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Observation of subdiffusion of a disordered interacting system
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We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity.
An atomic Bose-Einstein condensate with tunable atom-atom interaction is let free to expand in
a quasiperiodic lattice. While the non-interacting system is localized, the presence of a repulsive
interaction between the atoms allows a slow expansion with a subdiffusive behavior. The dependence
of the diffusion exponent on the system parameters allows us to get an insight on the microscopic
dynamics of the expansion process and raises a question about the role of the spatial correlations of
the disordered potential.

PACS numbers: 03.75.Lm, 05.60.-k

The combination of disorder and nonlinearities deter-
mines the transport properties of many physical systems,
including normal conductors and superconductors [1],
graphene [2] and DNA [3], or light in disordered nonlinear
media [4–8]. While a full understanding of the interplay
of disorder and nonlinearities has long been sought, the
incomplete control over experimental parameters in these
systems makes systematic investigations of this interplay
difficult. There are still several open questions, such as
the fate of a wavepacket expanding in a disordered po-
tential in presence of a nonlinearity. There have been
various predictions in theory and debate over the results
of numerical experiments over the last 20 years about
this subject [9–16]. Most authors agree that the non-
linearity should destroy localization and the wavepacket
should expand in a way that is slower than normal diffu-
sion. However, it has not been possible so far to observe
such subdiffusive behavior in experiments.

Bose-Einstein condensates with tunable interatomic
interaction have recently appeared as a very promising
system in this respect: for instance, the delocalizing ef-
fect of a repulsive interaction was observed by studying
the momentum distribution in equilibrium [17–19]. We
now employ a Bose-Einstein condensate to study the ex-
pansion dynamics of an initially confined system along
a one-dimensional quasiperiodic lattice. Despite its large
spatial correlations, this kind of potential is known [20] to
feature exponentially localized states that are equivalent
to those appearing in a lattice with uncorrelated random
disorder that is described by the Anderson model [21].
In absence of interaction, a condensate is localized with
exponential tails in such potential, and no transport is
observed [22]. Adding a controlled interatomic repulsion
in the system, we observe a change of shape and a slow
increase of the width σ of the sample that follows a sub-
diffusive law: σ(t) ∝ tα, with α = 0.2−0.4. We find that
the exponent increases with the interaction energy and
the localization length, in agreement with both numerical
simulations and the predictions of a heuristic model we
develop. The observed exponent is however larger than

the one calculated for uncorrelated disordered potentials
[9–16], suggesting a role of the spatial correlations of the
disorder.

The one-dimensional quasiperiodic potential is created
by perturbing a primary optical lattice with a weaker
secondary lattice of incommensurate periodicity [23]:
V (x) = V1 cos

2(k1x)+V2 cos
2(k2x+φ). Here ki = 2π/λi

are the wavevectors of the lattices, which are chosen such
that their ratio β = λ1/λ2 is far from a simple fraction
(in our experiment λ1 = 1064.4 nm and λ2 = 859.6 nm).
This potential is characterized by the spacing d = λ1/2
and the tunneling energy J of the primary lattice, and
by the disorder strength ∆, which scales linearly with V2

[24]. In the case of non-interacting particles this system
constitutes an experimental realization of the Harper or
Aubry-André model [20] which shows a transition be-
tween extended and localized state for a finite value of
the disorder ∆/J = 2 [22].

We employ a Bose-Einstein condensate of 39K atoms
in their lowest internal state, whose s-wave scattering
length a can be tuned by means of a Feshbach reso-
nance [25, 26]. The condensate is produced in an op-
tical trap at a scattering length a = 280a0, and contains
about 3 × 104 atoms. To study the dynamics along the
quasiperiodic lattice we first load the interacting con-
densate into the quasiperiodic lattice with a constant
∆ ≈ 3J . The trap harmonic potential has a radial
(axial) frequency of 2π × 50(70) Hz, while the lattice
beams give an additional radial potential with frequency
ωr = 2π×50 Hz. At a given time t = 0 the optical trap is
suddenly switched off, giving the possibility to the con-
densate to expand along the lattice; at the same time,
the disorder strength and the scattering length are tuned
to their final values within 10 ms, and kept there for
the rest of the evolution. The subsequent change of the
spatial distribution n(x) of the sample is then monitored
by in-situ absorption imaging for increasing times, up to
t = 10 s. The width of the distribution is measured as

the square root of its second moment: σ =
√

∫

x2n(x)dx.

The initial interaction energy per particle is estimated
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as Eint = (2πh̄2a/m)N
∫

ϕ4d3x, where m is the atomic
mass, ϕ is the calculated single-site wavefunction and N
is the average atom number per site. We estimate that
the initial distribution occupies on average 20±7 sites
of the lattice; the uncertainty arises from an incomplete
knowledge of the distribution after the preparation pro-
cedure, and translates into a 35% uncertainty on Eint.
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FIG. 1. (color online). Width of the sample after 10 seconds
of evolution in the quasiperiodic lattice without interaction
(blue squares) and with interaction (red circles). The dashed
line indicates the initial size of the sample. The continuous
lines are a guide to the eye. The horizontal scale has a 10%
uncertainty due to the experimental calibration.

In a first measurement we studied σ after 10 s of evo-
lution, for different values of ∆, see Fig. 1. For negligible
interaction we observe that the system becomes almost
completely localized at ∆/J ≈ 3, as in Ref.[22]. If we add
some repulsive interaction, the system becomes localized
only at a larger ∆/J ≈ 6, indicating that a localized non-
interacting system is at least partially delocalized by the
interaction.

To understand the nature of the interacting system
above the localization threshold, we have then performed
a systematic study of the temporal evolution of the width
for a wide range of the system’s parameters, as shown
for instance in Fig. 2. These measurements confirm that
the repulsive interaction allows the system to expand,
although the expansion is not ballistic but its velocity
decreases as the width increases. Note that the change in
size is very slow on the timescale given by the tunnelling
rate of the lattice, which is h/J ≈ 55 ms for the data
in Fig. 2. To model the expansion dynamics we fit the
measured evolution data with

σ(t) = σ0(1 + t/t0)
α , (1)

where σ0 is the initial width, t0 is an ”activation time”
and α is the diffusion exponent. Here, a ballistic ex-
pansion corresponds to α = 1, while normal diffusion
gives α = 0.5. For the data in Fig. 2 we measure instead
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FIG. 2. (color online). Time-evolution of the width σ in the
quasiperiodic lattice for different initial interaction energies.
The dashed line shows how the cloud would evolve in case
of normal diffusion. The continuous lines are the fit with
eq.1. The very slow expansion of the noninteracting sample
is presumably due to noise. The lattice parameters are J/h =
180 Hz, ∆/J = 4.9.

α ≈ 0.2−0.4, indicating a subdiffusive behavior. The ex-
pansion becomes faster when increasing the interaction
energy, suggesting an increased ability of the interaction
to delocalize the system. This behavior is confirmed by
the systematic study reported in Fig. 3a, where one sees
a clear increase of α with the interaction energy Eint,
followed by a saturation approximately at α = 0.4. The
related measurement performed at fixed interaction en-
ergy in Fig. 3b shows instead that α decreases slightly
when increasing ∆, confirming the trend of Fig. 1. We
have repeated the experiments for two different depths
of the primary lattice, hence for two different J , to check
that α is independent of J alone, as expected.

The observed behavior gives hints on the microscopic
mechanism of the expansion for ∆/J > 3. In this regime,
the single-particle eigenstates of the quasiperiodic lattice
are all exponentially localized, with an almost constant
localization length ξ ≈ d/ ln(∆/2J). The interaction
breaks the orthogonality of these states, and makes pos-
sible the transfer of population from occupied states to
initially empty states that are within a few ξ. Since this
microscopic transfer happens at a rate Γ that scales with
the interaction energy, one can expect that the velocity
of expansion decreases as the sample expands and be-
comes less dense, as we observe in the experiment. Var-
ious authors have built heuristic models for the expan-
sion that relate Γ to the variation of the width σ in a
variety of random models, such as the kicked rotor [9],
the Anderson model and Klein-Gordon oscillators chains
[11, 12, 15, 27]. It is possible to derive from basic prin-
ciples that the rate has a dependence on the number of
atoms per state Γ ∝ N3, where N scales as 1/σ. The idea
[12, 15] is then that in a random system Γσ is essentially
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FIG. 3. (color online). Dependence of the diffusion exponent
α on: (a) the initial interaction energy Eint; (b) the disorder
strength ∆, for two different values of the tunneling energy:
J/h = 180 Hz (triangles) and J/h = 300 Hz (circles). The
vertical bars are the fitting error of eq.1 to the data, while the
horizontal bars in (a) are the statistical error. In (b) there is
a 10% uncertainty on the horizontal scale.

the instantaneous diffusion constant D, that is related to
σ by dσ2/dt = D. The resulting equation dσ2/dt ∝ σ−2

can be easily integrated to get σ(t) ∝ tα, with α = 1/4.
This result applies to the regime of strong interaction,
where many final states can be coupled to the initial ones,
otherwise the expected exponent has been derived to be
α = 1/6 [15].

The exponent α we observe is about twice these values,
suggesting that the large correlations of the quasiperi-
odic lattice might play a role. Actually, all the states
of our system have almost the same shape and their en-
ergies are arranged in a quasiperiodic way. This might
allow the expansion process to proceed through almost
coherent hopping processes, in contrast to the incoher-
ent processes expected for uncorrelated random systems
[9, 12]. Heuristically, one could then relate the quantity
Γσ to the instantaneous velocity, i.e. dσ/dt ∝ Γσ. With
this assumption the model gives an exponent α = 1/3 for
the regime of strong interaction. This regime is reached
when the interaction energy is larger than the standard
deviation of the single-particle energies δE. With the
aid of numerical calculations we find that for the oppo-
site regime Eint < δE there is an additional scaling of
Γ approximately as Eint due to the reduced capability
of the interaction to provide an efficient coupling of the
states. Since also Eint scales as 1/σ, in this regime one
gets a smaller exponent around α = 1/4, which also de-
creases with the localization length. This heuristic model

is in qualitative agreement with the measured exponents
and could explain the increasing trend of Fig.3a. Our
observations are also in agreement with numerical sim-
ulations performed on a discrete model [13], which give
exponents ranging from 0.2 to 0.35.
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FIG. 4. (color online). a) Shape of an interacting sample after
10 s of evolution; the dashed curve is a gaussian fit of the tails.
b) time-evolution of the compactness index ζ; the dashed line
is the expected compactness for a gaussian distribution, ζ =
4π. For (b) the interaction energy is Eint = 1.2J , while the
lattice parameters are the same of Fig.1.

Since the coupling between localized states is larger at
the center of the sample, where Eint is large, one might
expect a faster depletion at the center than in the tails
[9]. This behaviour is clearly visible in the shape of the
clouds at a long evolution time shown in Fig. 4a, which
features an extended flat top and rapidly decaying tails.
Note that the samples initially have an approximately
gaussian profile, while the flat-top shape gradually ap-
pears during the expansion. This can be seen in the evo-
lution of the so-called compactness [27], which is the ratio
of the squared participation number to the second mo-
ment, ζ = (

∫

n2(x)dx)−2/σ2. The reference value for the
compactness is ζ = 4π of a gaussian distribution, while
it increases for a distribution with more rapidly decaying
tails. As expected, the measured ζ in Fig. 4b shows an
increase during the 10 s evolution time.
From a study of the radial momentum distribution we

detect a non negligible radial heating during the 10 s evo-
lution time, with a rate of the order of 5-10 nK/s. We
attribute it to mechanical noise on the lattice laser beams
and also to three-body losses at the largest Eint. A ques-
tion is then about the role of the radial excitation in the
axial dynamics. An obvious consequence of the finite ra-
dial temperature T is that the on-site radial density of
particles decreases, and with that also the interaction en-
ergy, as Eint(T ) ∝ 1/T . One might then guess that an
increase of the temperature rapidly drives the system in
the weak interaction regime, where the number of cou-
pled states is vanishingly small. However, it is important
to note that the harmonic oscillator energy h̄ωr is con-
siderably smaller than δE (in our case, δE ≈ 3J and
h̄ωr ≈ J/5). For finite T , the axial dynamics can happen
also through excited radial states, which therefore pro-
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FIG. 5. Evolution of the width after 10 s, rescaled by the
initial width, for an increasing radial temperature of the sam-
ple, for three different values of the scattering length. The
datasets are labeled with Eint at the lowest temperature. The
typical decrease of Eint for the two interacting datasets from
the lowest to the highest T is a factor of 3. The error bars
are the statistical deviation of about 10 independent measure-
ments. The lattice parameters are J/h = 290 Hz, ∆/J = 3.9.

vide a smaller energy scale to be compensated by the in-
teraction energy. This implies that also axial states with
δE > Eint, which would not be efficiently coupled in ab-
sence of the radial degree of freedom, can participate in
the axial diffusion process. Qualitatively, we would then
expect that the characteristic velocity does not decrease
significantly for increasing temperature.

We have checked this expectation in the experiment,
by studying the expansion of samples that were inten-
tionally heated in the radial directions by parametric ex-
citation. Fig. 5 shows that, while an increasing T does
not affect the expansion of a non-interacting sample, as
expected, it causes a decrease of the expansion velocity
of interacting samples. In this case we typically observe
an initial decrease of σ(t=10 s), followed by a plateau
up to the highest temperatures we can reach. The pres-
ence of this plateau is not surprising, since in our case
δE/kB ≈ 45 nK and for temperatures sufficiently above
this characteristic value most of the excited radial states
can participate to the axial motion. A more detailed
modeling of the finite temperature dynamics is left to a
future work.

In conclusion, our study gives evidence of the subdif-
fusive character of the expansion of a disordered inter-
acting system and elucidates the microscopic mechanism
of such expansion. This is a further evidence of the de-
localizing role of a repulsive interaction in a disordered
system [17]. It would be now interesting to extend our
study to less correlated disorder to quantify the effect of
spatial correlations of the disorder in the dynamics. Also,
we could drive our system into the quasi-1D regime by
increasing the radial confinement to freeze out the radial

degrees of freedom. There one could study the predicted
temperature-induced metal-insulator transition [28], or
investigate the role of quantum fluctuations in the dy-
namics of a disordered system, both in the weakly and
strongly interacting regimes [29, 30].
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