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JACOB’S LADDERS, BESSEL’S FUNCTIONS AND THE

ASYMPTOTIC SOLUTIONS OF A NEW CLASS OF NONLINEAR

INTEGRAL EQUATIONS

JAN MOSER

Abstract. It is shown in this paper that there is a connection between the

Riemann zeta-function ζ
(

1

2
+ it

)

and the Bessel’s functions. In this direction,

a new class of the nonlinear integral equations is introduced.

1. The first result

1.1. We obtain some new properties of the signal

Z(t) = eiϑ(t)ζ

Å
1

2
+ it

ã

that is generated by the Riemann zeta-function, where

ϑ(t) = −
t

2
lnπ + Im lnΓ

Å
1

4
+ i

t

2

ã
=

t

2
ln

t

2π
−

t

2
−

π

8
+O

Å
1

t

ã
,

namely, the properties connected with the interaction of the function ζ
(

1
2 + it

)

with the Bessel’s functions

Jν(x) =
∞
∑

r=0

(−1)r

r!Γ(ν + r + 1)

(x

2

)ν+2r

where x > 0, ν > −1 (this is the sufficient case for our pourpose). Let us remind
that

Z̃2(t) =
dϕ1(t)

dt
, ϕ1(t) =

1

2
ϕ(t)

where

(1.1) Z̃2(t) =
Z2(t)

2Φ′

ϕ[ϕ(t)]
=

Z2(t)
{

1 +O
(

ln ln t
ln t

)}

ln t
,

(see [1], (3.9); [3], (1.3); [7], (1.1), (3.1), (3.2)), and ϕ(t) is the Jacob’s ladder, i.e.
a solution to the nonlinear integral equation (see [1])

∫ µ[x(T )]

0

Z2(t)e−
2

x(T )
tdt =

∫ T

0

Z2(t)dt.

Key words and phrases. Riemann zeta-function.
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1.2. The system of the Bessel’s functions

{Jν(µ
(ν)
n x)}∞n=1, x ∈ [0, 1], Jν(µ

(ν)
n ) = 0

is the orthogonal system on the segment [0, 1] with the weight x, i.e. the following
formulae hold true

∫ 1

0

Jν(µ
(ν)
m x)Jν(µ

(ν)
n x)xdx = 0, m 6= n,

∫ 1

0

î
Jν(µ

(ν)
n x)

ó2
xdx =

1

2
Jν+1(µ

(ν
n ).

(1.2)

It is shown in this paper that the Z̃2-transformation of the Bessel’s functions gen-

erates a new orthogonal system of functions that is connected with
∣

∣ζ
(

1
2 + it

)∣

∣

2
.

Namely, the following theorem holds true.

Theorem 1. Let x = t− T, t ∈ [T, T + 1] and

ϕ1{[T̊ ,
˚

T̆ + 1]} = [T, T + 1], T ≥ T0[ϕ1].

Then the system of functions

Jν [µ
(ν)
n (ϕ1(t)− T )], t ∈ [T̊ ,

˚
T̆ + 1], n = 1, 2, . . .

is orthogonal on [T̊ ,
˚

T̆ + 1] with the weight

(ϕ1(t)− T )Z̃2(t),

i.e. the following system of the new-type integrals

∫

˚
T̃+1

T̊

Jν [µ
(ν)
m (ϕ1(t)− T )]Jν [µ

(ν)
n (ϕ1(t)− T )]·

· (ϕ1(t)− T )Z̃2(t)dt = 0, m 6= n,

∫

˚
T̃+1

T̊

{Jν [µ
(ν)
n (ϕ1(t)− T )]}2(ϕ1(t)− T )Z̃2(t)dt =

1

2
[Jν+1(µ

(ν)
n )]2

(1.3)

is obtained, where ϕ1(t)− T ∈ [0, 1], and

(1.4) ρ{[0, 1]; [T̊ ,
˚

T̆ + 1]} ∼ T, T → ∞,

(where ρ stands for the distance of corresponding segments).

Remark 1. Theorem 1 gives the contact point between the functions ζ
(

1
2 + it

)

, ϕ1(t)
and the Bessel’s functions Jν(x).

This paper is the continuation of the series [1]-[18].
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2. The second result: new class of nonlinear integral equations

2.1. Let us remind that

(2.1) t− ϕ1(t) ∼ (1− c)π(t) ⇒ T̊ ∼ T, T → ∞

where c is the Euler’s constant and π(t) is the prime-counting function. Then the
second formula in (1.3) via the mean-value theorem (comp. (1.1) leads to

Corollary 1.

∫ ϕ
−1
1 (T+1)

ϕ
−1
1 (T )

{Jν [µ
(ν)
n (ϕ1(t)− T )]}2(ϕ1(t)− T )

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt ∼

∼
1

2
[Jν+1(µ

(ν)
n )]2 lnT, T → ∞, n = 1, 2, . . . .

(2.2)

Remark 2. Let the primary oscillations
∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

, t ∈ [ϕ−1
1 (T ), ϕ−1

1 (T + 1)]

interact with the complicated modulated oscillations

(2.3) |Jν [µ
(ν)
n (ϕ1(t)− T )]|

»
ϕ1(t)− T .

Then the integral (2.2) expresses the energy of the resulting oscillations. Let us
note that the oscillations (2.3) comers to the point t with the big retardation (see
(2.1))

t− {ϕ1(t)− T } = t− ϕ1(t) + T ∼ (1− c)π(t) + T, T → ∞.

2.2. In this direction the following theorem holds true.

Theorem 2. Every Jacob’s ladder ϕ1(t) =
1
2ϕ(t) where ϕ(t) is the (exact) solution

to the nonlinear integral equation
∫ µ[x(T )]

0

Z2(t)e−
2

x(T )
tdt =

∫ T

0

Z2(t)dt

is the asymptotic solution of the new-type nonlinear integral equation
∫ x−1(T+1)

x−1(T )

{Jν [µ
(ν)
n (x(t) − T )]}2(x(t) − T )

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =

=
1

2
[Jν+1(µ

(ν)
n )]2 lnT, T → ∞, n = 1, 2, . . . .

(2.4)

At the same time the Jacob’s ladder ϕ1(t) is the asymptotic solution to the following
nonlinear integral equations (comp. (2.2) with [18], (1.5), (2.2), (3.2), (3.3), (3.5),
(3.6))

∫ x−1(T+2)

x−1(T )

[Pα,β
n (x(t) − T − 1)]2(T + 2− x(t))α(x(t) − T )β

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
lnT, n = 1, 2, . . . ,

(2.5)

(2.6)

∫ x−1(T+2)

x−1(T )

[Pn(x(t)− T − 1)]2
∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =
2

2n+ 1
lnT, n = 1, 2, . . . ,
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(2.7)

∫ x−1(T+2)

x−1(T )

[Tn(x(t)−T−1)]2
∣

∣ζ
(

1
2 + it

)∣

∣

2

√

1− (x(t) − T − 1)2
dt =

π

2
lnT, n = 1, 2, . . . ,

(2.8)

∫ x−1(T+2)

x−1(T )

∣

∣ζ
(

1
2 + it

)∣

∣

2

√

1− (x(t)− T − 1)2
dt = π lnT,

∫ x−1(T+2)

x−1(T )

[Un(x(t) − T − 1)]2
»
1− (x(t) − T − 1)2

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =

=
π

2
lnT, n = 1, 2, . . . ,

(2.9)

(2.10)

∫ x−1(T+2)

x−1(T )

»
1− (x(t) − T − 1)2

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =
π

2
lnT,

for every fixed T ≥ T0[ϕ1] where Pα,β
n (t), Pn(t), Tn(t), Un(t) denote the polyno-

mials of Jacobi, Legendre and Chebyshev of the first and second kind, respectivelly.

Remark 3. There are the fixed-point methods and other methods of the functional
analysis used to study the nonlinear equations. What can be obtained by using
these methods in the case of the nonlinear integral equations (2.4)-(2.10)?

3. Proof of Theorem 1

3.1. Let us remind that the following lemma holds true (see [6], (2.5); [7], (3.3)):
for every integrable function (in the Lebesgue sense) f(x), x ∈ [ϕ1(T ), ϕ1(T + U)]
we have

(3.1)

∫ T+U

T

f [ϕ1(t)]Z̃
2(t)dt =

∫ ϕ1(T+U)

ϕ1(T )

f(x)dx, U ∈

Å
0,

T

lnT

ò

where

t− ϕ1(t) ∼ (1 − c)π(t),

c is the Euler’s constant and π(t) is the prime-counting function. In the case (comp.

Theorem 1) T = ϕ1(T̊ ), T + U = ϕ1(
˚

Ṫ + U) we obtain from (3.1)

(3.2)

∫

˚
T̄+U

T̊

f [ϕ1(t)]Z̃
2(t)dt =

∫ T+U

T

f(x)dx.

3.2. Putting

f(t) = Jν [µ
(ν)
m (t− T )]Jν[µ

(ν)
n (t− T )](t− T ), U = 1
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we have by (3.2) and (1.2) the following Z̃2-transformation

∫

˚
T̃+1

T̊

Jν [µ
(ν)
m (ϕ1(t)− T )]Jν [µ

(ν)
n (ϕ1(t)− T )]·

· (ϕ1(t)− T )Z̃2(t)dt =

=

∫ T+1

T

Jν [µ
(ν)
m (t− T )]Jν[µ

(ν)
n (t− T )](t− T )Z̃2tdt =

=

∫ 1

0

Jν(µ
(ν)
m x)Jν(µ

(ν)
n x)xdx = 0, m 6= n,

where t = x+ T , i.e. the first formula in (1.3) holds true. Similarly, we obtain the
second formula in (1.3).

3.3. Next, for ξ ∈ (T̊ ,
˚

T̆ + 1) we have (see (2.1) and [18], (4.4))

(3.3) ln ξ = ln T̊ +O

Å
1

ln T̊

ã
= lnT +O

Å
1

lnT

ã
.

The property (3.3) was used in (2.1), . . . .
I would like to thank Michal Demetrian for helping me with the electronic version

of this work.

References

[1] J. Moser, ‘Jacob’s ladders and the almost exact asymptotic representation of the Hardy-
Littlewood integral’, Math. Notes 2010, 88, pp. 414-422, arXiv:0901.3973.

[2] J. Moser, ‘Jacob’s ladders and the tangent law for short parts of the Hardy-Littlewood inte-
gral’, (2009), arXiv:0906.0659.

[3] J. Moser, ‘Jacob’s ladders and the multiplicative asymptotic formula for short and microscopic
parts of the Hardy-Littlewood integral’, (2009), arXiv:0907.0301.

[4] J. Moser, ‘Jacob’s ladders and the quantization of the Hardy-Littlewood integral’, (2009),
arXiv:0909.3928.

[5] J. Moser, ‘Jacob’s ladders and the first asymptotic formula for the expression of the sixth
order |ζ(1/2 + iϕ(t)/2)|4|ζ(1/2 + it)|2’, (2009), arXiv:0911.1246.

[6] J. Moser, ‘Jacob’s ladders and the first asymptotic formula for the expression of the fifth
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