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SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE

q-GAMMA FUNCTION

PENG GAO

Abstract. We present some completely monotonic functions involving the q-gamma function that
are inspired by their analogues involving the gamma function.

1. Introduction

The q-gamma function is defined for a complex number z and q 6= 1 by

Γq(z) =

{

(q;q)∞
(qz ;q)∞

(1− q)1−z, 0 < q < 1;
(q−1;q−1)∞
(q−z ;q−1)∞

(q − 1)1−zq
1

2
z(z−1), q > 1.

(1.1)

where the product (a; q)∞ is defined by

(a; q)∞ =
∞
∏

n=0

(1− aqn).

In what follows we restrict our attention to positive real numbers x. We note here [17] the limit
of Γq(x) as q → 1− gives back the well-known Euler’s gamma function:

lim
q→1−

Γq(x) = Γ(x) =

∫

∞

0
txe−t

dt

t
.

It’s then easy to see using (1.1) that limq→1 Γq(x) = Γ(x). For historical remarks on gamma and
q-gamma functions, we refer the reader to [17], [2] and [3].

There exists an extensive and rich literature on inequalities for the gamma and q-gamma functions
of positive real numbers. For the recent developments in this area, we refer the reader to the articles
[14], [2]-[4], [20] and the references therein. Many of these inequalities follow from the monotonicity
properties of functions which are closely related to Γ (resp. Γq) and its logarithmic derivative ψ
(resp. ψq) as ψ′ and ψ′

q are completely monotonic functions on (0,+∞) (see [15], [4]). Here we
recall that a function f(x) is said to be completely monotonic on (a, b) if it has derivatives of all

orders and (−1)kf (k)(x) ≥ 0, x ∈ (a, b), k ≥ 0. We further note that Lemma 2.1 of [7] asserts that

f(x) = e−h(x) is completely monotonic on an interval if h′ is. Following [13], we call such functions
f(x) logarithmically completely monotonic.

We note here that limq→1 ψq(x) = ψ(x) (see [18]), hence in what follows we also write Γ1(x) for
Γ(x) and ψ1(x) for ψq(x). Thus we may also regard the gamma function as a q-gamma function
with q = 1 and in this manner, many completely monotonic functions involving Γq(x) and ψq(x)
are inspired by their analogues involving Γ(x) and ψ(x). It is our goal in this paper to present
some completely monotonic functions involving Γq, ψq that are motivated by this point of view. In
the remaining part of this introduction, we briefly mention the motivations for our results in the
paper.
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In [16], Kershaw proved the q = 1 case of the following result for 0 < s < 1, x > 0:

e(1−s)ψq(x+s1/2) <
Γq(x+ 1)

Γq(x+ s)
< e(1−s)ψq(x+(s+1)/2).(1.2)

A result of Ismail and Muldoon [14] establishes the second inequality in (1.2) for 0 < q < 1. In [7],
Bustoz and Ismail showed that when q = 1, the function (0 < s < 1)

x 7→ Γq(x+ s)

Γq(x+ 1)
e(1−s)ψq(x+(s+1)/2)

is completely monotonic on (0,+∞). In [12], it is shown that the result of Bustoz and Ismail also
holds for any q > 0.

In [3], Alzer asked to determine the best possible values of a(q, s) and b(q, s) such that the
following inequalities hold for all x > 0, 0 < q 6= 1, 0 < s < 1:

e(1−s)ψq(x+a(q,s)) <
Γq(x+ 1)

Γq(x+ s)
< e(1−s)ψq(x+b(q,s)).(1.3)

We shall determine the best possible values of a(q, s) and b(q, s) in Section 3. Another result
given in Section 3 is motivated by the following result of Alzer and Batir [5], who showed that the
function (x > 0, c ≥ 0)

Gc(x) = ln Γ(x)− x lnx+ x− 1

2
ln(2π) +

1

2
ψ(x+ c)

is completely monotonic if and only if c ≥ 1/3 and −Gc(x) is completely monotonic if and only if
c = 0. We shall present a q-analogue in Section 3 for G′

c(x).
Muldoon [19] studied the monotonicity property of the function

hα(x) = xαΓ(x)(e/x)x.

He showed that hα(x) is logarithmically completely monotonic on (0,+∞) for α ≤ 1/2. We point
out here that as was shown in [6, Theorem 3.3], 1/2 is the largest possible number to make the
assertion hold for hα(x). In [12, Proposition 4.1], it is shown that if one defines for α ≥ 0,

(1.4) fα(x) = − ln Γ(x) + (x− 1

2
) lnx− x+

1

12
ψ′(x+ α),

then f ′α(x) is completely monotonic on (0,+∞) if α ≥ 1/2 and −f ′α(x) is completely monotonic
on (0,+∞) if α = 0. As was pointed out in [12], this implies a result of Alzer [1, Theorem 1]. In
Section 3, we shall establish a q-analogue of the above result.

It’s shown in the proof of Theorem 2.2 in [8] that for x > 0 and 0 < q < 1,

(1.5) ψ′

q(x+ 1) <
ln(1/q)qx

1− qx
.

The q = 1 analogue of inequality (1.5) is ψ′(x+1) ≤ 1/x, which reminds us the following asymptotic
expansion [4, (1.5)] for the derivatives of ψ(x):

(1.6) (−1)n+1ψ(n)(x) =
(n− 1)!

xn
+

n!

2xn+1
+O

(

1

xn+2

)

, n ≥ 1, x→ +∞.

We note that Lemma 2.2 of [11] asserts that for fixed n ≥ 1, a ≥ 0, the function fa,n(x) =

xn(−1)n+1ψ(n)(x + a) is increasing on [0,+∞) if and only if a ≥ 1/2. It follows from this and
(1.6) that we have ψ′(x+ 1/2) ≤ 1/x and this suggests that inequality (1.5) would still hold if one
replaces ψ′

q(x+ 1) with ψ′

q(x+ 1/2). We shall show this is indeed the case in Section 3.
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2. Lemmas

The following lemma gathers a few results on Γq and ψq. Equality (2.1) below is given in [3,
(2.7)] and the rest can be easily derived from (1.1) and (2.1).

Lemma 2.1. For 0 < q < 1, x > 0,

ψq(x) = − ln(1 − q) + ln q

∞
∑

n=1

qnx

1− qn
,(2.1)

ln Γq(x+ 1) = ln Γq(x) + ln
1− qx

1− q
,(2.2)

ψq(x+ 1) = ψq(x)−
(ln q)qx

1− qx
,(2.3)

ψ′

q(x+ 1) = ψ′

q(x)−
(ln q)2qx

(1− qx)2
.(2.4)

Our next lemma is a result in [21]:

Lemma 2.2. For positive numbers x 6= y and real number r, we define

E(r, 0;x, y) =

(

1

r
· xr − yr

lnx− ln y

)1/r

, r 6= 0; E(0, 0;x, y) =
√
xy.

Then the function r 7→ E(r, 0;x, y) is strictly increasing on R.

Lemma 2.3. Let 0 < q < 1, then for any integer n ≥ 1,

ln q

1− qn
+

1

n
− ln q

2
− n2(ln q)3qn/2

12(1 − qn)
< 0,(2.5)

ln q

1− qn
+

1

n
− ln q

2
− n2(ln q)3

12(1 − qn)
> 0.(2.6)

Proof. On setting ln qn = x, it is easy to see that inequality (2.5) follows from f(x) < 0 for x < 0,
where

f(x) = 6x(1 + ex) + 12(1 − ex)− x3ex/2.

As f ′′(x) = 6xex/2(ex/2 − 1 − x/2 − x2/24) and it is easy to see that there is a unique solution

x0 ∈ (−∞, 0) of the equation ex/2 − 1− x/2− x2/24 = 0, it follows that f ′′(x) > 0 for x < x0 and
f ′′(x) < 0 for x0 < x < 0. One then deduces easily via the expression of f ′(x) and the observation
f ′(0) = 0 that f ′(x) > 0 for x < 0. It follows from this and f(0) = 0 that f(x) < 0 for x < 0.

Similarly, inequality (2.6) follows from g(x) > 0 for x < 0, where

g(x) = 6x(1 + ex) + 12(1 − ex)− x3.

As g′′(x) = 6x(ex − 1) > 0 for x < 0 and g′(0) = 0, we see that g′(x) < 0 for x < 0 and it follows
from this and g(0) = 0 that g(x) > 0 for x < 0 and this completes the proof. �

3. Main Results

We first determine the best possible value for a(q, s) in (1.3). For this, for any q > 0, t > s > 0,
we denote Iψq(s, t) as the integral ψq mean of s and t:

Iψq (s, t) = ψ−1
q

(

1

t− s

∫ t

s
ψq(u)du

)

.(3.1)

Then we have the following result:



4 PENG GAO

Theorem 3.1. For every q > 0, x > 0, t > s > 0, we have

ψq
(

x+ Iψq (s, t)
)

<
1

t− s

∫ t

s
ψq(x+ u)du,

where the constant Iψq (s, t) is best possible.

Proof. We note that the case q = 1 of the assertion of the theorem is already established in [9,
Thereom 4]. The general case can be established similarly, on noting that the function

x 7→ Iψq(x+ s, x+ t)− x

is increasing by Theorem 4 of [10], in view that ψ′

q is completely monotonic on (0,+∞). On

considering the case x → 0+, we see immediately that the constant Iψq (s, t) is best possible and
this completes the proof. �

On setting t = 1 in Theorem 3.1, we readily deduce the following result concerning the best
possible value a(q, s) in (1.3):

Corollary 3.1. Let q > 0 and 0 < s < 1. The first inequality of (1.3) holds for all x > 0 with the

best possible value a(q, s) = Iψq (s, 1), where Iψq is defined as in (3.1).

Now to determine the best possible value for b(q, s) in (1.3), we note that it is easy to see on
considering the case x→ +∞ that the best possible value for b(q, s) is (1+s)/2 when q > 1. When
0 < q < 1, we have the following result:

Theorem 3.2. Let 0 < q < 1 and 0 < s < 1. Let

b(q, s) =
ln qs−q

(s−1) ln q

ln q
.

For x > 0, let

fq,s,c(x) = ln Γq(x+ 1)− ln Γq(x+ s)− (1− s)ψq(x+ c),

where c > 0. Then −fq,s,c(x) is completely monotonic on (0,+∞) if and only if c ≥ b(q, s).

Proof. We have, using (2.1), that

f ′q,s,b(q,s)(x) = ψq(x+ 1)− ψq(x+ s)− (1− s)ψ′

q(x+ b(q, s))

= ln q
∞
∑

n=1

qnx

1− qn

(

qn − qns − (1− s)(ln qn)qnb(q,s)
)

.

We want to show qn− qns− (1−s)(ln qn)qnb(q,s) ≤ 0, which is equivalent to Es−1(n(s−1), 0; q, 1) ≥
qb(q,s)−1, where E is defined as in Lemma 2.2. It also follows from Lemma 2.2 that Es−1(n(s −
1), 0; q, 1) ≥ Es−1(s− 1, 0; q, 1) = qb(q,s)−1. We then deduce that f ′q,s,c(x) is completely monotonic
on (0,+∞) when c ≥ b(q, s). This together with the observation that limx→+∞ fq,s,c(x) = 0 implies
the “if” part of the assertion of the theorem.

To show the “only if” part of the assertion of the theorem, we use (2.2) and (2.3) to deduce that

fq,s,c(x+ 1)− fq,s,c(x) = ln
1− qx+1

1− qx+s
+ (1− s) ln q

qx+c

1− qx+c
.

If we set z = qx and consider the Taylor expansion of the above expression at z = 0, then the first
order term is:

(qs − q + (1− s) (ln q) qc) z.

Note that the expression in the parenthesis above is < 0 if c < b(q, s) as it is 0 when c = b(q, s).
This implies that fq,s,c(x + 1) < fq,s,c(x) when x is large enough and this shows that −fq,s,c(x)
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can’t be completely monotonic on (0,+∞) when c < b(q, s) and this completes the proof of the
“only if” part of the assertion of the theorem. �

Theorem 3.2 now allows us to determine the best possible value of b(q, s) in (1.3) when 0 < q < 1
in the following:

Corollary 3.2. Let 0 < q < 1 and 0 < s < 1. The inequality

Γq(x+ 1)

Γq(x+ s)
< e(1−s)ψq(x+b(q,s))(3.2)

holds for all x > 0 with the best possible value b(q, s) given as in the statement of Theorem 3.2.

Proof. Using the same notions in the proof of Theorem 3.2, we see from the proof of Theorem 3.2
that f ′q,s,b(q,s)(x) > 0 for x > 0, which implies the strict inequality in (3.2). To show b(q, s) is best

possible, we note that in the proof of Theorem 3.2, we’ve shown that fq,s,c(x + 1) − fq,s,c(x) < 0
for x large enough if c < b(q, s). It follows that fq,s,c(x+ k)− fq,s,c(x) < 0 for any positive integer
k when x is large enough and c < b(q, s). On letting k → +∞, we see immediately that this
implies that −fq,s,c(x) < 0, so that inequality (3.2) fails to hold with b(q, s) being replaced by any
c < b(q, s) and this completes the proof. �

We note here that Corollary 3.2 refines a result of Ismail and Muldoon in [14], mentioned in
the introduction of this paper, where b(q, s) is replaced by (1 + s)/2 in (3.2). One can also check
directly that b(q, s) ≤ (1 + s)/2, as it follows from E(s − 1, 0; q, 1) ≤ E(0, 0; q, 1). Moreover, it is
easy to see that when q → 1−, b(q, s) → (1 + s)/2 and in this case (3.2) gives back the second
inequality in (1.2) for q = 1.

Our next result is a q-analogue of the result of Alzer and and Batir [5] mentioned in Section 1.

Theorem 3.3. Let 0 < q < 1 be fixed. Let c ≥ 0. Let aq = (q − 1− ln q)/(ln q)2. The function

gq,c(x) = ψq(x)− ln
1− qx

1− q
+ aqψ

′

q(x+ c)

is completely monotonic on (0,+∞) if and only if c = 0.

Proof. We have, using (2.1), that

gq,c(x) = ln q

∞
∑

n=1

qnx

1− qn

(

1 +
1− qn

n ln q
+ aq(ln q

n)qnc
)

.

On setting t = − ln qn, we have t ≥ − ln q and the expression in the parenthesis above when c = 0
can be rewritten as

1− 1− e−t

t
− aqt =

1

t
(−1 + t+ e−t − aqt

2) := hq(t)/t.

It suffices to show hq(t) ≤ 0 for t ≥ − ln q. For this, note that hq(− ln q) = 0 and that

h′q(t) = 1− 2aqt− e−t, h′′q (t) = −2aq + e−t.

We have

(ln q)2h′′q (− ln q)

2
=
q(ln q)2

2
+ ln q + 1− q,

and the right-hand side expression above is easily seen to be < 0 for 0 < q < 1. As h
(3)
q (t) < 0

for t ≥ − ln q, we conclude that h′′q(t) < 0 for t ≥ − ln q. It’s also easy to see that h′q(− ln q) < 0

and we then deduce that h′q(t) < 0 for t ≥ − ln q and this implies hq(t) ≤ 0 for t ≥ − ln q, which
completes the proof of the “if” part of the assertion of the theorem.
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For the “only if” part of the assertion of the theorem, note that we have by (2.3) and (2.4),

gq,c(x+ 1)− gq,c(x) = −(ln q)qx

1− qx
− ln

1− qx+1

1− qx
− aq

(ln q)2qx+c

(1− qx+c)2
.

If we set z = qx and consider the Taylor expansion of the above expression at z = 0, then the first
order term is:

(− ln q + q − 1− aq(ln q)
2qc)z = (hq(− ln q) + aq(ln q)

2 − aq(ln q)
2qc)t > 0,

if c > 0. This implies that gq,c(x+ 1) > gq,c(x) when x is large enough and this shows that gq,c(x)
can’t be completely monotonic on (0,+∞) when c > 0 and this completes the proof of the “only
if” part of the assertion of the theorem. �

Similar to Theorem 3.3, one can prove the following result, whose proof we leave to the reader.

Theorem 3.4. Let 0 < q < 1 be fixed. Let c ≥ 0. The function

x 7→ ψq(x)− ln
1− qx

1− q
+

1

2
ψ′

q(x+ c)

is completely monotonic on (0,+∞) if c = 0 and its negative is completely monotonic on (0,+∞)
if c ≥ 1/3.

Related to the function given in (1.4), we have the following q-analogue:

Theorem 3.5. Let 0 < q < 1 be fixed, the functions

−ψq(x) + ln
(1− qx

1− q

)

+
(ln q)qx

2(1 − qx)
+

1

12
ψ′′

q (x+ 1/2),(3.3)

ψq(x)− ln
(1− qx

1− q

)

− (ln q)qx

2(1− qx)
− 1

12
ψ′′

q (x)(3.4)

are completely monotonic on (0,+∞).

Proof. The function given in (3.3) being completely monotonic on (0,+∞) follows from (2.5) and
(2.1). As by (2.1), we have

ψq(x)− ln
(1− qx

1− q

)

− (ln q)qx

2(1 − qx)
− 1

12
ψ′′

q (x+ 1/2) =

∞
∑

n=1

( ln q

1− qn
+

1

n
− ln q

2
− n2(ln q)3qn/2

12(1 − qn)

)

qnx.

Similarly, the function given in (3.4) being completely monotonic on (0,+∞) follows from (2.6)
and (2.1). �

Our next result is motivated by (1.5) and (1.6):

Theorem 3.6. Let 0 < q < 1 be fixed, the functions

ψ′

q(x)−
(ln q)2qx

(1− q)(1− qx)
− (ln q)2q2x

(1 + q)(1− qx)2
,(3.5)

−ψ′

q(x+ 1/2) +
(ln q)2qx+1/2

(1− q)(1− qx)
(3.6)

are completely monotonic on (0,+∞).

Proof. To show the function given in (3.5) is completely monotonic on (0,+∞), we note that

qx

(1− qx)2
=

∞
∑

n=1

nqnx.
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Using this and (2.1), we can recast (3.5) as

ψ′

q(x)−
(ln q)2qx

(1− q)(1− qx)
− (ln q)2q2x

(1 + q)(1 − qx)2

= (ln q)2
(

∞
∑

n=1

nqnx

1− qn
− 1

1− q

∞
∑

n=1

qnx − qx

1 + q

∞
∑

n=1

nqnx
)

= (ln q)2
∞
∑

n=2

( n

1− qn
− 1

1− q
− n− 1

1 + q

)

qnx = (ln q)2
∞
∑

n=2

( un(q)

(1− qn)(1− q)(1 + q)

)

qnx,

where

un(q) = n(1− q2)− (1 + q)(1− qn)− (n− 1)(1− q)(1 − qn) = n(1− q)(q + qn)− 2q(1− qn).

It suffices to show that un(q) ≥ 0 for n ≥ 2, 0 < q < 1, or equivalently,

n(1 + qn−1) ≥ 2
1− qn

1− q
= 2

n−1
∑

i=0

qi.

It is easy to see that the function q 7→ 2
∑n−1

i=0 q
i − nqn−1 is an increasing function of 0 < q ≤ 1

and on considering the value of this function at q = 1, we see that it implies un(q) ≥ 0 for n ≥ 2,
0 < q < 1 and this establishes our assertion on the function given in (3.5).

To show the function given in (3.6) is completely monotonic on (0,+∞), we use (2.1) to get

ψ′

q(x+ 1/2) − (ln q)2qx+1/2

(1− q)(1− qx)
= (ln q)2

∞
∑

n=1

( nqn/2

1− qn
− q1/2

1− q

)

qnx.

It suffices to show that nqn/2−1/2 ≤ (1−qn)/(1−q) =
∑n−1

i=0 q
i for 0 < q < 1. This follows by noting

that 2
∑n−1

i=0 q
i =

∑n−1
i=0 (q

i + qn−i−1) and that qi + qn−i−1 ≥ 2qn/2−1/2 by the arithmetic-geometric
inequality and this completes the proof. �

Corollary 3.3. Let 0 < q < 1 be fixed, then for x > 0, we have

ψ′

q(x+ 1/2) ≤ (ln q)2qx+1/2

(1− q)(1− qx)
.

The above inequality follows readily from Theorem 3.6 on considering the value of the function
given in (3.6) as x → +∞. As it’s easy to see that −(ln q)q1/2 < 1− q when 0 < q < 1, the above
inequality gives a refinement of inequality (1.5).
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