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Abstract

The star chromatic index χ′s(G) of a graph G is the minimum number
of colors needed to properly color the edges of the graph so that no path
or cycle of length four is bi-colored. We obtain a near-linear upper bound
in terms of the maximum degree ∆ = ∆(G). Our best lower bound on
χ′s in terms of ∆ is 2∆(1 + o(1)) valid for complete graphs. We also
consider the special case of cubic graphs, for which it is shown that the
star chromatic index lies between 4 and 7. The proofs involve a variety
of notions from other branches of mathematics and may therefore be of
certain independent interest.

1 Motivation

Edge-colorings of graphs have long tradition. Although the chromatic index of
a graph with maximum degree ∆ is either equal to ∆ or ∆+1 (Vizing [16]), it is
hard to decide when one or the other value occurs. This is a consequence of the
fact that distinguishing between graphs whose chromatic index is ∆ or ∆ + 1 is
NP-hard (Holyer [10]). This is true even for the special case when ∆ = 3 (cubic
and subcubic graphs).

Two special parameters concerning vertex colorings of graphs under some
additional constraints have received lots of attention. The first kind is that of
an acyclic coloring (see [8, 2]), where we ask not only that every color class is
an independent vertex set but also that any two color classes induce an acyclic
subgraph. The second kind is obtained when we request that any two color
classes induce a star forest — this variant is called star coloring (see [1, 15] for
more details). These types of colorings give rise to the notions of the acyclic
chromatic number and the star chromatic number of a graph, respectively.
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A proper k-edge-coloring of a graph G is a mapping ϕ : E(G) → C, where
C is a set (of colors) of cardinality k, and for any two adjacent edges e, f of G,
we have ϕ(e) 6= ϕ(f). A subgraph F of G is said to be bi-colored (under the
edge-coloring ϕ) if |ϕ(E(F ))| ≤ 2. A proper k-edge-coloring ϕ is an acyclic k-
edge-coloring if there are no bi-colored cycles in G, and is a star k-edge-coloring
if there are neither bi-colored 4-cycles nor bi-colored paths of length 4 in G (by
length of a path we mean its number of edges). The star chromatic index of G,
denoted by χ′s(G), is the smallest integer k such that G admits a star k-edge-
coloring. Note that the above definition of acyclic/star edge-coloring of a graph
G is equivalent with acyclic/star vertex coloring of the line-graph L(G).

If one considers the class of graphs G∆ of maximum degree at most ∆,
Brooks’ Theorem shows that the usual chromatic number is O(∆). The maxi-

mum acyclic chromatic number on G∆ is Ω(∆4/3/ log1/3 ∆) and O(∆4/3) (Alon,
McDiarmid, and Reed [2]). The maximum star chromatic number on G∆ is

Ω(∆3/2/ log1/2 ∆) and O(∆3/2) (Fertin, Raspaud, and Reed [6]).
In contrast with the aforementioned ∆4/3 behaviour in the class of all graphs

of maximum degree ∆, the acyclic chromatic index is linear in terms of the
maximum degree. Alon et al. [2] proved that it is at most 64∆, and Molloy
and Reed [13] improved the upper bound to 16∆. One would expect a similar
phenomenon to hold for star edge-colorings. However, the only previous work
[12] just improves the constant in the bound O(∆3/2) from vertex coloring.

In this paper we show a near-linear upper bound for the star chromatic
index in terms of the maximum degree (Theorem 3.1). Additionally, we provide
some lower bounds (Theorem 4.1) and consider the special case of cubic graphs
(Theorem 5.1). The proofs involve a variety of notions from other branches of
mathematics and are therefore of certain independent interest.

2 Upper bound for χ′s(Kn)

We shall first treat the special case of complete graphs. The study of their star
chromatic index is motivated by the results presented in Section 3 since they
give rise to general upper bounds on the star chromatic index.

Theorem 2.1 The star chromatic index of the complete graph Kn satisfies

χ′s(Kn) ≤ n · 22
√

2(1+o(1))
√

log n

(log n)1/4
.

In particular, for every ε > 0 there exists a constant c such that χ′s(Kn) ≤ cn1+ε

for every n ≥ 1.

Proof. Let A be an n-element set of integers, to be chosen later. We will
assume that the vertices of Kn are exactly the elements of A, V (Kn) = A, and
color the edge ij by color i+ j.

Obviously, this defines a proper edge coloring. Suppose that ijklm is a
bi-colored path (or bi-colored 4-cycle). By definition of the coloring we have
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i + j = k + l and j + k = l + m, implying i + m = 2k. Thus, if we ensured
that the set A does not contain any solution to i + m = 2k with i,m 6= k (in
other words, A does not contain 3-term arithmetic progressions), we would have
found a star edge-coloring of Kn.

We will use a construction due to Elkin [5] (see also [7] for a shorter exposi-
tion) who has improved an earlier result of Behrend [4]. As shown by Elkin [5],

there is a set A ⊂ {1, 2, . . . , N} of cardinality at least c1N(logN)1/4/22
√

2
√

log N

such that A contains no 3-term arithmetic progression.
The defined coloring uses only colors 1, 2, . . . , 2N (possibly not all of them),

thus we have shown that χ′s(Kn) ≤ 2N . We still need to get a bound on N in
terms of n. In the following, c1, c2, . . . are absolute constants.

For every ε > 0 we have

n = |A| ≥ c1N
(logN)1/4

22
√

2
√

log N
≥ c2N1−ε (1)

Since we also have N ≤ c3n1+ε for every ε > 0, we may plug this in (1) and use

the fact that (logN)1/4 2−2
√

2
√

log N is a decreasing function of N for large N
to conclude that

n ≥ c4N((1 + ε) log n)1/4 2−2
√

2
√

(1+ε) log n .

Thus we get N ≤ c5n22
√

2
√

(1+ε) log n (log n)−1/4. One more round of this ‘boot-
strapping’ yields the desired inequality

N ≤ n22
√

2(1+o(1))
√

log n

(log n)1/4
.

Remark. A tempting possibility for modification is to use a set A (in an
arbitrary group) that contains no 3-term arithmetic progression and |A + A|
is small. Any such set could serve for our construction, with the same proof.
Even more generally, we only need a symmetric function p : A×A→ N , where
A = {1, 2, . . . , n}, such that p(a, ·) : A → N is a 1-1 function for each fixed
a ∈ A, N is small, and p does not yield bi-colored paths (for all i, j, k, l,m we
either have p(i, j) 6= p(k, l) or p(j, k) 6= p(l,m)). We have been unable, however,
to find a set that would yield a better bound than that of Theorem 2.1.

3 An upper bound for general graphs

The purpose of this section is to present a way to find star edge-coloring of an
arbitrary graph G, using a star edge-coloring of the complete graph Kn with
n = ∆(G) + 1.
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We will use the concept of frugal colorings as defined by Hind, Molloy and
Reed [9]. A proper vertex coloring of a graph is called β-frugal if no more than β
vertices of the same color appear in the neighbourhood of a vertex. Molloy and
Reed [13, 14] proved that every graph has an O(log ∆/ log log ∆)-frugal coloring
using ∆+1 colors. If ∆ is large enough, one may use 50 for the implicit constant
in the O(log ∆/ log log ∆) asymptotics.

Theorem 3.1 For every graph G of maximum degree ∆ we have

χ′s(G) ≤ χ′s(K∆+1) ·O
( log ∆

log log ∆

)2

(2)

and therefore χ′s(G) ≤ ∆ · 2O(1)
√

log ∆.

Proof. Using the above-mentioned result of Molloy and Reed [14], we find a
β-frugal (∆ + 1)-coloring f with β = O(log ∆/ log log ∆). We assume the colors
used by f are the vertices of K∆+1, so that the frugal coloring is f : V (G) →
V (K∆+1). Let c be a star edge-coloring of K∆+1. A natural attempt is to
color the edge uv of G by c(f(u)f(v)). This coloring, however, may not even be
proper: if a vertex v has neighbours u and w of the same color, then the edges
vu and vw will be of the same color. To resolve this, we shall produce another
edge-coloring, with the aim to distinguish these edges; then we will combine the
two colorings.

We define an auxiliary coloring g of E(G) using 2β2 colors. Let us first set

Vi = {v ∈ V (G) : f(v) = i}, i ∈ V (K∆+1)

and define the induced subgraphs Gij = G[Vi ∪ Vj ]. For each pair {i, j} we
shall define the coloring g on the edges of Gij ; in the end this will define g(e)
for every edge e of G. Recall that the frugality of f implies that the maximum
degree in Gij is at most β. Consequently, the maximum degree in the (distance)
square of L(Gij) is at most 2β(β − 1) < 2β2. Therefore, we can find a coloring
of E(Gij) using 2β2 colors so that no two edges of this graph have the same
color, if their distance in the line graph is 1 or 2.

Now we can define the desired star edge-coloring of G: we color an edge uv
by the pair

h(uv) = (c(f(u)f(v)), g(uv)) .

First, we show this coloring is proper. Consider adjacent (distinct) edges vu
and vw. If f(u) 6= f(w), then f(u)f(v) and f(v)f(w) are two distinct adjacent
edges of K∆+1, hence c assigns them distinct colors. On the other hand, if
f(u) = f(w) = i (say), we put j = f(v) and notice that uv and vw are two
adjacent edges of Gij , hence the coloring g distinguishes them.

It remains to show that G has no 4-path or cycle colored with two alternating
colors. Let us call such object simply a bad path (considering C4 as a closed
path). Suppose for a contradiction that the path uvwxy is bad. By looking
at the first coordinate of h we observe that the c-color of the edges of the trail
f(u)f(v)f(w)f(x)f(y) assumes either just one value or two alternating ones.
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As c is a star edge-coloring of K∆+1, this trail cannot be a path (nor a 4-cycle).
A simple case analysis shows that in fact f(u) = f(w) = f(y) and f(v) = f(x).
Put i = f(u), j = f(v) and consider again the g coloring ofGij . By construction,
g(uv) 6= g(wx), showing that uvwxy is not a bad path, a contradiction.

As we saw in this section, an upper bound on the star chromatic index of
Kn yields a slightly weaker result for general bounded degree graphs. We wish
to note that, if convenient, one may start with other special graphs in place of
Kn, in particular with Kn,n. It is easy to see that

χ′s(Kn,n) ≤ χ′s(Kn) + n

(if the vertices of Kn,n are ai, bi (i = 1, . . . , n) then we color edges aibj and ajbi
using the color of the edge ij in Kn, while each edge aibi gets a unique color).
On the other hand, a simple recursion yields an estimate

χ′s(Kn) ≤
dlog2 ne∑

i=1

2i−1χ′s(Kdn/2ie,dn/2ie) .

From this it follows that if χ′s(Kn,n) is O(n) (or n(log n)O(1), n1+o(1), respec-
tively) then χ′s(Kn) is O(n log n) (or n(log n)O(1), n1+o(1), respectively).

4 A lower bound for χ′s(Kn)

Our best lower bound on χ′s(Kn) is provided below and is linear in terms of n.
The upper bound from Theorem 2.1 is more than a polylogarithmic factor away
from this. So, even the asymptotic behaviour of χ′s(Kn) remains a mystery.

Theorem 4.1 The star chromatic index of the complete graph Kn satisfies

χ′s(Kn) ≥ 2n(1 + o(1)).

Proof. Assume there is a star edge-coloring of Kn using b colors. Let ai be
the number of edges of color i, let bi,j be the number of 3-edge paths colored
i, j, i. We set up a double-counting argument. Note that all sums over i, j are
assumed to be over all available colors (that is, from 1 to b). As every edge gets
one color, we have ∑

i

ai =

(
n

2

)
. (3)

Fixing i, we have a matching Mi with ai edges and each edge sharing both ends
with an edge from Mi contributes to some bi,j . Consequently,

∑
j

bi,j = 4

(
ai
2

)
. (4)
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Finally, we fix color j and observe that each 3-edge path colored i, j, i (for
some i) uses two edges among the 2aj · (n − 2aj) edges connecting a vertex of
Mj to a vertex outside of Mj . This leads to∑

i

bi,j ≤ aj(n− 2aj) . (5)

Now we use (4) and (5) to evaluate the double sum
∑

i,j bi,j in two ways, getting

4
∑
i

(
ai
2

)
≤
∑
j

aj(n− 2aj) .

This inequality reduces to

4
∑
i

a2
i ≤ (n+ 2)

∑
i

ai .

By the Cauchy-Schwartz inequality, (
∑
ai)

2 ≤ b ·
∑
a2
i , and then using (3), we

obtain

4

(
n

2

)
≤ b(n+ 2).

Therefore, b ≥ 2n(n− 1)/(n+ 2) = (2 + o(1))n.

5 Subcubic graphs

A regular graph of degree three is said to be cubic. A graph of maximum degree
at most three is subcubic. A graph G is said to cover a graph H if there is a
graph homomorphism from G to H that is locally bijective. Explicitly, there
is a mapping f : V (G) → V (H) such that whenever uv is an edge of G, the
image f(u)f(v) is an edge of H, and for each vertex v ∈ V (G), f is a bijection
between the neighbours of v and the neighbours of f(v).

Theorem 5.1 (a) If G is a subcubic graph, then χ′s(G) ≤ 7.
(b) If G is a simple cubic graph, then χ′s(G) ≥ 4, and the equality holds if

and only if G covers the graph of the 3-cube.

For the part (a) of this theorem we will need the following lemma. It seems
to be possible to use this lemma for other classes of graphs, therefore it might
be of certain independent interest.

Lemma 5.2 Let f : E(G)→ {1, . . . , k} be a k-edge coloring.
(a) Let e be an edge of G. Suppose that the restriction of f to E(G) \ {e}

is a star edge-coloring of G − e and that f(e) is distinct from f(e′) whenever
d(e, e′) ≤ 2 (that is, either e, e′ share a vertex, or a common adjacent edge).
Then f is a star edge-coloring of G.

(b) Let A be a set of vertices of G, let B = V (G) \ A, and let X be the set
of edges with one end in A and the other in B. Suppose that

6



1. (a restriction of) f is a star edge-coloring of G[A];

2. (a restriction of) f is a star edge-coloring of G[B];

3. no edges e1, e2 in X share a common vertex in A or a common adjacent
edge in G[A];

4. for every edge e ∈ X and every edge e′ in G[B] ∪X such that d(e, e′) ≤ 2
we have f(e) 6= f(e′) (distance is measured in G[B] ∪X, not in G);

5. for every edge e ∈ X and every edge e′ in G[A] we have f(e) 6= f(e′).

Then f is a star edge-coloring of G.

Proof (of the lemma). (a) Since f is a star edge-coloring of G − e, no 4-
path (or 4-cycle) in G − e is bi-colored. If P is a bi-colored 4-path (4-cycle)
containing e, then P contains an edge of the same color as e at distance ≤ 2
from e, a contradiction.

(b) Conditions (3), (4), (5) imply that for every edge e ∈ X and every edge
e′ ∈ E(G), if d(e, e′) ≤ 2, then f(e) 6= f(e′). Therefore, we can repeatedly apply
part (a), starting with the graph G[A] ∪ G[B] and adding one edge of X at a
time.

To explain a bit the conditions of part (b) in the above lemma: the point
here is that in the condition 5, we do not check what is the distance of e and e′.
In our applications, A will be a particular small subgraph of G (such as those in
Figure 1) and B the ’unknown’ rest of the graph. We do not want to distinguish
whether some edges in X share a vertex in B. This, however, may create new
4-paths, henceforth the particular formulation of this lemma.
Proof (of the theorem). (a) Trying to get a contradiction, let us assume that
G is a subcubic graph with the minimum number of edges for which χ′s(G) > 7.
We first prove several properties of G (connectivity, absense of various small
subgraphs). This finally allows us to construct the desired 7-edge-coloring by
decomposing G into a collection of cycles connected by paths of length 1 or 2.

Clearly, G is connected. Suppose that G contains a cutedge xy. Let
Gx and Gy be the components of G − xy which contain the vertex x and y,
respectively. By the minimality of G, each of Gx and Gy admits a star 7-edge-
coloring. In Gx there are at most 6 edges that are incident to a neighbor of
x. By permuting the colors, we may assume that color 7 is not used on these
edges. Similarly, we may assume that color 7 is not used on the edges in Gy

that are incident with neighbors of y. Then we can color the edge xy by using
color 7 and obtain a star 7-edge-coloring of G. This contradiction shows that G
is 2-connected.

If G contained a path wxyz, where x and y are degree-2 vertices,
then we could color G − xy by induction, and extend the coloring to a star
7-edge-coloring of G by using Lemma 5.2. (For the edge e = xy we use a color
that does not appear on the at most six edges incident to w or z.) Thus, such
a path wxyz does not exist. In particular, G is not a cycle.

Suppose next that G contains a degree-2 vertex z whose neighbors x
and y are adjacent. We will use Lemma 5.2 for e = xz. By induction we may

7



find a star edge-coloring of G − e, and as there are at most six edges in G at
distance ≤ 2 from e, we can extend the coloring to e to satisfy the condition in
Lemma 5.2, part (a). So the graph G can be star edge-colored using 7 colors,
a contradiction. This shows that the neighbors of a degree-2 vertex cannot be
adjacent in G.

Further suppose that G contains parallel edges. Three parallel edges would
constitute the whole (easy to color) graph, so suppose there are two parallel
edges between vertices u and v. Unless G contains a bridge, or G has at most
three vertices (and is easy to color), there are neighbors u′ of u, v′ of v and
u′ 6= v′. By induction we can color G \ {u, v}. Next, we extend this coloring to
the edges uu′, vv′, so that each of them has different color that the ≤ 6 edges at
distance ≤ 2 from it. Now we distinguish two cases. If uu′ and vv′ have diffent
colors, say a and b, then it is enough to use on the two parallel edges any two
distinct colors that are different from a and b. If uu′ and vv′ have the same
color, then there are at most 5 colors of edges at distance ≤ 2 from the parallel
edges, so we may use Lemma 5.2, part (a).

Next we suppose that G contains one of the first three graphs in Fig-
ure 1 as a subgraph, where other edges of G attach only at the vertices de-
noted by the empty circles, and some of these vertices may be identified. We
use Lemma 5.2, part (b). We let A be the set of vertices of the subgraph in the
figure that are denoted by full circles, so X is the set of the three thick edges.
By induction, G[B] is star 7-edge-colorable. This coloring can be extended to
G[B] ∪ X so that color of each edge e in X differs from the color of all edges
at distance ≤ 2 from e (there are at most 6 such edges). We assume that the
colors used on X are in {5, 6, 7}. For G[A] we use the coloring as shown in the
figure. This satisfies conditions of Lemma 5.2, part (b), and therefore G can be
star 7-edge-colored.

Next suppose that G contains the fourth graph in Figure 1 as a subgraph
(again other edges can only attach at the ‘empty’ vertices, some of which may
be identified). We use Lemma 5.2, part (b) to show that G− e is 7-edge colored
in a particular way that allows us to use Lemma 5.2, part (a) to extend the
coloring on e. We let A be the vertices of the pentagon, so that X is the set of
the three thick edges. Note that the conditions of the part (b) are satisfied for
G− e, but not for G itself. By induction there is a star 7-edge-coloring of G[B],
and we again extend it to X so that the edges in X have distinct color from
edges at distance ≤ 2. Observe that there are at most six edges in G[B] ∪ X
that are at distance ≤ 2 from e, so there is a color, say C, not used on any of
those. We shall reserve C to be used at e. First, however, we apply part (b)
to color G− e. We use the coloring of G[A] shown in the figure, assuming that
C 6∈ {1, 2, 3} and that none of the colors 1, 2, 3 is used on X. Finally, we use
part (a) to extend the coloring on G, letting the color of e be C.

As the last reduction, we show that G does not contain a path wxyz,
where w and z are degree-2 vertices. (We may assume that all vertices
among w, x, y, z, and their neighbours are distinct, as otherwise G contains one
of the previously handled subgraphs.) If G did contain such a path, we could
color H = G − {w, x, y, z}. Next, we describe how to extend this coloring to
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a star 7-edge-coloring of G. We will denote the edges as in Figure 2; to ease
notation we will use a to denote both the edge and its color.

The edges a, . . . , h are part of H, so they are colored already. Similarly as
in the previous cases, we choose a color for s, t, u, v so that none of these edges
shares a color with an edge of H at distance at most 2. (So that the color of
s differs from the colors of a, b, and the at most 4 edges adjacent with a or b;
note that it is not a problem if, e.g., s and t have a common neighbour b = c.
However, it cannot happen that, say, s and t are adjacent, and so one of these
neighbours at distance ≤ 2 has unassigned color.) Using 7 colors, this is easy
to achieve. Next, we pick a color for q that differs from c, d, e, f , t, and u.

1 2

34

1
1 2

34

1

1 2

31

e

1

2 3

1

Figure 1: Subgraphs that cannot appear in a minimal counterexample.

a

b

c

d e

f

g

h

s

t u

vp q r

w x y z

Figure 2: Illustration of the proof that minimal counterexample to Theorem 5.1
does not contain path wxyz as depicted in the figure.

Now, we distinguish several cases based on colors of s, q, and v. We again
assume the colors are 1, . . . , 7; up to symmetry we have only the following cases.

Case 1. s = 1, q = 2, v = 3
We only need to avoid bi-colored paths aspt, bspt, sptc, sptd, and the four
symmetrical paths in the right part of the figure. If t = 1, we choose p to be
different from 1, 2, a, b, c, d. If t 6= 1, it suffices to make p different from s, q, t.
The procedure for r is analogous.

Case 2. s = 1, q = 1, v = 2
In this case t 6= 1, so we only need to avoid bi-colored paths aspq, bspq, spqr, spqu
and urvh, urvg, eurv, furv. If u = 2, we make sure that r differs from 1, 2, e, f, g, h.
Otherwise, it suffices to make r different from q, u, v. Then we choose p to differ
from a, b, 1, t, u, r.
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Case 3. s = 1, q = 2, v = 1
This is handled in exactly the same way as Case 1.

Case 4. s = 1, q = 1, v = 1
Now t, u 6= 1, so we only need to avoid the paths aspq, bspq, spqr, pqrv, qrvg, qrvh,
and spqu, tqrv. To do this, we only need to ensure, that p 6= 1, a, b, t, u, r and
r 6= 1, h, g, u, t, p, which is easily possible. This finishes the proof of the claim
that minimal counterexample G does not contain a path wxyz, where w and z
are degree 2-vertices.

Let G′ be the graph obtained from G by suppressing all degree-2 vertices,
i.e., replacing each path xzy, where z is a degree-2 vertex, by the single edge
xy. By the above, G′ is a 2-connected cubic graph (without multiple edges).
By a result of Kaiser and Škrekovski [11], G′ contains a perfect matching M ′

such that M ′ does not contain all edges of any minimal 3-cut or 4-cut. Note
that each edge in G′ corresponds either to a single edge in G or to a path of
length two. Let M denote the set of edges of G corresponding to an edge of
M ′. Our goal is to use four colors (say 4, 5, 6, 7) on M ′, and three colors (say
1, 2, 3) on the other edges that form a disjoint union of circuits. We form an
auxiliary graph K, whose vertices are the edges in M . We make two of these
edges e, f adjacent in K if they are either forming a 2-edge path corresponding
to an edge in M ′ or if there is an edge in G joining an end of e with an end of
f . Observe that K is a graph of maximum degree at most four. Also note that
if K is disconnected, then each component contains a vertex of degree at most
three. By the Brooks Theorem, K is 4-colorable unless it contains a connected
component isomorphic to K5. It is easy to see that the latter case occurs if and
only if K = K5 and G = G′.

Let us first consider the case when K is 4-colorable. In this case we will not
need the fact that M ′ does not contain minimal 3-cuts or 4-cuts. The 4-coloring
of the vertices of K determines a 4-coloring of the edges in M with the property
that every color class is an induced matching in G. We shall show that we can
star 3-color the edges in G−M unless G−M contains a 5-cycle; this case will
be treated separately. By extending that 3-edge coloring to a 7-edge-coloring
of G (by using the 4-coloring of edges in M) we obtain a star 7-edge-coloring
since none of the four colors used on the edges in M can give rise to a bi-colored
4-path or a cycle (Lemma 5.2). Thus it suffices to find a star 3-edge-coloring of
G−M . This is not hard unless G−M contains a 5-cycle. Recall that G−M
is the union of disjoint cycles and every k-cycle, where k 6= 5, admits a star
3-edge-coloring: This is easy if k ∈ {3, 4} or if k is divisible by three. If k ≡ 1
(mod 3) and k > 5, we can use the colors in the following order 1232123 · · · 123.
Similarly, if k ≡ 2 (mod 3) and k > 5, we can use the colors 12132123 · · · 123.
Thus, the only problem are the 5-cycles in G −M . To color them, we shall
choose an edge e = eC in each 5-cycle C and a color c = cC , that is otherwise
used as a color for M . Then we color e with color c and color the 4-path C − e
as 1, 2, 3, 1. We pick c and e in such a way that no edge of M at distance at
most 2 from e has color c (we will show below that this is possible). It is easy to
check that this, together with the fact that K is properly colored, prevents all
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4-paths and 4-cycles from being bi-colored (Lemma 5.2 again). So, this finishes
the proof of the case when K is 4-colorable—provided we show how to pick e
and c for each 5-cycle C. To do this, we let F be the set of edges of M that
are incident with a vertex of C but not part of C. Further, we let X be the
(possibly empty) set of edges of M adjacent with some edge of F . Easily, |X| is
the number of 2-edge paths in M that are adjacent to C. (A 2-edge path with
both ends at C counts twice; in this case X and C intersect.) As G contains no
3-edge path with both ends of degree 2, we have |X| ≤ 2. We distinguish two
cases based on the color pattern on edges of F . These cases cover all possibilities
up to renaming the colors.

Case 1. Edges of F use in some order colors 4, 4, 5, 6, and 7 (that is, one
color appears twice, the other colors once). If X = ∅, there are three possible
choices for edge e: for each color c among 5, 6, and 7 we may choose the edge
of C opposite to the edge of F colored c. Edges of X may be at distance 2 to
some of these edges of C. However, there are at most two such edges, hence at
most two colors are affected. So, one of colors 5, 6, and 7 is still valid.

Case 2. Edges of F use in some order colors 4, 4, 5, 5, and 6 (that is, two
colors twice, one once, one not at all). In this case, if X = ∅, all five edges of C
can be colored 7. Each edge of X (if such an edge exists) is at distance 2 from
two edges of C, so one edge of C is far from edges of X and we can let this edge
be e and c be 7.

Finally, let us consider the case when K does not admit a 4-coloring, i.e.,
K = K5. As argued before, this implies that G = G′ is a cubic graph containing
precisely 10 vertices. Note that G−M is a 2-regular graph with no 3-cycles or
4-cycles (due to the choice of M ′). Thus G −M is isomorphic either to a 10-
cycle, or to the union of two 5-cycles. Moreover, the edges of K are in bijective
correspondence with E(G −M). This correspondence is clear if we view K as
the graph obtained from G by contracting the edges in M . We will prove that
there is another perfect matching in G, whose auxiliary graph K admits a 4-
coloring, unless G is the Petersen graph. Note that this other perfect matching
may contain 3-cuts or 4-cuts, but as the auxiliary graph is 4-colorable, this does
not harm us.

If G−M is the union of two 5-cycles, then it is easy to check that G is the
Petersen graph, and hence χ′s(G) = 5. (A star 5-edge-coloring is easy to find,
and the star 4-edge-coloring does not exist as shown in part (b) below.)

The final case is that G −M is a 10-cycle. Let us denote the vertices of G
by integers i, i′, 1 ≤ i ≤ 5, so that M = {ii′ | 1 ≤ i ≤ 5}. Let N1 and N2 be
the two perfect matchings contained in G−M . Let us consider the closed walk
in K corresponding to the 10-cycle G−M . This closed walk is an Eulerian trail
T in K = K5 (no edges are repeated). It is easy to check that each Eulerian
trail in K5 contains a closed subwalk of length 3. We may assume that this
closed subwalk corresponds to the path 1231′ in G. If its edges 12 and 31′ are in
N1 (say), then we may choose the matching N1 in place of M and define graph
K ′ in the same way K was defined using M . The vertices of K ′ corresponding
to 12 and 31′ are “doubly adjacent” (they use two edges of G−N1 to connect
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them). This doesn’t leave enough edges to create K5, so K ′ 6= K5, and as
argued before, K ′ is 4-colorable. This case was already settled without using
the special properties of M . This completes the proof.

(b) Every 3-edge-coloring of a cubic graph has bi-colored cycles, thus χ′s(G) ≥
4. In Figure 3 there is a 4-edge-coloring of the cube Q3. It is easy to verify
that this is indeed a star edge-coloring. Perhaps the fastest way to see this is
to observe that for each i 6= j, there is (a unique) 3-edge path colored i, j, i
between the two vertices colored j. Consider now a graph G that covers Q3 and
use the covering map to lift the edge-coloring of Q3 to an edge-coloring of G.
From the definition of covering projections we see that a path of length 2 in G
is mapped to a path of length 2 in Q3. It follows that the defined edge-coloring
is proper. It also follows that a path of length 4 in G is mapped to a path of
length 4 in Q3 or to a 4-cycle in Q3, and a 4-cycle in G is mapped to a 4-cycle
in Q3. It follows that we have a star-edge coloring of G.

For the reverse implication, suppose that G has a star 4-edge-coloring c. Let
us first define a (vertex) 4-coloring f by letting f(v) be the (unique) color that
is missing on edges incident with v.

f is a proper coloring. For a contradiction, suppose that f(u) = f(v)
for an edge uv of G. Let u1, u2 be the other neighbors of u, and v1, v2 be
the other neighbors of v. By symmetry we may assume that f(u) = f(v) = 4,
c(uv) = 3, f(uui) = f(vvi) = i (for i = 1, 2). The bi-chromatic paths uiuvvi
imply that 3 is neither used on edges incident with v1 nor on those incident
with v2. This, however, implies that there is an edge colored 2 incident with
v1 and an edge colored 1 incident with v2, which create a bi-chromatic 4-edge
path (or 4-cycle), a contradiction. Note that the cases where uv is contained in
a triangle (u1 = v2, u2 = v1 or both) are also covered by the above.

f is a covering map G → K4. Suppose for a contradiction that there
is a vertex v with neighbors v1, v2 such that f(v1) = f(v2). By symmetry we
may assume that f(v) = 4, f(v1) = f(v2) = 3, c(vvi) = i. Now v1 must be
incident with an edge of color 2 and v2 must be incident with an edge of color 1,
producing again a bi-chromatic 4-edge path (or cycle).

f together with c define a covering G→ Q3. Let i, j, k, l denote 1, 2, 3, 4
in some order. If a vertex v of G has f(v) = i then the c-colors of its incident
edges are j, k, l and the same holds for the f -colors of its adjacent vertices.
There are exactly two possibilities, either the edges incident with v colored
j, k, l lead to vertices colored k, l, j (respectively), or to vertices colored l, j, k.
We refer to these two possibilities as the local color pattern at v.

Observe that in Q3 as depicted in Figure 3, there are for each i two vertices
colored i and they use different local color patterns. This implies there is a
unique vertex mapping F : V (G) → V (Q3) such that for each v ∈ V (G) the
following conditions hold:

1. we have f(v) = f(F (v)) (we use f also for the vertex coloring of Q3), and

2. v and F (v) use the same local color pattern.
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Figure 3: Cube Q3 with star edge-coloring by four colors. The vertex labels are
used in the proof of Theorem 5.1.

To show that F is a covering map, we need to observe that for each v ∈ V (G),
the three neighbours of v in G map by F to the three neighbours of F (v) in Q3.
As we already know that f is a covering map to K4, it suffices to show, that
a neighbour u of v is indeed mapped to the neighbour of F (v) with color f(u)
(and not to the other vertex with the same color). For this we observe that the
local coloring pattern at a vertex v determines the local coloring pattern at each
neighbour of v, in any cubic graph that is star 4-edge-colored. As this holds
both in G and in Q3, our definition of F yields a covering map, which finishes
the proof.

There are cubic graphs whose star chromatic index is equal to 6. One exam-
ple is K3,3. To see this, let us suppose that we have a star edge-coloring of K3,3,
and let F be a color class. If |F | = 3, then every other color class contains at
most one edge and hence there are at least seven colors all together. So, we may
assume that every color class contains one or two edges only. If F = {ab, cd} is
a color class, then one of the edges ad or cb forms a singleton color class since
the second edge in the color class of ad (and the same for cb) would need to be
the edge of K3,3 disjoint from a, b, c, d. This implies that there are at least two
singleton color classes. Hence, the total number of colors is at least 6. Finally,
a star 6-edge-coloring of K3,3 is easy to construct, proving that χ′s(K3,3) = 6.

6 Open problems

As we saw in Sections 2 and 4, establishing the star chromatic index is nontrivial
even for complete graphs. We established bounds

(2 + o(1)) · n ≤ χ′s(Kn) ≤ n · 22
√

2(1+o(1))
√

log n

(log n)1/4
.
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Question 1 What is the true order of magnitute of χ′s(Kn)? Is χ′s(Kn) =
O(n)?

In the previous section we obtained the bound χ′s(G) ≤ 7 for a subcubic
graph G. We also saw that χ′s(K3,3) = 6. A bipartite cubic graph that we
thought might require seven colors is the Heawood graph (the incidence graph
of the points and lines of the Fano plane). However, it turned out that also its
star chromatic index is at most 6. After some additional thoughts, we propose
the following.

Conjecture 2 If G is a subcubic graph, then χ′s(G) ≤ 6.

It would be interesting to understand the list version of star edge coloring:
by an edge k-list for a graph G we mean a collection (Le)e∈E(G) such that each
Le is a set of size k. We shall say that G is k-star edge choosable if for every
edge k-list (Le) there is a star edge coloring c such that c(e) ∈ Le for every
edge e. We let ch′s(G) be the minimum k such that G is k-star edge choosable.
All of the results in this paper may have extension to list colorings. Let us ask
specifically two questions:

Question 3 Is it true that ch′s(G) ≤ 7 for every subcubic G? (Perhaps even
≤ 6?)

Question 4 Is it true that ch′s(G) = χ′s(G) for every G?
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