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ON CORE AND BAR-CORE PARTITIONS

JEAN-BAPTISTE GRAMAIN AND RISHI NATH

Abstract. If s and t are relatively prime J. Olsson proved in [7] that the s-
core of a t-core partition is again a t-core partition, and that the s-bar-core of
a t-bar-core partition is again a t-bar-core partition. Here generalized results
are proved for partitions and bar-partitions when the restriction that s and t

be relatively prime is removed.

1. Introduction

The basic facts about partitions, hooks and blocks can be found in [3, Chapter 2]
or [6, Chapter 1]. We recall a few key definitions here. A partition λ of n is defined
as a non-increasing sequence of nonnegative integers (λ1, λ2, · · · ) that sum to n. A
partition is represented graphically by its Young diagram [λ], which consists of the
set of nodes {(i, j) | (i, j) ∈ N

2, j ≤ λi}. The node (i, j) is in the ith row and jth
column of [λ]. The rows of [λ] are labelled from top to bottom, while its columns
are labelled from left to right.

To each node (i, j) in [λ] we associate the hook hij of λ, which consists of the
node (i, j) itself, together with all the nodes {(i, k) | j < k} in [λ] (i.e. in the same
row as and to the right of (i, j)), and all the nodes {(ℓ, j) | i < ℓ} (i.e. in the
same column as and below (i, j)). The length of hij is the total number of nodes
contained in the hook. For any integer ℓ ≥ 1, we call ℓ-hook a hook of length ℓ, and
(ℓ)-hook a hook of length divisible by ℓ. The information about the (ℓ)-hooks in
λ is encoded in the ℓ-quotient qℓ(λ) = (λ0, . . . , λℓ−1) of λ. The λi’s are partitions
whose sizes sum to the number w of (ℓ)-hooks in λ (called the ℓ-weight of λ).

The removal of an ℓ-hook h in λ is obtained by removing the ℓ nodes of [λ] in
h, and migrating the disconnected nodes in [λ] up and to the left. The result is a
partition of n− ℓ denoted by λ \ h. By removing all the (ℓ)-hooks in λ, one obtains
the ℓ-core γℓ(λ) of λ. The partition γℓ(λ) contains no (ℓ)-hooks, and is uniquely
determined by λ (i.e. doesn’t depend on the order in which we remove the ℓ-hooks
in λ). The partition λ is entirely determined by its ℓ-core and ℓ-quotient.

It is well-known that the irreducible complex characters of the symmetric group
Sn are labelled by the partitions of n. If p is a prime, then the distribution of
irreducible characters of Sn into p-blocks has a combinatorial description known
as the Nakayama Conjecture: two characters χλ, χµ ∈ Irr(Sn) belong to the same
p-block if and only if λ and µ have the same p-core (see [3, Theorem 6.1.21]). Hence
we define, for each integer ℓ ≥ 1, an ℓ-block of partitions of n to be the set of all
partitions of n having a common given ℓ-core.

2000 Mathematics Subject Classification 20C30 (primary), 20C15, 20C20 (secondary)

1

http://arxiv.org/abs/1011.3323v1


2 JEAN-BAPTISTE GRAMAIN AND RISHI NATH

We now recall the analogous notions and results for bar-partitions, which can
be found in [6, Chapter 1]. A bar-partition is a partition λ comprised of distinct
parts. To each bar-partition we associate a shifted Young diagram S(λ) obtained
by shifting the ith row of the usual Young diagram (i − 1) positions to the right.
The j-th node in the i-th row will be called the (i, j)-node. To each node (i, j) in
S(λ), one can associate a bar and bar-length. For any odd integer ℓ, a bar-partition
λ is entirely determined by its ℓ̄-core γ̄ℓ(λ) and its ℓ̄-quotient q̄ℓ(λ). The bar-core

γ̄ℓ(λ) is obtained by removing from λ all the bars of length divisible by ℓ (called
(ℓ)-bars). The bar-quotient of λ is of the form q̄ℓ(λ) = (λ0, λ1, . . . λ(ℓ−1)/2), where
λ0 is a bar-partition, λ1, ..., λ(ℓ−1)/2 are partitions, and the sizes of the λi’s sum

to the number of (ℓ)-bars in λ (called ℓ̄-weight of λ).

It is well-known that the bar-partitions of n label the faithful irreducible complex
characters of the 2-fold covering group S̃n of Sn. These correspond to irreducible
projective representations of Sn, and are known as spin-characters. If p is an
odd prime, then the distribution of spin-characters of S̃n of positive defect into
p-blocks has a combinatorial description known as the Morris Conjecture: two
spin-characters of S̃n of positive defect belong to the same p-block if and only if
the bar-partitions labelling them have the same p̄-core (see [6, Theorem 13.1]).

In analogy with this, we define, for each odd integer ℓ ≥ 1, an ℓ̄-block of partitions

of n to be the set of all bar-partitions of n having a common given ℓ̄-core.

2. Some new results on cores and bar-cores

In this section, we generalize to arbitrary integers s and t the results on cores and
bar-cores proved by J. B. Olsson in [7] when s and t are coprime. Note that Olsson’s
result ([7, Theorem 1]) was interpreted by M. Fayers through alcove geometry and
actions of the affine symmetric group (see [2]). It was also used by F. Garvan and
A. Berkovich to bound the number of distinct values their partition statistic (the
GBG-rank) can take on a t-core (mod s) (see [1, Theorem 1.2]).

We keep the notation as in Section 1.

Theorem 2.1. For any two positive integers s and t, the s-core of a t-core partition

is again a t-core partition.

Remark 2.2. This result was proved by J. B. Olsson in [7], under the extra hy-

pothesis that s and t are relatively prime. R. Nath then gave in [5] a proof of the

result in general. We give here another proof which, unlike the one given by Nath,

uses Olsson’s result, and provides the framework for the proof for bar-partitions.

Proof. Consider a t-core partition λ. Let g = gcd(s, t), and write s0 = s/g and
t0 = t/g. It’s a well-known fact (see e.g. [6, Theorem 3.3]) that there is a canonical
bijection ϕ between the set of hooks of length divisible by g in λ and the set of
hooks in qg(λ) = (λ0, . . . , λg−1) (i.e. hooks in each of the λi’s). For each positive
integer k and hook h of length kg in λ, the hook ϕ(h) has length k. Furthermore,
we have qg(λ \ h) = qg(λ) \ ϕ(h).

In particular, since λ is an t-core, and since t = t0g, we see that qg(λ) contains
no t0-hook, so that each λi is an t0-core.

Now, the s-hooks in λ are in bijection with the s0-hooks in qg(λ). When we
remove them all, we obtain that the s-core γs(λ) has g-core γg(γs(λ)) = γg(λ) and
g-quotient qg(γs(λ)) = (γs0(λ0), . . . γs0(λg−1)). But, since s0 and t0 are coprime,
the s0-core of each t0-core λi is again a t0-core ([7, Theorem 1]). This shows that
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qg(γs(λ)) has no t0-hook, which in turn implies that γs(λ) contains no t-hook,
whence is an t-core.

�

As we mentionned in Section 1, when p is a prime, the study of p-cores is linked
to that of the p-modular representation theory of the symmetric group Sn (as
they label the p-blocks of irreducible characters). When ℓ ≥ 2 is an arbitrary
integer, it turns out that it is still possible to describe an ℓ-modular representation
theory of Sn (see [4]). The theory of ℓ-blocks obtained in this way is in fact
related to the ordinary representation theory of an Iwahori-Hecke algebra of type
Sn, when specialized at an ℓ-root of unity. Külshammer, Olsson and Robinson
proved in [4] the following analogue of the Nakayama Conjecture: two characters
χλ, χµ ∈ Irr(Sn) belong to the same ℓ-block if and only if λ and µ have the same
ℓ-core.

It is therefore legimitate to study ℓ-cores and ℓ-blocks of partitions. In particular,
we obtain from Theorem 2.1 a generalization of [7, Corollary 3]. We call principal

ℓ-block of n the ℓ-block of partitions of n which contains the partition (n) (i.e. the
set of partitions labelling the characters of the principal ℓ-block of Sn).

Corollary 2.3. Let r, s and t be any positive integers such that s > r ≥ t, and let

n = as+ r for some a ∈ Z≥0. Then the principal s-block of n contains no t-core.

Proof. Suppose the partition λ of n is a t-core. The s-core γ of λ, which is obtained
by removing s-hooks, must therefore be a partition of some m which differs from
n by a multiple of s, i.e. m = bs+ r for some b such that a ≥ b ≥ 0. By Theorem
2.1, γ is also a t-core. Now, if λ was in the principal s-block of n, then its s-core
would be the same as that of the cycle (n), hence also a cycle. We would thus have
γ = (m). But since m ≥ r ≥ t, the cycle (m) contains a t-hook, hence cannot be a
t-core. �

In terms of blocks of characters, this means that, if s, t and n are as above, then
there is no trivial block inclusion of a t-block in the principal s-block of Sn (see
[8]).

We now prove the analogue results for bar-cores, which was proved by Olsson
when s and t are odd and coprime ([7, Theorem 4]).

Theorem 2.4. For any two odd positive integers s and t, the s̄-core of an t̄-core
partition is again a t̄-core partition.

Proof. Take any t̄-core λ. Let g = gcd(s, t), and write s0 = s/g and t0 = t/g.
There is a canonical bijection ϕ between the set of bars of length divisible by g in
λ and the set of bars in its ḡ-quotient q̄g(λ) = (λ0, , λ1, . . . , λ(g−1)/2), where a bar
in q̄g(λ) is either a bar in the bar-partition λ0 or a hook in one of the partitions
λ1, . . . , λ(g−1)/2 (see [6, Theorem 4.3]). For each positive integer k and bar b of
length kg in λ, the bar ϕ(b) has length k. Furthermore, we have q̄g(λ \ b) =
q̄g(λ) \ ϕ(b).

The same argument as in the proof of Theorem 2.1 thus proves that λ0 is an
t̄0-core, that each λi (1 ≤ i ≤ (g − 1)/2) is an t0-core, and that the s̄-core γ̄s(λ)
of λ has ḡ-quotient q̄g(γ̄s(λ)) = (γ̄s0(λ0), γs0(λ1), . . . γs0(λ(g−1)/2)). And, since s0
and t0 are coprime, the s0-core of each t0-core λi (1 ≤ i ≤ (g − 1)/2) is again a
t0-core ([7, Theorem 1]), and the s̄0-core of the t̄0-core λ0 is again a t̄0-core ([7,
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Theorem 4]). This shows that the ḡ-quotient of γ̄s(λ) contains no t0-bar, which
finally implies that γ̄s(λ) contains no t-bar, whence is an t̄-core.

�

In analogy with the partition case, we call principal ℓ̄-block of bar-partitions of
n (for ℓ odd) the ℓ̄-block containing the bar-partition (n). Then the same argument
as for the proof of Corollary 2.3 yields

Corollary 2.5. Let r, s and t be any positive integers such that s and t are odd

and s > r ≥ t, and let n = as+ r for some a ∈ Z≥0. Then the principal s̄-block of

n contains no t̄-core.
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