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ON CORE AND BAR-CORE PARTITIONS

JEAN-BAPTISTE GRAMAIN AND RISHI NATH

ABSTRACT. If s and ¢ are relatively prime J. Olsson proved in [7] that the s-
core of a t-core partition is again a t-core partition, and that the s-bar-core of
a t-bar-core partition is again a t-bar-core partition. Here generalized results
are proved for partitions and bar-partitions when the restriction that s and ¢
be relatively prime is removed.

1. INTRODUCTION

The basic facts about partitions, hooks and blocks can be found in [3] Chapter 2]
or [6, Chapter 1]. We recall a few key definitions here. A partition A of n is defined
as a non-increasing sequence of nonnegative integers (A1, Ag, - - - ) that sum to n. A
partition is represented graphically by its Young diagram [A], which consists of the
set of nodes {(i, j)| (i, j) € N?, j < \;}. The node (i, j) is in the ith row and jth
column of [A]. The rows of [\] are labelled from top to bottom, while its columns
are labelled from left to right.

To each node (i, j) in [A\] we associate the hook h;; of A, which consists of the
node (i, j) itself, together with all the nodes {(i, k) |j < k} in [A] (i.e. in the same
row as and to the right of (i, 7)), and all the nodes {(¢, 7) |7 < ¢} (i.e. in the
same column as and below (7, j)). The length of h;; is the total number of nodes
contained in the hook. For any integer ¢ > 1, we call £-hook a hook of length ¢, and
(£)-hook a hook of length divisible by ¢. The information about the (£)-hooks in
A is encoded in the £-quotient go(\) = (Mo, ..., Ae—1) of A. The \;’s are partitions
whose sizes sum to the number w of (¢)-hooks in A (called the ¢-weight of A).

The removal of an ¢-hook h in A is obtained by removing the ¢ nodes of [A] in
h, and migrating the disconnected nodes in [A] up and to the left. The result is a
partition of n — ¢ denoted by A\ h. By removing all the (¢)-hooks in A, one obtains
the £-core vp(M\) of A. The partition ,(A\) contains no (¢)-hooks, and is uniquely
determined by A (i.e. doesn’t depend on the order in which we remove the ¢-hooks
in A). The partition A is entirely determined by its ¢-core and ¢-quotient.

It is well-known that the irreducible complex characters of the symmetric group
G,, are labelled by the partitions of n. If p is a prime, then the distribution of
irreducible characters of &,, into p-blocks has a combinatorial description known
as the Nakayama Conjecture: two characters x, x, € Irr(&,,) belong to the same
p-block if and only if A and p have the same p-core (see |3, Theorem 6.1.21]). Hence
we define, for each integer ¢ > 1, an ¢-block of partitions of n to be the set of all
partitions of n having a common given /-core.
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We now recall the analogous notions and results for bar-partitions, which can
be found in [6, Chapter 1]. A bar-partition is a partition A comprised of distinct
parts. To each bar-partition we associate a shifted Young diagram S(A) obtained
by shifting the ith row of the usual Young diagram (¢ — 1) positions to the right.
The j-th node in the i-th row will be called the (i, j)-node. To each node (i,7) in
S(A), one can associate a bar and bar-length. For any odd integer ¢, a bar-partition
\ is entirely determined by its £-core 4¢(\) and its f-quotient G¢(\). The bar-core
7¢(A) is obtained by removing from A all the bars of length divisible by ¢ (called
(€)-bars). The bar-quotient of A is of the form go(\) = (Ao, A1, ... A(¢—1)/2), where
Ao is a bar-partition, A1, ..., A(y—1)/2 are partitions, and the sizes of the \;’s sum
to the number of (£)-bars in A (called l-weight of \).

It is well-known that the bar-partitions of n label the faithful irreducible complex
characters of the 2-fold covering group &,, of &,,. These correspond to irreducible
projective representations of &,, and are known as spin-characters. If p is an
odd prime, then the distribution of spin-characters of &,, of positive defect into
p-blocks has a combinatorial description known as the Morris Conjecture: two
spin-characters of &,, of positive defect belong to the same p-block if and only if
the bar-partitions labelling them have the same p-core (see [6, Theorem 13.1]).

In analogy with this, we define, for each odd integer ¢ > 1, an ¢-block of partitions
of n to be the set of all bar-partitions of n having a common given /-core.

2. SOME NEW RESULTS ON CORES AND BAR-CORES

In this section, we generalize to arbitrary integers s and ¢ the results on cores and
bar-cores proved by J. B. Olsson in [7] when s and ¢ are coprime. Note that Olsson’s
result (|7, Theorem 1]) was interpreted by M. Fayers through alcove geometry and
actions of the affine symmetric group (see [2]). It was also used by F. Garvan and
A. Berkovich to bound the number of distinct values their partition statistic (the
GBG-rank) can take on a ¢-core (mod s) (see [I, Theorem 1.2]).

We keep the notation as in Section [I}

Theorem 2.1. For any two positive integers s and t, the s-core of a t-core partition
is again a t-core partition.

Remark 2.2. This result was proved by J. B. Olsson in [1], under the extra hy-
pothesis that s and t are relatively prime. R. Nath then gave in [5] a proof of the
result in general. We give here another proof which, unlike the one given by Nath,
uses Olsson’s result, and provides the framework for the proof for bar-partitions.

Proof. Consider a t-core partition A\. Let g = ged(s, t), and write s = s/g and
to = t/g. It’s a well-known fact (see e.g. [6, Theorem 3.3]) that there is a canonical
bijection ¢ between the set of hooks of length divisible by g in A and the set of
hooks in g4(A) = (Ao, ..., Ag—1) (i-e. hooks in each of the A;’s). For each positive
integer k and hook h of length kg in A, the hook (k) has length k. Furthermore,
we have g, (\\ £) = g,(A) \ (k).

In particular, since A is an ¢-core, and since ¢t = tog, we see that g,(\) contains
no tp-hook, so that each \; is an tg-core.

Now, the s-hooks in A are in bijection with the sp-hooks in g4(A). When we
remove them all, we obtain that the s-core v,(A) has g-core v4(vs(A)) = 74(A) and
g-quotient gg(vs(A)) = (Yso (o) - - - Vso(Ag—1)). But, since so and ¢y are coprime,
the so-core of each tg-core A; is again a tg-core (|7, Theorem 1]). This shows that
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¢g(vs(A\)) has no tg-hook, which in turn implies that vs(\) contains no t-hook,
whence is an t-core.

O

As we mentionned in Section [I} when p is a prime, the study of p-cores is linked
to that of the p-modular representation theory of the symmetric group &, (as
they label the p-blocks of irreducible characters). When ¢ > 2 is an arbitrary
integer, it turns out that it is still possible to describe an f-modular representation
theory of &,, (see [4]). The theory of ¢-blocks obtained in this way is in fact
related to the ordinary representation theory of an Iwahori-Hecke algebra of type
&,,, when specialized at an ¢-root of unity. Kiilshammer, Olsson and Robinson
proved in [4] the following analogue of the Nakayama Conjecture: two characters
X, Xp € Irr(&,,) belong to the same ¢-block if and only if A and p have the same
{-core.

It is therefore legimitate to study ¢-cores and ¢-blocks of partitions. In particular,
we obtain from Theorem 2.1] a generalization of [7, Corollary 3]. We call principal
¢-block of n the ¢-block of partitions of n which contains the partition (n) (i.e. the
set of partitions labelling the characters of the principal ¢-block of &,,).

Corollary 2.3. Letr, s and t be any positive integers such that s > r > t, and let
n = as+r for some a € Z>o. Then the principal s-block of n contains no t-core.

Proof. Suppose the partition A of n is a t-core. The s-core v of A, which is obtained
by removing s-hooks, must therefore be a partition of some m which differs from
n by a multiple of s, i.e. m = bs + r for some b such that a > b > 0. By Theorem
21 ~ is also a t-core. Now, if A was in the principal s-block of n, then its s-core
would be the same as that of the cycle (n), hence also a cycle. We would thus have
~v = (m). But since m > r > t, the cycle (m) contains a ¢-hook, hence cannot be a
t-core. (|

In terms of blocks of characters, this means that, if s, t and n are as above, then
there is no trivial block inclusion of a ¢-block in the principal s-block of &,, (see

181)-
We now prove the analogue results for bar-cores, which was proved by Olsson
when s and ¢ are odd and coprime ([7, Theorem 4]).

Theorem 2.4. For any two odd positive integers s and t, the 5-core of an t-core
partition is again a t-core partition.

Proof. Take any t-core A\. Let g = ged(s, t), and write sg = s/g and to = t/g.
There is a canonical bijection ¢ between the set of bars of length divisible by g in
A and the set of bars in its g-quotient g,(\) = (Mo, ; A1, - .., Ag—1)/2), Where a bar
in gy(\) is either a bar in the bar-partition A9 or a hook in one of the partitions
AL, ..oy Ag—1)/2 (see [6, Theorem 4.3]). For each positive integer & and bar b of
length kg in A, the bar ¢(b) has length k. Furthermore, we have ggz(A \ b) =
2,0\ 9(0)

The same argument as in the proof of Theorem 2.1 thus proves that Ag is an
to-core, that each \; (1 <1 < (g —1)/2) is an tg-core, and that the s-core 7(\)
of A has g-quotient G, (7s(A)) = (Vso(A0)s Vso(M1)s -+ Vso (A(g=1)/2))- And, since sg
and to are coprime, the sg-core of each tg-core A; (1 < i < (g —1)/2) is again a
to-core (|7, Theorem 1]), and the so-core of the fy-core Ao is again a to-core (|7,
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Theorem 4]). This shows that the g-quotient of 4,(A) contains no to-bar, which
finally implies that 75()\) contains no t-bar, whence is an ¢-core.
O

In analogy with the partition case, we call principal /-block of bar-partitions of
n (for £ odd) the ¢-block containing the bar-partition (n). Then the same argument
as for the proof of Corollary 23] yields

Corollary 2.5. Let r, s and t be any positive integers such that s and t are odd
and s >r >t, and let n = as +r for some a € Z>o. Then the principal 5-block of
n contains no t-core.
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