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Abstract

In this paper we present an iterative method inspired by the inverse iteration with
shift technique of finite linear algebra designed to find the eigenvalues and eigenfunc-
tions of the Laplacian with homogeneous Dirichlet boundary condition for arbitrary
bounded domains Ω ⊂ R

N . Uniform convergence away from nodal surfaces is obtained
and used in order to produce a faster and more accurate algorithm for computing the
eigenvalues with minimal computational requirements, instead of using the ubiquitous
Rayleigh quotient in finite linear algebra. The method can also be used in order to
produce the spectral decomposition of any given function u ∈ L2(Ω).

Keywords: Laplacian, eigenvalues, eigenfunctions, Fourier series, inverse iteration with shift, Rayleigh

quotient.

1 Introduction

In [BEM] we introduced an iterative method for computing the first eigenpair of the p-
Laplacian operator ∆pu := div

(

|∇u|p−2∇u
)

, p > 1, with homogeneous Dirichlet boundary
condition in a bounded domain Ω ⊂ R

N , N > 1. The technique was inspired by the
inverse power method or inverse iteration of finite linear algebra. In the present paper we
concentrate in the special case p = 2, the Laplace operator ∆, which was superficially dealt
with in [BEM]. Besides clarifying some of the arguments sketched in that paper for this

∗E-mail addresses: rodney@mat.ufmg.br (R. J. Biezuner), grey@mat.ufmg.br (G. Ercole),
eder@iceb.ufop.br (E. Martins).
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case and providing some error estimates, our main purpose in this work is to show how
inverse iteration with shift in the presence of uniform convergence can be used in order to
obtain a fast and efficient method for computing the eigenvalues and eigenfunctions of the
Laplacian operator with homogeneous Dirichlet boundary condition for any bounded domain
Ω. If the eigenvalues or at least good estimates for them are a priori known, the method
can produce the corresponding eigenfunctions with great speed and accuracy. The technique
can alternatively also be used as a fast process to obtain the spectral decomposition of
any function u ∈ L2 (Ω) (in other words, the Fourier series of u). We remark that the
application of the method to the special case of the Laplacian operator is more natural since
the Laplacian is a linear operator, L2 (Ω) is a Hilbert space and the inverse operator −∆−1 is
a self-adjoint and compact operator, therefore allowing the complete characterization of its
spectral structure, as well as having the property that its eigenfunctions constitute a basis
for L2 (Ω) (except for compactness, these properties are absent when p 6= 2).

Inverse iteration with shift is used in finite linear algebra in order to find the eigenvalues
and eigenfunctions of a finite-dimensional linear operator. As an eigenvalue-finding procedure
it is not as efficient as other methods, such as the QR algorithm. However, if the eigenvalues
of the operator or at least very good estimates of them are known in advance, its rate of
convergence can be very fast (see [Trefenthen-Bau], for instance). This approach can be
naturally extended to self-adjoint compact linear operators in infinite-dimensional Hilbert
spaces such as the Laplacian and those arising in Sturm-Liouville problems. In spite of this,
we have not been able to find any reference in the literature to this approach being used in the
Laplacian context. Since there is now a vast literature concerning the search for estimates for
the eigenvalues of the Laplacian, as well as the gaps between eigenvalues (see, for instance,
[Kutller-Sigillito], [Hile-Protter], [Yang], [Cheng-Yang]; although particularly useful in our
context would be lower bounds for the difference between consecutive eigenvalues), these
results can be used in connection with the inverse iteration with shif algorithm to find
eigenfunctions of the Laplacian in arbitrary domains, as well as better approximations for
its eigenvalues. It must be emphasized, however, that as with the finite linear method, the
inverse iteration with shift method is not capable to find all the eigenfunctions associated to a
non-simple eigenvalue. It can only find an eigenfunction of the associated eigenspace. In the
generic sense most domains have Laplacian spectra consisting only of simple eigenvalues (see
[Uhlenbeck1], [Uhlenbeck2]), although many domains of practical interest have eigenvalues
with multiplicity greater than one (usually, domains which exhibit some type of symmetry,
although not all of them).

Algorithm 1 below is the simplest version of the inverse iteration with shift algorithm for
computing one specific eigenvalue and corresponding eigenfunction of the Laplacian.
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Algorithm 1 Inverse Iteration with Shift for Laplacian Eigenvalue and Eigenfunction
1: φ0 = u
2: Set x0 (point in Ω outside nodal surfaces, randomly chosen)
3: Set σ (shift, usually eigenvalue estimate)
4: for n = 0, 1, 2, . . . do
5: Solve −∆σφn+1 = φn in Ω, φn+1 = 0 on ∂Ω
6: end for

7: return φn+1/ ‖φn+1‖∞ (L∞-normalized eigenfunction)
8: return φn(x0)/φn+1(x0) + σ (eigenvalue)

In principle, the function u at the start of Algorithm 1 should be chosen so that it will have
components in all eigenspaces of the Laplacian and a random choice would suffice. However,
in practice, due to rounding errors any simple function can be used. In our numerical tests
(see Section 6), we observed that even the unit constant function could be used in order to
obtain all the eigenvalues, even in a domain where it does not have an infinite number of
them in its spectral decomposition. In Line 5 of Algorithm 1 the symbol −∆σ stands for the
shift operator−∆−σI and any PDE solver can be used. This allows one to choose the fastest
solver available for a particular domain. In Line 8 the eigenvalue is computed according to the
uniform convergence theory developed in Section 5. Since uniform convergence occurs away
from nodal surfaces, a point x0 ∈ Ω not in a nodal surface must be chosen; because nodal
surfaces have zero N -dimensional measures, a random choice will suffice in the vast majority
of cases, even taking into account that nodal surfaces change as the computed eigenfunction
changes. In finite linear algebra, the approximation to the eigenvalue is usually computed
using the Rayleigh quotient. In our context, the eigenvalue can also be computed via the
Rayleigh quotient of the approximated eigenfunction:

r (φn+1) =
〈∇φn+1,∇φn+1〉2
〈φn+1, φn+1〉2

=
‖∇φn+1‖

2
2

‖φn+1‖
2
2

=

∫

Ω
|∇φn+1|

2 dx
∫

Ω
φ2
n+1 dx

. (1)

However, due to the much higher oscillatory nature of the higher frequence eigenfunctions, in
order to accurately compute the integral of the (squared) gradient of eigenfunctions belonging
to high frequence eigenvalues a much finer grid needs to be used, which affects the efficiency
of the method. Therefore, the Rayleigh quotient is not recommended for the computation of
the eigenvalues of the Laplacian, unless one is prepared to incur the higher computational
costs (see also further comments in Section 7). A third alternative way to compute the
eigenvalues is given by the quotient

‖φn‖2
‖φn+1‖2

+ σ =

∫

Ω
φ2
n dx

∫

Ω
φ2
n+1 dx

+ σ, (2)

when the shift σ is chosen below the eigenvalue. This quotient also gives accurate approx-
imations for the eigenvalues even using relatively coarse meshes; the computation of the
integrals of the approximated eigenfunctions, instead of their gradients, does not appear to
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be significantly affected by the use of coarse grids, even for higher frequence eigenfunctions,
as has been observed in the numerical experiments (see Section 6).

We believe that, differently from what happens in finite dimensions, where much better
and faster algorithms for finding the eigenvalues of linear operators (matrices), specially
self-adjoint operators, are present, the inverse iteration with shift algorithm can be a very
competitive method for finding the eigenvalues of the Laplacian. Typical algorithms for
computing Laplacian eigenvalues involve the discretization of the Laplacian operator and
the computation of the eigenvalues of the resulting discretization matrix. However, since
only a small number of the eigenvalues of the discretization matrix are good approximations
to the Laplacian eigenvalues (the smaller ones), huge matrices are necessary in order to
obtain a sufficiently good number of eigenvalues. And some problems, particularly those
arising in the study of quantum billiards, demand the computation of a very large number
of eigenvalues. Needless to say, besides the requirements of memory, the size of the matrix
makes it computationally costly to find its eigenvalues (see the classical [Hackbusch] book,
the review [Kutller-Sigillito] and the more recent work [Heuveline] for details). The inverse
iteration with shift method, that requires only typical relatively modest sizes for meshes in
order to solve the Poisson equation with homogeneous Dirichlet boundary condition, can be
very competitive in terms of memory allocation and processing time. This is true even when
one considers that in order to find accurate approximations for the highest order eigenvalues
and eigenfunctions sometimes one needs to refine the mesh, due to the increase of oscillations.

Even if good estimates for the eigenvalues of a particular domain are not known in
advance, a few iterations of inverse iteration with shift should be able to find good approx-
imations to them, which can work as first estimates for the shift on a second run of the
algorithm. The first choices for the shift might be concentrated around the numbers given
by Weil’s Law (see [Weyl] or [Courant-Hilbert]).

The inverse iteration with shift method can also be used in order to find the spectral
decomposition of any function u ∈ L2 (Ω), that is, in order to find its projections on the
Laplacian eigenspaces. One has only to be careful to eliminate spurious projections, that
is, projections which arise from rounding errors. This can be done through computing
the Fourier coefficient associated to each eigenspace. If this coefficient becomes less than a
specified very small tolerance, this projection can be safely discarded as arising from rounding
errors. The two algorithms can be combined together in order to simultaneously find both
the desired spectral decomposition of a given function defined on a domain and the spectrum
of the Laplacian on it. The spectral decomposition algorithm is given below (Algorithm 2).
Once again, Line 12 can be replaced by (1) or (2).

Although for the sake of simplicity all computations here are done for the Laplacian, the
same algorithm can be used for similar elliptic operators.

This paper is organized as follows. The inverse iteration with shift sequence is defined
in Section 2, where most of the notation used in this paper is also established. In Section
3 some well-known results concerning the Rayleigh quotient are recalled and proven for
completeness. In Sections 4 and 5 we discuss the L2 and uniform convergence of the inverse
iterated sequence, respectively. Section 6 presents the results of a few numerical experiments.
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Algorithm 2 Spectral Decomposition
1: φ0 = u
2: Set x0 (point in Ω randomly chosen)
3: for k = 0, 1, 2, . . . do
4: Set σk (shift)
5: for n = 0, 1, 2, . . . do
6: Solve −∆σk

φk
n+1 = φk

n in Ω, φk
n+1 = 0 on ∂Ω

7: end for

8: Compute
〈

u, φk
n+1/

∥

∥φk
n+1

∥

∥

2

〉

2
(Fourier coeficient)

9: if

∣

∣

∣

〈

u, φk
n+1/

∥

∥φk
n+1

∥

∥

2

〉

2

∣

∣

∣
> tolerance then

10: return φk
n+1/

∥

∥φk
n+1

∥

∥

2
(L2-normalized eigenfunction)

11: return
〈

u, φk
n+1/

∥

∥φk
n+1

∥

∥

2

〉

2
(Fourier coefficient)

12: return φn(x0)/φn+1(x0) + σk (eigenvalue)
13: end if

14: end for

Finally, in Section 7 we discuss if the rate of convergence of the method could theoretically be
improved through the use of the inverse iteration with shift given by the Rayleigh quotient,
as is standard in finite linear algebra.

2 Definition of the inverse iteration with shift sequence

Let H = {ek}
∞
k=1 ⊂ H1

0 (Ω) be an orthogonal (not necessarily normalized) basis for L2 (Ω)
consisting of eigenfunctions of the Laplacian operator with homogeneous Dirichlet boundary
condition, that is,

{

−∆ek = λkek in Ω,
ek = 0 on ∂Ω,

(3)

where {λk}
∞
k=1 is the non-decreasing sequence of eigenvalues of the Laplacian, counting mul-

tiplicities:
0 < λ1 < λ2 6 . . . (4)

Let σ > 0 and define the shift operator −∆σ = −∆ − σI. It follows that ek is also an
eigenfunction of −∆σ corresponding to the eigenvalue

λk − σ. (5)

Conversely, if λ is an eigenvalue of −∆σ, then λ = λk − σ for some k. Thus, the spectrum
of the shift operator equals the spectrum of the Laplacian operator shifted to the left by σ,
while the corresponding eigenspaces are the same.

Given u ∈ L2 (Ω), let

u =

∞
∑

k=1

αkek (6)
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be the Fourier expansion of u, so that the Fourier coefficients αk are given by

αk =
〈u, ek〉2
‖ek‖

2
2

=

∫

Ω
uek dx

∫

Ω
e2k dx

.

Denote by λ1u the least eigenvalue whose associated eigenspace is not orthogonal to u. That
is,

λ1u := λk1 where k1 = min {k : αk 6= 0} .

In other words, λ1u is the first eigenvalue such that u has a non-zero component in the
corresponding eigenspace. Note that if r1 is the multiplicity of λk1 then

λ1u = λk1 = λk1+1 = · · · = λk1+r1−1.

We will denote by e1u the orthogonal projection of u on the λ1u-eigenspace, that is

e1u := αk1ek1 + αk1+1ek1+1 + · · ·+ αk1+r1−1ek1+r1−1 =
∑

λk=λ1
u

αkek.

Thus, the Fourier expansion of u can be rewritten as

u =
∑

λk>λ1
u

αkek = e1u +
∑

λk>λ1
u

αkek = e1u +
∑

k>k1+r1

αkek. (7)

Proceeding in this way, denoting by eju the orthogonal projection of u on the λju-eigenspace
which is the jth-eigenspace not orthogonal to u, the eigenfunction expansion of u can be
written in terms of its non-zero components in the eigenspaces of the Laplacian as

u =

M
∑

j=1

eju (8)

where either M is a positive integer or, as in most cases, M = ∞, and the corresponding
sequence of eigenvalues {λju}

∞
j=1 is (strictly) increasing

0 < λ1u < λ2u < . . .

As is well known from the theory of compact linear operators, if σ does not belong to
the spectrum of −∆ we have that (−∆σ)

−1 : L2 (Ω) −→ L2 (Ω) is a continuous, compact
and invertible operator. Therefore, whenever σ is not an eigenvalue of the Laplacian, we can
define a sequence {φn}n∈N ⊂ H1

0 (Ω) by inverse iteration setting φ0 = u and

{

−∆σφn+1 = φn in Ω,
φn+1 = 0 on ∂Ω.

(9)
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3 Properties of the Rayleigh quotient

We present here some results concerning the Rayleigh quotient. For ease of consultation,
short proofs of some well-known results are given.

Proposition 1. (Rayleigh’s Principle) Let r : H1
0 (Ω) \ {0} −→ R defined by

r (v) =

∫

Ω
|∇v|2 dx
∫

Ω
v2 dx

denote the Rayleigh quotient. Then u is a critical point of r if and only if u is

an eigenfunction of the Laplacian with homogeneous Dirichlet boundary condition and

r (u) is the corresponding eigenvalue.

Proof: Given v ∈ H1
0 (Ω), we have

r′ (u) v =
2

‖u‖22
[〈∇u,∇v〉2 − r (u) 〈u, v〉2] .

Therefore, r′ (u) = 0 if and only if

∫

Ω

∇u · ∇v = r (u)

∫

Ω

uv

for all v ∈ W 1,2
0 (Ω), that is, u is a weak solution of

{

−∆u = r (u)u in Ω,
u = 0 on ∂Ω,

�

Corollary 1. The Rayleigh quotient gives a quadratically accurate estimate for the Dirichlet

Laplacian eigenvalues, that is, if u is an eigenfunction of the Laplacian with homoge-

neous Dirichlet boundary condition with r (u) as the corresponding eigenvalue, then

r (v)− r (u) = O
(

‖v − u‖2
)

as v → u in L2(Ω).

Proof: If follows immediately from Taylor’s formula, since r′ (u) = 0. �
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4 L2-convergence of inverse iteration with shift

For each u ∈ L2 (Ω) and σ > 0 not in the Laplacian spectrum consider the sequence {φn}
defined by inverse iteration in (9). Since φn+1 = (−∆σ)

−1 φn, it follows from (8) that the
eigenfunction expansion of φn is given by

φn =
M
∑

j=1

1
(

λju − σ
)n e

j
u. (10)

Let λσu be the Laplacian eigenvalue appearing in the spectral decomposition of u which is
closest to σ, i.e.,

|λσu − σ| = min
j∈N

∣

∣λju − σ
∣

∣ . (11)

Denoting by eσu the projection of u on the λσu-eigenspace, we can write

φn =
1

(λσu − σ)n
eσu +

M
∑

|λj
u−σ|>|λσ

u−σ|

1

(λju − σ)n
eju

=
1

(λσu − σ)n






eσu +

M
∑

|λj
u−σ|>|λσ

u−σ|

(

λσu − σ

λj − σ

)n

eju






,

or

φn =
1

(λσu − σ)n
(eσu + ψn) , (12)

where

ψn =
M
∑

|λj
u−σ|>|λσ

u−σ|

(

λσu − σ

λju − σ

)n

eju. (13)

In particular,
φn

‖φn‖2
= ±

eσu + ψn

‖eσu + ψn‖2
, (14)

where the sign of the right-hand side will depend on whether the shift is taken above or
below the eigenvalue and on n: if the shift is taken below the eigenvalue, the sign will
always be positive, while if the shift is chosen above the eigenvalue the sign will be (−1)n.
Throughout this paper, we will denote by λτu the Laplacian eigenvalue appearing in the
spectral decomposition of u which is second closest to σ, i.e.,

|λτu − σ| = min
j∈N

λj
u 6=λσ

u

∣

∣λju − σ
∣

∣ . (15)

Theorem 1. Let u ∈ L2 (Ω). Then

8



(i)

‖ψn‖2 6

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

n

‖u‖2 .

In particular, ψn → 0 in L2 (Ω) with an exponential rate.

(ii) There exists n0 ∈ N such that

∥

∥

∥

∥

eσu + ψn

‖eσu + ψn‖2
−

eσu
‖eσu‖2

∥

∥

∥

∥

2

6
4

‖eσu‖2
‖ψn‖2 ,

for all n > n0. In particular

eσu + ψn

‖eσu + ψn‖2
→

eσu
‖eσu‖2

in L2 (Ω)

with an exponential rate.

(iii)
‖φn‖2
‖φn+1‖2

→ |λσu − σ| .

(iv)
(∫

Ω

u
φn

‖φn‖2
dx

)

φn

‖φn‖2
→ eσu in L2 (Ω) .

(v)
r (φn) → λσu

with

r (φn)− λσu = O

(

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

2n
)

.

Proof. Write

‖ψn‖
2
2 =

M
∑

|λj
u−σ|>|λσ

u−σ|

∣

∣

∣

∣

λσu − σ

λju − σ

∣

∣

∣

∣

2n
∥

∥eju
∥

∥

2

2

6

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

2n M
∑

|λj
u−σ|>|λσ

u−σ|

∥

∥eju
∥

∥

2

2

6

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

2n

‖u‖22 .

Since
∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

< 1,
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it follows that ‖ψn‖2 → 0 as n→ ∞, which proves (i).
Let n0 ∈ N be such that

‖ψn‖2 6
1

2
‖eσu‖

for all n > n0. If n > n0 it follows that

1

2
‖eσu‖2 = ‖eσu‖2 −

1

2
‖eσu‖2 6 ‖eσu + ψn‖2 + ‖ψn‖2 − ‖ψn‖2 = ‖eσu + ψn‖2

and
∥

∥

∥

∥

eσu + ψn

‖eσu + ψn‖2
−

eσu
‖eσu‖2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

‖eσu‖2 (e
σ
u + ψn)− eσu ‖e

σ
u + ψn‖2

‖eσu + ψn‖2 ‖e
σ
u‖2

∥

∥

∥

∥

2

6

∥

∥

∥

∥

∥

eσu (‖e
σ
u‖2 − ‖eσu + ψn‖2) + ‖eσu‖2 ψn

(1/2) ‖eσu‖
2
2

∥

∥

∥

∥

∥

2

6 2
‖eσu‖2 ‖ψn‖2 + ‖eσu‖2 ‖ψn‖2

‖eσu‖
2
2

=
4

‖eσu‖2
‖ψn‖2 ,

which proves (ii).
Since

‖φn‖2
‖φn+1‖2

= |λσu − σ|
‖eσu + ψn‖2
‖eσu + ψn+1‖2

,

(iii) follows from (i).
As
(
∫

Ω

u
φn

‖φn‖2
dx

)

φn

‖φn‖2
=

〈

u,
φn

‖φn‖2

〉

2

φn

‖φn‖2
=

〈

u,
eσu + ψn

‖eσu + ψn‖2

〉

2

eσu + ψn

‖eσu + ψn‖2
,

and, from (ii),
〈

u,
φn

‖φn‖2

〉

2

φn

‖φn‖2
→

〈

u,
eσu

‖eσu‖2

〉

2

eσu
‖eσu‖2

= eσu,

there follows (iv).
In order to prove (v), we notice that if λσu > σ then

lim

〈

φn−1

‖φn−1‖2
,
φn

‖φn‖2

〉

2

‖φn−1‖2
‖φn‖2

= lim

〈

eσu + ψn−1

‖eσu + ψn−1‖2
,
eσu + ψn

‖eσu + ψn‖2

〉

2

‖φn−1‖2
‖φn‖2

=

〈

eσu
‖eσu‖2

,
eσu

‖eσu‖2

〉

2

|λσu − σ|

= λσu − σ,

10



while if λσu < σ then

lim

〈

φn−1

‖φn−1‖2
,
φn

‖φn‖2

〉

2

‖φn−1‖2
‖φn‖2

= lim

〈

(−1)n−1 eσu + ψn−1

‖eσu + ψn−1‖2
, (−1)n

eσu + ψn

‖eσu + ψn‖2

〉

2

‖φn−1‖2
‖φn‖2

= −

〈

eσu
‖eσu‖2

,
eσu

‖eσu‖2

〉

2

|λσu − σ|

= λσu − σ.

From the weak formulation of (9) we have that

∫

Ω
|∇φn|

2 dx
∫

Ω
|φn|

2 dx
= σ +

∫

Ω
φnφn−1dx
∫

Ω
|φn|

2 dx

= σ +
‖φn−1‖2
‖φn‖2

〈

φn−1

‖φn−1‖2
,
φn

‖φn‖2

〉

2

,

whence
lim r (φn) = σ + λσu − σ = λσu.

Set

un =

〈

u,
φn

‖φn‖2

〉

2

φn

‖φn‖2
.

From (iv) and Corollary 1 it follows that

r (φn)− r (eσu) = r (un)− r (eσu) = O
(

‖un − eσu‖
2
2

)

= O

(

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

2n
)

.

�

5 Uniform convergence of inverse iteration with shift

We begin this section by stating a L∞-estimate for an eigenfunction of the Laplacian in
terms of its L2-norm. In the following, we denote by |Ω| the Lebesgue measure of Ω.

Lemma 1. Let e ∈ H1
0 (Ω) be an eigenfunction of −∆ corresponding to the eigenvalue λ.

Then

‖e‖∞ 6 4N |Ω|1/2 λN/2 ‖e‖2 . (16)

Proof. It is shown in [Lindqvist], without any smoothness assumption on ∂Ω, that if e is
an eigenfunction corresponding to a variational eigenvalue λ of the homogeneous Dirichlet
problem for the p-Laplacian then

‖e‖∞ 6 4NλN/p ‖e‖L1(Ω) .

11



Choosing p = 2, (16) follows from Hölder’s inequality. �
Estimates for eigenfunctions of the Laplacian with the exponent N/2 in the eigenvalue re-
placed byN/4 can be found in [Egorov-Kondrat’ev], [Yakubov1], [Yakubov2] and [Yakubov3].
See also [Burenkov-Lamberti, Remark 5.21] for more references.

The following result refers to the nondecreasing sequence (4) of eigenvalues of the Lapla-
cian.

Lemma 2. If k > N/2, then
∞
∑

j=1

1

λkj
6

NCk

2k −N
<∞, (17)

where C is a positive constant which depends only on N and |Ω| .

Proof. It is well known (see [Li-Yau], [Lieb]) that

λj >
1

C
j2/N ,

where

C =
N + 2

N

(ωN |Ω|)2/N

4π2
(18)

and ωN is the volume of the N -dimensional unit ball. Hence, if j > N/2 we have

∞
∑

j=1

λ−k
j 6 Ck

∞
∑

j=1

j−2k/N < Ck

∫ ∞

1

s
−2k/N

ds =
NCk

2k −N
.

�

In the next lemma we show that the convergence of a series formed by the eigenvalues
λju which appear in the spectral decomposition of a function u ∈ L2 (Ω) follows from the
convergence of a series formed by all eigenvalues of the Laplacian.

Lemma 3. Let k be chosen so that the series

∞
∑

j=1

1

λkj

is convergent . Then the series

M
∑

j=1

(λju)
N/2

∣

∣λju − σ
∣

∣

N/2+k+1

is also convergent.

12



Proof. Assume that the expansion of u is not finite, i.e., M = ∞ (otherwise the result is
trivial). Since

∞
∑

j=1

1
(

λju
)k

6

∞
∑

j=1

1

λkj
,

it suffices to show that
(λju)

N/2

∣

∣λju − σ
∣

∣

N/2+k+1
6

1
(

λju
)k

(19)

for all sufficiently large j. Define f : (σ,+∞) −→ R by

f(t) =

(

t

t− σ

)N/2+k

=

(

1 +
σ

t− σ

)N/2+k

.

Since f is decreasing, there exists t0 such that

f(t) < t− σ

for all t > t0. As λju → ∞, there also exists j0 such that |λju − σ| = λju − σ for all j > j0.
Thus, if j is sufficiently large, we can write

(λju)
N/2+k

∣

∣λju − σ
∣

∣

N/2+k
=

(λju)
N/2+k

(

λju − σ
)N/2+k

= f
(

λju
)

< λju − σ =
∣

∣λju − σ
∣

∣ ,

whence (19) follows. �
In order to prove the uniform convergence of the inverse iteration sequence {φn}n∈N, we

return to (12) and write
φn

‖φn‖∞
= ±

eσu + ψn

‖eσu + ψn‖∞
. (20)

As in (14), the sign of the right-hand side will depend on whether the shift is taken above
or below the eigenvalue and on n.

Lemma 4. The inequality

‖ψn‖∞ 6 K

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

n−θ

(21)

holds for all sufficiently large n, for some θ > 0 and a positive constant K = K (u,Ω, |λσu − σ|).
In particular, ψn → 0 uniformly in Ω with an exponential rate.

Proof. From (13) and Lemma 1 we obtain

|ψn| 6

M
∑

|λj
u−σ|>|λσ

u−σ|

∣

∣

∣

∣

λσu − σ

λju − σ

∣

∣

∣

∣

n
∣

∣eju
∣

∣ 6 4N |Ω|1/2 ‖u‖2

M
∑

|λj
u−σ|>|λσ

u−σ|

∣

∣

∣

∣

λσu − σ

λju − σ

∣

∣

∣

∣

n
(

λju
)N/2

.

13



But, taking θ = N/2 + k + 1, we have

M
∑

|λj
u−σ|>|λσ

u−σ|

∣

∣

∣

∣

λσu − σ

λju − σ

∣

∣

∣

∣

n
(

λju
)N/2

= |λσu − σ|θ
M
∑

|λj
u−σ|>|λσ

u−σ|

∣

∣

∣

∣

λσu − σ

λju − σ

∣

∣

∣

∣

n−θ
(λju)

N/2

∣

∣λju − σ
∣

∣

θ

6 |λσu − σ|θ
∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

n−θ M
∑

|λj
u−σ|>|λσ

u−σ|

(λju)
N/2

∣

∣λju − σ
∣

∣

θ

6

∣

∣

∣

∣

λσu − σ

λτu − σ

∣

∣

∣

∣

n−θ

|λσu − σ|θ
M
∑

j=1

(λju)
N/2

∣

∣λju − σ
∣

∣

θ
,

and by Lemma 3 the last series converges. Thus, (21) follows if we take

K = 4N |Ω|1/2 ‖u‖2 |λ
σ
u − σ|θ

M
∑

j=1

(λju)
N/2

∣

∣λju − σ
∣

∣

θ
.

�

Theorem 2. Let u ∈ L2 (Ω). Then

(i) There exists n0 ∈ N such that

∥

∥

∥

∥

eσu + ψn

‖eσu + ψn‖∞
−

eσu
‖eσu‖∞

∥

∥

∥

∥

∞

6
4

‖eσu‖∞
‖ψn‖∞

for all n > n0. In particular,

eσu + ψn

‖eσu + ψn‖∞
→

eσu
‖eσu‖∞

uniformly in Ω

with an exponential rate.

(ii)
‖φn‖∞
‖φn+1‖∞

→ |λσu − σ| .

(iii)
φn

φn+1
→ λσu − σ uniformly on any compact K ⊂⊂ supp eσu with an exponential rate.

(iv)
(
∫

Ω

u
φn

‖φn‖2
dx

)

φn

‖φn‖2
→ eσu uniformly in Ω.

14



Proof. Let n0 be such that ‖ψn‖∞ 6 1
2
‖eσu‖∞ for all n > n0. Then, as in the proof of

Theorem 1 (ii), we have for all n > n0 that

1

2
‖eσu‖∞ 6 ‖eσu + ψn‖∞

and
∥

∥

∥

∥

eσu + ψn

‖eσu + ψn‖∞
−

eσu
‖eσu‖∞

∥

∥

∥

∥

∞

6
4

‖eσu‖∞
‖ψn‖∞ .

The remaining of (i) follows from Lemma 4.
Since from (12) we have

‖φn‖∞
‖φn+1‖∞

= |λσu − σ|
‖eσu + ψn‖∞
‖eσu + ψn+1‖∞

,

(ii) also follows from Lemma 4.
Now, let K ⊂⊂ supp eσu be compact so that

m := min
K

|eσu| > 0

and fix n0 ∈ N such that

‖ψn‖∞ <
m

2
for all n > n0.

Thus if n > n0 we have on K

|eσu + ψn| > |eσu| − |ψn| > m− ‖ψn‖∞ >
m

2
.

Therefore, the quotient
φn

φn+1
= (λσu − σ)

eσu + ψn

eσu + ψn+1

makes sense on K for all sufficiently large n and again (iii) follows from Lemma 4 since

∣

∣

∣

∣

φn

φn+1

− (λσu − σ)

∣

∣

∣

∣

= |λσu − σ|

∣

∣

∣

∣

eσu + ψn

eσu + ψn+1

− 1

∣

∣

∣

∣

= |λσu − σ|

∣

∣

∣

∣

ψn − ψn+1

eσu + ψn+1

∣

∣

∣

∣

6
2 |λσu − σ|

m
|ψn − ψn+1| .

Finally, in order to prove (iv), write

φn

‖φn‖2

∫

Ω

u
φn

‖φn‖2
dx =

(

‖φn‖∞
‖φn‖2

)2
φn

‖φn‖∞

∫

Ω

u
φn

‖φn‖∞
dx.

15



Since

lim
‖φn‖∞
‖φn‖2

= lim
‖eσu + ψn‖∞
‖eσu + ψn‖2

=
‖eσu‖∞
‖eσu‖2

and, from (i),
φn

‖φn‖∞

∫

Ω

u
φn

‖φn‖∞
dx→

eσu
‖eσu‖∞

∫

Ω

u
eσu

‖eσu‖∞
dx

uniformly in Ω, it follows that

φn

‖φn‖2

∫

Ω

u
φn

‖φn‖2
dx→

(

‖eσu‖∞
‖eσu‖2

)2
eσu

‖eσu‖∞

∫

Ω

u
eσu

‖eσu‖∞
dx

=
eσu

‖eσu‖
2
2

∫

Ω

ueσu dx

= eσu.

�

6 Numerical Tests

In this section we present some numerical tests in the unit interval and the unit disk. More
specifically, we present the graphs of the first nine eigenfunctions of the unit constant function
u ≡ 1 on these domains obtained by inverse iteration with shift, as well as eigenvalue
approximations for the eigenvalues λk of the Laplacian for several values of k. For the
computation of each eigenvalue and eigenfunction, the shift was set in both cases to the
corresponding exact eigenvalue minus 0.1. Eigenvalue approximations were computed via
the three sequences considered in this paper, which we denote:

µn :=
φn

φn+1
(x0) + σ,

νn :=
‖φn‖2
‖φn+1‖2

+ σ

and

r(φn) =

∫

Ω
|∇φn(x)|

2dx
∫

Ω
|φn(x)|2dx

.

We chose x0 = 0.01 for both domains. On each domain we used neither the most efficient
available method for solving the underlying partial differential equation nor a fine grid, but
one of the most basic methods and a relatively coarse grid, in order to show the efficiency of
inverse iteration with shift. Namely, the method of finite differences was applied with a grid
containing only 101 nodes. Integrals were computed via the Simpson composite method.
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6.1 Eigenvalues and eigenfunctions for the unit interval [0, 1]

In this case, (9) becomes the Sturm-Liouville problem

{

−φ′′
n+1 − σφn+1 = φn

φn+1(0) = φn+1(1) = 0
(22)

The unit constant function does not have components corresponding to λk for k even.
Nonetheless, as mentioned in the Introduction, due to rounding errors we were able to
obtain these values as well. The graphs of the first nine (L∞-normalized) approximated
eigenfunctions of the Laplacian on [0, 1] obtained by the algorithm are shown in Figure 1.
In Table 1 we present the corresponding exact eigenvalue and its approximations given by
the three sequences for several values of k, up to one billion, after 10 iterations of inverse
iteration with shift.
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Figure 1. First nine approximated eigenfunctions of the Laplacian on [0, 1].
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k λk µ10 ν10 r(φ10)
1 9.87 9.869 9.869 9.866
2 39.478 39.465 39.465 39.427
3 88.826 88.761 88.761 88.564
4 157.914 157.706 157.921 157.084
5 246.74 246.233 247.047 244.717
6 355.306 354.255 356.157 351.118
7 483.611 481.665 485.356 475.865
8 631.655 628.335 634.773 618.466
9 799.438 800.338 800.338 778.369
10 986.96 987.86 987.86 954.908
20 3947.84 3948.74 3948.74 3459.76
30 8882.64 8883.54 8883.54 6840.84
40 15791.4 15792.3 15792.3 9524.33
50 24674 24674.9 24674.9 9447.28
60 35530.6 35531.5 35531.5 4061.1
70 48361.1 48362 48362 3256.69
80 63165.5 63166.4 63166.4 3711.9
90 79943.8 79944.7 79944.7 3670.04
100 98696 98696.9 98696.9 4049.97
103 9.8696× 106 9.8696× 106 9.8696× 106 7856.16
104 9.8696× 108 9.8696× 108 9.8696× 108 3742.66
105 9.8696× 1010 9.8696× 1010 9.8696× 1010 3742.66
106 9.8696× 1012 9.8696× 1012 9.8696× 1012 3742.66
107 9.8696× 1014 9.8696× 1014 9.8696× 1014 3742.66
108 9.8696× 1016 9.8696× 1016 9.8696× 1016 3742.23
109 9.8696× 1018 9.8696× 1018 9.8696× 1018 3329.09

Table 1: Exact and approximated eigenvalues on the unit interval [0, 1] for several values of
k with 10 iterations of inverse iteration with shift.
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6.2 Eigenvalues and eigenfunctions for the unit disk

In this case we computed only the radial components and (9) becomes the Sturm-Liouville
problem

{

−φ′′
n+1 −

1
r
φ′
n+1 − σφn+1 = φn

φ′
n+1(0) = φn+1(1) = 0.

(23)

The graphs of the first nine approximated radial eigenfunctions of the Laplacian obtained
by the algorithm are displayed in Figure 2. In Table 2, the corresponding exact eigenvalue
and its approximations given by the three sequences for the first ten radial eigenvalues, after
10 iterations of inverse iteration with shift, are presented.
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Figure 2. First nine approximated radial eigenfunctions of the Laplacian on the unit disk.

7 Final comments

In finite linear algebra, the iterative process itself is often used in order to generate increas-
ingly better estimates for the eigenvalue at each iteration, meaning that the approximation
obtained at any given iteration is used as the shift in the next iteration. It turns out that in-
stead of using the estimates for the eigenvalue obtained in the process, the Rayleigh quotient
of the estimates for the eigenvector obtained at each iteration give much better estimates
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k λk µ10 ν10 r(φ10)
1 5.78319 5.7834 5.7834 5.78279
2 30.4713 30.4698 30.4698 30.4491
3 74.887 74.865 74.865 74.7338
4 139.04 138.942 138.942 138.481
5 222.932 222.646 223.018 221.45
6 326.563 325.901 327.025 323.32
7 449.934 448.611 451.057 443.697
8 593.043 590.663 595.223 582.113
9 755.891 751.922 759.660 738.026
10 938.479 932.234 944.524 910.824

Table 2: Exact and approximated first ten radial eigenvalues on the unit disk with 10
iterations of inverse iteration with shift.

for the eigenvalue. Indeed, if the eigenvalues of the operator or at least very good estimates
of them are known in advance, inverse iteration with shift given by the Rayleigh quotient
is the standard method for computing eigenvectors due to its cubic rate of convergence (see
[Trefenthen-Bau]). It would be only natural to extend such ideas to the Laplacian, but we
were not able to do it. Instead, our (admitedly preliminary) numerical tests did not indicate
convergence to the correct eigenvalues. As previously discussed, the Rayleigh quotient may
not be a good way to approximate the eigenvalue of higher frequency eigenfunctions unless
the grid is much further refined, due to higher oscillations, and the computational cost of
using too fine grids can seriously limit the efficiency of the method. Further investigation is
warranted. So it remains an open problem to us if inverse iteration with shift given by the
Rayleigh quotient is a method that can be successfully applied to the Laplacian. The only
reference we could find where the Rayleigh quotient was used in computing the eigenvalues
of the Laplacian, and only for polygonal domains, was the work [Descloux-Tolley]; however
the Rayleigh quotient was only indirectly used there, as one component of another algorithm
and in a very different way from the direct approach we follow here.
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