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I. INTRODUCTION

In this paper, we derive bounds on the capacity of disciete-Rician-fading single-input
single-output (SISO) channels. Time-varying multipatbgargation leading to selective channels
in both time and frequency is considered. To provide realigtiidelines for the design of

communication systems, we here study the capacity underalexritical assumptions.

(A1) The peak power of the transmitted symbols is limited.
(A2) Neither the transmitter nor the receiver know the currealization of the channel but
both know the channel distribution.

(A3) The available frequency bandwidth is limited.

(A1) is the direct translation of limitations imposed by elentoodevices such as power amplifier
and mixers and can also result from regulatory constralitis assumption is fundamental since
it rules out the often used Gaussian or 'peaky’ signals 2] fiom the set of capacity achieving
inputs. (A2) corresponds to thaoncoherent setting where the channel state information (CSl)
is unknown to both the transmitter and the receiver. Thisimggion has to be contrasted with
the coherent model where the CSI is available at the receiver. For mostrodlg, the coherent
model is not realistic since receivers are not genie-aiaektlae effort to acquire the CSI usually
induces some capacity loss (pilots insertion, channeinasion errors etc.). FinallfA3) results
from obvious physical limitations of spectrum resourced gransmitting devices.

Despite the efforts that have been expended in the litexatwirstudy noncoherent fading
channels, no closed-form expression of their capacity ewknto date, even for simple channels.
Most of the results available either compute the capacityasymptotic regimes (infinite-
bandwidth, high or low signal-to-noise ratio) and/or derigapacity bounds, and this, with
various assumptions on the peak-power and the channetigityed he first contributions on the
noncoherent capacity focus on memoryless flat fading chamwieéh an unbounded peak-power
[2], [4], [B]. More recently, peak-power constraints aresigered in{[6] for memoryless Rician
fading channels. Capacity bounds of fading channels witmaorg and a peak-power limitation
have been derived in [7] for the flat Rayleigh-fading chanmeld in [8], [9] for the doubly
selective (DS) Rayleigh-fading channel.

The works presented inl[8] and|[9] are closely related to paiper since they include both

time and frequency memory in their channel model and alsmédhe peak-power. To derive
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the capacity bounds, the authors iin [8] and [9] partition doeibly dispersive channel in the
frequency domain into narrow subbands, so that the fadinfigis but time-varying, within
each subband. The peak-power constraint is then appliedresh each time-frequency slot of
the input signal or only on the time representation of thgnaH. Time-frequency peak power
limitation mainly models regulatory rules that apply to t&yss such as UWB for instance,
whereas limitation in the time domain corresponds to caids imposed by electronic devices.
In [8] and [9], the capacity bounds resulting from a peak ¢@mnst in both time and frequency
are valid for any bandwidth. However, for the peak constraintime only, these bounds are
either limited to infinite bandwidth signals or to the low s&d-to-noise ratio (SNR) regime.
The main motivation of the work presented in this paper haanle derive capacity bounds
for bandlimited signals that are peak-constrained in timky,cand this, without any restriction
on the SNR. Moreover, we are here interested in Rician fadirannels that include Rayleigh
fading channels as a special case.

The main contributions of this paper are threefold:

« Based on some results provided|in [7] ahd [9], a new upper damnoncoherent capacity
under peak-constraint in time only is derived for Ricianifgdchannels whatever the input
signal bandwidth and the SNR. This bound is equivalent tacHpacity of a time-invariant
frequency selective channel whose frequency responsespamnds to the root mean square
frequency response of the studied channel, penalized bynatteat expresses the lack of
knowledge on the actual channel realization.

. In the same context, using the generalization of the entpapyer inequality detailed in
[10], a new lower bound is derived. Similarly to the upper authis lower bound is the
difference of two terms. The first term is the coherent capadithe channel with a weighted
SNR and the second term translates the capacity loss due tthémnel uncertainty.

« These bounds are then applied to a real underwater acousiitnel, recorded in the
Mediterranean sea, that is a typical example of a doublyedssge Rician fading channel.
Comparison between the capacity of existing underwatemuanications systems and the

theoretical limits is discussed.

INote that limiting the peak-power in the time-frequency @imdoes not necessarily imply a limit on the peak-power & th

time domain only.
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This paper is organized as follows. Sectidn Il is devotedhéodresentation of the system model
and the main assumptions. Capacity upper and lower bounplicaiple to doubly dispersive
channels are derived in sectibnl lll. In sectlon 1V, the intpafcthe channel parameters on the
capacity bounds is discussed through various numericatrerpnts. Finally, conclusions are

given in section V.

[I. SYSTEM MODEL
A. Notation

Throughout this paper, lowercase boldface letters denettoxs, e.g.x, and uppercase
boldface letters denote matrices, e.4., The superscriptd and’ stand for transposition and
Hermitian transposition respectively. The Hadamard (elatrwise) products of two matrice4
and B is written A® B. The elements of a matrid are denoted byA|;. ;, where the indexes
and/ start at 0.1 y is the NV x N identity matrix andl y is the N x 1 vector with all components
equal to 1. The Kronecker symbol is denoteddpy. We let D(x) designate a diagonal square
matrix whose main diagonal contains the elements of theovactWe write ;. for the vector
obtained from theV x 1 vectorx by shifting its N — & first elementst times downward, and
then padding thé upper with zerosiR(A) denote a matrix whose elements consist of the real
part of each element of the matriz and3(A) denote a matrix whose elements consist of the
imaginary part of each element of the matuk CN (m, R) stands for the distribution of a
jointly proper Gaussian random vector with meanand covariance matriR. | A||» denotes

the Frobenius norm of the matrid. Finally, E {.} stands for expectation.

B. Channel model
Let ¢ = [zg, - ,zy_1]7 denote the vector of input symbols. These symbols are assume
identically independent distributgi(i.i.d.) with the following constraints
2,2 < O, 1)

QZ
2 2
Efle’} =02 < 3 @
2Because of the time-correlation of the channel impulsearsg, a higher channel capacity could possibly be obtafrie i
input symbol distribution was not restricted to i.i.d. distition. Nevertheless, taking into account for corr@atbetween input

symbols leads to an untractable. Therefore we here focubenase of i.i.d. input symbols, as it is done in most workateel

to the capacity of channels with memory, seg [[7], [B].I [1XR][
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where the peak-to-average power ratios a constant satisfying > 1 . The channel outpug
is given by

y=Hx +w 3)

wherew ~ CN (0,02 Iy), H is the N x N proper Gaussian random channel matrix defined as

ho.o 0 o e e 0
: hi
H A hL—l,L—l : 7 4)
0 hrr— hro
' 0
0 . 0 hy-1z-1 --- hy_i1o

and h,,, is the gain at time: of the channel tag, for n € [0,N — 1] andk € [0,L — 1], L
designating the length of the channel impulse responseei#pg upon the context, it can also

be convenient to rewrité 3) as
L—-1

y=> hoz;+w (5)

k=0
whereh,, is the N x 1 vector corresponding to thieth tap of the channel, i.e.,

h’k - [hO,k’v hl,k’v e 7hN—1,k]T-
Our channel model relies on the widely used wide-senseostaty uncorrelated scattering
(WSSUS) assumption [13], so that
E{hi} = h- 1y 2 hy, (6)
E { [hy, — R [l — Bl}*} 2 Ru(k) - b5, @)
where h;, and Ry(k) are the mean and the covariance mgtrbf the k-th channel tap,

respectively. For commodity, we denote by(k) the element of the main diagonal & (&),

and
A L—1
=22 oi(k) (8)
k=0
A L-1 B 1/2
VS / 0 (0) 6, ©)
k=0 —1/2

®Note that, thanks to the WSSUS assumption, the covariantexnfgy (k) is Toeplitz for any k.
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where ¢y (0) is the discrete Fourier transform of the mean of the charmelulse response
(CIR), i.e., vy (0) = >, hxe~27™* Note that the parameteiis?, and=?% can be viewed as the
energy of the mean and of the random (zero-mean) part of tReo€an equivalent time-varying
flat fading channel obtained by summing the energies incgrthinough the different channel
taps.

We also denote bR 5 the sum over the channel taps of the covariance matfiteg:), i.e.
Ry 2 > Ru(k), and bySy(v), the normalized Doppler spectrum of this equivalent time-

varying flat-fading channel

5 1 N-1

Su(v) == Y _[Rulus e/, (10)
—H p—0

Using the above quantities, we can now define the peak SNReofltthal equivalent time-

varying flat fading channel

\112 52
SNRpeak é ngg %7 (11)
as well as the maximum average SNR
1
SNR,, 2 BSNRpoak. (12)
The Rice factor of thé-th channel tap is defined as
N
K = . (13)
oK)

C. Assumptions for capacity assessment

As expressed in_[11]/[14], the definition of the capacity forandom linear time-varying
communication channel is not as simple as for the AWGN chamhm&eed, one has to consider
how information on the channel state (CSlI) is available.

The most favorable case is when the actual channel realizas available to both the
transmitter (TX) and the receiver (RX). Then, TX has the polty to continuously adapt the
instantaneous transmitted power and the bitrate to thescuohannel state. Another favorable
case is when the CSl is available to RX, but not TX. This seamas# leads to the “coherent” or
“ergodic” capacity, also defined as the mdég {C'} of the channel capacity' over the set of
all channel realizations. This case is not applicable hieieesas the CIR is not a priori known, a

continuous estimation of the channel by RX is necessahgelly inserting known pilot symbols
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in the transmitted frames, which obviously decreases th& i@dde, or by performing a "blind”
or a decision-directed channel estimation which, becatfisbeochannel estimation errors, also
results in a lower channel capacity.

Therefore, the most general case is considered here, whisréhe statistical properties of the
channel are assumed to be known to TX and RX. Then, with theeabotations, the channel
capacity [15] is given by

C = lim j% [ sup ](y;m)} (14)

N—oo Pz EPx
where I(y; ) = hg(y) — he(y|x) is the mutual information betweeg and x, hg(y) the
differential entropy ofy, and thesup is taken forp,, in the setP,, of the input symbol distributions
which meet the constraints] (1) arid (2).

[Il. CAPACITY BOUNDS
A. Upper bounds

Before providing an upper bound that explicitly considérs toubly dispersive nature of the
channel as well as the peak constraint on the input symbetigyd first notice that using the
chain rule for the mutual information, a rather intuitiveunol can be derived. The first upper
bound, given in theorem| 1, corresponds to the ideal assampthere the receiver knows each
channel realization and where the input symbols are not peaktrained.

Theorem 1. The capacity of a discrete-time Ricean WSSUS channel with input symbols

and a peak-power constraint in the time domain is upper-tedrasC < C*", where

1 02
Ot = lim By {log det (IN 4o HHT) } (15)

N—soc0 Bo?
C<h corresponds to the coherent cap&'m)‘/the channelH without any restriction on the peak
power of the input symbols and with an average SNR equati\i®,,c.x /-
Proof: See Appendix’A. [
In addition to its intuitive appeal, we show in Section IV thiis bound proves to be useful

for some real Rician fading channels.

“Note that to the best of our knowledge, no closed-from exgiwesis known for the coherent capacity. However, it canlgasi

be assessed numerically via a Monte-Carlo technique.
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To further characterize the capacify (14), a new upper bdhatlintegrates the peak-power
constraint as well as the channel selectivity in both timeé faquency is proposed in Theorem
[2. This bounds, explicit in the channel Doppler spectrurtieseon recent results obtained in
[7], [8] and [C].

Theorem 2. The capacity of a discrete-time Ricean WSSUS channel with input symbols

and a peak-power constraint in the time domain is upper-tedrasC < UPS | where

peak?
Ubs, = e (14 9% (2 0)1%) ) do
peae = g2, [ log (1 505 (5ir - [0n(O)F)
o 12 2 =2
- = log (1 4 =4 SH(I/)) dv (16)
5 -1/2 w
Proof: See AppendixB. u

At this stage, some comments are required. To begin wittg tratUD3, is the difference of

two terms:

« the first term is equivalent to the ergodic capacity of a timeariant frequency selective
channel whose frequency response corresponds to the aviEeagiency response of the
channelH (i.e, E, {\zk hn,ke—%ﬂk@\?} =22, + [y (0)]).

« the second term, which is a penalty term, corresponds toapacity loss due to the fact that
the CIR is time-varying and unknown. This term takes intocact the random zero-mean

part of the channel response through the Doppler spectrum.

The second remark is that2® depends on the parameterwhich corresponds to the ratio
between the average and the peak power. Situations wherehosen lower than 1 correspond
to cases where it is advantageous to transmit with an avegrager lower than the maximum
possible and, therefore, to favor the amplitude of input Isgis to carry information. Such
situations can typically occur at high SNR (see Sediioh IVyben the channel fluctuates too

quickly to use constant modulus modulations (phase trgcki#Ecomes difficult).

B. Lower bound

Using the generalization of the entropy power inequalitiaded in [10], a lower bound on

the channel capacity is given in the following theorem.
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Theorem 3: The capacity of a discrete-time Rician WSSUS channel witth. iinput symbols

and a peak-power constraint in the time domain is lower-dedrasC' > L7, , where

N—o0

o
1/2 02 =2
—/ log( HSH ) @an
~1/2

A is a weighting factor given by

.1 02
158, = Jim B {logcer (14 A% HA) |

[ 2/, it1<p<3 a5
e %/BB ) (e K2 02), if B> 3,

where K and~ are the solution of the following system of equations
/\f Ke ™du = 1,

Q2
CKe "Wdu = % (19)

2

which can be solved numerically.
Proof: See AppendixC. u
As the upper bound given in Theoréin 2, this lower bound is @iledifference of two terms.
The first term corresponds to the coherent capacity of thereHavithout peak-power limitation
as presented in Theorem 1, but with a SNR loss expressed bfadter \. The second term
is once again the capacity loss induced by the channel wacstrt Note that fors = 1, the
expression of\ simplifies toA = 2/(we) which corresponds to a 6.3 dB SNR difference between

the first term of [(1l7) and the upper-bound given in Theokém 1.

V. ILLUSTRATIONS

We next evaluate the bounds of the previous section in varsmgnarios. Using a synthetic
channel model, impact of different channel parameters enctipacity are first discussed in
subsection IV-A. Capacity bounds applied to a real doublgciiwe Rician fading channel are

then analyzed in subsection 1V-B .
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A. Capacity assessment on a synthetic channel model

In this subsection we consider the case of peak-power @nstmly, i.e.5 = 1. The simulated
propagation channel is a discrete-time doubly selectiamihbl. The frequency selectivity of the
channel is characterized by its power-delay profile thahissen to be exponentially decaying as

modeled in numerous wireless environments [16], .{|h, .|?} = Ge™*/Haay where pigeay

corresponds approximately to the root mean square (rmay dprread of the channel and where
G is chosen such tha¥?, + =% = 1. The channel lengttL is limited t0 3/ge.y. The time
selectivity of the channel is characterized by the DopptercsrumSy (). To avoid the choice
of an arbitrary Doppler spectrundy () is chosen to be fully determined by its rms doppler
spreadqop, USiNg the maximum entropy derivation proposed(in| [17]. Mprecisely, (tgop IS
an input parameter from whicly () can be obtained by solving the following optimization
problem [17]

1
max /2 log S (v)dv,

Su(v)

[NIE

(NI

subject to /1 VASu(v)dy = 113, (20)

2

For the simulations, we assume that all channel taps havsattme Doppler spectrum.
Figure[1 shows the behavior of the capacity bounds as a amdii both the delay and the
Doppler spread. The displayed upper bound is the minimurh@two upper bounds presented

in the previous section and the lower bound is the maximurwéen 0 and L5, . SNRcax

is set to 15dB and a single line-of-sight component is carsid in the channel withy = 10
andk, = Ky = --- = k1 = 0. As expected, the capacity bounds strongly depends.QR,
and p40p. These bounds appears to be monotonically decreasing.iy but not in zig.,. AS
opposed to common misconception, the capacity of a chames dot necessarily decrease with
its fluctuation speed. The capacity depends on the entrapy: raof the channel and not directly
on its Doppler spread This is highlighted by Figurgl2 where the entropy rate ofsheulated
channel is plotted as a function of the Doppler spread. Fstairce, for limit cases wheye;,,

tends to0 or 1/2, the entropy rate tends tecc. According to [15], the minimum mean-squared

SThe entropy rate of the channel [S 16k = 1 log(2me) + 1 ffﬁQ log Sw (v)dv
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11

error (MMSE) of the best estimator of a sample of a randomgsegiven the infinite past is

MMSE — —_92hn (21)

2me
so that an entropy equalingoo leads to a totally predictable process which is favorable fo
the capacity. By comparing Figuté 1 ahd 2, the direct retatetween the channel capacity
and its entropy rate can be checked (the capacity boundsass as the channel entropy rate
increases).

Figures[ B(a) and]3(b) represent a detailed cut of Figure dgalbe ji4., and thejigel.y axis
respectively. This figures are mainly displayed to show t]@ik is mostly relevant when the
channel entropy rate is high, where@&" presents an interest (i.€°" < U&ik) when the
channel is strongly frequency selective but with a low gnyreate.

As discussed in Sectidn [[HA/ S

pea.

system. More specifically, through the parameterit indicates when it is relevant to carry

. provides a guideline on the design of practical transmit

information on the signal amplitude. Figlre 4 shows the @ioh of « as a function of the peak
SNR and the Rice factot. For this figure, the simulated channel is a flat fading chbwité
Hdop = 1072. It can be seen that for high peak SNR< 1 so that the recommended transmit
signal according t(ﬁ]&ik does not lie on the circle of radids,, i.e., its average power is chosen
lower than the maximum allowable.

B. Capacity assessment on a real doubly selective Rician fading channel

In this subsection we consider a real doubly selective Ridading channel. The main
objective is here to see whether this theoretical boundasetil and applicable on real channels.
The studied channel is an underwater acoustic channeldedadan the Mediterranean seat
a carrier frequency of 6 kHz in a 1 kHz bandwidth, with a 60 td X2 water depth, and
a transmission distance of 2500 m. This channel is relevanalse its envelope is Rician
distributed and also because the underwater environméptfiis in the scenario depicted in
the introduction, i.e. the channel realizations are notvwkma@ priori to the transmitter and the
receiver, and the peak-power can be strongly constraindteitime domain because of the cost

and volume of transmitting devices (amplifier, acousticrees, etcl).

®This scenario corresponds to a typical environment whed®mwater acoustic communication systems can operate.

"To date, there is no regulatory rules for underwater systimisconstraint the peak-power in the frequency domain.
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12

The channel impulse response corresponding to this champédtted in Figuré 5. Using the
algorithm presented i [18], the rms Doppler spread is eggohto 1.2 Hz f4,, = 1.21073)
and the rms delay spread to 8 mgd., = 8). The overall channel spreading factor is therefore
Ldop X Hdelay = 9.6 107%. The o2 (k) and theh, of (8) and [®), needed to compute the capacity
bounds, are estimated using the empirical mode decompositethod as detailed ih [19]. The
Doppler spectrundy (v) is obtained using the Welch’s averaged, modified periodogpectral
estimation method (see the spectrum.welch function of MAB).

To assess the capacity bounds, we study two scenarios digatainterest for underwater
communication systems. The first scenario correspondsetadbke where the transmit power is
mainly limited by the cost and volume of amplifier which mgstiduces a strong constraint on
the peak-powerq{ = 1). The second scenario depicts the case where the maintionitaesults
from overheating problems of the acoustic sources (thesthacers). In this context, acoustic
transducers cannot usually handle an average power highar 10% of the allowable peak
power (5 = 10).

Figure[6 shows the various capacity bounds applied to tHeMediterranean channel in the
first scenario wheres = 1. As a reference, the capacity,\“~ of the peak-limited AWGN
channel is also pIottnghe first observation is that the two upper bourﬁ@%ﬁk and C<" are
very similar and close to the peak-limited AWGN capacityisTtan be explained by the strong
Rician nature of the channel. Most of the energy of the chlaisrmnveyed by a few paths with
a very high Rice factor (for instance, the Rice factor of taghpwith a delayr = 10 ms is around
80). The analysis oﬂgﬁak in Figure[6 leads to the conclusion that, in the operating SaiiRje
of existing high data rate underwater modems (approx. 19tdB), this channel should allow
to communicate at least at 2 to 3 bits/sec/Hz. This meansfoinathannels similar to the one
considered here, there is still a significant possible t@tnaprovement with respect to existing
SISO high data rate modems that usually operate aroundskeditz [21]-]23]. Similarly, this
also means that there should be a 5 to 10 dB margin betweenisviaplemented today and
the ultimate theoretical limits.

Figure[T shows the different capacity bounds of the Meditegan channel in the second

8Note thatCﬁc";’fN has been thoroughly investigated in[20] where an advancederical algorithm has been proposed to

compute it.
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scenario where the system is mainly limited by the averageepoAs a reference, the capacity
CAVGN of the AWGN channel without peak limitation is also plottétican be noticed that
U;]))cik is not very useful in this case singg,, is relatively small ands is quite large. It can

also be observed th&t“°" and L.PS

ek Are very tight. This means that as longass sufficiently

large andug., relatively small, the knowledge of the channel realizagiamn the receiver (i.e., a
coherent setting) does not bring a significant capacity.ghiis highlighted in Figurél8 where
the capacity bounds are plotted as a function of the peak«oage power ratig in dB for an

average SNR set to 15 dB. For the considered channel, as ¥oag>a8 dB, the noncoherent
setting is almost equivalent to the coherent one and thectgdass induced by a peak power

limitation becomes negligible.

V. CONCLUSION

Upper and lower bounds for the noncoherent capacity of gosblective Rician fading
channels have been presented. A peak-power limitationetrdhsmit signal has been considered
to reflect the constraint imposed by electronic devices. beah upper and lower bounds, the
effect of channel uncertainty induced by the noncoherettingeis quantified by a penalty term
that is explicit in the channel Doppler spectrum. From the neper bound given in this paper,
it is shown that guidelines on the optimal repartition betweverage and peak-power of the
transmit signals can be derived. Moreover, by studying & deably dispersive Rician fading
channel, it appears that the capacity bounds can be relfargoactical systems. More precisely,
by considering a real underwater acoustic channel, we Hawgrsthat in a typical shallow water
environment (high Rice factor, channel spreading factss thanl0~2), there is still a theoretical
bitrate gain of a factor 2 to 3 relatively to the existing hidgita rate underwater modems. Finally,
numerical assessments on this real channel indicateshthatoncoherent setting does not imply
a significant capacity loss compared to the coherent settingn the peak-to-average power
ratio is relatively high ¢ 8 dB).
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APPENDIX A

PROOF OFTHEOREM[I
Let’s first notice that

a (b)
Iy:2) @ Iy ol H) — I(a: Hly) < I(y: |H) (22)

where (a) follows from the chain rule (see detaildin [24,%7-938]) and relies upon the mutual
independence o andx, and (b) follows from/(x; H|y) > 0, since mutual information is
non-negative. Then,

C < lim % sup I(y7w|H)} (23)

N—roo @€ Pz
with I(y; z|H) = hg(y|H) — hg(y|xz, H). By applying [15, Theorem 17.2.3] and by noticing
thatE {yy'|H} = 02HH' + 02 Iy with 02 < Q2/3, we have
QQ
hp(y|H) < Eg {logdet <7re (FHHT + o—ﬁ,IN)) } , Vo € CV.

Moreover, conditionally tar and H, y is complex Gaussian with a covariance matrix equals

to o2 Iy. Therefore, Vx € CV

Q2
I(y;xz|H) < Eg {logdet (7T6 <7“"’HHT + UfuIN)>} — Nlog(mea?)

2
= Eg<{logdet | Iy + L HH')}. (24)
Boz

Theoren{ 1L finally follows from the substitution ¢f (24) in23).

APPENDIX B

PROOF OFTHEOREM[2
A. Main steps of the proof

A first step is to notice that, in_(14), the terlp;(y) can be upper bounded by the differential
entropy of a complex Gaussian vectgrwith same covariance matrix as vectgr(see [15,
Theorem 17.2.3]). Hencé,x(y) < logdet (wel’y), wherel',, is the covariance matrix of. In
other respects, conditionally to the input symbmlsthe channel outpuy is (exactly) complex
Gaussian, with covariande,,. Therefore, it turns out that

C < sup lim % (logdetT'y — Eq {logdet Iyi. }) - (25)

pa€Py N—00
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The second step of the proof is to compute the two covariarateicasl’, andIl'y, and then
to substitute theitog det into (28). The computation of the covariance matrices, miirethe

next subsections of this appendix, yields to

1/2 2
hm — logdetF = log o2, —i—/ log (1 + U—; (Z% + [vu(9) \2)) do (26)
O-'Ll)

N—oo N -1/2
and
1
A}l_lr)nw N logdet I'y |, = hm log o2 + — N log det (IN + ERH ® mm*) . (27)

where all quantities are as defined in Secfion II. Hence,

1/2 o2 1 1
C < / log <1 + ;’ (Z% + [vu(9) |2)) df— lim —E, {logdet <IN + SRy © mf) } .
~1/2 O N—oo N Ow 28)

Finally, the third step consists in lower bounding the selctarm of [28) as

lim iIE:,Z logdet | Iy + iRH © za’
N 02

N—oo o

— Jim — [ logdet ( Iy + Ry © za' (x)d

—Nﬂoﬁmoge N EH xzx' | pe(x)dx
log det <IN+ RHwaT> ,

N 1.

=z dm Nl BB Bl

log det (IN + U%RH ® :c:cT>
=02 lim | inf .

Nooo | pe€Pa ||z||?

Since Ry is positive semidefinite, the above infimum is achieved by etorer whose entries
satisfy |z,|*> € {0,Q2} [[7, Sec. VI-A]. Based on this result, we then apgly [9, lemnia fip.
383], so that

[

1 o2 172 O2=2
lim —E {logdet (IN + —5Ru© wa)} > —/ log <1 + HSH( )) dv. (29)
o o2

N—oo N w x 1/2 w

Theoreni D is then obtained by noticing tiiat o2 < Q2 /3 and by settingy =

sem|éém

B. Computation of limy_,« + logdet I,

Let’s first notice thatE {y} = 0 follows from the zero-mean assumption and the mutual

independence of and H. From [3), it comes that

ry=oily+o? (HH +E{(H - H) (H-H)'}). (30)
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where H £ E{H}. Thanks to the WSSUS assumption, it can be checked that

E{(H-H)(H-H)'} =D(v),

wherewv is a N x 1 vector whose elements are given by = Zﬁg("’“l) o2(i). For a finite

L, we havelimy_, \/LNHD(v) — Z%21Ix|lF = 0, so thatD(v) and 2% 1y are asymptotically
equivalelﬁ. Using [25, Corollary 2.4], it then follows that

: 1 R B 1 2 2 (gt
A}l_lgo v logdetI'y, = A}l_lgo I log det [awIN +o; (HH + D(v))}
— lim — log det o2y +0? (HH +Z5Iy)] . (31)
N—oco N

Let 75 denote the cousin circulant matrix of the banded Toeplitzrima, i.e.,

}_7’0 hL_l e hl
hl BO ;
Ta=| 0 hi-1
hp—1
0 hL—l Bl BO

As shown in [25, Lemma 4.2]H and 75 are asymptotically equivalent. Moreover, they are

both semi-positive antbg det is continuous. Therefore, [25, Corollary 2.4]

lim - logdetT, — 1 2 4 L o det 1+U§”E%’ I +U§TTT
Nl—r>nooNoge v = 108 % Nl—r>nooNoge O'%U N O'%U 7|

The eigenvalue decomposition @f; is 7Ty = Fn - Ex - ]—"]TV, where Fy is the Fourier matrix
of size N and where€y is a N x N matrix whose elements are all zeros except the diagonal
elements which are equal to the output of the discrete Fotraasform (DFT) of the discrete-

time averaged CIR, i.e.,
L-1
[EH]n,n _ Z Bk€—2j7rkn/L.
k=0

Using this last result, a®' — oo, it comes that the density of the eigenvalues of the matrix

Tu T, tends to a limit, which is the spectruft; (6)|2. We finally get

1/2

1 2
]\}I_Iil)o N log detI'y, =logo,, + /_1/2

2
log (1 + 2_2 (% + |¢H(9)|2)) de. (32)

®Note that for the asymptotic equivalence, we implicitlyuse thato, (i) < +oo, Vi (seel[25, Section 2.3] for more details).
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C. Computation of limy_, + logdet Iy,

From (5), we have

Fy|w = UiIN+E{i [(hk — ’_lk) @wik} [(hl — ’_'Ll) @wik:“}

L-1

@O’EUIN—F 'D(wik)E{[hk—ﬁk”hl—ﬁl]—i_}'D(wu)T
k=0
© L-1
= opIy+ Y D(xy)Ru(k)opD(x])
k,l=0
© L—1
=02 In+ Y Dl(xy)Ru(k)D(x!,)
k=0

2I _'_ZRH Qmikwik

where (a) follows from the mutual independencef x and w, and also follows from the
fact thatu © v = uD(v) = D(v)u, for all vectorsu andwv of the same dimension; (b) and
(c) follows from the WSSUS assumption and (d) results from pinoperties of the Hadamard
product.

By noticing thatwikmik is asymptotically equwaleﬁto xx', i.e., limy_ o f“”’ikmw

zx'||F = 0, it comes that

1 , 1 1 ;
Nh_r)rloo N logdet Iy, = log o, + Nh_f)rloo N log det <IN + gRH O xx ) . (33)

APPENDIX C

PROOF OFTHEOREM[3

The starting point for the proof of Theorem 3 is a well knowformation theoretic inequality
[7], [12]:
I(y;x) > I(y;z|H) — I(y; H|z). (34)

The computation of (y; H|x) = hg(y|x) — he(y|x, H) is straightforward since

1%Note also that the peak power limitation appliedatdmplies that the strong norm aéx', as defined in[[25, Eq. (2.13)],
is also bounded. This guarantees the asymptotic equivalenc
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« conditionally tox, y is distributed according to a complex Gaussian distributioth a
covariance matrix equals @’ Iy + 0>Ry,
. conditionally tox and H, y is complex Gaussian with a covariance matrix equalstby.
It yields, I (y; H|x) = logdet(Iy + Z%RH) < logdet(Iy + %RH). Therefore, the channel

capacity can be lower bounded as
2
C > lim %I(y; x|H) — A}im %log det ([N + L RH) ,V x satisfying [1) and[(2) (35)

N—oo 50'121}

The computation of the first term is not as easy. However, tdnis can be lower bounded

thanks to a generalization of the entropy power inequalifyj.[

Lemma (Zamir and Feder [10]): For anyy x 1 random vector: with independent components
[ug, -+ ,uy_1]T and for any deterministid/ x N matrix A, we havehgz(Au) > hp(Aa),
wherew is a N x 1 random vector with independent Gaussian componéas; - - , uy_1]”,
such thathg(u,) = hp(u,), V0 <n < N —1.

Note that this lemma applies only for real matdéxand vectoru. Hence, we start by splitting
the channel matrix, and the vectors: andw, into their real and imaginary parts.

For anyu € CY and A € CV*V define

Rl anga = | B S (36)
S(u) 3(4) R(A)

u=

so that the channel input-output relation can be written as
—_~ i

@zH@+ﬁ)z[ﬁI2N] e (37)
w

Note that the conditional mutual information gfandx given H satisfies
I(y;z|H) = hp(y|H) - hp(y|z, H) (38)
= hp(GlH) — Nlog(rea?). (39)

Let us now consider the set of vect@shat corresponds to the set of vectarsatisfying [(1)
and [2) with zero-mean i.i.d entries and where each entrji.hdgeal and imaginary parts. To

boundhz(y|H), we first suggest to find the distribution @f within this set, that maximizes
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the entropyhz (). This distribution is obtained by solving the following aptzation problem

max hg(x),
Pa

subject to / pz(x)dx =1,

2N
[ 1ape@im < =,

¢V g
where (?V is the support of the probability density functign,. To satisfy [1) with i.i.d.
components(?V is defined as &N-hypercube where each side ranges frem,/v/2 to

Q./V/2. Using the Karush-Kuhn-Tucker conditions, the solutiortlié maximization problem
is pz(®) = [[2Y, Ke "+ where K and satisfy

(40)

Qg
/  Ke Tz, = 1, (41)
-%
Q
T R QZ
R Ke g, < T (42)
_9 20
V2
v 02
2 PR
v P Ke "hdt, — -2 | = 0, (43)
2 23
V2
v > 0. (44)

From this set of equations, it can be checked that 0 and K = 1/(1/2€2,) is the solution of
the optimization problem as long as< g < 3. In this casepz(x) is a uniform distribution on
the support(?V, so thato? = 2/3 (which satisfies[{2) as long a&< 3) . For 5 > 3, pz is a
truncated Gaussian whef€ and~ are the solution of the following system of equations

Qg
/ P Ke TR, = 1, (45)
Qu
Voo o 0?2
Ke hdz, = —=Z 46
_&xn e T 25 (46)

V2
which can be solved numerically.
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For all 5, the differential entropy of each entry afis thel@

he(@,) = —E {log (Ke—ﬁ%)} ,
he(Z,) = —log(K)+E{Z3},

~ Q2
he(@,) = —log(K)+755. (47)
g
This is also the differential entropy of a real Gaussian oamdvariable with variance
1%/ [ (2meK?).

Let nowz € R*N denote a zero-mean Gaussian vector \/Et{u?ﬁ:}'ﬁ} = %/B ], [ (2meK?)

and definey = Hz +w = [ﬁ IZN} f . The differential entropy ofc being equal to the
w

differential entropy ofz and w being a Gaussian vector independentaofand z, we have

hg(x,w) = hg(z,w), so that the lemma of Zamir and Feder applies. Therefore,
hp(Y|H) > hi(y|H). (48)

Conditionally to H, y € R?" is a Gaussian vector of covariance matrix

E{g ) = L (o2n+ O 49
{yy\ }—5 O 2N+7T€K2 . (49)
From the definition of the conditional entropy, it then contlest
12 /B
I(y;x|H) > Eg { logdet [ 02 Iy + HH'| ;. (50)
mek?

Theoren(3B finally follows from the substitution df (50) in{85).
Note that forl < 8 <3,y =0 and K = 1/(1/29,) so that [GD) simplifies to

202
I(y;xz|H) > Eg {logdet <03UIN+ 7T;IIIT')}. (51)

"Note that in the case where < 3, E {z}} = Q2/6 and notQ22/(23). However,y being null for 3 < 3, {@7) remains
valid for all 8 > 1.
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Fig. 1. Capacity bounds as a function of the rms delay and Bogpreadss = 1, SNRyeax = 15 dB andko = 10.
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