hilbert-Ehrhart polynomials and therefore are not defor-
mation equivalent. (For these pairs G-models are normal, which can be
checked using Polymake.) The precise results of the computations are
presented in the Appendix.
In the cases of

(1) G = H = Z8,
(2) G = H = Z2 × Z2 × Z2,
(3) G = H = Z9

the varieties have got different Hilbert functions. We were not able to
check if they are normal, however if they are then the Hilbert-Ehrhart
polynomials are different.

3.2.2. Some technical details. We tried two methods of computing num-
bers of lattice points in dilations of a polytope. The first attempt was
the direct method: constructing the list of lattice points in nP by
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adding vertices of P to lattice points in (n−1)P and reducing repeated
entries. This method is not efficient, it needs a lot of memory to work.
At first it did not work good enough to obtain numbers of lattice points
in 3P for 3-Kimura, but after a few technical upgrades (encoding se-
quences of coordinates as decimal numbers or, better, numbers in the
system with the base 4) we were able to confirm Kaie Kubjas’ results.
The main problem with this method, apart from its inefficiency, is the
fact that it works correctly only for normal polytopes. This follows
just from the definition of normality for polytopes. As we wanted to
investigate 2-Kimura model, we had to implement another algorithm.

The second idea is to compute inductively the relative Hilbert poly-
nomials, i.e. number of points in the n dilation of the polytope inter-
sected with the fiber of the projection onto the group of coordinates
that correspond to a given leaf. Our approach is quite similar to the
methods used in [Kub10] and [Sul07].

First we compute two functions for the tripod. Let P ⊂ Z
3m ∼=

Zm×Zm×Zm be the polytope associated to a tripod. Let pri : Z3m ∼=
Zm×Zm×Zm → Zm be a projection onto the i-th group of coordinates.
We distinguish one edge of the tripod corresponding to the third group
of coordinates in the lattice. Let f be a function such that f(a) for
a = (a1, . . . , am) ∈ Zm is the number of lattice points in (a1+· · ·+am)P
that project to a by pr3. We compute f(a) for sufficiently many a to
proceed with the algorithm.

Example 3.4. The polytope P for the binary model has the following
vertices:

v1 = (0, 1, 0, 1, 0, 1),

v2 = (0, 1, 1, 0, 1, 0),

v3 = (1, 0, 0, 1, 1, 0),

v4 = (1, 0, 1, 0, 0, 1).

These are only integral points in P . In this case f(1, 0) = 2 because
there are only two points, (1, 0, 0, 1, 1, 0) and (0, 1, 1, 0, 1, 0), that are in
1P = P and project to (1, 0) via the third projection.

The function f will be our base for induction. Next, we need to
know how many points are there in the fiber of the projection onto
two distinguished leaves. Let g be a function such that g(a, b) for
(a, b) = (a1, . . . , am, b1, . . . , bm) ∈ Zm × Zm is the number of lattice
points in (a1 + · · · + am)P that project to a by pr3 and to b by pr2.
We compute g(a, b) for sufficiently many (a, b) to proceed with the
algorithm.
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Let T be a tree with a corresponding polytope P and a distinguished
leaf l. Let h be a function such that h(a) for a = (a1, . . . , am) ∈
Z
m is equal to the number of points in the fiber of the projection

corresponding to leaf l of (a1 + · · · + am)P onto a. We construct a
new tree T ′ by attaching a tripod to a chosen leaf of T . We call T ′

a join of T and the tripod. The chosen leaf of T ′ will be one of the
leaves of the attached tripod. As proved in [BW07], [SS05], [Mic10],
[Sul07] (depending on the model), the polytope associated to a join
of two trees is a fiber product of the polytopes associated to these
trees. Thus we can calculate the function h′ for T ′ by a following rule:
h′(a) =

∑
b g(a, b)h(b), where the sum is taken over all b ∈ Zm such

that g(a, b) 6= 0.
This allows us to compute inductively the relative Hilbert polyno-

mial. The last tripod could be attached in the same way. Then one
obtains the Hilbert function from relative Hilbert functions simply by
summing up over all possible projections. However, it is better to do
the last step in a different way.

Suppose that as before we are given a tree T with a distinguished
leaf l and a corresponding relative Hilbert function h. We compute the
Hilbert function of the tree T ′ that is a join of the tree T and a tripod
using the equality h′(n) =

∑
a f(a)h(a), where a = (a1, . . . , am) and∑

ai = n. The function f is the basis for induction introduced above.
Thus, decomposing the snowflake and the 3-caterpillar trees to joins

of tripods, we can inductively compute (a few small values of) the cor-
responding Hilbert functions. This method works also for non-normal
models, if only the Hilbert function for the tripod can be computed.
In particular, for 2-Kimura model the computations turned out to be
possible, because its polytope for the tripod is quite well understood
(see [Mic10], 5.4), at least to describe fully its second dilation. This
way we obtained the results of 3.3.

4. Phylogenetic invariants

In this section we investigate the most important objects of phyloge-
netic algebraic geometry – ideals of phylogenetic invariants. The main
problem in this area is to give an effective description of the whole ideal
of the variety associated to a given model on a tree. Our task is to find
an efficient way to compute generators of these ideals.

We suggest a way of obtaining all phylogenetic invariants of a claw
tree of a G-model - more precisely we conjecture that our invariants
generate the whole ideal of the variety. These, together with the results
of [SS05] could provide an algorithm listing all generators of the ideal
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of phylogenetic invariants for any tree and for any G-model (so in
particular for a general group-based model).

4.1. Inspirations. The inspirations for our method were the conjec-
tures made by Sturmfels and Sullivant in [SS05]. They are still open
but, as we will see, they strongly support our ideas. In particular, we
will prove later that our algorithm works for the 3-Kimura model if we
assume that the weaker conjecture made in [SS05] holds.

First we introduce some notation. Let Kn,1 be a claw tree with n
leaves. Let φ(G, n) = d be the least natural number such that the
ideal associated to Kn,1 for the group based model G is generated in
degree d. The phylogenetic complexity of the group G is defined as
φ(G) = supnφ(G, n). Based on some numerical results Sturmfels and
Sullivant suggested the following conjecture:

Conjecture 4.1. For any abelian group G we have φ(G) ≤ |G|.

This conjecture was separately stated for the 3-Kimura model, that
is for G = Z2 × Z2.

Still very little is known about the function φ apart from the case of
the binary model (see also [CP07]):

Proposition 4.2 (Sturmfels, Sullivant). In case of the binary model
φ(Z2) = 2.

There are also some computational results – to the table in [SS05]
presenting the computations presenting the computations made by
Sturmfels and Sullivant a few cases can be added.

Computation 4.3. Using 4ti2 software [tt] we obtained the following:

• φ(6,Z3) = 3,
• φ(4,Z5) = 4,
• φ(3,Z8) = 8,
• φ(3,Z2 × Z2 × Z2) = 8.

For the 3-Kimura model we do not even know whether the function
φ is bounded. As we will see later, this conjecture is strongly related
to the one stated in the next section.

4.2. A method for obtaining phylogenetic invariants. We pro-
pose a method that is inspired by the geometry of the varieties we
consider. First we have to introduce some notation.

Definition 4.4. Let Vi be the set of vertices of a tree Ti for i = 1, 2.
Let e be an inner edge of T2 joining v1, v2 ∈ V2. We say that the tree
T1 is obtained from the tree T2 by contraction of an edge e if there is a
vertex v ∈ V1 such that
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• V1 = {v} ∪ (V2 \ {v1, v2}),
• v is connected to all the vertices to which v1 or v2 are connected,
• the edges between other vertices are the same in both trees.

In such a situation we say that T2 is a prolongation of T1.

Remark 4.5. Note that these definitions are not the same as the defini-
tions of flattenings introduced in [AR08] and further studied in [DK09].

Let us see that in this setting the variety X(T1) associated to the
tree T1 is in a natural way a subvariety of X(T2). Notice that we can
identify sockets of both varieties, as we may identify their leaves, so
both varieties are contained in Ps, where s is the number of sockets. The
natural inclusion corresponds to the projection of character lattices: we
forget all the coordinates corresponding to the edge joining the vertices
v1 and v2. Now the following conjecture is natural:

Conjecture 4.6. The variety X(Kn,1) is equal to the (scheme theo-
retic) intersection of all the varieties X(Ti), where Ti is a prolongation
of Kn,1 that has only two inner vertices, both of them of valency at least
three.

As X(Kn,1) is a subvariety of X(Ti) for any prolongation Ti one inclu-
sion is obvious. Note also that the valency condition is made, because
otherwise the conjecture would be obvious – one of the varieties that we
intersect would be equal to X(Kn,1) (contraction of a vertex of degree
2 does not change the corresponding variety). All Ti have got a strictly
smaller maximal valency than Kn,1, so if the conjecture holds then we
can inductively use Theorem 23 of Sturmfels and Sullivant [SS05] (see
also Theorem 12 [Sul07]) to obtain all phylogenetic invariants for a
given model for any tree of any valency, knowing just the ideal of the
tripod. More precisely, if 4.6 holds then the degree in which the ideals
of claw trees are generated cannot grow when the number of leaves gets
bigger. In such a case the ideal of X(Kn,1) is just the sum of ideals of
trees with smaller valency. This means that φ(G) = φ(G, 3) which can
be computed in many cases. In particular, the conjecture 4.6 implies
all cases of the conjecture 4.1 in which we can compute φ(G, 3) - this
includes the most interesting 3-Kimura model.

Of course one may argue that the conjecture 4.6 above is too strong
to be true. Later we will prove it for the binary model. We will also
consider two modifications of this conjecture to weaker conjectures that
can still have a lot of applications. The first modification just states
that the conjecture 4.6 holds for n large enough.

Proposition 4.7. The conjecture 4.6 holds for n large enough if and
only if the function φ is bounded.
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Proof. One implication is obvious. Suppose that 4.6 holds for n > n0.
We choose such d that the ideals associated to K1,l are generated in
degree m for l ≤ n0. Using 4.6 and the results of [SS05] we can describe
the ideal associated to Kn as the sum of ideals generated in degree m.
It follows that this ideal is also generated in degree m, so the function
φ is bounded by m.

For the other implication let us assume that φ(n) ≤ m. Let us
consider any binomial B that is in the ideal of the claw tree and is of
degree less or equal to m. We prove that B belongs to the ideal of some
prolongation of a tree T , which is in fact more than the statement of
conjecture 4.6.

Such a binomial can be described as a linear relation between (at
most m) vertices of the polytope of this variety. Each vertex is given
by an association of orbits of characters to edges such that there exist
representatives of orbits that sum up to a trivial character. Let us
fix such representatives, so that each vertex is given by n characters
summing up to a trivial character.

Now the binomial B can be presented as a pair of matrices A1 and
A2 with characters as entries. Each column of the matrices is a vertex
of the polytope. The matrices have got at most m columns and exactly
n rows. Let us consider the matrix A = A1 −A2, that is entries of the
matrix A are characters that are differences of entries of A1 and A2.
We can subdivide the first column of A into groups of at most |H|
elements summing up to a trivial character. Then inductively we can
subdivide the rows into groups of at most |H|i elements summing up
to a trivial character in each column up to the i-th one.

For n > |H|m + 1 we can find a set S of rows of A such that the
characters sum up to a trivial character in each column restricted to S,
such that both the cardinality of S and of its complement are greater
then 1. Note that the sums of the entries lying in a chosen column
and in the rows in S are the same in A1 and A2. Therefore, adding
to both matrices an extra row whose entries are equal to the sum of
the entries in the subset S gives a representation of a binomial B on a
prolongation of T . �

In particular, this means that if the conjecture 4.1 of Sturmfels and
Sullivant holds for the 3-Kimura model, then conjecture 4.6 also holds
for this model for n > 257. Later we will significantly improve this
estimation.

For the second modification of the conjecture 4.6 let us recall a few
facts on toric varieties. Let T1 and T2 be two tori with lattices of char-
acters given respectively by M1 and M2. Assume that both of them are
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contained in a third torus T with the character lattice M . The inclu-
sions give natural isomorphisms M1 ≃ M/K1 and M2 ≃ M/K2, where
K1 and K2 are torsion free lattices corresponding to characters that
are trivial when restricted respectively to T1 and T2. The ideal of each
torus (inside the big torus) is generated by binomials corresponding to
such trivial characters. The points of T are given by semigroup mor-
phisms M → C∗. The points of Ti are those morphisms that associate
1 to each character from Ki. We see that the points of the intersection
T1∩T2 are those morphisms M → C∗ that associate 1 to each character
from the lattice K1 + K2. Of course the (possibly reducible) intersec-
tion Y is generated by the ideal corresponding to K1 +K2. This lattice
may be not saturated, but Y contains a distinguished torus T ′, that is
one of its connected components. If K ′ is the saturation of the lattice
K1 + K2 then the characters of T ′ are given by the lattice M/K ′. Let
Xi be the toric variety that is the closure of Ti, and X ′ be the closure
of T ′. We call the toric variety X ′ the toric intersection of X1 and X2.

In the setting of 4.6 we conjecture the following:

Conjecture 4.8. The toric variety X(T ) is the toric intersection of
all the toric varieties X(Ti).

This conjecture differs from the previous one by the fact that we
allow the intersection to be reducible, with one distinguished irreducible
component equal to X(T ). We state this conjecture, because it can
be checked using only the tori. As the biologically meaningful points
are contained in the torus (see [CFS08]), this conjecture is of much
importance for applications. Moreover, it is quite easy to check it for
trees with small enough number of leaves using the computer programs.
To explain it properly, let us consider the following general setting.

Assume that the tori Ti are associated to polytopes Pi and that T is
just the torus of the projective space Pn ⊇ Ti. Let Ai be a matrix whose
columns represent vertices of the polytope Pi. The characters trivial
on Ti or respectively binomials generating the ideal of Ti are exactly
represented by integer vectors in the kernel of Ai. The characters trivial
on the intersection are given by integer vectors in kerA1 + kerA2.

Note that the ideal of the toric intersection T ′ of the tori Ti in T is
generated by binomials corresponding to characters trivial on T ′, that
is by the saturation of kerA1 + kerA2. These binomials define a toric
variety in P

n. This variety is contained in the intersection (in fact it is
a toric component) of the toric varieties that are the closures of Ti. The
equality may not hold however, as the intersection might be reducible.

In conjecture 4.8 we have to compare two tori, one contained in
the other. To do this, it is enough to compare their dimension, that
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is the rank of the character lattice. Let us note that the dimension
of the intersection T1 ∩ T2 is given by n minus the dimension (as a
vector space) of kerA1 + kerA2, as it is equal to the rank of the lattice
Zn ∩ (kerA1 + kerA2). To compute this dimension it is enough to
compute the ranks of matrices A1, A2 and B, where B is a matrix
obtained by putting A1 under A2 (that is, kerB = kerA1 ∩ kerA2).
This can be done very easily using GAP ([GAP]).

The results obtained for small trees will be used in the following
section.

4.3. Main Results. To support the conjecture 4.6 let us consider the
case of binary model. This model is well understood [BW07], [CP07],
[SS05]. Now we can prove the following:

Proposition 4.9. Conjecture 4.6 holds for the binary model.

Proof. We use the same notation as in the proof of proposition 4.7.
From 4.2 we know that φ(Z2) = 2. Let us consider any binomial of
degree 2 for a claw tree with n leaves. This is given by a pair of matrices
A1, A2 with 2 columns each. Let A = A1 − A2, where the difference
uses the group law. We construct a subset S of the set of rows which
gives a prolongation of the tree.

By permuting columns of A2 we may assume that the entries in the
first row of the matrix A are trivial. Let A′ be the matrix obtained
by deleting the first row of A. If we have a row 00 in A′ then we are
done, so assume there are only 01, 10 and 11. Notice that 01 and 10
cannot occur at all, as A1 and A2 would not have the same rows up to
permutation. For n > 3 we can take twice 11 as a strict subset of the
set of rows, summing up to zero in each column. �

From the proof above it follows that in fact to obtain the variety
of the claw tree for the binary model it is enough to intersect three
varieties corresponding just to three subdivisions. This subdivisions
correspond to S containing exactly first and second row or first and
third, or second and third row.

Now we prove the following conditional result for the 3-Kimura
model:

Proposition 4.10. If the conjecture 4.1 of Sturmfels and Sullivant
holds then the conjecture 4.6 holds for n > 8.

Proof. We use the same notation as in the previous proof, but instead
of considering the matrix A (corresponding to a chosen binomial) with
k columns and entries from Z2 ×Z2 we assume that it has 2k columns
and entries from Z2. Let us note that the number of 1 in each row both
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in even and odd columns has to be even. This follows from the fact that
rows of A are differences of rows that were equal up to permutation.
This means that both projections from Z2 × Z2 → Z2 gave rows that
were equal up to permutation. The difference of such vectors has got
always an even number of 1.

Once again we may assume that the entries in the first row of A are
trivial characters, that is they are equal to zero. Let A′ be the matrix
obtained by deleting the first row of A. For each subset of rows of A′

we may consider a vector of length equal to the number of columns of
A′, whose entries are given by sums of characters from the subset. Note
that this vector always has an even number of 1 both in even and odd
columns. Because we assume conjecture 4.1, the matrix A′ has got at
most 8 columns. By Dirichlet’s principle, if n > 8 then we can find two
subsets of rows of A′ that are not complements of each other, such that
their sum vector is the same. If we take a symmetric difference of these
subsets, we obtain a strict, nonempty set S of rows of A′, summing up
in each column to a trivial character. We add the first row of A to S or
its complement, so that both sets have more than one element. Thus
we obtain a subdivision of the set of rows

of A such that the given binomial is in the ideal of the tree corre-
sponding to this division. �

For n ≤ 8 we checked, using the computer programs Polymake,
4ti2, Macaulay2 and GAP, that the toric intersection of the tori of
subdivisions gives the torus of the claw tree. We used the linear algebra
described in the previous section. This proves that if the conjecture 4.1
holds for 3-Kimura model, then the conjecture 4.8 holds. Moreover, in
all the checked cases it was enough to consider just two subdivisions.

To summarize, we know that for 3-Kimura model conjecture 4.6 im-
plies both conjectures 4.8 and 4.1 and moreover conjecture 4.1 implies
4.8 and for n > 9 also conjecture 4.6.

Appendix

Here we present the precise results of the computations of Hilbert-
Ehrhart polynomials for a few G-models, stated in 3.3. For each the
first groups we considered the numbers of lattice points in consecutive
dilations are given.

For the groups Z8, Z2×Z2×Z2 and Z9 we computed only the Hilbert
function and, as we could not check the normality, we do not know if
it is equal to Hilbert-Ehrhart polynomial.
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Models for G = H = Z3.

dilation snowflake 3-caterpillar
1 243 243
2 21627 21627
3 903187 904069
4 21451311 21496023
5 330935625 331976637
6 3647265274 3662146270
7 30770591364 30920349834
8 209116329075 210269891871
9 1189466778457 1196661601837
10 5831112858273 5868930577941
11 25205348411361 25377886917819

Models for G = H = Z2 × Z2 (3-Kimura).

dilation snowflake 3-caterpillar
1 1024 1024
2 396928 396928
3 69248000 69324800
4 5977866515 5990170739
5 291069470720 291864710144
6 8967198289920 8995715702784

Models for G = H = Z4.

dilation snowflake 3-caterpillar
1 1024 1024
2 396928 396928
3 69248000 69324800
4 6122557220 6138552524
5 310273545216 311525688320
6 10009786400352 10062179606880

Models for G = H = Z5.

dilation snowflake 3-caterpillar
1 3125 3125
2 3834375 3834375
3 2229584375 2230596875
4 640338121875 642089603125

Models for G = H = Z7. In this case the first three dilations of the
polytopes have the same number of points. The numbers of points
in fourth dilations were too big to obtain precise results. Hence we
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computed only the numbers of points mod 64, which is sufficient to
prove that the Hilbert-Ehrhart polynomials are different.

dilation snowflake 3-caterpillar
1 16807 16807
2 117195211 117195211
3 423913952448 423913952448
4 ≡ 54 mod 64 ≡ 14 mod 64

Models for G = H = Z8.

dilation snowflake 3-caterpillar
1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032

Models for G = H = Z2 × Z2 × Z2.

dilation snowflake 3-caterpillar
1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032

Models for G = H = Z9.

dilation snowflake 3-caterpillar
1 59049 59049
2 1499667453 1499667453
3 20938605820263 20937202945056
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[CP07] J. Chifman and S. Petrović, Toric ideals of phylogenetic invariants for

the general group-based model on claw trees k1,n, Proceedings of the 2nd
international conference on Algebraic biology (2007), 307–321.

[DK09] Jan Draisma and Jochen Kuttler, On the ideals of equivariant tree mod-

els, Mathematische Annalen 344(3) (2009), 619–644.



PHYLOGENETIC INVARIANTS FOR GROUP-BASED MODELS 17

[ERSS04] N. Eriksson, K. Ranestad, B. Sturmfels, and S. Sullivant, Phylogenetic
algebraic geometry, Projective Varieties with Unexpected Properties;
Siena, Italy (2004), 237–256.

[GAP] GAP — Groups, Algorithms, and Programming, Version 4.4.10, The
GAP Group, (http://www.gap-system.org), 2007.

[GJ00] Ewgenij Gawrilow and Michael Joswig, Polymake: a Framework for An-

alyzing Convex Polytopes, Polytopes — Combinatorics and Computation
(Gil Kalai and Günter M. Ziegler, eds.), Birkhäuser, 2000, pp. 43–74.
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