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0 A conjecture on Iterated Integrals and

application to higher order invariants

Anton Deitmar & Ivan Horozov

Abstract: We formulate the conjecture that the restriction morphism from
free closed iterated integrals to closed iterated integrals on loops is onto. The
conjecture has the consequence that the module of higher order invariants of
smooth functions is generated by free closed iterated integrals.

Contents

1 Generalities on iterated integrals 2

2 A conjecture 4

3 The fundamental group 5

1

http://arxiv.org/abs/1011.3312v1


ITERATED INTEGRALS 2

Introduction

Iterated integrals as a tool of differential topology have been introduced in
the nineteen-fifties [1]. They have been applied to many problems, includ-
ing the construction of Hodge-structures on fundamental groups [5] and the
description of knot invariants [6], just to name examples.

In most applications, iterated integrals are restricted to loops, but recently
interest rose in iterated integrals of free paths. These give rise to functions
on the universal covering. In [8] it was found that for Riemann surfaces these
functions give higher order invariants in the sense of [4]. In the present paper,
we generalize this to arbitrary manifolds.

An iterated integral is called closed, if its values only depend on the homotopy
classes of paths, where homotopy means homotopy with fixed endpoints. The
central conjecture, which is formulated in section 2 of this paper, is that the
restriction map from closed free iterated integrals to closed iterated integrals
on loops should be surjective. We prove the conjecture in low degrees and
for general degrees under the condition that the cup product

H1(X)×H1(X) → H2(X)

is the zero map, which is the case for instance if H2(X) = 0 already. In
section 3 finally we prove the central result of this paper, which says that,
given the conjecture holds, then free closed iterated integrals generate the
module of higher order invariants of smooth functions.

1 Generalities on iterated integrals

In this section we fix notations. Let X be a smooth connected manifold and
x0, x ∈ X points. We write PX for the path space, i.e., the set of all smooth
maps p : [0, 1] → X . We also write PXx0

for the subset of all paths that
start at x0 and PXx0,x for the subset of all smooth paths from x0 to x. The
space LXx0

= PXx0,x0
is also called the loop space at x0.

For a path p and 1-forms ω1, . . . , ωr we define the iterated integral:

∫

p

ω1 · · ·ωr =

∫ 1

0

∫ tr

0

. . .

∫ t2

0

p∗ω1(t1) p
∗ω2(t2) . . . p

∗ωr(tr).
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For an integer s, let Bs(X) denote the space of all maps ω : PX → C which
are linear combinations of iterated integrals of length ≤ s. Here we include
constants as they may be considered as iterated integrals of length zero. We
also write B(X) for the union of all Bs(X) as s varies. Let

T (X) = C⊕ Ω1(X)⊕
[

Ω1(X)⊗ Ω1(X)
]

⊕ . . .

be the tensorial algebra over the space Ω1(X) of smooth 1-forms. The map
ω1 ⊗ · · · ⊗ ωr 7→

∫

p
ω1 · · ·ωr is a linear map from T (X) to B(X). This map

has a non-trivial kernel which has been determined by Chen in [2].

We denote by Bs(X)x0
the set of restrictions of elements of Bs(X) to PXx0

and the space Bs(X)x0,x is defined analogously.

Lemma 1.1 (a) If ϕ is an orientation preserving diffeomorphism on [0, 1],
then

∫

p
ω1 · · ·ωr =

∫

p◦ϕ
ω1 · · ·ωr.

(b) If F is a diffeomorphism on X, then
∫

F◦p
ω1 . . . ωr =

∫

p
(F ∗ω1) . . . (F

∗ωr).

(c) If p and q are composable paths, then

∫

pq

ω1 · · ·ωr =
r

∑

j=0

∫

p

ω1 · · ·ωj

∫

q

ωj+1 · · ·ωr.

(d) One has
∫

p

ω1 · · ·ωr

∫

p

ωr+1 · · ·ωr+s =
∑

σ

∫

p

ωσ(1) · · ·ωσ(r+s),

where the sum runs over all (r, s)-shuffles, i.e., permutations σ on r + s
letters with σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

(e)
∫

p−1 ω1 · · ·ωr = (−1)r
∫

p
ωr · · ·ω1, where p−1(t) = p(1− t).

(f) For given ω ∈ B(X), we extend the map p 7→
∫

p
ω to the free abelian

group Z[PX ] generated by PX. For given α1, . . . , αs ∈ PXx0,x0
let η =

(α1 − 1)(α2 − 1) . . . (αs − 1) ∈ Z[PX ]. For 1-forms ω1, . . . , ωr, r ≤ s we

have
∫

η

ω1 · · ·ωr =

{

∏s

i=1

∫

αi
ωi r = s,

0 r < s.
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Proof: (a)-(e) are easy exercises. (f) is a result of Hain, see [5], Proposition
2.13. �

If we replace the tensor product on T (X) by the shuffle product ∗ given by

ω1 · · ·ωr ∗ ωr+1 · · ·ωr+s =
∑

σ

ωσ(1) · · ·ωσ(r+s),

where the sum runs over all (r, s)-shuffles, we obtain the shuffle algebra

Sh(X). We have shown that the iterated integrals form an algebra homo-
morphism

Sh(X) → B(X),

where the latter is an algebra under pointwise multiplication.

Let Bs(X)hom denote the space of all elements of Bs(X) which are invari-
ant under homotopies with fixed end-points. Similarly define Bs(X)homx0

and
Bs(X)homx0,x

.

2 A conjecture

Conjecture 2.1 The restriction map Bs(X)homx0
→ Bs(X)homx0,x0

is surjective.

Proposition 2.2 (a) The Conjecture holds for s = 0, 1, 2.

(b) The conjecture holds if the cup product

H1(X)×H1(X) → H2(X)

is zero.

Proof: (a) For s = 0 it is trivially true. We show it in the case s = 1. Let
ω ∈ B1(X)homx0,x0

. WLOG we can assume that ω is a 1-form. Let p and p̃ be
homotopic paths from x0 to, say, x ∈ X . Then p̃p−1 is a loop at x0 which
is homotopic to the constant path, hence

∫

p̃
ω −

∫

p
ω =

∫

p̃p−1 ω = 0, as ω is

a single 1-form. Now to the case s = 2. Proposition 3.11 of [2] says that a
given ω ∈ B2(X)x0,x0

belongs to B2(X)homx0,x0
if and only if it can be written

as

ω =

n
∑

i=1

αiβi + γ + c,
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where c ∈ C and αi, βi are closed 1-forms with

n
∑

i=1

α1 ∧ βi + dγ = 0.

By Proposition 3.3 of [2] an iterated integral η =
∑n

i=1 αiβi+γ+c ∈ B2(X)x0

is homotopy-invariant if
∑n

i=1 α1 ∧ βi + dγ = 0 holds. So η lies in B2(X)homx0

and restricts to ω.

(b) Let ω ∈ Bs(X)homx0,x0
and write

ω =

n
∑

j=1

ωj
1 . . . ω

j
s +R

for some 1-forms ωj
i and R ∈ Bs−1(X)x0,x0

. By Proposition 8.30 (2) of [7]
it follows that we can assume the forms ωj

i to be closed for all i, j. By our
assumption, the forms ωj

i ∧ ωj
i+1 are exact, so there are 1-forms ωj

i,i+1 such
that

ωj
i ∧ ωj

i+1 + dωj
i,i+1 = 0.

In the next step one finds 1-forms ωj
i,i+1,i+2 such that

ωj
i ∧ ωj

i+1,i+2 + ωj
i,i+1 ∧ ωi+2 + dωj

i,i+1,i+2 = 0

and so on until
ωj
1 ∧ ωj

2,...,s + · · ·+ dωj
1,...,s = 0.

In other words, the forms ωj
i,...,i+k constitute an extended defining system for

Massey products as in [2], section 3.1. By Theorem 3.1 in [2], there exists
u ∈ Bs(X)homx0

such that u ≡ ω mod Bs−1(X)x0
. By induction we get the

claim. �

3 The fundamental group

For a group Γ we write its group ring as ZΓ and J ⊂ ZΓ the augmentation
ideal, i.e., the span of all elements of the form (γ − 1), where γ ∈ Γ. For
any ZΓ-module V we write H0

s(Γ, V ) for the Z-module of all v ∈ V with
Jsv = 0. This space can be identified with HomZΓ(ZΓ/J

s, V ). The elements
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of H0
s(Γ, V ) for varying s are called higher order invariants. If v is in H0

s(Γ, V ),
but not in H0

s−1(Γ, V ), then s is called the order of v.

Let X be a connected smooth manifold, x0 ∈ X a base-point, and Γ =
π1(X, x0) the corresponding fundamental group. We consider Γ as group
of deck transformations on the universal covering X̃ of X . We also fix a
pre-image x̃0 of x0 in X̃ .

As X̃ is simply connected, the iterated integral
∫

p
ω for ω ∈ Bs(X̃)hom only

depends on the endpoints x, y of the path p. We therefore write
∫ y

x
ω =

∫

p
ω.

Every γ ∈ Γ can be viewed as a homotopy class of a loop based at x0 ∈ X .
In this way we get a map Bs(X)homx0,x0

→ Map(Γ,C) that maps ω ∈ Bs(X)homx0,x0

to the map γ 7→
∫

γ
ω. The latter map induces a Z-linear map from the group

ring ZΓ to C. It is the content of Chen’s de Rham Theorem for fundamental
groups (see [3], Corollar 1 to Theorem 2.6.1, see also [7]) that this map
induces a bijection

Bs(X)homx0,x0

∼=
−→ HomZ(ZΓ/J

s+1,C).

Theorem 3.1 If ω ∈ Bs(X)homx0
, then the function

∫ x

x0
ω is an invariant of

order at most s+1 in the Γ-module C∞(X̃). This defines an injective linear

map

Ψ : Bs(X)homx0
→֒ H0

s+1(Γ, C
∞(X̃)).

The case when X is the hyperbolic plane is in the paper [8].

Proof: Let ω ∈ Bs(X)hom and set fω(x) =
∫ x

x0
ω. We have to show

[(γ1 − 1) · · · (γs+1 − 1)]∗ fω = 0

for any γ1, . . . , γs+1 ∈ Γ. For given x ∈ X and γ ∈ Γ, we choose a path γx
from x to γx. The map γ 7→ γx is extended linearly to a map ZΓ → Z[PX ].
For every x ∈ X we also fix a smooth path px from x0 to x. Let ω ∈ Bs(X)hom

and let η =
∑

γ cγγ be an arbitrary element of the group ring ZΓ. We have

η∗fω(x) =
∑

γ

cγγ
∗fω(x) =

∑

γ

cγ

∫ γx

x0

ω

=
∑

γ

cγ

∫

pxγx

ω =

∫

px
∑

γ cγγx

ω =

∫

pxηx

ω.
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We apply this to the element (γ1 − 1) · · · (γs+1 − 1) of the group ring and
we look at any monomial ω1 · · ·ωr in ω, where the ωj are 1-forms on X . We
then have
∫

px[(γ1−1)...(γs+1−1)]x

ω1 . . . ωr =
r

∑

k=0

∫

px

ω1 . . . ωk

∫

[(γ1−1)...(γs+1−1)]x

ωk+1 . . . ωr.

Let x̄ be the image of x in X and let γx̄ be the image of γx in X . Then γx̄
is a loop based at x̄. As the forms ωj are Γ-invariant, we have

∫

[(γ1−1)...(γs+1−1)]x

ωk+1 . . . ωr =

∫

[(γ1−1)...(γs+1−1)]x̄

ωk+1 . . . ωr

=

∫

(γ1,x̄−1)...(γs+1,x̄−1)

ωk+1 . . . ωr

= 0

by Lemma 1.1 (e). This proves the first claim. For the injectivity of the
induced map let ω ∈ Bs(X̃)homx0

with
∫ x

x0
ω = 0. This just means that ω = 0

in Bs(X̃)homx0
. �

Questions.

• Ist B(X̃)Γ = B(X)?

• Let ω ∈ H0
q (Γ, Bs(X̃)hom). Is it true that the function

∫ x

x0
ω lies in

H0
q+1(Γ, C

∞(X̃))?

We formally set H0
0 = 0 and B−1 = 0.

Theorem 3.2 Suppose that Conjecture 2.1 holds. Let B̄s = Bs/Bs−1 and

let Ks be the kernel of the map

Bs(X)homx0

res
−→ Bs(X)homx0,x0

→ B̄s(X)homx0,x0
.

Then

Ψ(Ks) ⊂ H0
s (Γ, C

∞(X̃))

and Ψ induces an isomorphism of C∞(X)-modules

C∞(X)⊗
(

Bs(X)homx0
/Ks

) ∼=
−→ H̄0

s+1(Γ, C
∞(X̃)).
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Proof: By Chen’s de Rham Theorem for fundamental groups (see [3], Corol-
lar 1 to Theorem 2.6.1, see also [7]) the evaluation of iterated integrals gives
an isomorphism

B̄s(X)homx0,x0

∼=
−→ HomZ(J

s/Js+1,C).

The right hand side can also be viewed as HomZΓ(J
s/Js+1,C) and as such

be embedded into

HomA(J
s/Js+1, C∞(X)) ∼= HomA(J

s/Js+1, C∞(X̃)),

where we have written A = ZΓ. More precisely, the image in

HomA(J
s/Js+1, C∞(X)) ∼= C∞(X)⊗HomA(J

s/Js+1,C)

is a basis of this C∞(X)-module, which means that we have an isomorphism
of C∞(X)-modules,

C∞(X)⊗ B̄s(X)homx0,x0

∼=
−→ HomA(J

s/Js+1, C∞(X̃)).

Lemma 3.3 We have H1(Γ, C∞(X̃)) = 0.

Proof: A 1-cocycle is a map α : Γ → C∞(X̃) such that α(γτ) = γα(τ)+α(γ)
holds for all γ, τ ∈ Γ. We have to show that for any given such map α there
exists f ∈ C∞(X̃) such that α(τ) = τf − f .

Fix a smooth map u : X̃ → [0, 1] such that
∑

τ∈Γ

u(τ−1x) ≡ 1,

where we can assume that the sum is locally finite. Set

f(x) = −
∑

τ∈Γ

α(τ)(x) u(τ−1x).

Then the function f lies in the space C∞(X̃). We now compute for γ ∈ Γ,

γf(x)− f(x) = f(γ−1x)− f(x)

=
∑

τ∈Γ

α(τx)u(τ−1x)− α(τ)(γ−1x)u(τ−1γ−1x)

=
∑

τ∈Γ

α(τ)(x)u(τ−1x) + α(γ)(x)
∑

τ∈Γ

u((γτ)−1x)

−
∑

τ∈Γ

α(γτ)(x)u((γτ)−1x)
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The first and the last sum cancel and the middle sum is α(γ)(x). Therefore,
the lemma is proven. �

Since H1(Γ, C∞(X̃)) = 0, the exact sequence

0 → Js/Js+1
→ A/Js+1

→ A/Js
→ 0,

induces an isomorphism

HomA(J
s/Js+1, C∞(X̃)) ∼= HomA(A/J

s+1, C∞(X̃))/HomA(A/J
s, C∞(X̃)).

We write

HomA(A/J
s+1, C∞(X̃)) = HomA(A/J

s+1, C∞(X̃))/HomA(A/J
s, C∞(X̃)).

We have to show that the ensuing diagram

B̄s(X)homx0
B̄s(X)homx0,x0

HomA(A/J
s+1, C∞(X̃)) HomA(J

s/Js+1, C∞(X̃))

-
res

? ?

-
∼=

commutes. This will give the claim, as we already have seen that the right
vertical arrow becomes an isomorphism after tensoring with C∞(X). This
commutativity is a direct consequence of formula (f) in Lemma 1.1. �
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