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Abstract

The paper is concerned with a system consisting of two cdupdalinear parabolic equations with a cross-diffusion
term, where the solutions at positive times define the irstiates. The equations arise as steady state equations of
an age-structured predator-prey system with spatial digpe Based on unilateral global bifurcation methods for
Fredholm operators and on maximal regularity for parabetjoations, global bifurcation of positive solutions is
derived.
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1. Introduction

Consider the situation that an age-structured prey and asstagctured predator population inhabit the same
spatial regiorn?, that the individuals of both populations undergo spatiatfiation and that the predator population
exerts a repulsive pressure on the prey population. # (¢, a,z) > 0 andv = v(¢,a,z) > 0 denote the density
of the prey and the predator population, respectivelyna¢ti > 0, agea € [0, a,,) for a maximal age:,,, > 0, and
spatial positione € €2, a simple model reads

Ot + Ogu — Ay (61 +y0)u) = —qu® —apuv, t>0, a€(0,a,), €, (1.2)
040 4 v — 620 = —B10* + Bovu, t>0, a€(0,a,), €. (1.2)

These equations are subject to the nonlocal age boundaditioos
u(t,0,2) = / Bi(a)u(t,a,x)da, t>0, z€Q, (1.3)
0
U(t,O,ac):/ Bs(a)v(t,a,z)da, t>0, x€Q, (1.4)
0

the spatial boundary conditions

u(t,a,2)=0, t>0, a€(0,am), x€0N, (1.5)
v(t,a,z) =0, t>0, a€(0,an,), z€IN, (1.6)

and are supplemented with time initial conditions. Thgterm in [1.1) describes spatial movement of prey individ-
uals. Besides intrinsic dispersion with coefficiént> 0, it reflects an increase of the dispersive force on the prey by
repulsive interference with an increase of the predatoufation. Here;y > 0 is the predator population pressure
coefficient. We refer ta_[24] for a derivation of such kind obdels (without age-structure). The right hand sides of
(1.1) and[(1.P) take into account intra- and inter-speaifieractions of the two populations with positive coeffi¢gen
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a1, s, B1, f2 > 0. Equations[(1]5) and (1.6) describe creation of new indiglg with nonnegative birth rates;

and Bs. The reader is referred to [32] and the references thereifufther information about linear and nonlinear
age-structured population equations with (and withoustigpbdispersal. Although such models have a long history,
there does not seem to be much literature about equatiohswatlinear diffusion. The well-posedness of equations
(I.1)-(1.8) might be derived within the general framewor&gented in [28] though the results therein do not directly
apply due to the cross-diffusion term.

We shall remark that the model considered herein is a rathwle biological model and there may be more
accurate models, e.g. with different maximal ages, nohidependences in the reaction terms etc. The aim of the
present paper is thus rather to provide a mathematical franketo treat parabolic equations with cross-diffusion and
nonlocal initial conditions. Namely, the present papereslidated to positive equilibrium (i.e. time-independent)
solutions to [(T)E(T16) which shall be established basedlobal bifurcation methods. We write the birth rates in
the form By (a) = nb1(a) and Bz(a) = £ba(a), whereby, by are some fixed birth profiles and the parametgrs
& measuring the intensities of the fertility shall serve dsifgation parameters. Aiming at a simple and compact
notation, we leb := b; = by anddé; = J; = 1. We emphasize that these simplifications are made merethéor
sake of readability and do not impact in any way on the mattiealanalysis to follow. To shorten notation further,
we shall agree upon the following convention: given a functlefined ory := [0, a,,] and denoted by a lower case
letter, sayu or v, we use the corresponding capital letteor V' to denote its age-integral with weighti.e.,

U :/0 b(a)u(a)da, V :/0 b(a)v(a)da . (1.7)

Depending on the values of the parameteand¢, we are looking for nonnegative and nontrivial functians=
u(a, z) andv = v(a, ) satisfying the nonlinear parabolic system with crossegitin

Ogtt — AI((I + ’yv)u) = —oqu? —aouv, a€(0,a,), T€Q, (1.8)
gV — Dgv = —B10% + Bovu, a € (0,am,), x€Q, (1.9)

subject to the nonlocal initial conditions

u(0,z) =nU, ze€Q, (1.10)
v(0,2) =&V, z€Q, (1.12)

and spatial Dirichlet boundary conditions

u(a,z) =0, a€(0,am), z€0N, (1.12)
v(a,z) =0, a€(0,am), z€IN. (1.13)

Clearly, of particular interest aoexistence statethat is, solutiongu, v) with both components andwv nontrivial
and nonnegative.

Based on bifurcation technigues, existence of equilibsoiations was established In [30, 31] for similar systems
with linear diffusion and in [26, 27, 29] for a single equati@ith nonlinear diffusion. Except for [29], the bifurcatio
parameter was also chosen to be a measure for the intenghg &értility as above. Prior to the just cited papers,
bifurcation methods were used in [9] to derive positive Bqrium solutions for a single equations with linear dif-
fusion. We also refer to [15] where the large time behavigp@bulation dynamics with age-dependence and linear
spatial diffusion was analyzed.

More attention attracted than the age-structured pamégliations so far have related elliptic systems of the form
A1 4+yv)ul =u(p—utcv), —Arv=v(A—vxbu)

in €2 subject to Dirichlet conditions 0A<) with positive constantg, A, b, c; both for the case of linear diffusion
~v = 0 (e.g., seel]3,4,/8, 17, 18] and the references therein) anddbke with cross-diffusion > 0 (e.g., see
[10,111, 13| 14|, 23] and the references therein). It is wohtlerto remark that for such elliptic equations with cross-
diffusion, the transformation := (1 + yv)u leads to a semilinear elliptic system foandw, for which, when written
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in the form(z,v) = S(z,v), the corresponding solution operat®renjoys suitable compactness properties. More-
over, for such a system, positivity and a-priori bounds dfisons may be derived using the maximum principle, e.qg.
[10,113,[23]. For the nonlocal parabolic equatidns](1L.Z]§}) under consideration herein, however, a correspond-
ing transformation still yields nonlinear second ordentewith respect to the spatial variable (or first order time
derivatives). Consequently, the underlying solution ap@mrdoes not enjoy similar compactness properties. As we
are interested in global bifurcation of positive solutipih$s thus not clear how to apply directly the unilateral logd
bifurcation methods of [16, 21] as in_[30], which require quamtness of the underlying solution operators. To over-
come this deficiency, we shall invoke recent results of&Shang [23] on unilateral global bifurcation for Fredholm
operators, which are based on Lépez-Gbémez’s interpwetft6] of the global alternative of Rabinowitz [21] and on
the global bifurcation results of PejsachowitzRabier [19]. These results yield a (global) continuum ofifes
solutions. We shall also point out that, due to the crosssiibn term, no comparison principle in the spirit of[[30,
Lem.3.2] is available. In some cases, the lack of such a casgreprinciple prevents us from determining which of
the possible alternatives the constructed continuum ofistence states satisfies (see Thedrem 2.3 and Théarem 2.4
below).

2. Main Results
We suppose throughout this paper that the birth profile
be L ((0,a,)) with b(a) > 0 for a neara,, (2.1)

is normalized such that »
/ b(a)e M?da =1, (2.2)
0

where); > 0 denotes the principal eigenvalue-ef\, on 2 subject to Dirichlet boundary conditions 6. Before
stating our results on coexistence states in more detaifjraterecall some auxiliary results frorn [30] about semi-
trivial states, that is, about solutio(s, v) with one vanishing component. Taking for instance= 0 in (1.8)-(1.9)
and using conventiofi(1.7), we obtain the reduced problem

Ot — Agu = —cyu®,  w(0,-) = nU , (2.3)
subject to Dirichlet boundary conditions. Introducing;, fo= (n + 2, 0o) fixed, the solution space
Wy = Lq((oa am), WqQ,D(Q)) N qu((oa am), Lq(Q)) )

where
W2 p(Q) = {u e W;(); u=00nd0},

and IettingWér denote its positive cone, the following result was provef8ih Thm.2.1, Cor.3.3, Lem.3.6, Cor.3.7]:

Theorem 2.1. SupposeZ.1) and (2.2). For eachn > 1 there is a unique solution,, € W \ {0} to equation
(2.3). The mappindn — u,) belongs taC>°((1, c0), W,) and satisfied|u,|w, — 0 asn — 1 and||lu,|jw, — oo
asn — oo. Forn > 1 anda € J, the derivatived,u,(a) is a (strictly) positive function of. If ; > 15, then
Uy, > uy,. Finally, if n <1, then.3) has no solution iV, \ {0}.

Given¢ > 1, we letve € W;{ \ {0} denote the unique solution to the corresponding equatiom fehen taking
u = 0in (L.8)-(1.9). Though we shall work in the solution sp&%e, we remark that solutions tb (1.7)-(1113), so in
particularu,, andve, are smooth with respect to bathe J andz € Q (see LemmB&3]3 below).

2.1. Bifurcation with Respect to the Parameter

We first shall keegg fixed and regardy as bifurcation parameter. We thus wr{tg u, v) for solutions to[(1I7)-
(L.13) withw, v belonging toW,". TheoreniZI1 entails, for argy> 0, the semi-trivial branch

By = {(n,uy,0); 7> 1} CRT x (W {0}) x W (2.4)
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of solutions. Fog > 1, an additional semi-trivial branch
By = {(1,0,v¢) ;7 >0} CRT x WF x (W \ {0}) (2.5)
exists. In the latter case, a continuum of coexistencesstatercates fromB,:

Theorem 2.2. SupposdZ.I)(2.2)and let¢ > 1. There existsy := 19(£) > 0 such that an unbounded continudm
emanates fronfn, 0, v¢) € B, and

€\ {(n0,0,v¢)} € RT x (W \ {0}) x (Wg \ {0})

consists of coexistence statesu, v) to (L4)}(I.13) Near the bifurcation poinfro, 0, v¢), € is a continuous curve.
There is no other bifurcation point dB, or on 3, to positive coexistence states.

The value ofijy(¢) corresponding to the bifurcation point is determinediZ{}.
We turn to the casé < 1, which is more involved. Recall th&, is the only semi-trivial branch of solutions in
this case.

Theorem 2.3. Suppose21)}(@.2). There is§ € [0,1) with the property that, give§ € (d,1), there exists
m = n1(€) > 1 such that a continuur® emanates fronfn: , u,, ,0) € B4, and

&\ {(n1,up,, 0)} CRT x (W \ {0}) x (W \ {0})
consists of coexistence statesu, v) of (I.4)}(L.I3) The continuun®
(i) is unbounded, or
(i) connects(n:,u,,,0) to a solution(n., u, v) of AT IJ)withn. € (0,1) andu,v € W\ {0}.

Near the bifurcation pointn: , u,,,0), & is a continuous curve. There is no other bifurcation poin2nto positive
coexistence states.

The values off andn; (€) are given in[(46) and (4.6), respectively. Note that aléwe (i) above always occurs
if cross-diffusion is not taken into account, i.e.4if= 0, seel[3[l, Thm.1.5]. Alternative (ii) stems from a technical
condition, and we conjecture that alternative (i) is theag@ncase also for the present situation where 0. However,
as occurrence of alternative (i) is not ruled out by our wsial Theorerii 213 is rather a local bifurcation result iis thi
regard.

2.2. Bifurcation with Respect to the Parameger

Since the cross-diffusion term involves the predator dgnsibifurcation from semi-trivial solution branches is
more intricate when regarding(the measure of the predator fertility) as parameter an@ikge,; fixed. We shall
only consider the situation > 1, the reason being explained in Remark 5.1. We now wgjte, v) for solutions to
(14)-(TI3B). Then, there are two semi-trivial branchesadfitions

{3.:1 = {(gaovvf);§>1}a TQ = {(Svunao)vgzo}
Also in this case, bifurcation from the semi-trivial branghoccurs:

Theorem 2.4. SupposdZ.1}(2.2) and letn > 1. There existg, := &(n) € (0,1) such that a continuurfk of
solutions tof1.7)-(1.13)emanates front, u,, 0) € ¥, satisfying the alternatives

() R\ {(o,un,0)} is unbounded iR x (Wi \ {0}) x (WF\ {0}), or
(i) P connectst, with T;.

Except for the bifurcation point(s)i consists exclusively of coexistence states. Near thechiion point(&, u,, 0),
R is a continuous curve. There is no other bifurcation pointror onT; to positive coexistence states.
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The values o€ (n) and&; = & (n) > 1, corresponding to the connection pofét, 0, v¢,) € <, if alternative (i)
occurs, are determined in(5.1) abd{5.2), respectiveleBihe assumptions of this theoremyif 0, one can show
that alternative (ii) occurs if is less than a certain value or if additional assumption$erbirth rates and on;, 5;
are imposed, see [30, Thm.2.2].

The outline of the paper is as follows: The next section isadd to the proof of Theorem2.2. In Subsecfion 3.1,
we first introduce some notation, and in Subsediioh 3.2, weige the necessary auxiliary results needed to perform
the actual proof of Theorem 2.2 in Subsecfiod 3.3. Seclibarsdf% are dedicated to the proofs of Theofem 2.3 and
Theoreni 2.4, respectively. As these proofs are along ttes lif the proof of Theorefn 2.2, these sections are kept
rather short.

3. Proof of Theorem[2.2

3.1. Notations and Preliminaries

Given two Banach spacdg and F;, we shall use the notatiofi( F}, Fy) for the set of bounded linear operators
and/C(Fy, Fy) for the set of compact linear operators betwégrand Fy. We setl(Fy) := L(Fy, Fy) and similarly
K(Fy) := K(Fy, Fy). The set of toplinear isomorphisms betwd@nand Fy is denoted byCis(F1, Fp).

Let —Ap denote the negative Laplacian dy := L,(f2) subject to Dirichlet boundary conditions, that is,
—Ap :=—A, with domainW(iD, where

op = Wip(Q) :={ueW;;u=00n0Q}
fork > 1/qgandWyp = Wr(Q) for0 < & < 1/q. Asq > n+ 2, we haveW(iEf/q — C(Q) by the Sobolev
embedding theorem. In particulant(W;_DQ/q”L) # (), that is, the interior of the positive cone W;_DQ/‘Z is not
empty. Lety, denote the trace operator definedfay := u(0) for u € W,, which is well-defined owing to the
embedding/[2, 111.Thm.4.10.2]

W, = C([0,am], W259) .
In fact, we have, due to the interpolation inequality [2hnT.2.11.1],

Wy — CHY10([0,a,,), W2Y), 0<9<1-1/q. (3.1)

In the following, we letW;} := W \ {0}. Recall that an operatot € L(W?, L,) is said to havenaximal
L 4-regularity provided

(811 + Aa’YO) € ‘CiS(WQan X W;BQ/q) )
wherel, := L,(J, Ly). Recall that-Ap has maximal,-regularity. IfA : J — L(W}p, L,) for somex > 0,
we write (Au)(a) := A(a)u(a) fora € J andu: J — Wy ,. The following perturbation result is proved in [20,
Cor.3.4], which is also valid foR*-valued functions, i.e., i, is replaced by_, (2, R*) etc.:

Lemma 3.1 LetA € C(J,L(W}p,L,)) be such thatd(a) has maximalL,-regularity for eacha € J and let
B € Ly(J, LW. 5, Ly)). Then(9, + A+ B, o) € Lis(Wy, Ly x W 59,

Givenp > 0 andh € C9(J,C(9)), we letII}; (a,0), 0 < o < a < a,,, denote the unique parabolic evolution
operator corresponding toeAp + h € Ce(J,L(W2 , L)), thatis,z(a) = Iljpy(a,0)®, a € (0, ar), defines the
unique strong solution to

0wz —Apz+hz=0, a€lo,an), 2(0) =@,

for any givens € (0,a,,) and® € L, (seel[2, Il.Cor.4.4.1]). Note that the evolution operasopdsitive, i.e.

H[h](a,a)q)EL;r, 0<o<a<apy, <I>€Lq+.



Since—A p has maximalL,-regularity, it follows from Lemma3]1 that
(00 — Ap + h,70) € Lis(Wq, Ly x W25 (3.2)

and, in particularf Iy, (-,0)® € W, for ® € W ,"/%. We set

H[h] = /0 b(a) H[h] (a,()) da .

Then Hy,) € K(W, 2/q) owing to standard regularizing effects of the parabolicléion operatoril,; and the

compactembeddm[zj/2 — VV2 /7 Moreover, adl,(a,0) for a € (0, a,,) is strongly positive orW2 /4 py
[6, Cor.13.6], the same holds true er due to[[Z.1), that is,

Hp® € int(W, /"), @ e W,/ \ {0}. (3.3)

The corresponding spectral radiu§H[;,;)) can thus be characterized according to the Krein-Rutmaoréne [2,
Thm.3.2] (see [30, Lem.3.1]):

Lemma 3.2. For h € C¢(J,C()) with o > 0, the spectral radius:(Hp,) > 0 is a simple eigenvalue off
with a corresponding eigenfunction belongingite (W, W, 2/q’ ). Itis the only eigenvalue offj;,) with a positive
eigenfunction. Moreover, if and g both belong ta”?(.J, C( )) with g > h butg # h, thenr(H,) < r(Hp).

In particular, the normalizatiof (2.2) implies
T(H[O]) =1 (34)

since any positive eigenfunction efAp is an eigenfunction off[,; as well. Moreover, writing the solution tb (2.3)
in the formu = T4, (-, 0)u(0), Theoreni 211 together with LemrmaB.2 imply

777’(1;1[0111177 ) fT( B1ve] ) =1, né&>1, (35)

sinceu, (0), v(0) € (W57 "")\ {0}.

3.2. Auxiliary Results
The aim is to apply the global bifurcation results|ofi[23, THB,Thm.4.4]in order to establish Theorem 2.2. We
first provide the necessary tools.
Let¢ > 1 be fixed and leve € W, denote the solution td (1.7)-(1]13) with= 0 provided by Theorem 2.1.
Throughout we use the conventidn {1.7). Notice that for ea€h/, the operator; (a), given by
Aq(a)u = —divy ((1 +yve(a))Vau) , u € W ,

has maximalL,-regularity due to its divergence form, the positivity @f ¢ W,, (3.1), and e.g.[2, 1.Cor.1.3.2,
I.Ex.4.7.3, 1. Thm 4.10.7]. Moreoverd, € C(J, L(W? p, L)) by (31). Noticing also that

Bi(a)u := —ydivy (uVave(a)) + avve(a)u, a€J, ue VV2 2/e
defines an operatds, € Ly(J, L(W> 7/, L)), it follows from Lemma 311 that

Ty := (9a + A1+ Bi,y0) "t € L(Lg x W, 5%, W) (3.6)
is well-defined. Observe that
Agu = (Al + Bl)u = 7AD((1 + ’}/’UE)’U,) + QaVel , (RS W;D
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From [3.1) and[(3]2) we obtain
Ty = (0a — Ap +2B1ve,70) "1 € L(Lyg x W25, W,) .

To derive a bifurcation from a poirfty, 0, v¢) € B, for a suitableny, = 70(£), we write (9, u,v) = (1, u, ve + w)
for a solution to probleni (11 7)-(1.1.3), which is then eqlevd to

dau — Ap (14 yve)u) = Ap (ywu) — aqu® — asu(ve + w) , a€(0,am), z€Q, (3.7)
Do — Apw = —Brw? — 2B1vew + Pa(ve + w)u a€(0,am), x€Q, (3.8)
subject to
u(0,2) =nU(z), x€Q, (3.9)
w(0,z) =W (x), z€Q. (3.10)

The solutiongn, u, w) to (3.1)-[3.ID), in turn, are the zeros of the MBp R x W, x Wq — W, x W,, defined by
u—"T; (AD('ywu) — aju? — asuw, nU)
F = A1
(nvuaw) ( w—Tg(—ﬁle +62(U5+1U)U,€W) ’ (3 )

where . _
Wy i={weW,; wa,z) >—-1/2v,ae J, z €}

is an open subset 6, owing to [3.1). Clearly,F' is smooth andf'(n,0,0) = 0 for n € R. As for the Frechét
derivatives afn, u, w) we compute

_ (¢ —Ti(Ap(ypu) + Ap(ywe) — 201u¢ — agwe — azutp, nd)
F(u,w)(n,U,w)[¢7 "/)] - ( ! ’l/)[i T2( o 2ﬂ1£1/} + ﬂg’l/)’u +152(UE +2w)¢7 5\;) ) (312)

and

P uw)lov] = (710 ) (3.13)

for (¢,v) € W, x W,. The choice of¥, as solution space is to have a suitable functional settirvgoidx with in
the framework of maximal regularity. However, as it is nestier on, we note that solutions fo (1.7)-(1.13), i.e. to
(3.2)-(3.10), are smooth. The proof is a bootstrappingment which we provide for the reader’s ease.

Lemma 3.3. If (n;,u;,v;) is a bounded sequenceltx W, x W, of solutions tof.7)-(L.I3) then(u;) and (v,)
are bounded irC¢(J, C?T¢(Q)) N C1*¢(J,C%(£2)) for somes > 0.

Proof. To stick with the notation of [2], le{E, A) := (L,, —Ap) and let[(E,, As); & > 0] be the corresponding
interpolation scale induced by the real interpolation forg(-, ), 4. Putting

Fy = El—l/q = W;BQ/q ) I = E2—1/q )

it follows from [2, V.Thm.2.1.3] that th&‘-realization ofAp, again denoted byA p, has domaint; and is the
generator of an analytic semigroig*? ; a > 0} on Fy. Thus,

1€°2P ]l 2(py 7y < coa”™", a€ J\{0}, pve(01), (3.14)
whereF), := (Fo, F1),,q for p € (0,1). Note that the almost reiteration propeity [2, V.Thm.1] ®@sures
Fy+ — E1+9_1/q —Fp-, 0<0 <0< ot < 1. (315)

Let now(n;, u;, v;) be a sequence of solutions B0 {1.7)=(1. 13Risx W, x W, with |n;| + || (uj, v;)|lx, < B,j € N,
for someB > 0. Writing

aa’Uj — AD’UJ‘ = —61’1)]2 + ﬁg’UjuJ‘ =: fj s ’Uj(O) = f‘/] =: Y , (316)
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it follows from the continuity of pointwise multiplicatiofV, x W, — W, (owing tog > n + 2 and Sobolev’s
embedding) and (3.1) that
I fillery <e(B), jeEN, (3.17)

while (I.7), [Z1), and the embedditty — F ,_. with ¢ > 0 sufficiently small entail
1317y, <e(B), jEN, (3.18)

for some constant(B) > 0. Thus, from[[3.14)[(3.16)[(3.17), arld (3.18), for N,
HUjHLl(J-,Fle) S /0 ||eaADHﬁ(FMq—evFl—a)HUJO'HFl/qfa da

4 / / 122 2o 15(0)]] 7, dor da
<¢(B).

Therefore, from[(Z]1) we conclude thaf’) is bounded inF, _.. Since(f;) is bounded irC(J, Fy,), we deduce from
(3.16) and|[2, I1.Thm.5.3.1] thaw,) is bounded irC(.J, F; _». ) for some= > 0 sufficiently small. Now, taking [25,
Thm.5.3.4,Thm.5.4.1] into account which guarantee

. 242(1-1
E2—1/q = (D(AD%D(AQD))l,l/qﬂ — Wq7D ( /9) )

with D(A)) denoting the domain of thie-th power of A , equipped with its graph norm, we obtain

Fige = (B1_1/g, By 1/g)1-20. = (W;(lel/Q), W;;z(lfl/q))ldw - W;;z/qule N CQ-’:—&(Q)

for e > 0 sufficiently small by Sobolev’'s embedding theorem since n + 2. Consequently,
(v;) is bounded irC®(J, C25(Q)) N'W, . (3.19)

But then, since
aan - AD((l + ')/Uj)uj) = *Oél’u? — UV, UJ(O) = T]jUj (320)

we similarly conclude thatu;) is bounded inC<(.J, C?7((2)), where the analogue df(3]14) holds due[fo(B.19)
and [2, 11§5.1]. Finally, these observations warrant that the sequiéfg,v;) is bounded inC¢(J, C¢(£)) while
(=B1v} — Bavjuy) is bounded inCe(.J, C**<(Q2)). From [3.16) we derive thd,v;) is bounded inC*(J, C*(Q2))
and similarly we derive this fofd, u;). O

Noticing thatC®(J, C%+¢(Q)) embeds compactly i@ (.J, C2T¢(Q)) andC'*+¢(J,C5(Q)) in C1+2(J,C5(Q))
forz € (0,¢), we deduce:

Corollary 3.4. Any bounded and closed subse{ 0, u,w) € R x W, x W, ; F(n,u,w) = 0} is compact.
Let now (1, u, w) € R x W, x W, be fixed. We shall show that
L = Fryw)(n,u,w) € LW, x W)

is a Fredholm operator. To this end, we introducegfer J, the operators\;;(a) € L(W? 1, Lg) by

Api(a)p : = —Ap((1 +yve(a) + yw(a))¢) + az(ve(a) + wla))¢ + 201u(a)g
Ara(a)y : = —Ap (yu(a)y) + azu(a)y

Azi(a)p : = —Ba(ve(a) + w(a))é

Aza(a) 1 = —Apy + 21 (ve(a) + w(a))y — Parpu(a) ,
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fora € J, ¢,¢ € W2, and set

_ [A1(a) Aiz(a)
A(a) T |:A21 (a) AQQ(G)

Moreover, we define

. —AD((l + ’)/Ug(a))fh) + agvg(a)hl . 9 9
D(a)h.—( —ADh2+2B1'U£(G/)h2 , h—(hl,hg)EquDXquD, a€J,

sothatD € L(W}, x W25, Ly x Lg) fora € J, and we also definéln] € L(W, x W, W2, x W2 ) by

()= = (g) = (h ) € W, x W, .

It then readily follows from[(3.12) that, given = (¢, ) andh = (hq, ho) in W, x W, the equationLz = h is
equivalent to
0oz + A(a)z = O,h +D(a)h, acJ, 2(0) = ¢[n]z + h(0) . (3.21)

In the sequel, we use the notation
Xo=LexLy, Xp=WyxW,, Xg:=W2,xW2, 6€0,1].
Let us first observe that

Remark 3.5. The spaceX; can be equipped with an equivalent norm, which is continlyodi¢ferentiable at all
points except zero.

Proof. According to [22], sinceX; = W, x W, is separable, the statement is equivalent to say that tHespgaee
X1 =W, x W, of X, is separable. But, sinc&, is dense inL,, the separable spadg, = L, is dense inW,
wherel/q + 1/¢' = 1. SoX] is separable. g

Investigation of[(3.21) requires the following information the involved operators:

Lemma 3.6. The above defined operatqi@, + A, vo) and(d, + D, vo) both belong talis(Xy, Xo x X;_;/4), and
£[n] belongs taC(Xy, X _1/4).

Proof. Writing
Aqa(a)p = —Ap (Wu(a)w) + asu(a)y

= —div, (yu(a)Vat) + {aau(a)y — divy (vyVau(a)) }

and using[(311), it is readily seen thiatcan be written in the form
o (A A 0 A

A= A+ Ag = [ ! AQJ ; [Am l ]

with
Ay € C(J,L(X1,X0)), Az € Ly(J,L(X1-1/¢, X0)) - (3.22)

Recalling
1+ y(ve(a,2) +wla,z) > 1/2, (a,x)€JxQ,

due to the positivity ob: andw € Wq, it follows as in [3.6) thatd, (ap) and As2(ap) have maximal,-regularity
for each fixedy € J. Consequently, the problem

Oaz1 + A11(ao)z1 + A12(ao)z2 = fi(a), a€J, z1(0)
aaZQ + AQQ(GQ)ZQ = f2(a) , ac J, 22(0)

z

)

NO —=O

zZ

)
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admits for eaclf = (f1, f2) € Xp andz" = (20, 29) € X;_;/, a unique solution = (z1, z2) € X; given by

21 = (aa + All(a0)770)_1(f1 - 1412(0’0)227 Z?) B
22 = (0o + A22(a0)770)71(f2,28) ;

and there is some constanindependent of andz° such that

||ZHX1 < C(”fllxo + HZOHlel/q) .
Therefore(0, +A1(ao),v0) € Lis(Xy,Xox X;_1/,) foreachuy € J, whencgd, +A,v) € Lis(Xy,Xox X1_1/4)
by (3.22) and Lemm@3.1. Analogously we deduce the stateamefdl, + D, o). SinceW? , embeds compactly in

W;BQ/Q, the assertion ofin] € £(Xy, X;) is immediate. O

Based on Lemni{a_3.6, we have
Y= (0a+ A7) €LXo X X1_1/0:X1)  and Qo= [w s L] (2(0,w))] € K(X1_1/,) -
We now show thaL is indeed a Fredholm operator. The proof is along the ling2@&fLem.2.1].

Proposition 3.7. Let(n,u,w) € R x W, x Wq andL = F, ) (1, u,w) € L(X;). ThenL is a Fredholm operator
of index zero. More precisely,

rg(L) = {h € X1 h(0) + £[](S(9ah + Dh,0)) € rg(1 — Qo) } (3.23)
is closed inX; and
ker(L) = {3(0,w); w € ker(1 — Qo) }
with
dim(ker(L)) = codim(rg(L)) = dim(ker(1 — Qo)) < oo .
Proof. Owing to [3.21) and Lemnia_3.6, fer h € X1, the equatior.z = h is equivalent to

z = %(0yh +Dh,0) + (0, 2(0)) , (3.24)
(1 — Q0)z(0) = {[n](X(0ah + Dh,0)) + h(0) . (3.25)

If 1 belongs to the resolvent set @ € K(X,_,,,), then [3.24),[(3.25) entail a trivial kernkdr(L). Moreover, in
this case, for an arbitrary € X, there is a unique(0) € X,_,/, solving [3.25), thus the corresponding= X;
given by [3.2%) is the unique solution fo: = h. This easily gives the assertion in this case.

Otherwise, ifl is an eigenvalue o)y € K(X;_y,,), then [3.24),[(3.25) yield the characterizationkef (L)
andrg(L) as stated. In particular, sinéeis an isomorphism, we dedudém(ker(L)) = dim(ker(1 — Qo)) which
is a finite number because 1 is an eigenvalue of the compacatop€),. Moreover,rg(L) is closed inX; since
M :=rg(1 — Qo) is closed by the compactness@§ and due to Lemmia3.6 and (8.1). To compuidim(rg(L)),
note that

codim(M) = dim(ker(1 — Qo)) < 00,

henceM is complemented inX,_,/, leading to a direct sum decompositioh,_,,, = M © N. Denoting by
Py € L(X,_4,4) aprojection ontal/ along N, we set

Ph := A(dh + Dh, Parh(0) — (1 — Par)ln)(X(0ah + Dh,0))), heXy, (3.26)
whereA := (0, + D, 7o) " € L(Xo X X1_1/4,X1), and obtairP € £(X;) from Lemmd3.b. Since
(0 +D)(Ph) = Buh+Dh,  7o(Ph) = Parh(0) — (1 — Pay)Eln)(S(@uh + Dh,0)) .

the characterization (3.23) actually implies tiamapsX; into rg(L). Furthermore, if» € rg(L), then [3.2B) also
ensures
Ph = A(0h + Dh, h(0)) = h,
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soP(rg(L)) = rg(L). ThusP? = P with rg(P) = rg(L) is a projection an&; = rg(L) & ker(P). SinceA is an
isomorphism, we obtain
ker(P) = {h € X1 ; O.h + Dh = 0,h(0) € N},

from which we deduce the equality of the dimensiomb&ndker(P) and thus the statement. O
Corollary 3.8. For k € (0,1) and (1, u, w) € R x W, x W,,

(1 = E) EFlu,w)(1,0,0) + kF(y 0y (0, u, w) € L(Xy)
is a Fredholm operator of index zero.

Proof. Since, by[(3.1P),

the operator
(1 - k)F(u,w) (777 Oa 0) + kF(u,'w) (775 U, U})

has the same structure B, ., (7, u, w). O

It follows from Lemmd_3.B that the operatdg, given by
Ae(a) = —Ap((1 +ve()9) + azve(a)p, a€J, peW?,, (3.28)
belongs taC® (J, L(W? 1, L)), while the positivity ofv: ensures that-A¢(a) is for eachu € J the generator of an

analytic semigroup oth,. Consequently, it generates a parabolic evolution opef&ig(a,c), 0 < 0 < a < ay, in

view of [2, I1.Cor.4.4.2]. Note thalLs, (a,0) for a > 0 is strongly positive oV, ,”/, see e.g.[[6, Cor.13.6]. We
then set

Ge = / " b(a) TLa, (a,0) da (3.29)
0
and obtain from[{Z]1) and the compact embeddingif,, in W;BQ/Q thatGe € IC(W;;/‘Z) is strongly positive.

Thus, by the Krein-Rutman theorem(G¢) > 0 is a simple eigenvalue @¥, with an eigenvector in the interior of
the positive conéV ;. Let then

>0, ker(l—nyGe) =span{®o}, &o€ int(WqQ,Ef/q"Jr) . (3.30)

no :==no(§) := (Ge)

We define an
¢«(a) :=1la.(a,0)P0, acJ, D, = / b(a)¢.(a)da , (3.31)
0

and, using the notation of Subsection|3.1,

hi(a) = H[Qﬁlvg](a, 0)¥g —|—/0 H[Qﬁlvg](a, o) (621}5(0)@ (0)) do, acJ, (3.32)

where

Wo = £(1— €Hpppuy) " (/Om b(a) /0 Tjs,00)(,0) (Bave(0)6u (o)) do da) .

Note that¥, is well-defined sincé — £ Hzg,.,] is invertible owing to Lemm& 312 (3.5), and € W;j which ensure
r(§H[2p,v¢)) < 1. Also note, from[(3.2) and (3.6), that andy.. both belong t(W;f.

Lemma 3.9. The kernel off,, .,y (10,0, 0) is spanned bye., 1.), and £}, (. (10, 0, 0)[¢+, 1] does not belong to
the range off(,, ,,) (10,0, 0). Moreover,®q = 17 ®..
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Proof. Observe thate, 1)) € X; belonging to the kernel af(,, .,y (10, 0, 0) is equivalent to

B — Ap ((1+7ve)9) + a2vep =0, $(0) = no®,
Ot — Apth + 2B1ve) = Baved Y(0) =&V,
according to[(3.27) and the definitionsBf andT». Now, the first assertion follows frorh (3.28)-(3132) by sotyfor

¢ and®). Next, sUppose’, (... (70,0, 0)[¢«, 1.] belongs to the range df,, .,)(10,0,0). Then, in view of [3.18),
(3.21), and the definition df', there isp € W, with

8a¢+Ag¢:0, (25(0):770@*‘1)*7

s0¢(a) = Ila,(a,0)$(0), a € J and whencél — 19G¢)p(0) = —P.. Sincedy = no®. by definition of . and
(32.30), we conclude
Py € ker(l — UoGg) n I"g(l — 7]()G§>

what is impossible sincgy G is compact with simple eigenvalde O

3.3. Proof of Theorein 2.2

Having established the necessary auxiliary results in theipus subsection, we are now in a position to prove
Theoreni 2.2 by applying [23, Thm.4.3,Thm.4.4]. Recall thaiting (7, u,v) = (1, u, ve +w), the solutiongn, u, v)
to (1.7)-[1.18) are obtained as the ze(gsu, w) of the smooth functior” defined in [(3.1l1). Also recall thag =
no(€) is given in [3:3D).

As in the second part of the proof of Leminal3.9,
keI‘(F(uyw) (7707 0, 0)) N I“g(F(uyw) (770, 0, 0)) = {0} ,

whence
Xy = Span{(¢*7 w*)} D rg(F(u,w) (770; 0, 0))
by [8, Lem.2.7.9]and Lemnia3.9. In view of Proposition 3.d aemmd 3.p we may apply [23, Thm.4.3]. Therefore,
there are > 0 and continuous functions
n: (_Ea E) —R ) (917 92) : (_Ea E) — rg(F(u,w) (770) 07 0))
with 7(0) = no and (61, 62)(0) = (0,0) such that the solutions t6(1.7)-(1113) néas, 0, v¢) are exactly the semi-
trivial ones(, 0, v¢), 7 > 0, and the ones lying on the curVe:= T, UT'_ U {(no, 0, v¢) }, where
Ly o= {(n(s), s¢x + $01(5),v¢ + sths + s02(s)) ; 0 < £s < e} .

Moreover [ is contained ir€.., which is a connected component of the closure of

S:={(nu,ve +w); F(n,u,w) =0, (u,w) # (0,0)} .
Being merely interested in positive solutions, we first note

Lemma3.10. The curvel, liesinR* x W x W.

Proof. Letu® := s¢. +s01(s) andv® := ve+s1h, +s02(s). Thenu®(0) = s®g+o(s) andv®(0) = {Ve+sTg+0(s)
in W2 ,2"ass — 07 by (3). Thus, it follows fromo, Ve € int(W, 57/ %) thatu®(0),v*(0) € int(W. 57/ *")
for s € (0,¢) with ¢ > 0 small enough, whence’,v* € W for s € (0, ¢) due to the parabolic maximum principle

[6, Thm.13.5] and[(1]7)=(1.13). O

Now, invoking Corollary 3.4, Remafk3.5, and Corollary]3.8 ebtain from[[23, Thm.4.4] (see also [23, Rem.4.2.1])
further information about the global character of the cmmtim. More precisely, i€ denotes the connected compo-
nent of¢, \ I'_ containingl', then¢ . satisfies the alternatives:
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(i) ¢, intersects with the boundary & x W, x Wq, or
(i) ¢, is unbounded iR x W, x W,, or
(iii) ¢4 contains a poingn, 0, ve) with i # no, or
(iv) €4 contains a pointn, u, ve 4+ w) with (u,w) # (0,0) and(u, w) € rg(Fy,w)(10,0,0)).

Due to Lemmd3.70, the continuuéh:= €, N (RT x W x W) of solutions to [1I7)E{1.13) contains the
curvel',. Furthermore, we have:

Lemma3.1l €\ {(no,0,v¢)} C RT x W} x W is unbounded.

Proof. We first show that ;. does not reach the boundary®f x W;f X Wj{ at some poin{n, u,v) # (10,0, ve).
Suppose otherwise, i.e. let there be a sequénge:;, v;) in € N (R* x Wi x W) converging toward some point
(n,u,v) # (10,0, ve) not belonging taR* x Wl x Wi. Sinceu; andv; are nonnegative, the limitsandv are as
well. Sou = 0 orv = 0 becausén, u,v) ¢ Rt x Wi x WF. We claim that neither is possible. Suppose first that
bothw andwv identically vanish. As;; € Wi, ¥; := v;/[lv;]|w, is well-defined inW, has norm 1, and

Oaj — Apyp; = —B1vv; + Bajui,  ;(0) =W .

The proof of Lemm&3]3 shows thap;) is bounded inC=(.J, C2*¢(Q)) N C1+4(J,C%(Q2)) for somes > 0 and so
we may assume without loss of generality thaf) converges iqu+ to somey satisfying

Oap = App =0, P(0) =&V

Thusy(a) = e*®2(0), a € J, andy(0) = EHvo(0) implying &r(Hy)) = 1 by the Krein-Rutman theorem.
However, this contradict§ (3.4) agd> 1. Next, assume vanishes identically but # 0. Then(n, u,v) = (1,0,v)
and the uniqueness statement of Thedrerh 2.1 impliesve. Thus,(n,0,v¢) € B, is a bifurcation point to positive
coexistence states. By Leminal3.3, we may asslueconverges tay in C¢(.J,C*<(Q)) N C**+(J, C%(Q)) for
somee > 0. Moreover, as above we may assume tlagd, defined byp; := w;/|u;|lw,, converges ir’W;r to some
¢ satisfying

0a — Ap ((1+yve)9) = —azdve ,  ¢(0) =1 (3.33)
Thereforep(a) = 14, (a,0)$(0), a € J, and¢(0) = nG¢$(0). Thusn = no by the Krein-Rutman theorem and
(3.30). This yields the contradictiofm, u,v) = (no,0,v¢). Finally, suppose = 0 butu # 0. Then we have
(n,u,v) = (n,u,0) what givesu = u,, with > 1 by TheoreniZJ1 since € W, and sd(n, u,v) = (1, u,,0) € B,
is a bifurcation point to positive coexistence states. Asvatwe may assume th@p; ), given by, := v; /||v;lw,,
converges to some < W;“ satisfying

Oah — AptY = Popuy ,  (0) =W .

This readily impliesl = &r(H|_g,,,)) what is impossible sincg > 1 and1 = r(Ho)) < r(H[_s,4,)) according to
(3.4) and LemmpA_3]2.

Consequently¢ . intersects with the boundary &f* x Wq* X W;r only at(no, 0, v¢), whencel = €. So neither
alternative (i) nor (iii) above is possible. Suppose (iv§ars, and leto, ) € X; and(n, u, ve + w) € €4 be with

(’LL, w) = F(u,w) (7705 0, 0)[¢a 1/}] :

Then¢ — u = T1(0,70®) by (827). Recall, from the definition af. and Lemmd 319, thap. = T1(0,7,®P.)
with @, € int(W. 5,7/ *"). The latter impliesso®. + ¢(0) — u(0) € int(W, ,”/*") for somex > 0. Defining
P = K¢y + ¢ —u € Wy, we obtainp = T4 (0, no(k®. + P)), that is,0,p+ Aep = 0 with p(0) = noP+noU. Hence
(1 = noGe)p(0) = noU. Sinceu € W;“ by assumption and thug € (W;BQ/"’*) \ {0}, this last equation does not
admit a positive solutiop(0) according to[(3.30) and/[1, Thm.3.2] in contradiction{0) € int(W;ﬁ/q’J’) by the
choice of. So (iv) is impossible as well, and we conclude t&{ (1o, 0, v¢)} € RT x W x W is unbounded. O
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To finish off the proof of Theorein 2.2 we merely have to remhek tr, 0, v¢) is the only bifurcation point.
Lemma 3.12. There is no other bifurcation point dB, or on‘B; to positive coexistence states.

Proof. Exactly the same arguments as in the first step of the proofenfirhal 3. 11l show that there is neither a
bifurcation point(n, u,,, 0) € B nor(n,0,ve¢) € B4 to positive coexistence states. O

4. Proof of Theorem2.3

As the proof of Theorem 2.3 is similar to the one of Theoten @€ merely sketch it and point out the necessary
modifications.

We shall derive a bifurcation from the bran®h by linearizing around a poitfy, u,,, 0) with a suitable; = n; to
be determined. First note that the smooth brach: { (1, u,);n > 1} in (1, 00) x W;; of solutions to[(ZB) provided
by Theoreni 21 extends to a smooth bratich= { (1, u,); n > 7.} in (1., 00) x W, passing throughy, u) = (1,0),
wheren, € (0,1) and—u,, € W;f forn € (n., 1). Indeed, application of [26, Thm.2.4], [27, Prop.2.5] (wit< 0 in
[27, Eq.(2.17)], see the proof of [30, Prop.3.4]) shows thatbrancltil of positive solutions extends smoothly with
a branch{(n(e), uy()); —c0 < € < 0}, where—u,.y € W;; for e € (—&0,0). Thus, fixinge € (—¢g,0), it follows
thatw = —u,., € W/ satisfies

Daw — Apw = cqyw? ,  w(0) =n(e)W ,

whencew(0) = n(e) H|_q,,w(0) and thus)(e)r(H|_q,.,)) = 1 by the Krein-Rutman theorem. Due to Lemina 3.2
and [3.4), we have(H|_,.,)) > 7(H)) = 1 and soy(e) < 1. We thus get the desired smooth extensigrof 4 by
choosingy. sufficiently close td.. Consequently, the solutiofig, u, v) = (1, u, — w, v) to problem[L.V){1.13) can
be obtained as the zer@s, w, v) of the smooth magF : (1., 00) x W, x W, — W, x W,, defined by

_ (w—=T(—Ap(yw(u, — w)) — 2a1uyw + cyw? + az(uy — wv, W)
Forvw) = ot s a4 e ). @y
where the seW,, is as in Sectiofll3 and
T:= (9a— Ap,y0) "t € L(Lg x W1 W) .
Clearly, F(n,0,0) = 0 for n € (1., o0) and the Frechét derivatives(@t, w, v) are given by
¢ —T(— Ap(v(uy —w)) + Ap(yve) — 201 (uy — )¢
]:(w,'u) (775 w, v)[(ba 1/)] = +042¢(Un - w) - QQU¢, 77@) (42)
Y —T( = 2B10¢ — Bovg + Baluy — w)ip, EP)
and A ) ) )
Fop(w,0) (15w, w) [, 0] = (T( a D(vﬁujz)(&zizunodvrawun, q;)) (4.3)
n )

for (¢,v¢) € W, x W, with dashes referring to derivatives with respeci1dt is then straightforward to modify the
proofs of Lemma 3]6 and Propositiobn13.7 in order to deriveath@ogue of Corollary 3] 8:

Lemma4.1. Fork € (0,1) and(n, w,v) € (1., 00) x W, x W,,
(1 - k)f(w,v) (777 0, 0) + kf(w,v) (77) w, U) € ‘C(Xl)

is a Fredholm operator of index zero.
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To determine the bifurcation point, let us observe t#@{|_g,.,)) > 1 is a strictly increasing function af on
(1,00) according to Theorein 2.1 and Lemimal3.2. Singedepends continuously anpin the topology ofW, by
Theoren 211, we obtain fror/[2, Il.Lem.5.1.4] that the evioln operatod1|_g,,,)(a,0) and hencei|_g,,,, | depend
continuously omy with respect to the corresponding operator topologiesetfuay with the fact that the spectral radius
considered as a functidﬁ(W;;f/q) — R* is continuous (see/[7, Thm.2.1]), we conclude that

(n— r(H—g4u,))) € C((1,00),(1,00)) is strictly increasing (4.4)
with limy, 1 7(H[_g,,)) = 1. Definingd € [0,1) by

1
b= ——— 4.5
lim T(H[*lbun]) ’ ( )

—00
it follows that for any¢ € (4, 1) fixed we find a uniquey;, := 7, (£) > 1 with
1

- 4.6
¢ r(Hi-gyu,,]) (49

We may then choos&,; € int(W,,,”/*") spanningker(1 — £H|_g,,, ). Define(¢..v.) € W, x W} by
’l/)* = H[—B2un1]('7 0) ¥, and

s = Uipayuy, ) (5 0)®1 + Nob, 1= (1= mHpay,|) (/ b(a)(N1y)(a) da> ;
0
with u
(Np)(a) := / izaru,,1(a,0) (= Ap(Yuy, (0)¢u(0)) + azuy, (0)¢s(0)) do, a€J,
0
where the invertibility ofl — 71 H2q, 4,1 is due to[(3.5). The analogue of Lemmal3.9 then reads:

Lemma4.2. The kernel ofF(,, ,)(11,0,0) is spanned by, , ¥.) and F,, () (01,0, 0)[¢«, 1«] does not belong to
the range ofF(,, (11, 0,0).

Proof. Thatker(F(,,)(11,0,0)) = span{(¢s, )} follows as in the proof of Lemmia_3.9. To check the transver-
sality condition, SUPPOSE,, (., (11,0, 0)[¢«, .| belongs to the range of,, .,y (n1,0,0). Recall [4.2),[(4.8) and let

v € W, be such that — T'(Bau,,v,EV) = —T(Baul, 1., 0). Chooser > 0 with 791 — v(0) € int(W, /).
Sincey, = T(Bauny, ¥y, EW,), it follows thatp := ¢, — v satisfies

8ap - ADP - ﬂQunlp = ﬂzuihi/}* ) p(o) = £P )

from which we deduce

(1= €H_pyu,,1)p(0) = 552/0 h b(a)/o (- yu,,1(a,0) (uy, (0)14(0)) doda .

However, invoking[1, Thm.3.2] anf(4.6), this is impaossibincep(0) € int(W;BQ/q’Jr) by the choice of- and since

the right hand side is positive and nonzero duéd (2.1) amgdsitivity of, and ofu;, stated in Theorein 2.1. O

As Corollary[3.4 holds also faF, we may proceed as in Subsection] 3.3 to derive flom [23, TI?Thm.4.4]
that a continuun®™ in (1., 00) x W, x W, of solutions to[(117)E{1.33) bifurcates from, u,, , 0) satisfying the
alternatives:

(i) &1 intersects with the boundary 6f.., c0) x W, x Wq, or

(i) &7 is unbounded irfr., 00) x W, x W,, or
15



(i) &* contains a pointn, u,, 0) with  # 7, or
(iv) &7 contains a pointn, u, — w,v) with (w,v) # (0,0) and(w,v) € rg(F(w,v)(11,0,0)).

Moreover, near the bifurcation poirg* is a continuous curve
I = {(n(s), uns) — s — 501(5), sthx + sb2(s)); 0 < 5 < &}

for a continuous real-valued functionand some continuod® ,-valued function®; with n(0) = 0 andé,;(0) = 0.
Sincewu,,5(0) andi, = ¥, both belong tolnt(W;BQ/q’Jr), it follows as in Lemmda-3.10 that™ is a subset of
(1,00) x W x W fore > 0 sufficiently small. For the continuu, given by

S :=6" N ([, 00) x W x WI),
we have:

Lemma 4.3. & \ {(n1,uy,,0)} is a subset ofn,, 00) x WS x W consisting of coexistence statég u, v) to
(L7)y(1.13) The continuun® is unbounded or it connects);, u,, , 0) to a solution(n., u, v) of (L.A)(L.13)with
u,v € W*.

’ q

Proof. First suppos& \ {(n1,uy,,0)} does not reach the boundary(of., co) x Wi x W}, so& = &*+. Then
neither (i) nor (i) above is possible. Suppose (iv) occdtisen there ar¢n, u,, — w,v) € & and(¢, ) € W, x W,
such tha(w, v) = Fuw,v)(11,0,0)[¢, 1]. Hencep := kb, + 1 —v € Wy, with > 0 chosen such that(0) belongs

to € int(W,. /"), satisfies

aap - ADp - ﬂQunlp = /8211'?711) ) p(O) = £P + §V )

so that

(1 - €H[7B2um])p(0) =&V + 562/0 : b(a)/o H[*ﬁzum] (a’7 0) (um (U)U(U)) doda.

Sincev € W;f by assumption, this last equation does not admit a posititgien p(0) according tol[1, Thm.3.2]in
view of (4.8). However, this contradictg0) € int(WqQ,;f/q’*). So (iv) is impossible as well, and we conclude that
if &\ {(m1,0,v¢)} does not reach the boundary(af., co) x W x W, then& = &+ is unbounded. Otherwise,
supposes \ { (11,0, v¢) } reaches the boundary @f.., 00) x Wi x W ata point(n, u, v) # (11, uy,,0) and choose
a sequencén;, u;, v;) in & N (1., 00) x W x W) converging toward, u, v). Sinceu; andv; are nonnegative
andn; > 0., the limitsu andv are nonnegative as well amd> 7,. Sou = 0 orv = 0 orp = n,. We claim that
necessarily) = n, andu, v € W;r. We proceed as in Lemma3]11. If bathe 0 andv = 0, then the limity) € Wq+
of ¢ 1= v/[|vj||lw, satisfiesd,) — Apyp = 0 with 1)(0) = {¥ leading to the contradictioh = £r(Hg) = £ due
to (3.4). Ifv = 0 butu £ 0, thenu € W;r satisfiesd,u — Apu = —a;ju? andu(0) = nU and thusu = u,, with
necessarily) > 1 by the uniqueness statement of Theokem 2.1. HdneéW;L satisfies), — Apy = Bouy1) with
(0) = £V giving the contradictiom = 7; by (4.8). Ifu = 0 butv # 0, thenv € Wq+ satisfies),v — Apv = — 10>
anduv(0) = £V what is impossible according to Theoreml2.1 sigee 1. Therefore, neithex = 0 norv = 0 and we
concludey = n,. This proves the claim. O

Lemma4.4. There is no other bifurcation point to positive coexistestzges orB; .

Proof. The assumptiorin, u,,,0) € B, being a bifurcation point to positive coexistence statasesponds to the
casen > 1, u # 0, andv = 0 in the proof of Lemma4]3 and analogously implies- 7;. (]

This completes the proof of Theorém2.3.
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5. Proof of Theorem[2.4

Again, the main part of the proof of Theorédm12.4 is a straigiwhird modification of Sectionl 3, and we thus
omit details. Let; > 1 be fixed. Linearization around, u,,0) € ¥, entails the existence of a continudir in
R x W, x W, of solutions to[(1I7)l{1.13) bifurcating frofgo, u,, 0), whereg, := & (n) € (0, 1) is given by

1
= 51
o rH o)) (5.1)

Near the bifurcation poin, u,,0), 8" is a continuous curve iR x Wj X W;j and it can be shown exactly as in
Lemm& 3.1l or Lemma4.3 that := R N (RT x W} x W) satisfies the alternatives:

(@ R\ {(&,uy, 0)} is unbounded iR+ x W} x W, or
(b) %, reaches the boundary Bf* x W x W at some point¢, u,v) # (&, uy, 0) with u = 0 orv = 0.

If (b) occurs, choose a sequen@, u;,v;) in R N (RT x W;j X W;j) converging toward¢, u, v) # (&, uy,0).
Putting¢; := u;/||u;llw, andy; := v;/||v;|lw,, we may assume that; — ¢ andy; — ¢ in W,. If bothu = 0
andv = 0, theng € W;r satisfiesd,¢ — Ap¢ = 0 with ¢(0) = n® and sol = nr(Hjy) contradicting[(3.#) and
n > 1. If u # 0 butv = 0, thenu = u,, according to Theoreind.1, ande W;f satisfies), 1) — Apv) = Bauyy with
P (0) = £U. Hencef = &, by (5.1) what is impossible sindg, u, v) # (o, uy,0). Therefore, the only possibility
isu = 0 butv # 0. In this case necessarify > 1 andv = v in view of Theoreni 2]1. SéR joins up with¥; at
(&,0,ve). We remark that then the relation

r(Ge) = 1 (5.2)

with G¢ given in [3.29) must hold, sincg € W;; satisfies[(3.33). That no other bifurcation point(s)®nor T,
exist(s) is immediate by the previous observations. Thekdgi Theorerh 214.

Remark 5.1. Since the operatod, in (3.28)does not yield a suitable maximum principle, there is no agaé of
Lemmd 3. for the spectral radius 6f; and the only information we have otiG;) is that it is positive for each
¢ > 1 as observed in Sectidn 8.2. Consequently, given 0, we cannot decide a priori wheth€b.2) holds for
some$ > 1. However, forp > 1, if %R joins up with®;, then(G.2) must occur and the connection poiigt 0, v¢) on
%, is determined by this relation. Then again, the relat{@d) is also a sufficient condition for the existence of a
continuous curve of positive coexistence solutions tdfiimg from<;.

The same difficulty arises when considering bifurcatiomff with respectt@ whenn < 1is fixed. In this case,
(5.2)is again a necessary and sufficient condition for the excsiesf a bifurcation point oft; to a curve of positive
coexistence states, which then extends to an unboundedwomt
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