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Abstract

The paper is concerned with a system consisting of two coupled nonlinear parabolic equations with a cross-diffusion
term, where the solutions at positive times define the initial states. The equations arise as steady state equations of
an age-structured predator-prey system with spatial dispersion. Based on unilateral global bifurcation methods for
Fredholm operators and on maximal regularity for parabolicequations, global bifurcation of positive solutions is
derived.
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1. Introduction

Consider the situation that an age-structured prey and an age-structured predator population inhabit the same
spatial regionΩ, that the individuals of both populations undergo spatial fluctuation and that the predator population
exerts a repulsive pressure on the prey population. Ifu = u(t, a, x) ≥ 0 andv = v(t, a, x) ≥ 0 denote the density
of the prey and the predator population, respectively, at timet ≥ 0, agea ∈ [0, am) for a maximal ageam > 0, and
spatial positionx ∈ Ω, a simple model reads

∂tu+ ∂au−∆x ((δ1 + γv)u) = −α1u
2 − α2uv , t > 0 , a ∈ (0, am) , x ∈ Ω , (1.1)

∂tv + ∂av − δ2∆xv = −β1v
2 + β2vu , t > 0 , a ∈ (0, am) , x ∈ Ω . (1.2)

These equations are subject to the nonlocal age boundary conditions

u(t, 0, x) =

∫ am

0

B1(a)u(t, a, x) da , t > 0 , x ∈ Ω , (1.3)

v(t, 0, x) =

∫ am

0

B2(a) v(t, a, x) da , t > 0 , x ∈ Ω , (1.4)

the spatial boundary conditions

u(t, a, x) = 0 , t > 0 , a ∈ (0, am) , x ∈ ∂Ω , (1.5)

v(t, a, x) = 0 , t > 0 , a ∈ (0, am) , x ∈ ∂Ω , (1.6)

and are supplemented with time initial conditions. The∆x-term in (1.1) describes spatial movement of prey individ-
uals. Besides intrinsic dispersion with coefficientδ1 > 0, it reflects an increase of the dispersive force on the prey by
repulsive interference with an increase of the predator population. Here,γ ≥ 0 is the predator population pressure
coefficient. We refer to [24] for a derivation of such kind of models (without age-structure). The right hand sides of
(1.1) and (1.2) take into account intra- and inter-specific interactions of the two populations with positive coefficients
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α1, α2, β1, β2 > 0. Equations (1.5) and (1.6) describe creation of new individuals with nonnegative birth ratesB1

andB2. The reader is referred to [32] and the references therein for further information about linear and nonlinear
age-structured population equations with (and without) spatial dispersal. Although such models have a long history,
there does not seem to be much literature about equations with nonlinear diffusion. The well-posedness of equations
(1.1)-(1.6) might be derived within the general framework presented in [28] though the results therein do not directly
apply due to the cross-diffusion term.

We shall remark that the model considered herein is a rather simple biological model and there may be more
accurate models, e.g. with different maximal ages, nonlocal dependences in the reaction terms etc. The aim of the
present paper is thus rather to provide a mathematical framework to treat parabolic equations with cross-diffusion and
nonlocal initial conditions. Namely, the present paper is dedicated to positive equilibrium (i.e. time-independent)
solutions to (1.1)-(1.6) which shall be established based on global bifurcation methods. We write the birth rates in
the formB1(a) = ηb1(a) andB2(a) = ξb2(a), whereb1, b2 are some fixed birth profiles and the parametersη,
ξ measuring the intensities of the fertility shall serve as bifurcation parameters. Aiming at a simple and compact
notation, we letb := b1 = b2 andδ1 = δ2 = 1. We emphasize that these simplifications are made merely forthe
sake of readability and do not impact in any way on the mathematical analysis to follow. To shorten notation further,
we shall agree upon the following convention: given a function defined onJ := [0, am] and denoted by a lower case
letter, sayu or v, we use the corresponding capital letterU or V to denote its age-integral with weightb, i.e.,

U :=

∫ am

0

b(a)u(a) da , V :=

∫ am

0

b(a)v(a) da . (1.7)

Depending on the values of the parametersη andξ, we are looking for nonnegative and nontrivial functionsu =
u(a, x) andv = v(a, x) satisfying the nonlinear parabolic system with cross-diffusion

∂au−∆x

(

(1 + γv)u
)

= −α1u
2 − α2uv , a ∈ (0, am) , x ∈ Ω , (1.8)

∂av −∆xv = −β1v
2 + β2vu , a ∈ (0, am) , x ∈ Ω , (1.9)

subject to the nonlocal initial conditions

u(0, x) = ηU , x ∈ Ω , (1.10)

v(0, x) = ξV , x ∈ Ω , (1.11)

and spatial Dirichlet boundary conditions

u(a, x) = 0 , a ∈ (0, am) , x ∈ ∂Ω , (1.12)

v(a, x) = 0 , a ∈ (0, am) , x ∈ ∂Ω . (1.13)

Clearly, of particular interest arecoexistence states, that is, solutions(u, v) with both componentsu andv nontrivial
and nonnegative.

Based on bifurcation techniques, existence of equilibriumsolutions was established in [30, 31] for similar systems
with linear diffusion and in [26, 27, 29] for a single equation with nonlinear diffusion. Except for [29], the bifurcation
parameter was also chosen to be a measure for the intensity ofthe fertility as above. Prior to the just cited papers,
bifurcation methods were used in [9] to derive positive equilibrium solutions for a single equations with linear dif-
fusion. We also refer to [15] where the large time behavior ofpopulation dynamics with age-dependence and linear
spatial diffusion was analyzed.

More attention attracted than the age-structured parabolic equations so far have related elliptic systems of the form

−∆x[(1 + γv)u] = u(µ− u± cv) , −∆xv = v(λ− v ± bu)

in Ω subject to Dirichlet conditions on∂Ω with positive constantsµ, λ, b, c; both for the case of linear diffusion
γ = 0 (e.g., see [3, 4, 8, 17, 18] and the references therein) and the case with cross-diffusionγ > 0 (e.g., see
[10, 11, 13, 14, 23] and the references therein). It is worthwhile to remark that for such elliptic equations with cross-
diffusion, the transformationz := (1+ γv)u leads to a semilinear elliptic system forz andv, for which, when written
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in the form(z, v) = S(z, v), the corresponding solution operatorS enjoys suitable compactness properties. More-
over, for such a system, positivity and a-priori bounds of solutions may be derived using the maximum principle, e.g.
[10, 13, 23]. For the nonlocal parabolic equations (1.7)-(1.13) under consideration herein, however, a correspond-
ing transformation still yields nonlinear second order terms with respect to the spatial variable (or first order time
derivatives). Consequently, the underlying solution operator does not enjoy similar compactness properties. As we
are interested in global bifurcation of positive solutions, it is thus not clear how to apply directly the unilateral global
bifurcation methods of [16, 21] as in [30], which require compactness of the underlying solution operators. To over-
come this deficiency, we shall invoke recent results of Shi& Wang [23] on unilateral global bifurcation for Fredholm
operators, which are based on López-Gómez’s interpretation [16] of the global alternative of Rabinowitz [21] and on
the global bifurcation results of Pejsachowicz& Rabier [19]. These results yield a (global) continuum of positive
solutions. We shall also point out that, due to the cross-diffusion term, no comparison principle in the spirit of [30,
Lem.3.2] is available. In some cases, the lack of such a comparison principle prevents us from determining which of
the possible alternatives the constructed continuum of coexistence states satisfies (see Theorem 2.3 and Theorem 2.4
below).

2. Main Results

We suppose throughout this paper that the birth profile

b ∈ L+
∞((0, am)) with b(a) > 0 for a nearam (2.1)

is normalized such that
∫ am

0

b(a)e−λ1a da = 1 , (2.2)

whereλ1 > 0 denotes the principal eigenvalue of−∆x onΩ subject to Dirichlet boundary conditions on∂Ω. Before
stating our results on coexistence states in more detail, wefirst recall some auxiliary results from [30] about semi-
trivial states, that is, about solutions(u, v) with one vanishing component. Taking for instancev ≡ 0 in (1.8)-(1.9)
and using convention (1.7), we obtain the reduced problem

∂au−∆xu = −α1u
2 , u(0, ·) = ηU , (2.3)

subject to Dirichlet boundary conditions. Introducing, for q ∈ (n+ 2,∞) fixed, the solution space

Wq := Lq((0, am),W 2
q,D(Ω)) ∩W 1

q ((0, am), Lq(Ω)) ,

where
W 2

q,D(Ω) := {u ∈ W 2
q (Ω) ; u = 0 on∂Ω} ,

and lettingW+
q denote its positive cone, the following result was proved in[30, Thm.2.1, Cor.3.3, Lem.3.6, Cor.3.7]:

Theorem 2.1. Suppose(2.1) and (2.2). For eachη > 1 there is a unique solutionuη ∈ W+
q \ {0} to equation

(2.3). The mapping(η 7→ uη) belongs toC∞((1,∞),Wq) and satisfies‖uη‖Wq → 0 asη → 1 and‖uη‖Wq → ∞
asη → ∞. For η > 1 anda ∈ J , the derivative∂ηuη(a) is a (strictly) positive function onΩ. If η1 > η2, then
uη1

≥ uη2
. Finally, if η ≤ 1, then(2.3)has no solution inW+

q \ {0}.

Given ξ > 1, we letvξ ∈ W+
q \ {0} denote the unique solution to the corresponding equation for v when taking

u ≡ 0 in (1.8)-(1.9). Though we shall work in the solution spaceWq, we remark that solutions to (1.7)-(1.13), so in
particularuη andvξ, are smooth with respect to botha ∈ J andx ∈ Ω (see Lemma 3.3 below).

2.1. Bifurcation with Respect to the Parameterη

We first shall keepξ fixed and regardη as bifurcation parameter. We thus write(η, u, v) for solutions to (1.7)-
(1.13) withu, v belonging toW+

q . Theorem 2.1 entails, for anyξ ≥ 0, the semi-trivial branch

B1 := {(η, uη, 0) ; η > 1} ⊂ R
+ × (W+

q \ {0})×W
+
q (2.4)
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of solutions. Forξ > 1, an additional semi-trivial branch

B2 := {(η, 0, vξ) ; η ≥ 0} ⊂ R
+ ×W

+
q × (W+

q \ {0}) (2.5)

exists. In the latter case, a continuum of coexistence states bifurcates fromB2:

Theorem 2.2. Suppose(2.1)-(2.2)and letξ > 1. There existsη0 := η0(ξ) > 0 such that an unbounded continuumC
emanates from(η0, 0, vξ) ∈ B2, and

C \ {(η0, 0, vξ)} ⊂ R
+ × (W+

q \ {0})× (W+
q \ {0})

consists of coexistence states(η, u, v) to (1.7)-(1.13). Near the bifurcation point(η0, 0, vξ), C is a continuous curve.
There is no other bifurcation point onB2 or onB1 to positive coexistence states.

The value ofη0(ξ) corresponding to the bifurcation point is determined in (3.30).
We turn to the caseξ < 1, which is more involved. Recall thatB1 is the only semi-trivial branch of solutions in

this case.

Theorem 2.3. Suppose(2.1)-(2.2). There isδ ∈ [0, 1) with the property that, givenξ ∈ (δ, 1), there exists
η1 := η1(ξ) > 1 such that a continuumS emanates from(η1, uη1

, 0) ∈ B1, and

S \ {(η1, uη1
, 0)} ⊂ R

+ × (W+
q \ {0})× (W+

q \ {0})

consists of coexistence states(η, u, v) of (1.7)-(1.13). The continuumS

(i) is unbounded, or

(ii) connects(η1, uη1
, 0) to a solution(η∗, u, v) of (1.7)-(1.13)with η∗ ∈ (0, 1) andu, v ∈ W+

q \ {0}.

Near the bifurcation point(η1, uη1
, 0), S is a continuous curve. There is no other bifurcation point onB1 to positive

coexistence states.

The values ofδ andη1(ξ) are given in (4.5) and (4.6), respectively. Note that alternative (i) above always occurs
if cross-diffusion is not taken into account, i.e. ifγ = 0, see [31, Thm.1.5]. Alternative (ii) stems from a technical
condition, and we conjecture that alternative (i) is the generic case also for the present situation whereγ > 0. However,
as occurrence of alternative (ii) is not ruled out by our analysis, Theorem 2.3 is rather a local bifurcation result in this
regard.

2.2. Bifurcation with Respect to the Parameterξ

Since the cross-diffusion term involves the predator density v, bifurcation from semi-trivial solution branches is
more intricate when regardingξ (the measure of the predator fertility) as parameter and keeping η fixed. We shall
only consider the situationη > 1, the reason being explained in Remark 5.1. We now write(ξ, u, v) for solutions to
(1.7)-(1.13). Then, there are two semi-trivial branches ofsolutions

T1 := {(ξ, 0, vξ) ; ξ > 1} , T2 := {(ξ, uη, 0) ; ξ ≥ 0} .

Also in this case, bifurcation from the semi-trivial branchT2 occurs:

Theorem 2.4. Suppose(2.1)-(2.2) and letη > 1. There existsξ0 := ξ0(η) ∈ (0, 1) such that a continuumR of
solutions to(1.7)-(1.13)emanates from(ξ0, uη, 0) ∈ T2 satisfying the alternatives

(i) R \ {(ξ0, uη, 0)} is unbounded inR+ × (W+
q \ {0})× (W+

q \ {0}), or

(ii) R connectsT2 with T1.

Except for the bifurcation point(s),R consists exclusively of coexistence states. Near the bifurcation point(ξ0, uη, 0),
R is a continuous curve. There is no other bifurcation point onT2 or onT1 to positive coexistence states.
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The values ofξ0(η) andξ1 = ξ1(η) > 1, corresponding to the connection point(ξ1, 0, vξ1) ∈ T1 if alternative (ii)
occurs, are determined in (5.1) and (5.2), respectively. Given the assumptions of this theorem, ifγ = 0, one can show
that alternative (ii) occurs ifη is less than a certain value or if additional assumptions on the birth rates and onαj , βj
are imposed, see [30, Thm.2.2].

The outline of the paper is as follows: The next section is dedicated to the proof of Theorem 2.2. In Subsection 3.1,
we first introduce some notation, and in Subsection 3.2, we provide the necessary auxiliary results needed to perform
the actual proof of Theorem 2.2 in Subsection 3.3. Sections 4and 5 are dedicated to the proofs of Theorem 2.3 and
Theorem 2.4, respectively. As these proofs are along the lines of the proof of Theorem 2.2, these sections are kept
rather short.

3. Proof of Theorem 2.2

3.1. Notations and Preliminaries

Given two Banach spacesF1 andF0, we shall use the notationL(F1, F0) for the set of bounded linear operators
andK(F1, F0) for the set of compact linear operators betweenF1 andF0. We setL(F0) := L(F0, F0) and similarly
K(F0) := K(F0, F0). The set of toplinear isomorphisms betweenF1 andF0 is denoted byLis(F1, F0).

Let −∆D denote the negative Laplacian onLq := Lq(Ω) subject to Dirichlet boundary conditions, that is,
−∆D := −∆x with domainW 2

q,D, where

Wκ
q,D :=Wκ

q,D(Ω) := {u ∈Wκ
q ; u = 0 on∂Ω}

for κ > 1/q andWκ
q,D := Wκ

q (Ω) for 0 ≤ κ < 1/q. As q > n + 2, we haveW 2−2/q
q,D →֒ C1(Ω̄) by the Sobolev

embedding theorem. In particular,int(W 2−2/q,+
q,D ) 6= ∅, that is, the interior of the positive cone ofW 2−2/q

q,D is not
empty. Letγ0 denote the trace operator defined byγ0u := u(0) for u ∈ Wq, which is well-defined owing to the
embedding [2, III.Thm.4.10.2]

Wq →֒ C
(

[0, am],W
2−2/q
q,D

)

.

In fact, we have, due to the interpolation inequality [2, I.Thm.2.11.1],

Wq →֒ C1−1/q−ϑ([0, am],W 2ϑ
q,D) , 0 ≤ ϑ ≤ 1− 1/q . (3.1)

In the following, we letẆ+
q := W

+
q \ {0}. Recall that an operatorA ∈ L(W 2

q,D, Lq) is said to havemaximal
Lq-regularityprovided

(∂a +A, γ0) ∈ Lis(Wq,Lq ×W
2−2/q
q,D ) ,

whereLq := Lq(J, Lq). Recall that−∆D has maximalLq-regularity. IfA : J → L(Wκ
q,D, Lq) for someκ ≥ 0,

we write (Au)(a) := A(a)u(a) for a ∈ J andu : J →Wκ
q,D. The following perturbation result is proved in [20,

Cor.3.4], which is also valid forRk-valued functions, i.e., ifLq is replaced byLq(Ω,R
k) etc.:

Lemma 3.1. Let A ∈ C(J,L(W 2
q,D, Lq)) be such thatA(a) has maximalLq-regularity for eacha ∈ J and let

B ∈ Lq(J,L(W
2−2/q
q,D , Lq)). Then(∂a +A+B, γ0) ∈ Lis(Wq,Lq ×W

2−2/q
q,D ).

Given̺ > 0 andh ∈ C̺(J,C(Ω̄)), we letΠ[h](a, σ), 0 ≤ σ ≤ a ≤ am, denote the unique parabolic evolution
operator corresponding to−∆D + h ∈ C̺

(

J,L(W 2
q,D, Lq)

)

, that is,z(a) = Π[h](a, σ)Φ, a ∈ (σ, am), defines the
unique strong solution to

∂az −∆Dz + hz = 0 , a ∈ [σ, am) , z(σ) = Φ ,

for any givenσ ∈ (0, am) andΦ ∈ Lq (see [2, II.Cor.4.4.1]). Note that the evolution operator is positive, i.e.

Π[h](a, σ)Φ ∈ L+
q , 0 ≤ σ ≤ a ≤ am , Φ ∈ L+

q .
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Since−∆D has maximalLq-regularity, it follows from Lemma 3.1 that

(∂a −∆D + h, γ0) ∈ Lis(Wq,Lq ×W
2−2/q
q,D ) (3.2)

and, in particular,Π[h](·, 0)Φ ∈ Wq for Φ ∈W
2−2/q
q,D . We set

H[h] :=

∫ am

0

b(a)Π[h](a, 0) da .

ThenH[h] ∈ K(W
2−2/q
q,D ) owing to standard regularizing effects of the parabolic evolution operatorΠ[h] and the

compact embeddingW 2
q,D →֒ W

2−2/q
q,D . Moreover, asΠ[h](a, 0) for a ∈ (0, am) is strongly positive onW 2−2/q

q,D by
[6, Cor.13.6], the same holds true forH[h] due to (2.1), that is,

H[h]Φ ∈ int(W
2−2/q,+
q,D ) , Φ ∈W

2−2/q,+
q,D \ {0} . (3.3)

The corresponding spectral radiusr(H[h]) can thus be characterized according to the Krein-Rutman theorem [1,
Thm.3.2] (see [30, Lem.3.1]):

Lemma 3.2. For h ∈ C̺(J,C(Ω̄)) with ̺ > 0, the spectral radiusr(H[h]) > 0 is a simple eigenvalue ofH[h]

with a corresponding eigenfunction belonging toint(W 2−2/q,+
q,D ). It is the only eigenvalue ofH[h] with a positive

eigenfunction. Moreover, ifh andg both belong toC̺(J,C(Ω̄)) with g ≥ h butg 6≡ h, thenr(H[g]) < r(H[h]).

In particular, the normalization (2.2) implies
r(H[0]) = 1 (3.4)

since any positive eigenfunction of−∆D is an eigenfunction ofH[h] as well. Moreover, writing the solution to (2.3)
in the formu = Π[α1u](·, 0)u(0), Theorem 2.1 together with Lemma 3.2 imply

η r(H[α1uη]) = ξ r(H[β1vξ]) = 1 , η, ξ > 1 , (3.5)

sinceuη(0), vξ(0) ∈ (W
2−2/q,+
q,D ) \ {0}.

3.2. Auxiliary Results

The aim is to apply the global bifurcation results of [23, Thm.4.3,Thm.4.4] in order to establish Theorem 2.2. We
first provide the necessary tools.

Let ξ > 1 be fixed and letvξ ∈ Ẇ+
q denote the solution to (1.7)-(1.13) withu ≡ 0 provided by Theorem 2.1.

Throughout we use the convention (1.7). Notice that for eacha ∈ J , the operatorA1(a), given by

A1(a)u := −divx((1 + γvξ(a))∇xu) , u ∈W 2
q,D ,

has maximalLq-regularity due to its divergence form, the positivity ofvξ ∈ Wq, (3.1), and e.g. [2, I.Cor.1.3.2,
III.Ex.4.7.3, III.Thm.4.10.7]. Moreover,A1 ∈ C(J,L(W 2

q,D , Lq)) by (3.1). Noticing also that

B1(a)u := −γ divx
(

u∇xvξ(a)
)

+ α2vξ(a)u , a ∈ J , u ∈ W
2−2/q
q,D ,

defines an operatorB1 ∈ Lq(J,L(W
2−2/q
q,D , Lq)), it follows from Lemma 3.1 that

T1 := (∂a +A1 +B1, γ0)
−1 ∈ L(Lq ×W

2−2/q
q,D ,Wq) (3.6)

is well-defined. Observe that

Aξu := (A1 +B1)u = −∆D

(

(1 + γvξ)u
)

+ α2vξu , u ∈W 2
q,D .
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From (3.1) and (3.2) we obtain

T2 := (∂a −∆D + 2β1vξ, γ0)
−1 ∈ L(Lq ×W

2−2/q
q,D ,Wq) .

To derive a bifurcation from a point(η0, 0, vξ) ∈ B2 for a suitableη0 = η0(ξ), we write(η, u, v) = (η, u, vξ + w)
for a solution to problem (1.7)-(1.13), which is then equivalent to

∂au−∆D

(

(1 + γvξ)u
)

= ∆D

(

γwu
)

− α1u
2 − α2u(vξ + w) , a ∈ (0, am) , x ∈ Ω , (3.7)

∂aw −∆Dw = −β1w
2 − 2β1vξw + β2(vξ + w)u , a ∈ (0, am) , x ∈ Ω , (3.8)

subject to

u(0, x) = ηU(x) , x ∈ Ω , (3.9)

w(0, x) = ξW (x) , x ∈ Ω . (3.10)

The solutions(η, u, w) to (3.7)-(3.10), in turn, are the zeros of the mapF : R×Wq × Ŵq → Wq ×Wq, defined by

F (η, u, w) :=

(

u− T1
(

∆D(γwu)− α1u
2 − α2uw , ηU

)

w − T2
(

− β1w
2 + β2(vξ + w)u , ξW

)

)

, (3.11)

where
Ŵq := {w ∈ Wq ; w(a, x) > −1/2γ , a ∈ J , x ∈ Ω̄}

is an open subset ofWq owing to (3.1). Clearly,F is smooth andF (η, 0, 0) = 0 for η ∈ R. As for the Frechét
derivatives at(η, u, w) we compute

F(u,w)(η, u, w)[φ, ψ] =

(

φ− T1
(

∆D(γψu) + ∆D(γwφ) − 2α1uφ− α2wφ − α2uψ , ηΦ
)

ψ − T2
(

− 2β1wψ + β2ψu+ β2(vξ + w)φ , ξΨ
)

)

(3.12)

and

Fη,(u,w)(η, u, w)[φ, ψ] =

(

−T1(0 , Φ)
0

)

(3.13)

for (φ, ψ) ∈ Wq × Wq. The choice ofWq as solution space is to have a suitable functional setting towork with in
the framework of maximal regularity. However, as it is needed later on, we note that solutions to (1.7)-(1.13), i.e. to
(3.7)-(3.10), are smooth. The proof is a bootstrapping argument which we provide for the reader’s ease.

Lemma 3.3. If (ηj , uj, vj) is a bounded sequence inR ×Wq × Ŵq of solutions to(1.7)-(1.13), then(uj) and(vj)
are bounded inCε(J,C2+ε(Ω̄)) ∩ C1+ε(J,Cε(Ω̄)) for someε > 0.

Proof. To stick with the notation of [2], let(E,A) := (Lq,−∆D) and let[(Eα, Aα);α ≥ 0] be the corresponding
interpolation scale induced by the real interpolation functors(·, ·)α,q. Putting

F0 := E1−1/q
.
=W

2−2/q
q,D , F1 := E2−1/q ,

it follows from [2, V.Thm.2.1.3] that theF0-realization of∆D, again denoted by∆D, has domainF1 and is the
generator of an analytic semigroup{ea∆D ; a ≥ 0} onF0. Thus,

‖ea∆D‖L(Fµ,Fν) ≤ c0a
µ−ν , a ∈ J \ {0} , µ, ν ∈ (0, 1) , (3.14)

whereFµ := (F0, F1)µ,q for µ ∈ (0, 1). Note that the almost reiteration property [2, V.Thm.1.5.3] ensures

Fθ+ →֒ E1+θ−1/q →֒ Fθ− , 0 < θ− < θ < θ+ < 1 . (3.15)

Let now(ηj , uj , vj) be a sequence of solutions to (1.7)-(1.13) inR×Wq × Ŵq with |ηj |+ ‖(uj , vj)‖X1
≤ B, j ∈ N,

for someB > 0. Writing

∂avj −∆Dvj = −β1v
2
j + β2vjuj =: fj , vj(0) = ξVj =: v0j , (3.16)
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it follows from the continuity of pointwise multiplicationWq × Wq → Wq (owing to q > n + 2 and Sobolev’s
embedding) and (3.1) that

‖fj‖C(J,F0) ≤ c(B) , j ∈ N , (3.17)

while (1.7), (2.1), and the embeddingE1 →֒ F1/q−ε with ε > 0 sufficiently small entail

‖v0j ‖F1/q−ε
≤ c(B) , j ∈ N , (3.18)

for some constantc(B) > 0. Thus, from (3.14), (3.16), (3.17), and (3.18), forj ∈ N,

‖vj‖L1(J,F1−ε) ≤

∫ am

0

‖ea∆D‖L(F1/q−ε,F1−ε)‖v
0
j‖F1/q−ε

da

+

∫ am

0

∫ a

0

‖e(a−σ)∆D‖L(F0,F1−ε) ‖fj(σ)‖F0
dσ da

≤ c(B) .

Therefore, from (2.1) we conclude that(v0j ) is bounded inF1−ε. Since(fj) is bounded inC(J, F0), we deduce from
(3.16) and [2, II.Thm.5.3.1] that(vj) is bounded inCε(J, F1−2ε) for someε > 0 sufficiently small. Now, taking [25,
Thm.5.3.4,Thm.5.4.1] into account which guarantee

E2−1/q
.
=

(

D(∆D), D(∆2
D)

)

1−1/q,q
→֒W

2+2(1−1/q)
q,D ,

with D(∆k
D) denoting the domain of thek-th power of∆D equipped with its graph norm, we obtain

F1−2ε = (E1−1/q , E2−1/q)1−2ε,q →֒
(

W
2(1−1/q)
q,D ,W

2+2(1−1/q)
q,D

)

1−2ε,q

.
=W

4−2/q−4ε
q,D →֒ C2+ε(Ω̄)

for ε > 0 sufficiently small by Sobolev’s embedding theorem sinceq > n+ 2. Consequently,

(vj) is bounded inCε(J,C2+ε(Ω̄)) ∩ Ŵq . (3.19)

But then, since
∂auj −∆D

(

(1 + γvj)uj
)

= −α1u
2
j − α2ujvj , uj(0) = ηjUj , (3.20)

we similarly conclude that(uj) is bounded inCε(J,C2+ε(Ω̄)), where the analogue of (3.14) holds due to (3.19)
and [2, II.§5.1]. Finally, these observations warrant that the sequence (∆Dvj) is bounded inCε(J,Cε(Ω̄)) while
(−β1v

2
j − β2vjuj) is bounded inCε(J,C2+ε(Ω̄)). From (3.16) we derive that(∂avj) is bounded inCε(J,Cε(Ω̄))

and similarly we derive this for(∂auj).

Noticing thatCε(J,C2+ε(Ω̄)) embeds compactly inC ε̄(J,C2+ε̄(Ω̄)) andC1+ε(J,Cε(Ω̄)) in C1+ε̄(J,C ε̄(Ω̄))
for ε̄ ∈ (0, ε), we deduce:

Corollary 3.4. Any bounded and closed subset of{(η, u, w) ∈ R×Wq × Ŵq ; F (η, u, w) = 0} is compact.

Let now(η, u, w) ∈ R×Wq × Ŵq be fixed. We shall show that

L := F(u,w)(η, u, w) ∈ L(Wq ×Wq)

is a Fredholm operator. To this end, we introduce, fora ∈ J , the operatorsAij(a) ∈ L(W 2
q,D, Lq) by

A11(a)φ : = −∆D

(

(1 + γvξ(a) + γw(a))φ
)

+ α2(vξ(a) + w(a))φ + 2α1u(a)φ ,

A12(a)ψ : = −∆D

(

γu(a)ψ
)

+ α2u(a)ψ ,

A21(a)φ : = −β2(vξ(a) + w(a))φ ,

A22(a)ψ : = −∆Dψ + 2β1(vξ(a) + w(a))ψ − β2ψu(a) ,
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for a ∈ J , φ, ψ ∈W 2
q,D and set

A(a) :=

[

A11(a) A12(a)
A21(a) A22(a)

]

, a ∈ J .

Moreover, we define

D(a)h :=

(

−∆D

(

(1 + γvξ(a))h1
)

+ α2vξ(a)h1
−∆Dh2 + 2β1vξ(a)h2

)

, h = (h1, h2) ∈W 2
q,D ×W 2

q,D , a ∈ J ,

so thatD ∈ L(W 2
q,D ×W 2

q,D, Lq × Lq) for a ∈ J , and we also defineℓ[η] ∈ L(Wq ×Wq,W
2
q,D ×W 2

q,D) by

ℓ[η]z :=

(

ηΦ
ξΨ

)

, z = (φ, ψ) ∈ Wq ×Wq .

It then readily follows from (3.12) that, givenz = (φ, ψ) andh = (h1, h2) in Wq × Wq, the equationLz = h is
equivalent to

∂az + A(a)z = ∂ah+ D(a)h , a ∈ J , z(0) = ℓ[η]z + h(0) . (3.21)

In the sequel, we use the notation

X0 := Lq × Lq , X1 := Wq ×Wq , Xθ :=W 2θ
q,D ×W 2θ

q,D , θ ∈ [0, 1] .

Let us first observe that

Remark 3.5. The spaceX1 can be equipped with an equivalent norm, which is continuously differentiable at all
points except zero.

Proof. According to [22], sinceX1 = Wq × Wq is separable, the statement is equivalent to say that the dual space
X′

1 = W′
q ×W′

q of X1 is separable. But, sinceWq is dense inLq, the separable spaceL′
q = Lq′ is dense inW′

q,
where1/q + 1/q′ = 1. SoX′

1 is separable.

Investigation of (3.21) requires the following information on the involved operators:

Lemma 3.6. The above defined operators(∂a +A, γ0) and(∂a +D, γ0) both belong toLis(X1,X0 ×X1−1/q), and
ℓ[η] belongs toK(X1, X1−1/q).

Proof. Writing

A12(a)ψ = −∆D

(

γu(a)ψ
)

+ α2u(a)ψ

= −divx
(

γu(a)∇xψ
)

+
{

α2u(a)ψ − divx
(

ψγ∇xu(a)
)}

and using (3.1), it is readily seen thatA can be written in the form

A := A1 + A2 :=

[

A11 Ã12

0 A22

]

+

[

0 Â12

A21 0

]

with
A1 ∈ C(J,L(X1, X0)) , A2 ∈ Lq(J,L(X1−1/q, X0)) . (3.22)

Recalling
1 + γ(vξ(a, x) + w(a, x)) ≥ 1/2 , (a, x) ∈ J × Ω̄ ,

due to the positivity ofvξ andw ∈ Ŵq, it follows as in (3.6) thatA11(a0) andA22(a0) have maximalLq-regularity
for each fixeda0 ∈ J . Consequently, the problem

∂az1 +A11(a0)z1 + Ã12(a0)z2 = f1(a) , a ∈ J , z1(0) = z01 ,

∂az2 +A22(a0)z2 = f2(a) , a ∈ J , z2(0) = z02 ,
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admits for eachf = (f1, f2) ∈ X0 andz0 = (z01 , z
0
2) ∈ X1−1/q a unique solutionz = (z1, z2) ∈ X1 given by

z1 =
(

∂a +A11(a0), γ0
)−1

(f1 − Ã12(a0)z2, z
0
1) ,

z2 =
(

∂a +A22(a0), γ0
)−1

(f2, z
0
2) ,

and there is some constantc independent off andz0 such that

‖z‖X1
≤ c

(

‖f‖X0
+ ‖z0‖X1−1/q

) .

Therefore,(∂a+A1(a0), γ0) ∈ Lis(X1,X0×X1−1/q) for eacha0 ∈ J , whence(∂a+A, γ0) ∈ Lis(X1,X0×X1−1/q)
by (3.22) and Lemma 3.1. Analogously we deduce the statementon (∂a + D, γ0). SinceW 2

q,D embeds compactly in

W
2−2/q
q,D , the assertion onℓ[η] ∈ L(X1, X1) is immediate.

Based on Lemma 3.6, we have

Σ := (∂a + A, γ0)
−1 ∈ L(X0 ×X1−1/q,X1) and Q0 :=

[

w 7→ ℓ[η]
(

Σ(0, w)
)]

∈ K(X1−1/q) .

We now show thatL is indeed a Fredholm operator. The proof is along the lines of[26, Lem.2.1].

Proposition 3.7. Let (η, u, w) ∈ R ×Wq × Ŵq andL = F(u,w)(η, u, w) ∈ L(X1). ThenL is a Fredholm operator
of index zero. More precisely,

rg(L) =
{

h ∈ X1 ; h(0) + ℓ[η](Σ(∂ah+ Dh, 0)) ∈ rg(1−Q0)
}

(3.23)

is closed inX1 and
ker(L) =

{

Σ(0, w) ; w ∈ ker(1−Q0)
}

with
dim(ker(L)) = codim(rg(L)) = dim(ker(1−Q0)) <∞ .

Proof. Owing to (3.21) and Lemma 3.6, forz, h ∈ X1, the equationLz = h is equivalent to

z = Σ(∂ah+ Dh, 0) + Σ(0, z(0)) , (3.24)

(1 −Q0)z(0) = ℓ[η]
(

Σ(∂ah+ Dh, 0)
)

+ h(0) . (3.25)

If 1 belongs to the resolvent set ofQ0 ∈ K(X1−1/q), then (3.24), (3.25) entail a trivial kernelker(L). Moreover, in
this case, for an arbitraryh ∈ X1, there is a uniquez(0) ∈ X1−1/q solving (3.25), thus the correspondingz ∈ X1

given by (3.24) is the unique solution toLz = h. This easily gives the assertion in this case.
Otherwise, if1 is an eigenvalue ofQ0 ∈ K(X1−1/q), then (3.24), (3.25) yield the characterization ofker(L)

andrg(L) as stated. In particular, sinceΣ is an isomorphism, we deducedim(ker(L)) = dim(ker(1 − Q0)) which
is a finite number because 1 is an eigenvalue of the compact operatorQ0. Moreover,rg(L) is closed inX1 since
M := rg(1 −Q0) is closed by the compactness ofQ0 and due to Lemma 3.6 and (3.1). To computecodim(rg(L)),
note that

codim(M) = dim(ker(1−Q0)) <∞ ,

henceM is complemented inX1−1/q leading to a direct sum decompositionX1−1/q = M ⊕ N . Denoting by
PM ∈ L(X1−1/q) a projection ontoM alongN , we set

Ph := Λ
(

∂ah+ Dh , PMh(0)− (1− PM )ℓ[η](Σ(∂ah+ Dh, 0))
)

, h ∈ X1 , (3.26)

whereΛ := (∂a + D, γ0)
−1 ∈ L(X0 ×X1−1/q,X1), and obtainP ∈ L(X1) from Lemma 3.6. Since

(

∂a + D
)

(Ph) = ∂ah+ Dh , γ0(Ph) = PMh(0)− (1− PM )ℓ[η](Σ(∂ah+ Dh, 0)) ,

the characterization (3.23) actually implies thatP mapsX1 into rg(L). Furthermore, ifh ∈ rg(L), then (3.23) also
ensures

Ph = Λ(∂ah+ Dh, h(0)) = h ,
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soP(rg(L)) = rg(L). ThusP2 = P with rg(P) = rg(L) is a projection andX1 = rg(L) ⊕ ker(P). SinceΛ is an
isomorphism, we obtain

ker(P) = {h ∈ X1 ; ∂ah+ Dh = 0, h(0) ∈ N} ,

from which we deduce the equality of the dimension ofN andker(P) and thus the statement.

Corollary 3.8. For k ∈ (0, 1) and(η, u, w) ∈ R×Wq × Ŵq,

(1− k)F(u,w)(η, 0, 0) + kF(u,w)(η, u, w) ∈ L(X1)

is a Fredholm operator of index zero.

Proof. Since, by (3.12),

F(u,w)(η, 0, 0)[φ, ψ] =

(

φ− T1
(

0 , ηΦ
)

ψ − T2
(

β2vξφ , ξΨ
)

)

, (3.27)

the operator
(1 − k)F(u,w)(η, 0, 0) + kF(u,w)(η, u, w)

has the same structure asF(u,w)(η, u, w).

It follows from Lemma 3.3 that the operatorAξ, given by

Aξ(a)φ := −∆D

(

(1 + γvξ(a))φ
)

+ α2vξ(a)φ , a ∈ J , φ ∈W 2
q,D , (3.28)

belongs toCε(J,L(W 2
q,D, Lq)), while the positivity ofvξ ensures that−Aξ(a) is for eacha ∈ J the generator of an

analytic semigroup onLq. Consequently, it generates a parabolic evolution operator ΠAξ
(a, σ), 0 ≤ σ ≤ a ≤ am, in

view of [2, II.Cor.4.4.2]. Note thatΠAξ
(a, 0) for a > 0 is strongly positive onW 2−2/q

q,D , see e.g. [6, Cor.13.6]. We
then set

Gξ :=

∫ am

0

b(a)ΠAξ
(a, 0) da (3.29)

and obtain from (2.1) and the compact embedding ofW 2
q,D in W 2−2/q

q,D thatGξ ∈ K(W
2−2/q
q,D ) is strongly positive.

Thus, by the Krein-Rutman theorem,r(Gξ) > 0 is a simple eigenvalue ofGξ with an eigenvector in the interior of

the positive coneW 2−2/q,+
q,D . Let then

η0 := η0(ξ) :=
1

r(Gξ)
> 0 , ker(1− η0Gξ) = span{Φ0} , Φ0 ∈ int(W

2−2/q,+
q,D ) . (3.30)

We define

φ∗(a) := ΠAξ
(a, 0)Φ0 , a ∈ J , Φ∗ :=

∫ am

0

b(a)φ∗(a) da , (3.31)

and, using the notation of Subsection 3.1,

ψ∗(a) := Π[2β1vξ](a, 0)Ψ0 +

∫ a

0

Π[2β1vξ](a, σ)
(

β2vξ(σ)φ∗(σ)
)

dσ , a ∈ J , (3.32)

where

Ψ0 := ξ
(

1− ξH[2β1vξ]

)−1
(∫ am

0

b(a)

∫ a

0

Π[2β1vξ](a, σ)
(

β2vξ(σ)φ∗(σ)
)

dσ da

)

.

Note thatΨ0 is well-defined since1− ξH[2β1vξ] is invertible owing to Lemma 3.2, (3.5), andvξ ∈ Ẇ+
q which ensure

r(ξH[2β1vξ]) < 1. Also note, from (3.2) and (3.6), thatφ∗ andψ∗ both belong toẆ+
q .

Lemma 3.9. The kernel ofF(u,w)(η0, 0, 0) is spanned by(φ∗, ψ∗), andFη,(u,w)(η0, 0, 0)[φ∗, ψ∗] does not belong to
the range ofF(u,w)(η0, 0, 0). Moreover,Φ0 = η0Φ∗.
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Proof. Observe that(φ, ψ) ∈ X1 belonging to the kernel ofF(u,w)(η0, 0, 0) is equivalent to

∂aφ−∆D

(

(1 + γvξ)φ
)

+ α2vξφ = 0 , φ(0) = η0Φ ,

∂aψ −∆Dψ + 2β1vξψ = β2vξφ , ψ(0) = ξΨ ,

according to (3.27) and the definitions ofT1 andT2. Now, the first assertion follows from (3.28)-(3.32) by solving for
φ andψ. Next, supposeFη,(u,w)(η0, 0, 0)[φ∗, ψ∗] belongs to the range ofF(u,w)(η0, 0, 0). Then, in view of (3.13),
(3.27), and the definition ofT1, there isφ ∈ Wq with

∂aφ+Aξφ = 0 , φ(0) = η0Φ− Φ∗ ,

soφ(a) = ΠAξ
(a, 0)φ(0), a ∈ J and whence(1 − η0Gξ)φ(0) = −Φ∗. SinceΦ0 = η0Φ∗ by definition ofφ∗ and

(3.30), we conclude
Φ0 ∈ ker(1− η0Gξ) ∩ rg(1− η0Gξ)

what is impossible sinceη0Gξ is compact with simple eigenvalue1.

3.3. Proof of Theorem 2.2

Having established the necessary auxiliary results in the previous subsection, we are now in a position to prove
Theorem 2.2 by applying [23, Thm.4.3,Thm.4.4]. Recall that, writing (η, u, v) = (η, u, vξ+w), the solutions(η, u, v)
to (1.7)-(1.13) are obtained as the zeros(η, u, w) of the smooth functionF defined in (3.11). Also recall thatη0 =
η0(ξ) is given in (3.30).

As in the second part of the proof of Lemma 3.9,

ker(F(u,w)(η0, 0, 0)) ∩ rg(F(u,w)(η0, 0, 0)) = {0} ,

whence
X1 = span{(φ∗, ψ∗)} ⊕ rg(F(u,w)(η0, 0, 0))

by [5, Lem.2.7.9] and Lemma 3.9. In view of Proposition 3.7 and Lemma 3.9 we may apply [23, Thm.4.3]. Therefore,
there areε > 0 and continuous functions

η : (−ε, ε) → R , (θ1, θ2) : (−ε, ε) → rg(F(u,w)(η0, 0, 0))

with η(0) = η0 and(θ1, θ2)(0) = (0, 0) such that the solutions to (1.7)-(1.13) near(η0, 0, vξ) are exactly the semi-
trivial ones(η̃, 0, vξ), η̃ ≥ 0, and the ones lying on the curveΓ := Γ+ ∪ Γ− ∪ {(η0, 0, vξ)}, where

Γ± :=
{(

η(s), sφ∗ + sθ1(s), vξ + sψ∗ + sθ2(s)
)

; 0 < ±s < ε
}

.

Moreover,Γ is contained inC∗, which is a connected component of the closure of

S := {(η, u, vξ + w) ; F (η, u, w) = 0 , (u,w) 6= (0, 0)} .

Being merely interested in positive solutions, we first note:

Lemma 3.10. The curveΓ+ lies inR
+ × Ẇ

+
q × Ẇ

+
q .

Proof. Letus := sφ∗+sθ1(s) andvs := vξ+sψ∗+sθ2(s). Thenus(0) = sΦ0+o(s) andvs(0) = ξVξ+sΨ0+o(s)

in W 2−2/q
q,D ass → 0+ by (3.1). Thus, it follows fromΦ0, Vξ ∈ int(W

2−2/q,+
q,D ) thatus(0), vs(0) ∈ int(W

2−2/q,+
q,D )

for s ∈ (0, ε) with ε > 0 small enough, whenceus, vs ∈ Ẇ+
q for s ∈ (0, ε) due to the parabolic maximum principle

[6, Thm.13.5] and (1.7)-(1.13).

Now, invoking Corollary 3.4, Remark 3.5, and Corollary 3.8 we obtain from [23, Thm.4.4] (see also [23, Rem.4.2.1])
further information about the global character of the continuum. More precisely, ifC+ denotes the connected compo-
nent ofC∗ \ Γ− containingΓ+, thenC+ satisfies the alternatives:
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(i) C+ intersects with the boundary ofR×Wq × Ŵq, or

(ii) C+ is unbounded inR×Wq × Ŵq, or

(iii) C+ contains a point(η, 0, vξ) with η 6= η0, or

(iv) C+ contains a point(η, u, vξ + w) with (u,w) 6= (0, 0) and(u,w) ∈ rg(F(u,w)(η0, 0, 0)).

Due to Lemma 3.10, the continuumC := C+ ∩ (R+ × W+
q × W+

q ) of solutions to (1.7)-(1.13) contains the
curveΓ+. Furthermore, we have:

Lemma 3.11. C \ {(η0, 0, vξ)} ⊂ R+ × Ẇ+
q × Ẇ+

q is unbounded.

Proof. We first show thatC+ does not reach the boundary ofR+ × Ẇ+
q × Ẇ+

q at some point(η, u, v) 6= (η0, 0, vξ).

Suppose otherwise, i.e. let there be a sequence(ηj , uj , vj) in C ∩ (R+ × Ẇ+
q × Ẇ+

q ) converging toward some point

(η, u, v) 6= (η0, 0, vξ) not belonging toR+ × Ẇ+
q × Ẇ+

q . Sinceuj andvj are nonnegative, the limitsu andv are as

well. Sou ≡ 0 or v ≡ 0 because(η, u, v) /∈ R+ × Ẇ+
q × Ẇ+

q . We claim that neither is possible. Suppose first that

bothu andv identically vanish. Asvj ∈ Ẇ+
q , ψj := vj/‖vj‖Wq is well-defined inẆ+

q , has norm 1, and

∂aψj −∆Dψj = −β1vjψj + β2ψjuj , ψj(0) = ξΨj .

The proof of Lemma 3.3 shows that(ψj) is bounded inCε(J,C2+ε(Ω̄)) ∩ C1+ε(J,Cε(Ω̄)) for someε > 0 and so
we may assume without loss of generality that(ψj) converges inẆ+

q to someψ satisfying

∂aψ −∆Dψ = 0 , ψ(0) = ξΨ .

Thusψ(a) = ea∆Dψ(0), a ∈ J , andψ(0) = ξH[0]ψ(0) implying ξr(H[0]) = 1 by the Krein-Rutman theorem.
However, this contradicts (3.4) andξ > 1. Next, assumeu vanishes identically butv 6≡ 0. Then(η, u, v) = (η, 0, v)
and the uniqueness statement of Theorem 2.1 impliesv = vξ. Thus,(η, 0, vξ) ∈ B2 is a bifurcation point to positive
coexistence states. By Lemma 3.3, we may assume(vj) converges tovξ in Cε(J,C2+ε(Ω̄)) ∩ C1+ε(J,Cε(Ω̄)) for
someε > 0. Moreover, as above we may assume that(φj), defined byφj := uj/‖uj‖Wq , converges inẆ+

q to some
φ satisfying

∂aφ−∆D

(

(1 + γvξ)φ
)

= −α2φvξ , φ(0) = ηΦ . (3.33)

Therefore,φ(a) = ΠAξ
(a, 0)φ(0), a ∈ J , andφ(0) = ηGξφ(0). Thusη = η0 by the Krein-Rutman theorem and

(3.30). This yields the contradiction(η, u, v) = (η0, 0, vξ). Finally, supposev ≡ 0 but u 6≡ 0. Then we have
(η, u, v) = (η, u, 0) what givesu = uη with η > 1 by Theorem 2.1 sinceu ∈ Ẇ+

q , and so(η, u, v) = (η, uη, 0) ∈ B1

is a bifurcation point to positive coexistence states. As above we may assume that(ψj), given byψj := vj/‖vj‖Wq ,
converges to someψ ∈ Ẇ+

q satisfying

∂aψ −∆Dψ = β2ψuη , ψ(0) = ξΨ .

This readily implies1 = ξr(H[−β2uη ]) what is impossible sinceξ > 1 and1 = r(H[0]) < r(H[−β2uη ]) according to
(3.4) and Lemma 3.2.

Consequently,C+ intersects with the boundary ofR+×Ẇ+
q ×Ẇ+

q only at(η0, 0, vξ), whenceC = C+. So neither
alternative (i) nor (iii) above is possible. Suppose (iv) occurs, and let(φ, ψ) ∈ X1 and(η, u, vξ + w) ∈ C+ be with

(u,w) = F(u,w)(η0, 0, 0)[φ, ψ] .

Thenφ − u = T1(0, η0Φ) by (3.27). Recall, from the definition ofφ∗ and Lemma 3.9, thatφ∗ = T1(0, η0Φ∗)

with Φ∗ ∈ int(W
2−2/q,+
q,D ). The latter impliesκη0Φ∗ + φ(0) − u(0) ∈ int(W

2−2/q,+
q,D ) for someκ > 0. Defining

p := κφ∗ + φ− u ∈ Wq, we obtainp = T1(0, η0(κΦ∗+Φ)), that is,∂ap+Aξp = 0 with p(0) = η0P +η0U . Hence

(1 − η0Gξ)p(0) = η0U . Sinceu ∈ Ẇ+
q by assumption and thusU ∈ (W

2−2/q,+
q,D ) \ {0}, this last equation does not

admit a positive solutionp(0) according to (3.30) and [1, Thm.3.2] in contradiction top(0) ∈ int(W
2−2/q,+
q,D ) by the

choice ofκ. So (iv) is impossible as well, and we conclude thatC\{(η0, 0, vξ)} ⊂ R+×Ẇ+
q ×Ẇ+

q is unbounded.
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To finish off the proof of Theorem 2.2 we merely have to remark that(η0, 0, vξ) is the only bifurcation point.

Lemma 3.12. There is no other bifurcation point onB2 or onB1 to positive coexistence states.

Proof. Exactly the same arguments as in the first step of the proof of Lemma 3.11 show that there is neither a
bifurcation point(η, uη, 0) ∈ B1 nor (η, 0, vξ) ∈ B2 to positive coexistence states.

4. Proof of Theorem 2.3

As the proof of Theorem 2.3 is similar to the one of Theorem 2.2, we merely sketch it and point out the necessary
modifications.

We shall derive a bifurcation from the branchB1 by linearizing around a point(η, uη, 0) with a suitableη = η1 to
be determined. First note that the smooth branchU := {(η, uη); η > 1} in (1,∞)×Ẇ+

q of solutions to (2.3) provided
by Theorem 2.1 extends to a smooth branchU∗ := {(η, uη); η > η∗} in (η∗,∞)×Wq passing through(η, u) = (1, 0),
whereη∗ ∈ (0, 1) and−uη ∈ Ẇ+

q for η ∈ (η∗, 1). Indeed, application of [26, Thm.2.4], [27, Prop.2.5] (with ε < 0 in
[27, Eq.(2.17)], see the proof of [30, Prop.3.4]) shows thatthe branchU of positive solutions extends smoothly with
a branch{(η(ε), uη(ε));−ε0 < ε ≤ 0}, where−uη(ε) ∈ Ẇ+

q for ε ∈ (−ε0, 0). Thus, fixingε ∈ (−ε0, 0), it follows

thatw := −uη(ε) ∈ Ẇ+
q satisfies

∂aw −∆Dw = α1w
2 , w(0) = η(ε)W ,

whencew(0) = η(ε)H[−α1w]w(0) and thusη(ε)r(H[−α1w]) = 1 by the Krein-Rutman theorem. Due to Lemma 3.2
and (3.4), we haver(H[−α1w]) > r(H[0]) = 1 and soη(ε) < 1. We thus get the desired smooth extensionU∗ of U by
choosingη∗ sufficiently close to1. Consequently, the solutions(η, u, v) = (η, uη −w, v) to problem (1.7)-(1.13) can
be obtained as the zeros(η, w, v) of the smooth mapF : (η∗,∞)×Wq × Ŵq → Wq ×Wq, defined by

F(η, w, v) :=

(

w − T
(

−∆D(γv(uη − w))− 2α1uηw + α1w
2 + α2(uη − w)v , ηW

)

v − T
(

− β1v
2 + β2v(uη − w) , ξV

)

)

, (4.1)

where the set̂Wq is as in Section 3 and

T := (∂a −∆D, γ0)
−1 ∈ L(Lq ×W

2−2/q
q,D ,Wq) .

Clearly,F(η, 0, 0) = 0 for η ∈ (η∗,∞) and the Frechét derivatives at(η, w, v) are given by

F(w,v)(η, w, v)[φ, ψ] =





φ− T
(

−∆D(γψ(uη − w)) + ∆D(γvφ)− 2α1(uη − w)φ
+α2ψ(uη − w) − α2vφ , ηΦ

)

ψ − T
(

− 2β1vψ − β2vφ+ β2(uη − w)ψ , ξΨ
)



 (4.2)

and

Fη,(w,v)(η, u, w)[φ, ψ] =

(

−T
(

−∆D(γψu′η)− 2α1u
′
ηφ+ α2ψu

′
η , Φ

)

−T
(

β2u
′
ηψ , 0

)

)

(4.3)

for (φ, ψ) ∈ Wq ×Wq with dashes referring to derivatives with respect toη. It is then straightforward to modify the
proofs of Lemma 3.6 and Proposition 3.7 in order to derive theanalogue of Corollary 3.8:

Lemma 4.1. For k ∈ (0, 1) and(η, w, v) ∈ (η∗,∞)×Wq × Ŵq,

(1− k)F(w,v)(η, 0, 0) + kF(w,v)(η, w, v) ∈ L(X1)

is a Fredholm operator of index zero.

14



To determine the bifurcation point, let us observe thatr(H[−β2uη ]) > 1 is a strictly increasing function ofη on
(1,∞) according to Theorem 2.1 and Lemma 3.2. Sinceuη depends continuously onη in the topology ofWq by
Theorem 2.1, we obtain from [2, II.Lem.5.1.4] that the evolution operatorΠ[−β2uη ](a, 0) and henceH[−β2uη] depend
continuously onη with respect to the corresponding operator topologies. Together with the fact that the spectral radius
considered as a functionK(W

2−2/q
q,D ) → R+ is continuous (see [7, Thm.2.1]), we conclude that

(

η 7→ r(H[−β2uη ])
)

∈ C
(

(1,∞), (1,∞)
)

is strictly increasing (4.4)

with limη→1 r(H[−β2uη]) = 1. Definingδ ∈ [0, 1) by

δ :=
1

lim
η→∞

r(H[−β2uη ])
, (4.5)

it follows that for anyξ ∈ (δ, 1) fixed we find a uniqueη1 := η1(ξ) > 1 with

ξ =
1

r(H[−β2uη1 ]
)
. (4.6)

We may then chooseΨ1 ∈ int(W
2−2/q,+
q,D ) spanningker

(

1 − ξH[−β2uη1 ]

)

. Define (φ⋆, ψ⋆) ∈ Wq × Ẇ+
q by

ψ⋆ := Π[−β2uη1 ]
(·, 0)Ψ1 and

φ⋆ := Π[2α1uη1 ]
(·, 0)Φ1 +Nψ⋆ , Φ1 := η1

(

1− η1H[2α1uη1 ]

)−1
(∫ am

0

b(a)(Nψ⋆)(a) da

)

,

with

(Nψ⋆)(a) :=

∫ a

0

Π[2α1uη1 ]
(a, σ)

(

−∆D(γuη1
(σ)ψ⋆(σ)) + α2uη1

(σ)ψ⋆(σ)
)

dσ , a ∈ J ,

where the invertibility of1− η1H[2α1uη1 ]
is due to (3.5). The analogue of Lemma 3.9 then reads:

Lemma 4.2. The kernel ofF(w,v)(η1, 0, 0) is spanned by(φ⋆, ψ⋆) andFη,(w,v)(η1, 0, 0)[φ⋆, ψ⋆] does not belong to
the range ofF(w,v)(η1, 0, 0).

Proof. Thatker(F(w,v)(η1, 0, 0)) = span{(φ⋆, ψ⋆)} follows as in the proof of Lemma 3.9. To check the transver-
sality condition, supposeFη,(w,v)(η1, 0, 0)[φ⋆, ψ⋆] belongs to the range ofF(w,v)(η1, 0, 0). Recall (4.2), (4.3) and let

v ∈ Wq be such thatv − T (β2uη1
v, ξV ) = −T (β2u′η1

ψ⋆, 0). Chooseτ > 0 with τΨ1 − v(0) ∈ int(W
2−2/q,+
q,D ).

Sinceψ⋆ = T (β2uη1
ψ⋆, ξΨ⋆), it follows thatp := τψ⋆ − v satisfies

∂ap−∆Dp− β2uη1
p = β2u

′

η1
ψ⋆ , p(0) = ξP ,

from which we deduce

(

1− ξH[−β2uη1 ]

)

p(0) = ξβ2

∫ am

0

b(a)

∫ a

0

Π[−β2uη1 ]
(a, σ)

(

u′η1
(σ)ψ⋆(σ)

)

dσ da .

However, invoking [1, Thm.3.2] and (4.6), this is impossible sincep(0) ∈ int(W
2−2/q,+
q,D ) by the choice ofτ and since

the right hand side is positive and nonzero due to (2.1) and the positivity ofψ⋆ and ofu′η stated in Theorem 2.1.

As Corollary 3.4 holds also forF , we may proceed as in Subsection 3.3 to derive from [23, Thm.4.3,Thm.4.4]
that a continuumS+ in (η∗,∞) × Wq × Wq of solutions to (1.7)-(1.13) bifurcates from(η1, uη1

, 0) satisfying the
alternatives:

(i) S+ intersects with the boundary of(η∗,∞)×Wq × Ŵq, or

(ii) S+ is unbounded in(η∗,∞)×Wq × Ŵq, or

15



(iii) S+ contains a point(η, uη, 0) with η 6= η1, or

(iv) S+ contains a point(η, uη − w, v) with (w, v) 6= (0, 0) and(w, v) ∈ rg(F(w,v)(η1, 0, 0)).

Moreover, near the bifurcation point,S+ is a continuous curve

Γ+ =
{

(η(s), uη(s) − sφ⋆ − sθ1(s), sψ⋆ + sθ2(s)) ; 0 < s < ε
}

for a continuous real-valued functionη and some continuousWq-valued functionsθj with η(0) = 0 andθj(0) = 0.

Sinceuη(s)(0) andψ⋆ = Ψ1 both belong toint(W 2−2/q,+
q,D ), it follows as in Lemma 3.10 thatΓ+ is a subset of

(1,∞)× Ẇ+
q × Ẇ+

q for ε > 0 sufficiently small. For the continuumS, given by

S := S
+ ∩

(

[η∗,∞)×W
+
q ×W

+
q

)

,

we have:

Lemma 4.3. S \ {(η1, uη1
, 0)} is a subset of[η∗,∞) × Ẇ+

q × Ẇ+
q consisting of coexistence states(η, u, v) to

(1.7)-(1.13). The continuumS is unbounded or it connects(η1, uη1
, 0) to a solution(η∗, u, v) of (1.7)-(1.13)with

u, v ∈ Ẇ+
q .

Proof. First supposeS+ \ {(η1, uη1
, 0)} does not reach the boundary of(η∗,∞) × Ẇ+

q × Ẇ+
q , soS = S+. Then

neither (i) nor (iii) above is possible. Suppose (iv) occurs. Then there are(η, uη −w, v) ∈ S and(φ, ψ) ∈ Wq ×Wq

such that(w, v) = F(w,v)(η1, 0, 0)[φ, ψ]. Hencep := κψ⋆ + ψ − v ∈ Wq, with κ > 0 chosen such thatp(0) belongs

to∈ int(W
2−2/q,+
q,D ), satisfies

∂ap−∆Dp− β2uη1
p = β2uη1

v , p(0) = ξP + ξV ,

so that
(

1− ξH[−β2uη1 ]

)

p(0) = ξV + ξβ2

∫ am

0

b(a)

∫ a

0

Π[−β2uη1 ]
(a, σ)

(

uη1
(σ)v(σ)

)

dσ da .

Sincev ∈ Ẇ+
q by assumption, this last equation does not admit a positive solutionp(0) according to [1, Thm.3.2] in

view of (4.6). However, this contradictsp(0) ∈ int(W
2−2/q,+
q,D ). So (iv) is impossible as well, and we conclude that

if S+ \ {(η1, 0, vξ)} does not reach the boundary of(η∗,∞)× Ẇ
+
q × Ẇ

+
q , thenS = S

+ is unbounded. Otherwise,

supposeS\{(η1, 0, vξ)} reaches the boundary of(η∗,∞)× Ẇ+
q × Ẇ+

q at a point(η, u, v) 6= (η1, uη1
, 0) and choose

a sequence(ηj , uj, vj) in S ∩ ((η∗,∞)× Ẇ+
q × Ẇ+

q ) converging toward(η, u, v). Sinceuj andvj are nonnegative
andηj > η∗, the limitsu andv are nonnegative as well andη ≥ η∗. Sou ≡ 0 or v ≡ 0 or η = η∗. We claim that
necessarilyη = η∗ andu, v ∈ Ẇ+

q . We proceed as in Lemma 3.11. If bothu ≡ 0 andv ≡ 0, then the limitψ ∈ Ẇ+
q

of ψj := v/‖vj‖Wq satisfies∂aψ −∆Dψ = 0 with ψ(0) = ξΨ leading to the contradiction1 = ξr(H[0]) = ξ due
to (3.4). If v ≡ 0 but u 6≡ 0, thenu ∈ Ẇ

+
q satisfies∂au − ∆Du = −α1u

2 andu(0) = ηU and thusu = uη with

necessarilyη > 1 by the uniqueness statement of Theorem 2.1. Henceψ ∈ Ẇ
+
q satisfies∂aψ −∆Dψ = β2uηψ with

ψ(0) = ξΨ giving the contradictionη = η1 by (4.6). Ifu ≡ 0 butv 6≡ 0, thenv ∈ Ẇ
+
q satisfies∂av−∆Dv = −β1v

2

andv(0) = ξV what is impossible according to Theorem 2.1 sinceξ < 1. Therefore, neitheru ≡ 0 norv ≡ 0 and we
concludeη = η∗. This proves the claim.

Lemma 4.4. There is no other bifurcation point to positive coexistencestates onB1.

Proof. The assumption(η, uη, 0) ∈ B1 being a bifurcation point to positive coexistence states corresponds to the
caseη > 1, u 6≡ 0, andv ≡ 0 in the proof of Lemma 4.3 and analogously impliesη = η1.

This completes the proof of Theorem 2.3.
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5. Proof of Theorem 2.4

Again, the main part of the proof of Theorem 2.4 is a straightforward modification of Section 3, and we thus
omit details. Letη > 1 be fixed. Linearization around(ξ, uη, 0) ∈ T2 entails the existence of a continuumR+ in
R×Wq ×Wq of solutions to (1.7)-(1.13) bifurcating from(ξ0, uη, 0), whereξ0 := ξ0(η) ∈ (0, 1) is given by

ξ0 :=
1

r(H[−β2uη ])
. (5.1)

Near the bifurcation point(ξ0, uη, 0), R+ is a continuous curve inR+ × Ẇ+
q × Ẇ+

q and it can be shown exactly as in
Lemma 3.11 or Lemma 4.3 thatR := R+ ∩ (R+ ×W+

q ×W+
q ) satisfies the alternatives:

(a) R \ {(ξ0, uη, 0)} is unbounded inR+ × Ẇ+
q × Ẇ+

q , or

(b) R reaches the boundary ofR+ × Ẇ+
q × Ẇ+

q at some point(ξ, u, v) 6= (ξ0, uη, 0) with u ≡ 0 or v ≡ 0.

If (b) occurs, choose a sequence(ξj , uj , vj) in R ∩ (R+ × Ẇ+
q × Ẇ+

q ) converging toward(ξ, u, v) 6= (ξ0, uη, 0).
Puttingφj := uj/‖uj‖Wq andψj := vj/‖vj‖Wq , we may assume thatφj → φ andψj → ψ in Wq. If both u ≡ 0

andv ≡ 0, thenφ ∈ Ẇ+
q satisfies∂aφ − ∆Dφ = 0 with φ(0) = ηΦ and so1 = ηr(H[0]) contradicting (3.4) and

η > 1. If u 6≡ 0 butv ≡ 0, thenu = uη according to Theorem 2.1, andψ ∈ Ẇ+
q satisfies∂aψ−∆Dψ = β2uηψ with

ψ(0) = ξΨ. Henceξ = ξ0 by (5.1) what is impossible since(ξ, u, v) 6= (ξ0, uη, 0). Therefore, the only possibility
is u ≡ 0 but v 6≡ 0. In this case necessarilyξ > 1 andv = vξ in view of Theorem 2.1. SoR joins up withT1 at
(ξ, 0, vξ). We remark that then the relation

ηr(Gξ) = 1 (5.2)

with Gξ given in (3.29) must hold, sinceφ ∈ Ẇ+
q satisfies (3.33). That no other bifurcation point(s) onT2 or T1

exist(s) is immediate by the previous observations. This yields Theorem 2.4.

Remark 5.1. Since the operatorAξ in (3.28)does not yield a suitable maximum principle, there is no analogue of
Lemma 3.2 for the spectral radius ofGξ and the only information we have onr(Gξ) is that it is positive for each
ξ > 1 as observed in Section 3.2. Consequently, givenη > 0, we cannot decide a priori whether(5.2) holds for
someξ > 1. However, forη > 1, if R joins up withT1, then(5.2)must occur and the connection point(ξ, 0, vξ) on
T1 is determined by this relation. Then again, the relation(5.2) is also a sufficient condition for the existence of a
continuous curve of positive coexistence solutions bifurcating fromT1.

The same difficulty arises when considering bifurcation fromT1 with respect toξ whenη < 1 is fixed. In this case,
(5.2) is again a necessary and sufficient condition for the existence of a bifurcation point onT1 to a curve of positive
coexistence states, which then extends to an unbounded continuum.
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[9] M. Delgado, M. Molina-Becerra, A. Suárez.Nonlinear age-dependent diffusive equations: A bifurcation approach.J. Differential Equations

244 (2008), 2133-2155.
[10] M. Delgado, M. Montenegro, A. Suárez.A Lotka-Volterra symbiotic model with cross-diffusion.J. Differential Equations246 (2009), no. 5,

2131-2149.
[11] D. Horstmann.Remarks on some Lotka-Volterra type cross-diffusion models.Nonlinear Anal. Real World Appl.8 (2007) 90-117.

17



[12] P. Korman, A. Leung.On the existence and uniqueness of positive steady-states in the Volterra-Lotka ecological models with diffusion.Appl.
Anal. 26 (1987) 145-160.

[13] K. Kuto. Stability of steady-state solutions to a prey-predator system with cross-diffusion.J. Differential Equations197 (2004) 293-314.
[14] K. Kuto, Y. Yamada.Multiple coexistence states for a prey-predator system with cross-diffusion.J. Differential Equations197 (2004) 315-348.
[15] M. Langlais.Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion.J. Math. Biol.26 (1988)

319-346.
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