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Abstract

Upper and lower bounds are derived for the noncoherent capacity of Rician fading channel with

time and frequency memory and constrained peak and average power. The peak power limitation is

applied in the time domain. It is shown that these bounds can be split into two terms. For the upper

bound, the first term is equivalent to the capacity of a time-invariant frequency selective channel whose

frequency response corresponds to the root mean square frequency response of the studied channel, and

for the lower bound, this term is the coherent capacity of thechannel with a weighted SNR. For the two

bounds, the second term is a penalty term, explicit in the Doppler spectrum of the channel, that captures

the effect of the channel uncertainty induced by the noncoherent setting. Impact of channel parameters,

such as delay and Doppler spread, on the capacity bounds are discussed and numerical applications on

a real Rician channel are also provided.
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I. INTRODUCTION

In this paper, we derive bounds on the capacity of discrete-time Rician-fading single-input

single-output (SISO) channels. Time-varying multipath propagation leading to selective channels

in both time and frequency is considered. To provide realistic guidelines for the design of

communication systems, we here study the capacity under several critical assumptions.

(A1) The peak power of the transmitted symbols is limited.

(A2) Neither the transmitter nor the receiver know the current realization of the channel but

both know the channel distribution.

(A3) The available frequency bandwidth is limited.

(A1) is the direct translation of limitations imposed by electronic devices such as power amplifier

and mixers and can also result from regulatory constraints.This assumption is fundamental since

it rules out the often used Gaussian or ’peaky’ signals [2], [3] from the set of capacity achieving

inputs. (A2) corresponds to thenoncoherent setting where the channel state information (CSI)

is unknown to both the transmitter and the receiver. This assumption has to be contrasted with

the coherent model where the CSI is available at the receiver. For most channels, the coherent

model is not realistic since receivers are not genie-aided and the effort to acquire the CSI usually

induces some capacity loss (pilots insertion, channel estimation errors etc.). Finally,(A3) results

from obvious physical limitations of spectrum resources and transmitting devices.

Despite the efforts that have been expended in the literature to study noncoherent fading

channels, no closed-form expression of their capacity is known to date, even for simple channels.

Most of the results available either compute the capacity inasymptotic regimes (infinite-

bandwidth, high or low signal-to-noise ratio) and/or derive capacity bounds, and this, with

various assumptions on the peak-power and the channel selectivity. The first contributions on the

noncoherent capacity focus on memoryless flat fading channels with an unbounded peak-power

[2], [4], [5]. More recently, peak-power constraints are considered in [6] for memoryless Rician

fading channels. Capacity bounds of fading channels with memory and a peak-power limitation

have been derived in [7] for the flat Rayleigh-fading channel, and in [8], [9] for the doubly

selective (DS) Rayleigh-fading channel.

The works presented in [8] and [9] are closely related to thispaper since they include both

time and frequency memory in their channel model and also bound the peak-power. To derive
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the capacity bounds, the authors in [8] and [9] partition thedoubly dispersive channel in the

frequency domain into narrow subbands, so that the fading isflat, but time-varying, within

each subband. The peak-power constraint is then applied either on each time-frequency slot of

the input signal or only on the time representation of this signal1. Time-frequency peak power

limitation mainly models regulatory rules that apply to systems such as UWB for instance,

whereas limitation in the time domain corresponds to constraints imposed by electronic devices.

In [8] and [9], the capacity bounds resulting from a peak constraint in both time and frequency

are valid for any bandwidth. However, for the peak constraint in time only, these bounds are

either limited to infinite bandwidth signals or to the low signal-to-noise ratio (SNR) regime.

The main motivation of the work presented in this paper has been to derive capacity bounds

for bandlimited signals that are peak-constrained in time only, and this, without any restriction

on the SNR. Moreover, we are here interested in Rician fadingchannels that include Rayleigh

fading channels as a special case.

The main contributions of this paper are threefold:

• Based on some results provided in [7] and [9], a new upper bound on noncoherent capacity

under peak-constraint in time only is derived for Rician fading channels whatever the input

signal bandwidth and the SNR. This bound is equivalent to thecapacity of a time-invariant

frequency selective channel whose frequency response corresponds to the root mean square

frequency response of the studied channel, penalized by a term that expresses the lack of

knowledge on the actual channel realization.

• In the same context, using the generalization of the entropypower inequality detailed in

[10], a new lower bound is derived. Similarly to the upper bound, this lower bound is the

difference of two terms. The first term is the coherent capacity of the channel with a weighted

SNR and the second term translates the capacity loss due to the channel uncertainty.

• These bounds are then applied to a real underwater acoustic channel, recorded in the

Mediterranean sea, that is a typical example of a doubly dispersive Rician fading channel.

Comparison between the capacity of existing underwater communications systems and the

theoretical limits is discussed.

1Note that limiting the peak-power in the time-frequency domain does not necessarily imply a limit on the peak-power in the

time domain only.
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This paper is organized as follows. Section II is devoted to the presentation of the system model

and the main assumptions. Capacity upper and lower bounds applicable to doubly dispersive

channels are derived in section III. In section IV, the impact of the channel parameters on the

capacity bounds is discussed through various numerical experiments. Finally, conclusions are

given in section V.

II. SYSTEM MODEL

A. Notation

Throughout this paper, lowercase boldface letters denote vectors, e.g.x, and uppercase

boldface letters denote matrices, e.g.,A. The superscriptsT and † stand for transposition and

Hermitian transposition respectively. The Hadamard (element-wise) products of two matricesA

andB is writtenA⊙B. The elements of a matrixA are denoted by[A]k,l, where the indexesk

andl start at 0.IN is theN×N identity matrix and1N is theN×1 vector with all components

equal to 1. The Kronecker symbol is denoted byδk,l. We letD(x) designate a diagonal square

matrix whose main diagonal contains the elements of the vector x. We writex↓k for the vector

obtained from theN × 1 vectorx by shifting itsN − k first elementsk times downward, and

then padding thek upper with zeros.ℜ(A) denote a matrix whose elements consist of the real

part of each element of the matrixA andℑ(A) denote a matrix whose elements consist of the

imaginary part of each element of the matrixA. CN (m,R) stands for the distribution of a

jointly proper Gaussian random vector with meanm and covariance matrixR. ‖A‖F denotes

the Frobenius norm of the matrixA. Finally, E {.} stands for expectation.

B. Channel model

Let x = [x0, · · · , xN−1]
T denote the vector of input symbols. These symbols are assumed

identically independent distributed2 (i.i.d.) with the following constraints

|xn|2 ≤ Ω2
x, (1)

E
{
|xn|2

}
= σ2

x ≤ Ω2
x

β
, (2)

2Because of the time-correlation of the channel impulse response, a higher channel capacity could possibly be obtained if the

input symbol distribution was not restricted to i.i.d. distribution. Nevertheless, taking into account for correlation between input

symbols leads to an untractable. Therefore we here focus on the case of i.i.d. input symbols, as it is done in most works related

to the capacity of channels with memory, see [7], [9], [11], [12].
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where the peak-to-average power ratioβ is a constant satisfyingβ ≥ 1 . The channel outputy

is given by

y = Hx+w (3)

wherew ∼ CN (0, σ2
wIN), H is theN ×N proper Gaussian random channel matrix defined as

H
∆
=




h0,0 0 . . . . . . . . . 0
... h1,0

. . .
...

hL−1,L−1
...

. . . . . .
...

0 hL,L−1 hL,0
. . .

...
...

. . . . . .
...

. . . 0

0 . . . 0 hN−1,L−1 . . . hN−1,0




, (4)

andhn,k is the gain at timen of the channel tapk, for n ∈ [0, N − 1] and k ∈ [0, L − 1], L

designating the length of the channel impulse response. Depending upon the context, it can also

be convenient to rewrite (3) as

y =
L−1∑

k=0

hk ⊙ x↓ k +w (5)

wherehk is theN × 1 vector corresponding to thek-th tap of the channel, i.e.,

hk = [h0,k, h1,k, · · · , hN−1,k]
T .

Our channel model relies on the widely used wide-sense stationary uncorrelated scattering

(WSSUS) assumption [13], so that

E {hk} = h̄k · 1N
∆
= h̄k (6)

E

{[
hk − h̄k

] [
hl − h̄l

]†} ∆
= RH(k) · δk,l (7)

where h̄k and RH(k) are the mean and the covariance matrix3 of the k-th channel tap,

respectively. For commodity, we denote byσ2
h(k) the element of the main diagonal ofRH(k),

and

Ξ2
H

∆
=

L−1∑

k=0

σ2
h(k) (8)

Ψ2
H

∆
=

L−1∑

k=0

|h̄k|2 =
∫ 1/2

−1/2

|ψH(θ)|2 dθ, (9)

3Note that, thanks to the WSSUS assumption, the covariance matrix RH(k) is Toeplitz for any k.
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whereψH(θ) is the discrete Fourier transform of the mean of the channel impulse response

(CIR), i.e.,ψH(θ) =
∑

k h̄ke
−2jπ k θ. Note that the parametersΨ 2

H andΞ 2
H can be viewed as the

energy of the mean and of the random (zero-mean) part of the CIR of an equivalent time-varying

flat fading channel obtained by summing the energies incoming through the different channel

taps.

We also denote byRH the sum over the channel taps of the covariance matricesRH(k), i.e.

RH
∆
=
∑

k RH(k), and by ŠH(ν), the normalized Doppler spectrum of this equivalent time-

varying flat-fading channel

ŠH(ν) =
1

Ξ2
H

N−1∑

n=0

[RH ]n,1 e
−2j π n ν/N . (10)

Using the above quantities, we can now define the peak SNR of the global equivalent time-

varying flat fading channel

SNRpeak
∆
= Ω2

x

Ψ2
H + Ξ2

H

σ2
w

, (11)

as well as the maximum average SNR

SNRav
∆
=

1

β
SNRpeak. (12)

The Rice factor of thek-th channel tap is defined as

κk
∆
=

|h̄k|2
σ2
h(k)

. (13)

C. Assumptions for capacity assessment

As expressed in [11], [14], the definition of the capacity fora random linear time-varying

communication channel is not as simple as for the AWGN channel. Indeed, one has to consider

how information on the channel state (CSI) is available.

The most favorable case is when the actual channel realization is available to both the

transmitter (TX) and the receiver (RX). Then, TX has the possibility to continuously adapt the

instantaneous transmitted power and the bitrate to the current channel state. Another favorable

case is when the CSI is available to RX, but not TX. This secondcase leads to the “coherent” or

“ergodic” capacity, also defined as the meanEH {C} of the channel capacityC over the set of

all channel realizations. This case is not applicable here since, as the CIR is not a priori known, a

continuous estimation of the channel by RX is necessary, either by inserting known pilot symbols
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in the transmitted frames, which obviously decreases the data rate, or by performing a ”blind”

or a decision-directed channel estimation which, because of the channel estimation errors, also

results in a lower channel capacity.

Therefore, the most general case is considered here, where only the statistical properties of the

channel are assumed to be known to TX and RX. Then, with the above notations, the channel

capacity [15] is given by

C = lim
N→∞

1

N

[
sup

px∈Px

I(y;x)

]
(14)

where I(y;x) = hE(y) − hE(y|x) is the mutual information betweeny and x, hE(y) the

differential entropy ofy, and thesup is taken forpx in the setPx of the input symbol distributions

which meet the constraints (1) and (2).

III. CAPACITY BOUNDS

A. Upper bounds

Before providing an upper bound that explicitly considers the doubly dispersive nature of the

channel as well as the peak constraint on the input symbols, let us first notice that using the

chain rule for the mutual information, a rather intuitive bound can be derived. The first upper

bound, given in theorem 1, corresponds to the ideal assumption where the receiver knows each

channel realization and where the input symbols are not peakconstrained.

Theorem 1: The capacity of a discrete-time Ricean WSSUS channel with i.i.d. input symbols

and a peak-power constraint in the time domain is upper-bounded asC ≤ Ccoh, where

Ccoh = lim
N→∞

1

N
EH

{
log det

(
IN +

Ω2
x

β σ2
w

HH†
)}

. (15)

Ccoh corresponds to the coherent capacity4 of the channelH without any restriction on the peak

power of the input symbols and with an average SNR equals toSNRpeak/β.

Proof: See Appendix A.

In addition to its intuitive appeal, we show in Section IV that this bound proves to be useful

for some real Rician fading channels.

4Note that to the best of our knowledge, no closed-from expression is known for the coherent capacity. However, it can easily

be assessed numerically via a Monte-Carlo technique.
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To further characterize the capacity (14), a new upper boundthat integrates the peak-power

constraint as well as the channel selectivity in both time and frequency is proposed in Theorem

2. This bounds, explicit in the channel Doppler spectrum, relies on recent results obtained in

[7], [8] and [9].

Theorem 2: The capacity of a discrete-time Ricean WSSUS channel with i.i.d. input symbols

and a peak-power constraint in the time domain is upper-bounded asC ≤ UDS
peak, where

UDS
peak = max

0≤α≤1

∫ 1/2

−1/2

log

(
1 +

αΩ2
x

β σ2
w

(
Ξ2
H + |ψH(θ)|2

))
dθ

− α

β

∫ 1/2

−1/2

log

(
1 +

Ω2
x Ξ2

H

σ2
w

ŠH(ν)

)
dν (16)

Proof: See Appendix B.

At this stage, some comments are required. To begin with, note thatUDS
peak is the difference of

two terms:

• the first term is equivalent to the ergodic capacity of a time-invariant frequency selective

channel whose frequency response corresponds to the average frequency response of the

channelH (i.e, En

{∣∣∑
k hn,ke

−2jπ k θ
∣∣2
}
= Ξ2

H + |ψH(θ)|2).
• the second term, which is a penalty term, corresponds to the capacity loss due to the fact that

the CIR is time-varying and unknown. This term takes into account the random zero-mean

part of the channel response through the Doppler spectrum.

The second remark is thatUDS
peak depends on the parameterα which corresponds to the ratio

between the average and the peak power. Situations whereα is chosen lower than 1 correspond

to cases where it is advantageous to transmit with an averagepower lower than the maximum

possible and, therefore, to favor the amplitude of input symbols to carry information. Such

situations can typically occur at high SNR (see Section IV) or when the channel fluctuates too

quickly to use constant modulus modulations (phase tracking becomes difficult).

B. Lower bound

Using the generalization of the entropy power inequality detailed in [10], a lower bound on

the channel capacity is given in the following theorem.
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Theorem 3: The capacity of a discrete-time Rician WSSUS channel with i.i.d. input symbols

and a peak-power constraint in the time domain is lower-bounded asC ≥ LDS
peak, where

LDS
peak = lim

N→∞

1

N
EH

{
log det

(
IN + λ

Ω2
x

β σ2
w

HH†
)}

−
∫ 1/2

−1/2

log

(
1 +

Ω2
x Ξ2

H

β σ2
w

ŠH(ν)

)
dν. (17)

λ is a weighting factor given by

λ =





2β/(πe), if 1 ≤ β ≤ 3

eγΩ
2
x/ββ/(πeK2Ω2

x), if β > 3,
(18)

whereK andγ are the solution of the following system of equations
∫ Ωx√

2

−Ωx√
2

Ke−γu2

du = 1,

∫ Ωx√
2

−Ωx√
2

u2Ke−γu2

du =
Ω2

x

2β
, (19)

which can be solved numerically.

Proof: See Appendix C.

As the upper bound given in Theorem 2, this lower bound is alsothe difference of two terms.

The first term corresponds to the coherent capacity of the channel without peak-power limitation

as presented in Theorem 1, but with a SNR loss expressed by thefactor λ. The second term

is once again the capacity loss induced by the channel uncertainty. Note that forβ = 1, the

expression ofλ simplifies toλ = 2/(πe) which corresponds to a 6.3 dB SNR difference between

the first term of (17) and the upper-bound given in Theorem 1.

IV. I LLUSTRATIONS

We next evaluate the bounds of the previous section in various scenarios. Using a synthetic

channel model, impact of different channel parameters on the capacity are first discussed in

subsection IV-A. Capacity bounds applied to a real doubly selective Rician fading channel are

then analyzed in subsection IV-B .
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A. Capacity assessment on a synthetic channel model

In this subsection we consider the case of peak-power constraint only, i.e.β = 1. The simulated

propagation channel is a discrete-time doubly selective channel. The frequency selectivity of the

channel is characterized by its power-delay profile that is chosen to be exponentially decaying as

modeled in numerous wireless environments [16], i.e.,En {|hn,k|2} = Ge−k/µdelay whereµdelay

corresponds approximately to the root mean square (rms) delay spread of the channel and where

G is chosen such thatΨ2
H + Ξ2

H = 1. The channel lengthL is limited to 3µdelay. The time

selectivity of the channel is characterized by the Doppler spectrumŠH(ν). To avoid the choice

of an arbitrary Doppler spectrum,̌SH(ν) is chosen to be fully determined by its rms doppler

spreadµdop using the maximum entropy derivation proposed in [17]. Moreprecisely,µdop is

an input parameter from whicȟSH(ν) can be obtained by solving the following optimization

problem [17]

max
ŠH(ν)

∫ 1
2

− 1
2

log ŠH(ν)dν,

subject to
∫ 1

2

− 1
2

ν2ŠH(ν)dν = µ2
dop. (20)

For the simulations, we assume that all channel taps have thesame Doppler spectrum.

Figure 1 shows the behavior of the capacity bounds as a function of both the delay and the

Doppler spread. The displayed upper bound is the minimum of the two upper bounds presented

in the previous section and the lower bound is the maximum between0 andLDS
peak. SNRpeak

is set to 15dB and a single line-of-sight component is considered in the channel withκ0 = 10

andκ1 = κ2 = · · · = κL−1 = 0. As expected, the capacity bounds strongly depends onµdelay

and µdop. These bounds appears to be monotonically decreasing inµdelay but not in µdop. As

opposed to common misconception, the capacity of a channel does not necessarily decrease with

its fluctuation speed. The capacity depends on the entropy ratehR of the channel and not directly

on its Doppler spread5. This is highlighted by Figure 2 where the entropy rate of thesimulated

channel is plotted as a function of the Doppler spread. For instance, for limit cases whereµdop

tends to0 or 1/2, the entropy rate tends to−∞. According to [15], the minimum mean-squared

5The entropy rate of the channel is [15]hR = 1
2
log(2πe) + 1

2

∫ 1/2

−1/2
log ŠH(ν)dν
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error (MMSE) of the best estimator of a sample of a random process given the infinite past is

MMSE =
1

2πe
22hR (21)

so that an entropy equaling−∞ leads to a totally predictable process which is favorable for

the capacity. By comparing Figure 1 and 2, the direct relation between the channel capacity

and its entropy rate can be checked (the capacity bounds decreases as the channel entropy rate

increases).

Figures 3(a) and 3(b) represent a detailed cut of Figure 1 along theµdop and theµdelay axis

respectively. This figures are mainly displayed to show thatUDS
peak is mostly relevant when the

channel entropy rate is high, whereasCcoh presents an interest (i.e.Ccoh ≤ UDS
peak) when the

channel is strongly frequency selective but with a low entropy rate.

As discussed in Section III-A,UDS
peak provides a guideline on the design of practical transmit

system. More specifically, through the parameterα, it indicates when it is relevant to carry

information on the signal amplitude. Figure 4 shows the evolution ofα as a function of the peak

SNR and the Rice factorκ. For this figure, the simulated channel is a flat fading channel with

µdop = 10−2. It can be seen that for high peak SNR,α < 1 so that the recommended transmit

signal according toUDS
peak does not lie on the circle of radiusΩx, i.e., its average power is chosen

lower than the maximum allowable.

B. Capacity assessment on a real doubly selective Rician fading channel

In this subsection we consider a real doubly selective Rician fading channel. The main

objective is here to see whether this theoretical bounds areuseful and applicable on real channels.

The studied channel is an underwater acoustic channel recorded in the Mediterranean sea6 at

a carrier frequency of 6 kHz in a 1 kHz bandwidth, with a 60 to 120 m water depth, and

a transmission distance of 2500 m. This channel is relevant because its envelope is Rician

distributed and also because the underwater environment fully fits in the scenario depicted in

the introduction, i.e. the channel realizations are not known a priori to the transmitter and the

receiver, and the peak-power can be strongly constrained inthe time domain because of the cost

and volume of transmitting devices (amplifier, acoustic sources, etc.)7.

6This scenario corresponds to a typical environment where underwater acoustic communication systems can operate.

7To date, there is no regulatory rules for underwater systemsthat constraint the peak-power in the frequency domain.
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The channel impulse response corresponding to this channelis plotted in Figure 5. Using the

algorithm presented in [18], the rms Doppler spread is estimated to 1.2 Hz (µdop = 1.2 10−3)

and the rms delay spread to 8 ms (µdelay = 8). The overall channel spreading factor is therefore

µdop × µdelay = 9.6 10−3. Theσ2
h(k) and theh̄k of (8) and (9), needed to compute the capacity

bounds, are estimated using the empirical mode decomposition method as detailed in [19]. The

Doppler spectrum̌SH(ν) is obtained using the Welch’s averaged, modified periodogram spectral

estimation method (see the spectrum.welch function of MATLAB).

To assess the capacity bounds, we study two scenarios of practical interest for underwater

communication systems. The first scenario corresponds to the case where the transmit power is

mainly limited by the cost and volume of amplifier which mostly induces a strong constraint on

the peak-power (β = 1). The second scenario depicts the case where the main limitation results

from overheating problems of the acoustic sources (the transducers). In this context, acoustic

transducers cannot usually handle an average power higher than 10% of the allowable peak

power (β = 10).

Figure 6 shows the various capacity bounds applied to the real Mediterranean channel in the

first scenario whereβ = 1. As a reference, the capacityC AWGN
peak of the peak-limited AWGN

channel is also plotted8. The first observation is that the two upper boundsUDS
peak andCcoh are

very similar and close to the peak-limited AWGN capacity. This can be explained by the strong

Rician nature of the channel. Most of the energy of the channel is conveyed by a few paths with

a very high Rice factor (for instance, the Rice factor of the path with a delayτ = 10 ms is around

80). The analysis ofLDS
peak in Figure 6 leads to the conclusion that, in the operating SNRrange

of existing high data rate underwater modems (approx. 15 to 20 dB), this channel should allow

to communicate at least at 2 to 3 bits/sec/Hz. This means thatfor channels similar to the one

considered here, there is still a significant possible bitrate improvement with respect to existing

SISO high data rate modems that usually operate around 1 bit/sec/Hz [21]–[23]. Similarly, this

also means that there should be a 5 to 10 dB margin between whatis implemented today and

the ultimate theoretical limits.

Figure 7 shows the different capacity bounds of the Mediterranean channel in the second

8Note thatC AWGN
peak has been thoroughly investigated in [20] where an advanced numerical algorithm has been proposed to

compute it.

November 16, 2010 DRAFT



13

scenario where the system is mainly limited by the average power. As a reference, the capacity

C AWGN
av of the AWGN channel without peak limitation is also plotted.It can be noticed that

UDS
peak is not very useful in this case sinceµdop is relatively small andβ is quite large. It can

also be observed thatCCoh andLDS
peak are very tight. This means that as long asβ is sufficiently

large andµdop relatively small, the knowledge of the channel realizations at the receiver (i.e., a

coherent setting) does not bring a significant capacity gain. This highlighted in Figure 8 where

the capacity bounds are plotted as a function of the peak-to-average power ratioβ in dB for an

average SNR set to 15 dB. For the considered channel, as long as β ≥ 8 dB, the noncoherent

setting is almost equivalent to the coherent one and the capacity loss induced by a peak power

limitation becomes negligible.

V. CONCLUSION

Upper and lower bounds for the noncoherent capacity of doubly selective Rician fading

channels have been presented. A peak-power limitation on the transmit signal has been considered

to reflect the constraint imposed by electronic devices. Forboth upper and lower bounds, the

effect of channel uncertainty induced by the noncoherent setting is quantified by a penalty term

that is explicit in the channel Doppler spectrum. From the new upper bound given in this paper,

it is shown that guidelines on the optimal repartition between average and peak-power of the

transmit signals can be derived. Moreover, by studying a real doubly dispersive Rician fading

channel, it appears that the capacity bounds can be relevantfor practical systems. More precisely,

by considering a real underwater acoustic channel, we have shown that in a typical shallow water

environment (high Rice factor, channel spreading factor less than10−2), there is still a theoretical

bitrate gain of a factor 2 to 3 relatively to the existing highdata rate underwater modems. Finally,

numerical assessments on this real channel indicates that the noncoherent setting does not imply

a significant capacity loss compared to the coherent settingwhen the peak-to-average power

ratio is relatively high (> 8 dB).
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APPENDIX A

PROOF OFTHEOREM 1

Let’s first notice that

I(y;x)
(a)
= I(y;x|H)− I(x;H|y)

(b)

≤ I(y;x|H) (22)

where (a) follows from the chain rule (see details in [24, pp.937-938]) and relies upon the mutual

independence ofH andx, and (b) follows fromI(x;H|y) ≥ 0, since mutual information is

non-negative. Then,

C ≤ lim
N→∞

1

N

[
sup

px∈Px

I(y;x|H)

]
(23)

with I(y;x|H) = hE(y|H)− hE(y|x,H). By applying [15, Theorem 17.2.3] and by noticing

thatE
{
yy†|H

}
= σ2

xHH† + σ2
wIN with σ2

x ≤ Ω2
x/β, we have

hE(y|H) ≤ EH

{
log det

(
πe

(
Ω2

x

β
HH† + σ2

wIN

))}
, ∀x ∈ C

N .

Moreover, conditionally tox andH, y is complex Gaussian with a covariance matrix equals

to σ2
wIN . Therefore, ∀x ∈ CN

I(y;x|H) ≤ EH

{
log det

(
πe

(
Ω2

x

β
HH† + σ2

wIN

))}
−N log(πeσ2

w)

= EH

{
log det

(
IN +

Ω2
x

β σ2
w

HH†
)}

. (24)

Theorem 1 finally follows from the substitution of (24) into (23).

APPENDIX B

PROOF OFTHEOREM 2

A. Main steps of the proof

A first step is to notice that, in (14), the termhE(y) can be upper bounded by the differential

entropy of a complex Gaussian vectorỹ with same covariance matrix as vectory (see [15,

Theorem 17.2.3]). Hence,hE(y) ≤ log det (πeΓy), whereΓy is the covariance matrix ofy. In

other respects, conditionally to the input symbolsx, the channel outputy is (exactly) complex

Gaussian, with covarianceΓy|x. Therefore, it turns out that

C ≤ sup
px∈Px

lim
N→∞

1

N

(
log det Γy − Ex

{
log det Γy|x

})
. (25)
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The second step of the proof is to compute the two covariance matricesΓy andΓy|x and then

to substitute theirlog det into (25). The computation of the covariance matrices, given in the

next subsections of this appendix, yields to

lim
N→∞

1

N
log det Γy = log σ2

w +

∫ 1/2

−1/2

log

(
1 +

σ2
x

σ2
w

(
Ξ2
H + |ψH(θ

)
|2)
)
dθ (26)

and

lim
N→∞

1

N
log det Γy|x = lim

N→∞
log σ2

w +
1

N
log det

(
IN +

1

σ2
w

RH ⊙ xx†
)
. (27)

where all quantities are as defined in Section II. Hence,

C ≤
∫ 1/2

−1/2

log

(
1 +

σ2
x

σ2
w

(
Ξ2
H + |ψH(θ

)
|2)
)
dθ− lim

N→∞

1

N
Ex

{
log det

(
IN +

1

σ2
w

RH ⊙ xx†
)}

.

(28)

Finally, the third step consists in lower bounding the second term of (28) as

lim
N→∞

1

N
Ex

{
log det

(
IN +

1

σ2
w

RH ⊙ xx†
)}

= lim
N→∞

1

N

∫

x

log det

(
IN +

1

σ2
w

RH ⊙ xx†
)
px(x) dx

≥ lim
N→∞

1

N


 inf
px∈Px

log det
(
IN + 1

σ2
w
RH ⊙ xx†

)

‖x‖2


 E

{
‖x‖2

}

= σ2
x lim

N→∞


 inf

px∈Px

log det
(
IN + 1

σ2
w
RH ⊙ xx†

)

‖x‖2


 .

SinceRH is positive semidefinite, the above infimum is achieved by a vector x whose entries

satisfy |xn|2 ∈ {0,Ω2
x} [7, Sec. VI-A]. Based on this result, we then apply [9, lemma 11, pp.

383], so that

lim
N→∞

1

N
Ex

{
log det

(
IN +

1

σ2
w

RH ⊙ xx†
)}

≥ σ2
x

Ω2
x

∫ 1/2

−1/2

log

(
1 +

Ω2
xΞ

2
H

σ2
w

ŠH(ν)

)
dν. (29)

Theorem 2 is then obtained by noticing that0 ≤ σ2
x ≤ Ω2

x/β and by settingα = σ2
x

Ω2
x
.

B. Computation of limN→∞
1
N
log det Γy

Let’s first notice thatE {y} = 0 follows from the zero-mean assumption and the mutual

independence ofx andH. From (3), it comes that

Γy = σ2
wIN + σ2

x

(
H̄H̄

†
+ E

{(
H − H̄

) (
H − H̄

)†})
, (30)
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whereH̄
∆
= E {H}. Thanks to the WSSUS assumption, it can be checked that

E

{(
H − H̄

) (
H − H̄

)†}
= D(v),

wherev is a N × 1 vector whose elements are given byvn =
∑min (n,L−1)

i=0 σ2
h(i). For a finite

L, we havelimN→∞
1√
N
‖D(v) − Ξ2

HIN‖F = 0, so thatD(v) and Ξ2
HIN are asymptotically

equivalent9. Using [25, Corollary 2.4], it then follows that

lim
N→∞

1

N
log det Γy = lim

N→∞

1

N
log det

[
σ2
wIN + σ2

x

(
H̄H̄

†
+D(v)

)]

= lim
N→∞

1

N
log det

[
σ2
wIN + σ2

x

(
H̄H̄

†
+ Ξ2

HIN

)]
. (31)

Let T̄H denote the cousin circulant matrix of the banded Toeplitz matrix H̄, i.e.,

T̄H =




h̄0 h̄L−1 . . . h̄1

h̄1 h̄0
. . .

...
...

.. . . . . 0 h̄L−1

h̄L−1
. . . . . .

.. . . . . . . .

0 h̄L−1 . . . h̄1 h̄0




.

As shown in [25, Lemma 4.2],̄H and T̄H are asymptotically equivalent. Moreover, they are

both semi-positive andlog det is continuous. Therefore, [25, Corollary 2.4]

lim
N→∞

1

N
log det Γy = log σ2

w + lim
N→∞

1

N
log det

[(
1 +

σ2
x Ξ

2
H

σ2
w

)
IN +

σ2
x

σ2
w

T̄H T̄ †
H

]
.

The eigenvalue decomposition of̄TH is T̄H = FN · EH · F †
N , whereFN is the Fourier matrix

of sizeN and whereEH is aN × N matrix whose elements are all zeros except the diagonal

elements which are equal to the output of the discrete Fourier transform (DFT) of the discrete-

time averaged CIR, i.e.,

[EH ]n,n =

L−1∑

k=0

h̄ke
−2j π k n/L.

Using this last result, asN → ∞, it comes that the density of the eigenvalues of the matrix

T̄H T̄ †
H tends to a limit, which is the spectrum|ψH(θ)|2. We finally get

lim
N→∞

1

N
log det Γy = log σ2

w +

∫ 1/2

−1/2

log

(
1 +

σ2
x

σ2
w

(
Ξ2
H + |ψH(θ)|2

))
dθ. (32)

9Note that for the asymptotic equivalence, we implicitly assume thatσh(i) < +∞, ∀i (see [25, Section 2.3] for more details).
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C. Computation of limN→∞
1
N
log det Γy|x

From (5), we have

Γy|x = σ2
wIN + E

{
L−1∑

k,l=0

[
(hk − h̄k)⊙ x↓ k

] [
(hl − h̄l)⊙ x↓ k

]†
}

(a)
= σ2

w IN +

L−1∑

k,l=0

D(x↓ k)E
{
[hk − h̄k][hl − h̄l]

+
}
D(x↓ l)

†

(b)
= σ2

wIN +
L−1∑

k,l=0

D(x↓ k)RH(k)δk,lD(x†
↓ l)

(c)
= σ2

w IN +

L−1∑

k=0

D(x↓ k)RH(k)D(x†
↓ k)

(d)
= σ2

wIN +

L−1∑

k=0

RH(k)⊙ x↓ kx
†
↓ k

where (a) follows from the mutual independence ofH, x andw, and also follows from the

fact thatu ⊙ v = uD(v) = D(v)u, for all vectorsu and v of the same dimension; (b) and

(c) follows from the WSSUS assumption and (d) results from the properties of the Hadamard

product.

By noticing thatx↓ kx
†
↓ k is asymptotically equivalent10 to xx†, i.e., limN→∞

1√
N
‖x↓ kx

†
↓ k −

xx†‖F = 0, it comes that

lim
N→∞

1

N
log det Γy|x = log σ2

w + lim
N→∞

1

N
log det

(
IN +

1

σ2
w

RH ⊙ xx†
)
. (33)

APPENDIX C

PROOF OFTHEOREM 3

The starting point for the proof of Theorem 3 is a well known information theoretic inequality

[7], [12]:

I(y;x) ≥ I(y;x|H)− I(y;H|x). (34)

The computation ofI(y;H|x) = hE(y|x)− hE(y|x,H) is straightforward since

10Note also that the peak power limitation applied tox implies that the strong norm ofxx†, as defined in [25, Eq. (2.13)],

is also bounded. This guarantees the asymptotic equivalence.
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• conditionally tox, y is distributed according to a complex Gaussian distribution with a

covariance matrix equals toσ2
wIN + σ2

xRH ,

• conditionally tox andH, y is complex Gaussian with a covariance matrix equals toσ2
wIN .

It yields, I(y;H|x) = log det(IN + σ2
x

σ2
w
RH) ≤ log det(IN + Ω2

x

β σ2
w
RH). Therefore, the channel

capacity can be lower bounded as

C ≥ lim
N→∞

1

N
I(y;x|H)− lim

N→∞

1

N
log det

(
IN +

Ω2
x

β σ2
w

RH

)
, ∀ x satisfying (1) and (2). (35)

The computation of the first term is not as easy. However, thisterm can be lower bounded

thanks to a generalization of the entropy power inequality [15].

Lemma (Zamir and Feder [10]): For anyN × 1 random vectoru with independent components

[u0, · · · , uN−1]
T and for any deterministicM × N matrix A, we havehE(Au) ≥ hE(Aũ),

where ũ is a N × 1 random vector with independent Gaussian components,[ũ0, · · · , ũN−1]
T ,

such thathE(ũn) = hE(un), ∀ 0 ≤ n ≤ N − 1.

Note that this lemma applies only for real matrixA and vectoru. Hence, we start by splitting

the channel matrixH, and the vectorsx andw, into their real and imaginary parts.

For anyu ∈ CN andA ∈ CN×N define

û =


ℜ(u)
ℑ(u)


 andÂ =


ℜ(A) −ℑ(A)

ℑ(A) ℜ(A)


 , (36)

so that the channel input-output relation can be written as

ŷ = Ĥx̂+ ŵ =
[
Ĥ I2N

]

x̂
ŵ


 . (37)

Note that the conditional mutual information ofy andx givenH satisfies

I(y;x|H) = hE(y|H)− hE(y|x,H) (38)

= hE(ŷ|H)−N log(πeσ2
w). (39)

Let us now consider the set of vectorsx̂ that corresponds to the set of vectorsx satisfying (1)

and (2) with zero-mean i.i.d entries and where each entry hasi.i.d real and imaginary parts. To

boundhE(ŷ|H), we first suggest to find the distribution of̂x, within this set, that maximizes
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the entropyhE(x̂). This distribution is obtained by solving the following optimization problem

max
p
x̂

hE(x̂),

subject to
∫

ζ2N
px̂(x̂)dx̂ = 1,

∫

ζ2N
‖x̂‖2px̂(x̂)dx̂ ≤ NΩ2

x

β
, (40)

where ζ2N is the support of the probability density functionpx̂. To satisfy (1) with i.i.d.

components,ζ2N is defined as a2N-hypercube where each side ranges from−Ωx/
√
2 to

Ωx/
√
2. Using the Karush-Kuhn-Tucker conditions, the solution ofthis maximization problem

is px̂(x̂) =
∏2N

n=1Ke
−γx̂2

n whereK andγ satisfy
∫ Ωx√

2

−Ωx√
2

Ke−γx̂2
ndx̂n = 1, (41)

∫ Ωx√
2

−Ωx√
2

x̂2nKe
−γx̂2

ndx̂n ≤ Ω2
x

2β
, (42)

γ

(∫ Ωx√
2

−Ωx√
2

x̂2nKe
−γx̂2

ndx̂n −
Ω2

x

2β

)
= 0, (43)

γ ≥ 0. (44)

From this set of equations, it can be checked thatγ = 0 andK = 1/(
√
2Ωx) is the solution of

the optimization problem as long as1 ≤ β ≤ 3. In this case,px̂(x̂) is a uniform distribution on

the supportζ2N , so thatσ2
x = Ω2

x/3 (which satisfies (2) as long asβ ≤ 3) . For β > 3, px̂ is a

truncated Gaussian whereK andγ are the solution of the following system of equations
∫ Ωx√

2

−Ωx√
2

Ke−γx̂2
ndx̂n = 1, (45)

∫ Ωx√
2

−Ωx√
2

x̂2nKe
−γx̂2

ndx̂n =
Ω2

x

2β
, (46)

which can be solved numerically.

November 16, 2010 DRAFT



20

For all β, the differential entropy of each entry of̂x is then11

hE(x̂n) = −E

{
log
(
Ke−γx̂2

n

)}
,

hE(x̂n) = − log(K) + γE
{
x̂2n
}
,

hE(x̂n) = − log(K) + γ
Ω2

x

2β
. (47)

This is also the differential entropy of a real Gaussian random variable with variance

eγΩ
2
x/β/(2πeK2).

Let now x̃ ∈ R2N denote a zero-mean Gaussian vector withE

{
x̃x̃

†
}
= eγΩ

2
x/βI2N/(2πeK

2)

and defineỹ = Ĥx̃ + ŵ =
[
Ĥ I2N

]

x̃
ŵ


 . The differential entropy of̃x being equal to the

differential entropy ofx̂ and ŵ being a Gaussian vector independent ofx̃ and x̂, we have

hE(x̃, ŵ) = hE(x̂, ŵ), so that the lemma of Zamir and Feder applies. Therefore,

hE(ŷ|H) ≥ hE(ỹ|H). (48)

Conditionally toH, ỹ ∈ R2N is a Gaussian vector of covariance matrix

E

{
ỹỹ

†|H
}
=

1

2

(
σ2
wI2N +

eγΩ
2
x/β

πeK2
ĤĤ

†
)
. (49)

From the definition of the conditional entropy, it then comesthat

I(y;x|H) ≥ EH

{
log det

(
σ2
wIN +

eγΩ
2
x/β

πeK2
HH†

)}
. (50)

Theorem 3 finally follows from the substitution of (50) into (35).

Note that for1 ≤ β ≤ 3, γ = 0 andK = 1/(
√
2Ωx) so that (50) simplifies to

I(y;x|H) ≥ EH

{
log det

(
σ2
wIN +

2Ω2
x

πe
HH†

)}
. (51)

11Note that in the case whereβ ≤ 3, E
{
x̂2
n

}
= Ω2

x/6 and notΩ2
x/(2β). However,γ being null for β ≤ 3, (47) remains

valid for all β ≥ 1.
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Fig. 1. Capacity bounds as a function of the rms delay and Doppler spreads.β = 1, SNRpeak = 15 dB andκ0 = 10.
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Fig. 2. Channel entropy rate as a function of the rms Doppler spread.
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Fig. 3. Details of the capacity bounds as a function of the rmsdelay and Doppler spreads,β = 1, SNRpeak = 15 dB and

κ0 = 10. (a) Bounds vs Doppler spread (µdelay = 10), (b) Bounds vs delay spread (µdop = 10−2).
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Fig. 5. Real doubly dispersive Rician fading channel recorded in the Mediterranean sea.τ corresponds to the delay axis of

each path of the channel impulse response.

November 16, 2010 DRAFT



26

−10 −5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

SNR
peak

 (dB)

C
ap

ac
ity

 (
bi

ts
/s

ym
bo

l)

 

 

U
peak
DS

CCoh

C
peak
AWGN

L
peak
DS

Fig. 6. Capacity bounds applied to the real doubly dispersive Rician fading channel recorded in the Mediterranean sea with
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Fig. 7. Capacity bounds applied to the real doubly dispersive Rician fading channel recorded in the Mediterranean sea with

β = 10.
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Fig. 8. Capacity bounds applied to the real doubly dispersive Rician fading channel recorded in the Mediterranean sea asa

function of the minimum peak-to-average power ratioβ in dB, SNRav = 15 dB.

November 16, 2010 DRAFT


	I Introduction
	II System model
	II-A Notation
	II-B Channel model
	II-C Assumptions for capacity assessment

	III Capacity bounds
	III-A Upper bounds
	III-B Lower bound

	IV Illustrations
	IV-A Capacity assessment on a synthetic channel model
	IV-B Capacity assessment on a real doubly selective Rician fading channel

	V Conclusion
	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Theorem ??
	B-A Main steps of the proof
	B-B Computation of  
	B-C Computation of 

	Appendix C: Proof of Theorem ??
	References

