ON CORE AND BAR-CORE PARTITIONS

JEAN-BAPTISTE GRAMAIN AND RISHI NATH

ABSTRACT. If s and t are relatively prime J. Olsson proved in [7] that the score of a t-core partition is again a t-core partition, and that the s-bar-core of a t-bar-core partition is again a t-bar-core partition. Here generalized results are proved for partitions and bar-partitions when the restriction that s and t be relatively prime is removed.

1. INTRODUCTION

The basic facts about partitions, hooks and blocks can be found in [3, Chapter 2] or [6, Chapter 1]. We recall a few key definitions here. A partition λ of n is defined as a non-increasing sequence of nonnegative integers $(\lambda_1, \lambda_2, \cdots)$ that sum to n. A partition is represented graphically by its Young diagram $[\lambda]$, which consists of the set of nodes $\{(i, j) | (i, j) \in \mathbb{N}^2, j \leq \lambda_i\}$. The node (i, j) is in the *i*th row and *j*th column of $[\lambda]$. The rows of $[\lambda]$ are labelled from top to bottom, while its columns are labelled from left to right.

To each node (i, j) in $[\lambda]$ we associate the *hook* h_{ij} of λ , which consists of the node (i, j) itself, together with all the nodes $\{(i, k) | j < k\}$ in $[\lambda]$ (i.e. in the same row as and to the right of (i, j)), and all the nodes $\{(\ell, j) | i < \ell\}$ (i.e. in the same column as and below (i, j)). The *length* of h_{ij} is the total number of nodes contained in the hook. For any integer $\ell \ge 1$, we call ℓ -hook a hook of length ℓ , and (ℓ) -hook a hook of length divisible by ℓ . The information about the (ℓ) -hooks in λ is encoded in the ℓ -quotient $q_{\ell}(\lambda) = (\lambda_0, \ldots, \lambda_{\ell-1})$ of λ . The λ_i 's are partitions whose sizes sum to the number w of (ℓ) -hooks in λ (called the ℓ -weight of λ).

The removal of an ℓ -hook h in λ is obtained by removing the ℓ nodes of $[\lambda]$ in h, and migrating the disconnected nodes in $[\lambda]$ up and to the left. The result is a partition of $n - \ell$ denoted by $\lambda \setminus h$. By removing all the (ℓ) -hooks in λ , one obtains the ℓ -core $\gamma_{\ell}(\lambda)$ of λ . The partition $\gamma_{\ell}(\lambda)$ contains no (ℓ) -hooks, and is uniquely determined by λ (i.e. doesn't depend on the order in which we remove the ℓ -hooks in λ). The partition λ is entirely determined by its ℓ -core and ℓ -quotient.

It is well-known that the irreducible complex characters of the symmetric group \mathfrak{S}_n are labelled by the partitions of n. If p is a prime, then the distribution of irreducible characters of \mathfrak{S}_n into p-blocks has a combinatorial description known as the Nakayama Conjecture: two characters χ_λ , $\chi_\mu \in \operatorname{Irr}(\mathfrak{S}_n)$ belong to the same p-block if and only if λ and μ have the same p-core (see [3, Theorem 6.1.21]). Hence we define, for each integer $\ell \geq 1$, an ℓ -block of partitions of n to be the set of all partitions of n having a common given ℓ -core.

²⁰⁰⁰ Mathematics Subject Classification 20C30 (primary), 20C15, 20C20 (secondary)

We now recall the analogous notions and results for bar-partitions, which can be found in [6, Chapter 1]. A bar-partition is a partition λ comprised of distinct parts. To each bar-partition we associate a shifted Young diagram $S(\lambda)$ obtained by shifting the *i*th row of the usual Young diagram (i - 1) positions to the right. The *j*-th node in the *i*-th row will be called the (i, j)-node. To each node (i, j) in $S(\lambda)$, one can associate a bar and bar-length. For any odd integer ℓ , a bar-partition λ is entirely determined by its $\bar{\ell}$ -core $\bar{\gamma}_{\ell}(\lambda)$ and its $\bar{\ell}$ -quotient $\bar{q}_{\ell}(\lambda)$. The bar-core $\bar{\gamma}_{\ell}(\lambda)$ is obtained by removing from λ all the bars of length divisible by ℓ (called (ℓ) -bars). The bar-quotient of λ is of the form $\bar{q}_{\ell}(\lambda) = (\lambda_0, \lambda_1, \ldots, \lambda_{(\ell-1)/2})$, where λ_0 is a bar-partition, $\lambda_1, \ldots, \lambda_{(\ell-1)/2}$ are partitions, and the sizes of the λ_i 's sum to the number of (ℓ) -bars in λ (called $\bar{\ell}$ -weight of λ).

It is well-known that the bar-partitions of n label the faithful irreducible complex characters of the 2-fold covering group $\tilde{\mathfrak{S}}_n$ of \mathfrak{S}_n . These correspond to irreducible projective representations of \mathfrak{S}_n , and are known as *spin-characters*. If p is an odd prime, then the distribution of spin-characters of $\tilde{\mathfrak{S}}_n$ of positive defect into p-blocks has a combinatorial description known as the Morris Conjecture: two spin-characters of $\tilde{\mathfrak{S}}_n$ of positive defect belong to the same p-block if and only if the bar-partitions labelling them have the same \bar{p} -core (see [6, Theorem 13.1]).

In analogy with this, we define, for each odd integer $\ell \ge 1$, an $\overline{\ell}$ -block of partitions of n to be the set of all bar-partitions of n having a common given $\overline{\ell}$ -core.

2. Some new results on cores and bar-cores

In this section, we generalize to arbitrary integers s and t the results on cores and bar-cores proved by J. B. Olsson in [7] when s and t are coprime. Note that Olsson's result ([7, Theorem 1]) was interpreted by M. Fayers through alcove geometry and actions of the affine symmetric group (see [2]). It was also used by F. Garvan and A. Berkovich to bound the number of distinct values their partition statistic (the GBG-rank) can take on a t-core (mod s) (see [1, Theorem 1.2]).

We keep the notation as in Section 1.

Theorem 2.1. For any two positive integers s and t, the s-core of a t-core partition is again a t-core partition.

Remark 2.2. This result was proved by J. B. Olsson in [7], under the extra hypothesis that s and t are relatively prime. R. Nath then gave in [5] a proof of the result in general. We give here another proof which, unlike the one given by Nath, uses Olsson's result, and provides the framework for the proof for bar-partitions.

Proof. Consider a t-core partition λ . Let $g = \gcd(s, t)$, and write $s_0 = s/g$ and $t_0 = t/g$. It's a well-known fact (see e.g. [6, Theorem 3.3]) that there is a canonical bijection φ between the set of hooks of length divisible by g in λ and the set of hooks in $q_g(\lambda) = (\lambda_0, \ldots, \lambda_{g-1})$ (i.e. hooks in each of the λ_i 's). For each positive integer k and hook h of length kg in λ , the hook $\varphi(h)$ has length k. Furthermore, we have $q_g(\lambda \setminus h) = q_g(\lambda) \setminus \varphi(h)$.

In particular, since λ is an *t*-core, and since $t = t_0 g$, we see that $q_g(\lambda)$ contains no t_0 -hook, so that each λ_i is an t_0 -core.

Now, the s-hooks in λ are in bijection with the s_0 -hooks in $q_g(\lambda)$. When we remove them all, we obtain that the s-core $\gamma_s(\lambda)$ has g-core $\gamma_g(\gamma_s(\lambda)) = \gamma_g(\lambda)$ and g-quotient $q_g(\gamma_s(\lambda)) = (\gamma_{s_0}(\lambda_0), \ldots, \gamma_{s_0}(\lambda_{g-1}))$. But, since s_0 and t_0 are coprime, the s_0 -core of each t_0 -core λ_i is again a t_0 -core ([7, Theorem 1]). This shows that

 $q_g(\gamma_s(\lambda))$ has no t_0 -hook, which in turn implies that $\gamma_s(\lambda)$ contains no t-hook, whence is an t-core.

As we mentionned in Section 1, when p is a prime, the study of p-cores is linked to that of the p-modular representation theory of the symmetric group \mathfrak{S}_n (as they label the p-blocks of irreducible characters). When $\ell \geq 2$ is an arbitrary integer, it turns out that it is still possible to describe an ℓ -modular representation theory of \mathfrak{S}_n (see [4]). The theory of ℓ -blocks obtained in this way is in fact related to the ordinary representation theory of an Iwahori-Hecke algebra of type \mathfrak{S}_n , when specialized at an ℓ -root of unity. Külshammer, Olsson and Robinson proved in [4] the following analogue of the Nakayama Conjecture: two characters $\chi_{\lambda}, \chi_{\mu} \in \operatorname{Irr}(\mathfrak{S}_n)$ belong to the same ℓ -block if and only if λ and μ have the same ℓ -core.

It is therefore legimitate to study ℓ -cores and ℓ -blocks of partitions. In particular, we obtain from Theorem 2.1 a generalization of [7, Corollary 3]. We call *principal* ℓ -block of *n* the ℓ -block of partitions of *n* which contains the partition (*n*) (i.e. the set of partitions labelling the characters of the principal ℓ -block of \mathfrak{S}_n).

Corollary 2.3. Let r, s and t be any positive integers such that $s > r \ge t$, and let n = as + r for some $a \in \mathbb{Z}_{>0}$. Then the principal s-block of n contains no t-core.

Proof. Suppose the partition λ of n is a t-core. The s-core γ of λ , which is obtained by removing s-hooks, must therefore be a partition of some m which differs from n by a multiple of s, i.e. m = bs + r for some b such that $a \ge b \ge 0$. By Theorem 2.1, γ is also a t-core. Now, if λ was in the principal s-block of n, then its s-core would be the same as that of the cycle (n), hence also a cycle. We would thus have $\gamma = (m)$. But since $m \ge r \ge t$, the cycle (m) contains a t-hook, hence cannot be a t-core.

In terms of blocks of characters, this means that, if s, t and n are as above, then there is no trivial block inclusion of a *t*-block in the principal *s*-block of \mathfrak{S}_n (see [8]).

We now prove the analogue results for bar-cores, which was proved by Olsson when s and t are odd and coprime ([7, Theorem 4]).

Theorem 2.4. For any two odd positive integers s and t, the \bar{s} -core of an \bar{t} -core partition is again a \bar{t} -core partition.

Proof. Take any \bar{t} -core λ . Let $g = \gcd(s, t)$, and write $s_0 = s/g$ and $t_0 = t/g$. There is a canonical bijection φ between the set of bars of length divisible by g in λ and the set of bars in its \bar{g} -quotient $\bar{q}_g(\lambda) = (\lambda_0, \lambda_1, \ldots, \lambda_{(g-1)/2})$, where a bar in $\bar{q}_g(\lambda)$ is either a bar in the bar-partition λ_0 or a hook in one of the partitions $\lambda_1, \ldots, \lambda_{(g-1)/2}$ (see [6, Theorem 4.3]). For each positive integer k and bar b of length kg in λ , the bar $\varphi(b)$ has length k. Furthermore, we have $\bar{q}_g(\lambda \setminus b) = \bar{q}_g(\lambda) \setminus \varphi(b)$.

The same argument as in the proof of Theorem 2.1 thus proves that λ_0 is an $\bar{t_0}$ -core, that each λ_i $(1 \leq i \leq (g-1)/2)$ is an t_0 -core, and that the \bar{s} -core $\bar{\gamma}_s(\lambda)$ of λ has \bar{g} -quotient $\bar{q}_g(\bar{\gamma}_s(\lambda)) = (\bar{\gamma}_{s_0}(\lambda_0), \gamma_{s_0}(\lambda_1), \dots, \gamma_{s_0}(\lambda_{(g-1)/2}))$. And, since s_0 and t_0 are coprime, the s_0 -core of each t_0 -core λ_i $(1 \leq i \leq (g-1)/2)$ is again a t_0 -core ([7, Theorem 1]), and the $\bar{s_0}$ -core of the $\bar{t_0}$ -core λ_0 is again a $\bar{t_0}$ -core ([7, Theorem 1]).

Theorem 4]). This shows that the \bar{g} -quotient of $\bar{\gamma}_s(\lambda)$ contains no t_0 -bar, which finally implies that $\bar{\gamma}_s(\lambda)$ contains no t-bar, whence is an \bar{t} -core.

In analogy with the partition case, we call *principal* $\bar{\ell}$ -block of bar-partitions of n (for ℓ odd) the $\bar{\ell}$ -block containing the bar-partition (n). Then the same argument as for the proof of Corollary 2.3 yields

Corollary 2.5. Let r, s and t be any positive integers such that s and t are odd and $s > r \ge t$, and let n = as + r for some $a \in \mathbb{Z}_{\ge 0}$. Then the principal \bar{s} -block of n contains no \bar{t} -core.

References

- A. Berkovich and F. Garvan. The GBG-rank and t-cores I. Counting and 4-cores. J. Comb. Number Theory, 1(3):237–252, 2009.
- [2] M. Fayers. The *t*-core of an *s*-core. Preprint.
- [3] G. James and A. Kerber. The representation theory of the symmetric group, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [4] B. Külshammer, J. Olsson, and G.R. Robinson. Generalized blocks for symmetric groups. Invent. Math., 151(3):513–552, 2003.
- [5] R. Nath. On the *t*-core of an *s*-core partition. *Integers*, 8:A28, 2008.
- [6] J. B. Olsson. Combinatorics and representations of finite groups. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Heft 20, 1993.
- [7] J. B. Olsson. A theorem on the cores of partitions. J. Combinatorial Theory A, 116:733-740, 2009.
- [8] J. B. Olsson and D. Stanton. Block inclusions and cores of partitions. Aequationes Math., 74:90-110, 2007.

Institut de Mathématiques de Jussieu, Université Denis Diderot, Paris VII, UFR de Mathématiques, 2 place Jussieu, F-75251 Paris Cedex 05, email: gramain@math.jussieu.fr

Department of Mathematics and Computer Science, York College, City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11418, email: rnath@york.cuny.edu