Equivalence between Extendibility and Factor-Criticality *

Zan-Bo Zhang¹²† Tao Wang³, Dingjun Lou¹

¹Department of Computer Science,
Sun Yat-sen University, Guangzhou 510275, China

²Department of Computer Engineering, Guangdong
Industry Technical College, Guangzhou 510300, China

³Center for Combinatorics, LPMC,
Nankai University, Tianjin 300071, China

Abstract

In this paper, we show that if $k \ge (\nu+2)/4$, where ν denotes the order of a graph, a non-bipartite graph G is k-extendable if and only if it is 2k-factor-critical. If $k \ge (\nu-3)/4$, a graph G is $k\frac{1}{2}$ -extendable if and only if it is (2k+1)-factor-critical. We also give examples to show that the two bounds are best possible. Our results are answers to a problem posted by Favaron [3] and Yu [11].

Key words: *n*-factor-critical, *n*-critical, *k*-extendable, $k\frac{1}{2}$ -extendable

1 Introduction, terminologies and preliminary results

All graphs considered in this paper are finite, connected, undirected and simple. Let G be a graph, vertex set and edge set of G are denoted by V(G) and E(G). Let $S \subseteq V(G)$, we use G[S] to denote the subgraph of G induced by G and G and G to denote the subgraph $G[V(G) \setminus S]$. Let G and G be two disjoint graphs. The union $G_1 \cup G_2$ is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The join $G_1 \vee G_2$ is the graph obtained from $G_1 \cup G_2$ by joining each vertex of G to each vertex of G. The complete graph on G vertices and its complement are denoted

 $^{^*\}mbox{Work}$ supported by the Scientific Research Foundation of Guangdong Industry Technical College, granted No. 2005-11.

 $^{^\}dagger \mbox{Corresponding Author.}$ Email address: eltonzhang
2001@yahoo.com.cn.

by K_n and I_n . Let X and Y be two disjoint subsets of V(G), the number of edges of G from X to Y is denoted by e(X,Y). For other terminologies and notations not defined in this paper, we refer the readers to [1].

A matching M of G is a subset of E(G) in which no two edges have a common end-vertex. M is said to be a perfect matching if it covers all vertices of G. A graph G is said to be k-extendable for $0 \le k \le (\nu - 2)/2$ if it is connected, contains a matching of size k and any matching in G of size k is contained in a perfect matching of G. G is said to be minimal k-extendable if G is k-extendable and G - e is not k-extendable for each $e \in E(G)$. The concept of k-extendable graphs was introduced by Plummer in [8]. In [10], Yu generalized the idea of k-extendibility to $k\frac{1}{2}$ -extendibility for graph of odd order. A graph G is said to be $k\frac{1}{2}$ -extendable if (1) for any vertex v of G there exists a matching of size k in G - v, and (2) for every vertex v of G, every matching of size k in G - v is contained in a perfect matching of G - v.

A graph G is said to be n-factor-critical, or n-critical, for $0 \le n \le \nu - 2$, if G - S has a perfect matching for any $S \subseteq V(G)$ with |S| = n. For n = 1, 2, that is factor-critical and bicritical. G is called minimal n-factor-critical if G is n-factor-critical but G - e is not n-factor-critical for any $e \in E(G)$. The concept of n-factor-critical graphs was introduced by Favaron [2] and Yu [10], independently.

It is easy to verify the following theorem.

Theorem 1.1. For $0 \le k \le \nu/2 - 1$, a 2k-factor-critical graph is k-extendable, and a (2k+1)-factor-critical graph is $k\frac{1}{2}$ -extendable.

The reverse of Theorem 1.1 does not hold in general. For example, a k-extendable bipartite graphs can not be n-factor-critical for any n > 0. However, there has been lots of research on the relationship between k-extendable non-bipartite graphs and n-factor-critical graphs. Most of the results can be viewed as answers to the following problem, which has been posted by Favaron [3] and Yu [11], in slightly different forms.

Problem 1. Does there exist a non-null function f(k) such that every k-extendable non-bipartite graph of even order $\nu \geq 2k + 2$ is f(k)-factor-critical?

The following two results of Plummer [8] are answers to k=2, 3.

Theorem 1.2. Let G be 2-extendable and non-bipartite with $\nu \geq 6$, then G is bicritical.

Theorem 1.3. Let G be 3-extendable and bicritical with $\nu \geq 8$, then G - e is again bicritical for any $e \in E(G)$.

And they have been generalized for all $k \geq 0$, as below.

Theorem 1.4. (Favaron [3], Liu and Yu [5]) For even integer $k \geq 0$, every connected, non-bipartite, k-extendable graph of even order $\nu > 2k$ is k-factor-critical.

Theorem 1.5. (Favaron [3]) For even integer $k \geq 0$, every connected non-bipartite, (k+1)-extendable graph G of even order $\nu \geq 2k+4$ is k-factor-critical. Moreover, G-e is k-factor-critical for every edge e of G.

In light of Theorem 1.1, if under some conditions k-extendable graphs are 2k-factor-critical, then the two classes of graphs are equal. The following results show that this happens when k is large relative to ν .

Theorem 1.6. (Favaron and Shi [4]) Every $((\nu/2) - 2)$ -extendable non-bipartite graph with $\nu \ge 14$ is $(\nu - 4)$ -factor-critical.

Theorem 1.7. (Yu [11]) Let G be a non-bipartite graph of even order and k an integer. If G is k-extendable and $k \ge 2(\nu+1)/3$, then G is 2k-factor-critical.

Following this direction, we give a better lower bound of k and show that it is the best possible. Furthermore, we show a similar equivalent relationship between (2k+1)-factor-critical graphs and $k\frac{1}{2}$ -extendable graphs.

The following lemmas will be used in the proofs of the main results.

Lemma 1.8. (Plummer [8]) If G is a k-extendable graph on $\nu \geq 2k+2$ vertices where $k \geq 1$, then G is also (k-1)-extendable.

Lemma 1.9. (Yu [10]) If G is a $k\frac{1}{2}$ -extendable graph, then G is also $(k-1)\frac{1}{2}$ -extendable.

Lemma 1.10. (Lou and Yu [7]) If G is a k-extendable graph with $k \ge \nu/4$, then either G is bipartite or $\kappa(G) \ge 2k$.

Lemma 1.11. If G is a k-extendable graph, then G is also m-extendable for all integers $0 \le m \le k$. If G is a $k\frac{1}{2}$ -extendable graph, then G is also $m\frac{1}{2}$ -extendable for all integers $0 \le m \le k$.

Proof. Apply repeatedly Lemma 1.8 and Lemma 1.9.

2 Equivalence between extendibility and factor-criticality

Theorem 2.1. If $k \ge (\nu + 2)/4$, then a non-bipartite graph G is k-extendable if and only if it is 2k-factor-critical.

Proof. We only need to prove that if $k \ge (\nu + 2)/4$, a k-extendable non-bipartite graph is 2k-factor-critical.

Let G be a k-extendable non-bipartite graph satisfying $k \geq (\nu + 2)/4$ but not 2k-factor-critical. Then, there exists a vertex set $S \subseteq V(G)$ with order 2k, such that G - S has no perfect matching. Moreover, we choose S so that the size of the maximum matching of G[S] has the maximum value r_0 . Clearly, $r_0 \leq k - 1$.

Let M_S be a maximum matching of G[S], then there exists two vertices u_1 and u_2 in G[S] that are not covered by M_S . By Lemma 1.11, M_S is contained in a perfect matching M of G. Let $u_iv_i \in M$, where $v_i \in V(G-S)$, i=1, 2. Let $S'=(S\setminus\{u_2\})\cup\{v_1\}$. Then $M_S\cup\{u_1v_1\}$ is a matching of G[S'] of size r_0+1 . By the choice of S, G-S' has a perfect matching $M_{\bar{S}'}$, and $|M_{\bar{S}'}| \leq k-1$. By Lemma 1.11, $M_{\bar{S}'}$ is contained in a perfect matching M' of G. Clearly, $M'\cap E(G[S'])$ is a perfect matching of G[S'] and $M'\cap E(G[S])$ is a matching of G[S] of size k-1. Therefore, $r_0=k-1$. Then $M_{\bar{S}}=M\cap E(G-S)$ is a maximum matching of G-S of size $r=|V(G-S)|/2-1\leq k-2$, and $v_1v_2\notin E(G)$.

Let $M_S = \{x_1x_2, \dots, x_{2k-3}x_{2k-2}\}$, $M_{\bar{S}} = \{y_1y_2, \dots, y_{2r-1}y_{2r}\}$. If $v_1y_1, v_2y_2 \in E(G)$, then $M_{\bar{S}} \cup \{v_1y_1, v_2y_2\} \setminus y_1y_2$ is a perfect matching of G - S, contradicting our assumption. Hence $|\{v_1y_1, v_2y_2\} \cap E(G)| \leq 1$. Similarly, $|\{v_1y_2, v_2y_1\} \cap E(G)| \leq 1$. So $e(\{v_1, v_2\}, \{y_1, y_2\}) \leq 2$. Similarly, $e(\{v_1, v_2\}, \{y_{2i-1}, y_{2i}\}) \leq 2$ for $1 \leq i \leq r$.

If $v_1x_1, v_2x_2 \in E(G)$, then $M_{\bar{S}} \cup \{v_1x_1, v_2x_2\}$ is a matching of G of size no more than k. By Lemma 1.11, $M_{\bar{S}} \cup \{v_1x_1, v_2x_2\}$ is contained in a perfect matching M'' of G. But then $(M'' \cap E(G[S])) \cup \{x_1x_2\}$ is a perfect matching of G[S], a contradiction. Hence, $|\{v_1x_1, v_2x_2\} \cap E(G)| \leq 1$. Similarly, $|\{v_1x_2, v_2x_1\} \cap E(G)| \leq 1$. So $e(\{v_1, v_2\}, \{x_1, x_2\}) \leq 2$. Similarly, $e(\{v_1, v_2\}, \{x_{2i-1}, x_{2i}\}) \leq 2$ for $1 \leq i \leq k-1$.

Then we have

$$d(v_1) + d(v_2) \le 2(k-1) + 2r + 4 \le 2(k-1) + 2(k-2) + 4 = 4k - 2.$$

But by Lemma 1.10, $\delta(G) \ge \kappa(G) \ge 2k$. So $d(v_1) + d(v_2) \ge 2k + 2k = 4k$, a contradiction.

To show that the lower bound in Theorem 2.1 is best possible, we consider the following class of graphs. Let $G^{(k)} = (K_{2k-1} \cup K_1) \vee (K_{2k-1} \cup K_1)$, $k \geq 2$. Then $\nu(G^{(k)}) = 4k$ and $G^{(k)}$ is non-bipartite.

Theorem 2.2. $G^{(k)}$ is k-extendable but not 2k-factor-critical.

Proof. Let G_1 and G_2 be two copies of $K_{2k-1} \cup K_1$ and $G^{(k)} = G_1 \vee G_2$. $G^{(k)}$ is not 2k-factor-critical, since $G_2 = G^{(k)} - V(G_1)$ does not have a perfect matching. Now we prove that $G^{(k)}$ is k-extendable.

Let M be a matching of size k in G, we show that $G^{(k)} - V(M)$ has a perfect matching. Let $|M \cap E(G_i)| = k_i$, i = 1, 2, then $k_1, k_2 \leq k - 1$. Without lose of generality we suppose $k_1 \geq k_2$. The size of the maximum matching in $G_2 - V(M)$ is no less than $\lfloor (2k - 1 - (k - k_1 - k_2) - 2k_2)/2 \rfloor = \lfloor ((k - 1) + (k_1 + k_2) - 2k_2)/2 \rfloor \geq \lfloor (2k_1 - 2k_2)/2 \rfloor = k_1 - k_2$. Therefore we can find a matching M' of size $k_1 - k_2$ in $G_2 - V(M)$.

In $G^{(k)} - V(M) - V(M')$, half of the vertices are from G_1 and the other half are from G_2 , hence we can find nonadjacent edges from G_1 to G_2 covering all vertices in it. So we get a perfect matching in $G^{(k)} - V(M)$ and $G^{(k)}$ is k-extendable.

Now we divert our attention to $k\frac{1}{2}$ -extendable graphs and (2k+1)-factor-critical graphs. Note that by definition a $k\frac{1}{2}$ -extendable graph can never be bipartite.

Theorem 2.3. If $k \ge (\nu - 3)/4$, then a graph G is $k \frac{1}{2}$ -extendable if and only if it is (2k + 1)-factor-critical.

Proof. We only need to prove that for $k \ge (\nu - 3)/4$, a $k \frac{1}{2}$ -extendable graph G is (2k + 1)-factor-critical.

Suppose that G is a $k\frac{1}{2}$ -extendable graph with $k \geq (\nu - 3)/4$, but not (2k+1)-factor-critical. Then, there exists a set $S \subseteq V(G)$ of order 2k+1, such that there is no perfect matching in G-S. Denote by r the size of the maximum matching in G[S]. Clearly, $r \leq k-1$.

Let M_S be a maximum matching of G[S], and v_1 be a vertex of G[S] not covered by M_S . Then by Lemma 1.11, M_S is contained in a perfect matching M of $G - v_1$. Then $M \cap E(G - S)$ is a matching of G - S of size at most $|V(G - S)|/2 - 1 \le k$.

Let v be a vertex in G-S not covered by $M \cap E(G-S)$, then $M \cap E(G-S)$ is contained in a perfect matching M' of G-v. But $M' \cap E(G[S])$ is a matching of G[S] of size at least r+1, a contradiction.

We present a class of graphs below to show that the bound in Theorem 2.3 is best possible. Let $H^{(k)} = I_{k+2} \vee (K_{k+3} \cup K_{2k})$. Then $\nu(H^{(k)}) = 4k+5$.

Theorem 2.4. $H^{(k)}$ is $k\frac{1}{2}$ -extendable but not (2k+1)-factor-critical.

Proof. Let $H_1=I_{k+2}$, $H_2=K_{k+3}$, $H_3=K_{2k}$ and $H^{(k)}=H_1\vee (H_2\cup H_3)$. Let S_1 be a subset of $V(H_2)$ of order k-2 and $u\in V(H_3)$. Let $S_0=V(H_1)\cup S_1\cup \{u\}$. Then $|S_0|=2k+1$ and $H^{(k)}-S_0$ does not have a perfect matching. Therefore $H^{(k)}$ is not (2k+1)-factor-critical.

To prove the $k\frac{1}{2}$ -extendibility of $H^{(k)}$, we let $v \in V(H^{(k)})$, M be a matching of size k in $H^{(k)} - v$ and $S = \{v\} \cup V(M)$. We show that $H^{(k)} - S$ has a perfect matching.

Let $V_1=V(H_1)-S$, $V_2=V(H_2)-S$ and $V_3=V(H_3)-S$. The existence of a perfect matching in $H^{(k)}-S$ is equivalent to the existence of a partition of V_1 into two subsets V_1' and V_1'' , such that $|V_1'| \leq |V_2|$, $|V_1''| \leq |V_3|$, $|V_1'| \equiv |V_2|$ (mod 2) and $|V_1''| \equiv |V_3|$ (mod 2). Since $|V_1|+|V_2|+|V_3|=|V(G)|-(2k+1)$ is even, $|V_1|$ and $|V_2|+|V_3|$ have the same parity. And since $|V_2|+|V_3| \geq (k+3)+2k-(2k+1)=k+2 \geq |V_1| \geq k+2-1-k=1$, such a partition can always be obtained. Hence we find a perfect matching in $H^{(k)}-S$ and $H^{(k)}$ is $k\frac{1}{2}$ -extendable.

3 Final remarks

As we have pointed out earlier, a k-extendable bipartite graph G can not be n-factor-critical for any n > 0. This is because we can choose a vertex set S of order n so that G - S is not balanced. However, for n = 2k, if we keep the two partitions of G - S balanced when we choose S, then G - S does have a perfect matching. This is a result by Plummer [9].

Theorem 3.1. Let G be a connected bipartite graph with bipartition (U, W) and suppose k is a positive integer such that $k \leq \nu/2 - 1$. Then G is k-extendable if and only if for all $u_1, \ldots, u_k \in U$ and $w_1, \ldots, w_k \in W$, $G' = G - u_1 - \cdots - u_k - w_1 - \cdots - w_k$ has a perfect matching.

Hence, following the terms in the definition of n-factor-critical graphs, if we define "2k-factor-criticality" in a balanced bipartite graph G so that we keep the two partitions of G-S balanced when choosing S, then G is k-extendable if and only if it is "2k-factor-critical", for $0 \le k \le \nu/2 - 1$.

Plummer [8] has proved that $\kappa(G) \geq k+1$ for a k-extendable graph G. Hence $\delta(G) \geq \kappa(G) \geq k+1$. For minimal k-extendable bipartite graphs, the following result of Lou [6] shows that the bound can always be reached.

Theorem 3.2. Every minimal k-extendable bipartite graph G with bipartition (U, W) has at least 2k + 2 vertices of degree k + 1. Furthermore, both U and W contain at least k + 1 vertices of degree k + 1.

While for minimal k-extendable non-bipartite graphs we have not found such a simple characterization. When k=1, the minimum degree can be 2 or 3. And no result is known for $k \geq 2$. Illuminated by Lemma 1.10, Lou and Yu [7] raised the following conjecture.

Conjecture 1. Let G be a minimal k-extendable graph on ν vertices with $\nu/2+1 \leq 2k+1$. Then $\delta(G)=k+1$, 2k or 2k+1.

For minimal n-factor-critical graphs, Favaron and Shi [4] raised the following conjecture.

Conjecture 2. Every minimal n-factor-critical graph G has $\delta(G) = n+1$.

By the results obtained, we see that except the case that $\nu=4k$, Conjecture 1 is actually part of Conjecture 2 and the value 2k in Conjecture 1 can be excluded.

Acknowledgements

We thank Professor Qinglin Yu for suggesting the problem and his valuable advices.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, Macmillan Press, London, 1976.
- [2] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41-51.
- [3] O. Favaron, Extendability and factor-criticality, Discrete Math. 213 (2000) 115-122.
- [4] O. Favaron, M. Shi, Minimally k-factor-critical graphs, Australas. J. Combin. 17 (1998) 89-97.
- [5] G. Liu, Q. Yu, On *n*-edge-deletable and *n*-critical graphs, Bull. Inst. Combin. Appl. 24 (1998) 65-72.
- [6] D. Lou, On the structure of minimally n-extendable bipartite graphs, Discrete Math. 202 (1999) 173-181.
- [7] D. Lou, Q. Yu, Connectivity of k-extendable graphs with large k, Discrete Appl. Math. 136 (2004) 55-61.
- [8] M.D. Plummer, On *n*-extendable graphs, Discrete Math. 31 (1980) 201-210.
- [9] M.D. Plummer, Matching extension in bipartite graphs, Congr. Numer. 54 (1986), 245-258.
- [10] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993) 55-64.
- [11] Q. Yu, A note on extendability and factor-criticality, Ann. Comb. 6 (2002) 479-481.