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0 Intersecting Families of Permutations

David Ellis∗, Ehud Friedgut†and Haran Pilpel‡

Abstract

A set of permutations I ⊂ Sn is said to be k-intersecting if any
two permutations in I agree on at least k points. We show that for
any k ∈ N, if n is sufficiently large depending on k, then the largest k-
intersecting subsets of Sn are cosets of stabilizers of k points, proving a
conjecture of Deza and Frankl. We also prove a similar result concern-
ing k-cross-intersecting subsets. Our proofs are based on eigenvalue
techniques and the representation theory of the symmetric group.

1 Introduction

The classical Erdős-Ko-Rado theorem states that if r < n/2, an intersect-
ing family of r-subsets of {1, 2, . . . , n} has size at most

(n−1
r−1

)
; if equality

holds, the family must consist of all r-subsets containing a fixed element.
The so-called ‘second Erdős-Ko-Rado theorem’ states that if n is sufficiently
large depending on k and r, then any k-intersecting family of r-subsets of
{1, 2, . . . , n} has size at most

(n−k
r−k

)
; if equality holds, the family must con-

sist of all r-subsets containing k fixed elements. We deal with analogues of
these results for permutations.

As usual, [n] will denote the set {1, 2, . . . , n}, and Sn will denote the
symmetric group, the group of all permutations of [n]. Two permutations
σ, τ ∈ Sn are said to intersect if they agree at some point, i.e. if there exists
i ∈ [n] such that σ(i) = τ(i). Similarly, they are said to k-intersect if they
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agree on at least k points, i.e., if there exist i1, i2, . . . , ik ∈ [n] such that
σ(it) = τ(it) for t = 1, 2, . . . , k. A subset I ⊂ Sn is said to be k-intersecting
if any two permutations in I k-intersect. In this paper, we characterize the
largest k-intersecting subsets of Sn for n sufficiently large depending on k,
proving a conjecture of Deza and Frankl. We also prove a similar result
concerning k-cross-intersecting subsets, proving a conjecture of Leader.

Our main tool in this paper is Fourier analysis on the symmetric group,
which entails representation theory. Although Fourier analysis has become
a central tool in combinatorics and computer science in the last two decades
(notably, since the landmark paper of [20]), it has not often been applied
to combinatorial problems in a non-Abelian setting. In retrospect, it seems
that in this case it fits the task perfectly.

As a bonus, we point out a nice aspect of Boolean (0/1 valued) func-
tions on Sn. One of the recurring themes in the applications of discrete
Fourier analysis to combinatorics over the last decade has been showing that
Boolean functions on {0, 1}n are ‘juntas’ (i.e. depend essentially on few co-
ordinates) precisely when their Fourier transform is concentrated mainly on
small sets. Here, we study Boolean functions on Sn whose Fourier trans-
form is supported on the irreducible representations of low dimension, and
connect them to cosets of subgroups which are the pointwise stabilizers of
small subsets of {1, 2 . . . , n}. Along the way, we also prove an interesting
generalization of Birkhoff’s theorem on bistochastic matrices.

1.1 History and related results

Let
Ti 7→j = {σ ∈ Sn, σ(i) = j}.

Clearly, Ti 7→j is 1-intersecting subset of Sn, with size (n− 1)!. Let

Ti1 7→j1,...,ik 7→jk =

k⋂

t=1

Tit 7→jt = {σ ∈ Sn : σ(it) = jt (1 ≤ t ≤ k)}.

If i1, . . . , ik are distinct and j1, . . . , jk are distinct, then Ti1 7→j1,...,ik 7→jk is a
coset of the stabilizer of k points; we will refer to it as a k-coset.

Clearly, a k-coset is a k-intersecting family of size (n− k)!. As observed
by Deza and Frankl [10], it is easy to prove that a 1-intersecting subset of
Sn is no larger than a 1-coset:

Theorem 1. [10] For any n ∈ N, if I ⊂ Sn is 1-intersecting, then |I| ≤
(n− 1)!.
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Proof. Let H be the cyclic group generated by the n-cycle (123 . . . n). No
two permutations in H intersect, and the same is true for any left coset of
H. The (n − 1)! left cosets of H partition Sn. If I ⊂ Sn is 1-intersecting,
then I contains at most one permutation from each left coset of H, and
therefore |I| ≤ (n− 1)!.

Deza and Frankl conjectured in [10] that for any n ∈ N, the 1-cosets are
the only 1-intersecting subsets of Sn with size (n−1)!. Perhaps surprisingly,
this turned out to be substantially harder to prove; it was first proved by
Cameron and Ku [6] and independently by Larose and Malvenuto [21].

What about k-intersecting families? For n small depending on k, the
k-cosets need not be the largest k-intersecting subsets of Sn. Indeed,

{σ ∈ Sn : σ has at least k + 1 fixed points in {1, 2, . . . , k + 2}}

is a k-intersecting family with size

(k + 2)(n − k − 1)! − (k + 1)(n − k − 2)!,

which is larger than (n−k)! if k ≥ 4 and n ≤ 2k. However, Deza and Frankl
conjectured in [10] that if n is large enough depending on k, the k-cosets are
the largest k-intersecting subsets of Sn:

Conjecture 1 (Deza-Frankl). For any k ∈ N and any n sufficiently large
depending on k, if I ⊂ Sn is k-intersecting, then |I| ≤ (n − k)!. Equality
holds if and only if I is a k-coset of Sn.

This is our main result. Our proof uses eigenvalue techniques, together
with the representation theory of Sn. In fact, it was proved by the first
author and the last two authors independently in 2008. Our two proofs of
the upper bound are essentially equivalent, hence the joint paper. However,
the latter two authors proved the equality statement directly, via their gen-
eralization of Birkhoff’s Theorem (Theorem 29), whereas the first author
deduced it from the following ‘stability’ result, proved in [8]:

Theorem 2 ([8]). Let k ∈ N be fixed, let n be sufficiently large depending
on k, and let I ⊂ Sn be a k-intersecting family which is not contained within
a k coset. Then I is no larger than the family

{σ ∈ Sn : σ(i) = i ∀i ≤ k, σ(j) = j for some j > k + 1}
∪ {(1, k + 1), (2, k + 1), . . . , (k, k + 1)},

which has size (1− 1/e+ o(1))(n − k)!.
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This may be seen as an analogue of the Hilton-Milner theorem [16] on
intersecting families of r-sets; the k = 1 case was conjectured by Cameron
and Ku in [6].

When there exists a sharply k-transitive subset of Sn, the ‘partitioning’
argument in the above proof of Theorem 1 can be replaced by a Katona-type
averaging argument, proving Conjecture 1 in this case.

[Recall that a subset T ⊂ Sn is said to be k-transitive if for any distinct
i1, . . . , ik ∈ [n] and any distinct j1, . . . , jk ∈ [n], there exists σ ∈ T such
that σ(it) = jt for each t ∈ [k]; T it is said to be sharply k-transitive if
there exists a unique such σ ∈ T . Note that a k-transitive subset T ⊂ Sn is
sharply k-transitive if and only if it has size n(n− 1) . . . (n− k + 1).]

Indeed, suppose that Sn has a sharply k-transitive subset T . Then any
left translate σT of T is also sharply k-transitive, so any two distinct permu-
tations in σT agree in at most k−1 places. Let I ⊂ Sn be k-intersecting; then
|I ∩ σT | ≤ 1 for each σ ∈ Sn. Averaging over all σ ∈ Sn gives |I| ≤ (n− k)!.

For k = 2 and n = q a prime power, Sn has a sharply 2-transitive
subgroup: identify the ground set with the finite field Fq of order q, and take
H to be the group of all affine maps x 7→ ax+ b (a ∈ Fq \ {0}, b ∈ Fq). Any
two distinct permutations in H agree in at most 1 point, and the same is
true for any left coset of H. So if I ⊂ Sn is 2-intersecting, then I contains
at most one permutation from each left coset of H. Since the (n − 2)! left
cosets of H partition Sn, this implies that |I| ≤ (n− 2)!.

Similarly, for k = 3 and n = q + 1 (where q is a prime power), Sn has a
sharply 3-transitive subgroup: identify the ground set with Fq ∪ {∞}, and
take H to be the group of all Möbius transformations

x 7→ ax+ b

cx+ d
(a, b, c, d ∈ Fq, ad− bc 6= 0).

However, it is a classical result of C. Jordan [19] that the only sharply k-
transitive permutation groups for k ≥ 4 are Sk (for k ≥ 4), Ak−2 (for k ≥ 8),
M11 (for k = 4) and M12 (for k = 5), where M11,M12 are the Matthieu
groups. Moreover, sharply k-transitive subsets of Sn have not been found
for any other values of n and k. Thus, it seems unlikely that this approach
can work in general. Instead, we will use a different approach.

Recall that if G is a group and X ⊂ G is inverse-closed, the Cayley
graph on G generated by X is the graph with vertex-set G and edge-set
{{g, h} : gh−1 ∈ X}. Let Γ1 be the Cayley graph on Sn generated by the
set of fixed-point-free permutations,

FPF = {σ ∈ Sn : σ(i) 6= i ∀i ∈ [n]}.
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Note that a 1-intersecting subset of Sn is precisely an independent set in Γ1.
It turns out that calculating the least eigenvalue of Γ1 (meaning the least
eigenvalue of its adjacency matrix) and applying Hoffman’s bound (Theorem
11) yields an alternative proof of Theorem 1. Calculating the least eigenvalue
of Γ1 is non-trivial, requiring use of the representation theory of Sn. It was
first done by Renteln [25], using symmetric functions, and independently and
slightly later by Friedgut and Pilpel [13], and also by Godsil and Meagher
[14]. As observed in [13] and [14], this also leads to an alternative proof that
the 1-cosets are the unique largest 1-intersecting subsets.

The obvious generalization of this approach fails for k-intersecting sub-
sets of Sn. Let Γk be the Cayley graph on Sn generated by the set

FPFk = {σ ∈ Sn : σ has less than k fixed points}.

A k-intersecting subset of Sn is precisely an independent set in Γk, so our
task is to find the largest independent sets in Γk. Unfortunately, for k fixed
and n large, calculating the least eigenvalue of Γk and applying Hoffman’s
bound only gives an upper bound of Θ((n−1)!) on the size of a k-intersecting
family.

A key idea of our proof is to choose various subgraphs of Γk, and to con-
struct a ‘pseudo-adjacency matrix’ A for Γk which is a suitable real linear
combination of the adjacency matrices of these subgraphs. We then apply a
weighted version of Hoffman’s Theorem (Theorem 12) to this linear combi-
nation, in order to prove the upper bound in Conjecture 1. The subgraphs
chosen will be Cayley graphs generated by various unions of conjugacy-
classes of Sn; this will enable use to calculate their eigenvalues using the
representation theory of Sn. Most of the work of the proof is in showing
that an appropriate linear combination exists.

1.2 Our main results

A remark on terminology: we will often identify a subset A of Sn, its char-
acteristic function 1A : Sn → {0, 1}, and its characteristic vector vA ∈ R|Sn|;
so when we say that a set A is spanned by sets B1, . . . , Bt, we mean that
vA ∈ Span{vB1

, . . . , vBt}.
Our main results in this paper are as follows.

Theorem 3. For any k ∈ N, and any n sufficiently large depending on k,
if I ⊂ Sn is k-intersecting, then |I| ≤ (n− k)!. Equality holds if and only if
I is a k-coset of Sn.

We also prove a cross-intersecting version of this theorem:
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Definition 1. Two sets I, J ⊂ Sn are k-cross-intersecting if every permu-
tation in I k-intersects every permutation in J .

Theorem 4. For any k ∈ N and any n sufficiently large depending on k, if
I, J ⊂ Sn are k-cross-intersecting, then |I||J | ≤ ((n − k)!)2. Equality holds
if and only if I = J and I is a k-coset of Sn.

The k = 1 case of the above was a conjecture of Leader [22].
Our argument proceeds in the following steps. (In order to not disrupt

the flow of the paper, some of the representation-theoretic terms used will
only be defined later.)

First, we bound the size of a k-intersecting family.

Theorem 5. For any k ∈ N and any n sufficiently large depending on k,
if I ⊂ Sn is k-intersecting, then |I| ≤ (n − k)!. Moreover, if I, J ⊂ Sn are
k-cross-intersecting, then |I||J | ≤ ((n − k)!)2.

Next, we describe the Fourier transform of the characteristic functions of
the families which achieve this bound. Let Vk be the linear subspace of real-
valued functions on Sn whose Fourier transform is supported on irreducible
representations corresponding to partitions µ of n such that µ ≥ (n−k, 1k),
where ≥ denotes the lexicographic order (see section 3).

Theorem 6. For k fixed and n sufficiently large depending on k, if I ⊂ Sn
is a k-intersecting family of size (n − k)!, then 1I ∈ Vk. Furthermore if
I, J ⊂ Sn are k-cross-intersecting and |I||J | = (n− k)!2, then 1I , 1J ∈ Vk.

We then prove the following:

Theorem 7. Vk is spanned by the characteristic functions of the k-cosets
of Sn.

Finally, we complete the proof of our main theorem using the following
combinatorial result:

Theorem 8. For any k ∈ N, if f is a Boolean function on Sn which is
spanned by the k-cosets, then f is the characteristic function of a disjoint
union of k-cosets.

Clearly, the last four theorems immediately imply our main result, The-
orem 3, and its cross-intersecting version, Theorem 4.
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1.3 Structure of the paper

In section 2 we provide the background that we will use from general rep-
resentation theory and graph theory. In section 3 we prove all necessary
results and lemmas that pertain to representation theory of Sn. Section
4 ties together the results of the previous two sections in order to bound
the size and provide a Fourier characterization of the largest k-intersecting
families. Finally, in section 5 we show that this characterization holds only
for k-cosets.

2 Background

2.1 General representation theory

In this section, we recall the basic notions and results we need from general
representation theory. For more background, the reader may consult [18].

Let G be a finite group, and let F be a field. A representation of G
over F is a pair (ρ, V ), where V is a finite-dimensional vector space over F ,
and ρ : G → GL(V ) is a group homomorphism from G to the group of all
invertible linear endomorphisms of V . The vector space V , together with
the linear action of G defined by gv = ρ(g)(v), is sometimes called an FG-
module. A homomorphism between two representations (ρ, V ) and (ρ′, V ′) is
a linear map φ : V → V ′ such that such that φ(ρ(g)(v)) = ρ′(g)(φ(v)) for all
g ∈ G and v ∈ V . If φ is a linear isomorphism, the two representations are
said to be equivalent, and we write (ρ, V ) ∼= (ρ′, V ′). If dim(V ) = n, we say
that ρ has dimension n. If V = Fn, then we call ρ a matrix representation;
choosing an F -basis for a general V , one sees that any representation is
equivalent to some matrix representation.

The representation (ρ, V ) is said to be irreducible if it has no proper sub-
representation, i.e. there is no proper subspace of V which is ρ(g)-invariant
for all g ∈ G.

The group algebra F [G] denotes the F -vector space with basis G and
multiplication defined by extending the group multiplication linearly. In
other words,

F [G] =




∑

g∈G

xgg : xg ∈ F ∀g ∈ G



 ,

and 
∑

g∈G

xgg



(∑

h∈G

yhh

)
=
∑

g,h∈G

xgyh(gh).
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Idenfifying
∑

g∈G xgg with the function g 7→ xg, we can view the vector
space F [G] as the space of all F -valued functions on G. The representation
defined by

ρ(g)(x) = gx (g ∈ G, x ∈ F [G])

is called the left regular representation of G; the corresponding FG-module
is called the group module. This will be useful when we describe irreducible
representations of Sn.

When F = R or C, it turns out that there are only finitely many equiva-
lence classes of irreducible representations of G, and any representation of G
is isomorphic to a direct sum of irreducible representations of G. Hence, we
may choose a set of representatives R for the equivalence classes of complex
irreducible representations of G. For the rest of section 2, R will be fixed,
and will consist of matrix representations.

If (ρ, V ) is a representation of G, and α is a linear endomorphism of V ,
we say that α commutes with ρ if α ◦ (ρ(g)) = ρ(g) ◦ α for every g ∈ G. (So
an isomorphism of (ρ, V ) is simply an invertible linear endomorphism which
commutes with ρ.) We will make use of the following:

Lemma 1 (Schur’s Lemma). If G is a finite group, and (ρ, V ) is a complex
irreducible representation of G, then the only linear endomorphisms of V
which commute with ρ are scalar multiples of the identity.

If F = R or C, we may define an inner product on F [G] as follows:

〈φ,ψ〉 = 1

|G|
∑

g∈G

φ(g)ψ(g).

If (ρ, V ) is a complex representation of V , the character χρ of ρ is the map
defined by

χρ : G → C;

χρ(g) = Tr(ρ(g)),

where Tr(α) denotes the trace of the linear map α (i.e. the trace of any
matrix of α). Note that χρ(Id) = dim(ρ), and that χρ is a class function on
G (meaning that it is constant on each conjugacy-class of G.)

The usefulness of characters lies in the following

Fact. Two complex representations are isomorphic if and only if they have
the same character; the set of complex irreducible characters is an orthonor-
mal basis for the space of class functions in C[G].
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If ρ is any complex representation of G, its character satisfies χρ(g
−1) =

χρ(g) for every g ∈ G. In our case, G = Sn, so g
−1 is conjugate to g for

every g, and therefore χρ(g) = χρ(g), i.e. all the characters are real-valued.
The irreducible characters of Sn are therefore an orthonormal basis for the
space of class functions on R[Sn].

Given two representations (ρ, V ) and (ρ′, V ′) of G, we can form their
direct sum, the representation (ρ⊕ρ′, V ⊕V ′), and their tensor product, the
representation (ρ⊗ρ′, V ⊗V ′). We have χρ⊕ρ′ = χρ+χρ′ , and χρ⊗ρ′ = χρ·χρ′ .

2.2 Fourier transforms and convolutions

In this section, we recall the basic notions of Fourier analysis on finite non-
Abelian groups. For more background, see for example [28]. Noting that
the normalization chosen differs in various texts, we set out our convention
below.

Definition 2. Let G be a finite group, and let f, g : G → R be two real-
valued functions on G. Their convolution f ∗ g is the real-valued function
defined by

f ∗ g(t) = 1

|G|
∑

s∈G

f(ts−1)g(s) (t ∈ G). (1)

Definition 3. The Fourier transform of a real-valued function f : G → R

is a matrix-valued function on irreducible representations; its value at the
irreducible representation ρ is the matrix

f̂(ρ) =
1

|G|
∑

s∈G

f(s)ρ(s). (2)

We now recall two related formulas we will need: the Fourier transform
of a convolution, and the Fourier inversion formula. If f, g : G → R, and ρ
is an irreducible representation of G, then

f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ). (3)

The Fourier transform is invertible; we have:

f(s) =
∑

ρ∈R

dim(ρ)Tr
[
f̂(ρ)ρ(s−1)

]
. (4)

In other words, the Fourier transform contains all the information about a
function f .
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2.3 Cayley Graphs

Recall that if G is a group, and X ⊂ G is inverse-closed, the Cayley graph
on G generated by X is the graph with vertex-set G and edge-set {{u, v} ∈
G(2) : uv−1 ∈ X}; it is sometimes denoted by Cay(G,X). In fact, we will
only be considering cases where G = Sn and X is a union of conjugacy
classes (i.e., X is conjugation-invariant).

The relevance of this notion to our problem stems from the following
observation. Consider the Cayley graph Γ1 on Sn generated by the set of
fixed-point free permutations,

FPF = {σ ∈ Sn : σ(i) 6= i ∀i ∈ [n]}.

As observed in section 1.1, a 1-intersecting family of permutations is pre-
cisely an independent set in this graph. More generally, a k-intersecting
family of permutations is precisely an independent set in the Cayley graph
Γk on Sn with generating set

FPFk = {σ ∈ Sn : σ has at most k fixed points}.

For any real matrix A ∈ R[G×G], the left action of A on R[G] is defined
as follows:

(Af)(σ) =
∑

τ∈G

Aσ,τf(τ).

The main observation of this subsection is that the adjacency matrix
of a Cayley graph operates on functions in R[G] by convolution with the
characteristic function of the generating set.

Theorem 9. Let G be a finite group, let X ⊂ G be inverse-closed, let
Cay(G,X) be the Cayley graph on G generated by X, and let A be the
adjacency matrix of Cay(G,X). Then for any function f : G→ R,

Af = |G|(1X ∗ f). (5)

Proof. For any f ∈ R[G], and any σ ∈ G, we have

(Af)(σ) =
∑

τ∈G

Aσ,τf(τ) =
∑

τ∈G

1X(στ−1)f(τ) = |G|(1X ∗ f)(σ),

as required.
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Taking the Fourier transform of both sides of (5), we obtain:

Âf = |G| · 1̂X f̂ . (6)

We will see shortly that if X is conjugation-invariant, as in our case,
then 1̂X is a scalar matrix, so (6) essentially reveals all eigenfunctions of the
operator A: it is well known that for any finite group G, the entries of the
matrices of a complete set of complex irreducible representations of G form
an orthogonal basis for the space of all complex-valued functions on G. So
in our case, these are also a complete set of eigenfunctions of A.

Theorem 10 (Schur; Babai; Diaconis, Shahshahani; Roichman; others [3,
7, 26]). Let G be a finite group, and let R be a complete set of complex
irreducible matrix representations of G, as above. Let X ⊂ G be inverse-
closed and conjugation-invariant, and let Cay(G,X) be the Cayley graph on
G with generating set X. Let A be the adjacency matrix of Cay(G,X). For
any ρ ∈ R, and any i, j ≤ dim(ρ), consider the function ρij(σ) = ρ(σ)ij .
Then {ρij}ρ,i,j is a complete set of eigenvectors of A. Furthermore, the
eigenvalue of ρij is

λρ =
1

dim(ρ)

∑

τ∈X

χρ(τ) =
|G|〈χρ, 1X〉
dim(ρ)

, (7)

which depends only on ρ.

Proof. Note that, due to (6), the claim regarding eigenvectors will follow
immediately once we have shown that 1̂X(ρ) is a scalar matrix for every
irreducible representation ρ. To do this, we will show that 1̂X(ρ) commutes
with every ρ(σ), which will imply the result (by Schur’s Lemma.) Indeed,
for every σ ∈ G,

ρ(σ)−11̂X(ρ)ρ(σ) = ρ(σ−1)1̂X(ρ)ρ(σ)

=
1

|G|
∑

τ∈G

ρ(σ−1)ρ(τ)1X (τ)ρ(σ)

=
1

|G|
∑

τ∈X

ρ(σ−1τσ)

=
1

|G|
∑

τ∈X

ρ(τ)

= 1̂X(ρ),

11



where we have used the fact that X is conjugation-invariant for the fourth
equality. Hence, by Schur’s Lemma, 1̂X(ρ) is indeed a scalar matrix; write
1̂X(ρ) = cρI. To calculate cρ, note that for any i ≤ dim(ρ),

cρ =
1

|G|
∑

τ∈X

1X(τ)ρi,i(τ).

Summing over i, we obtain:

cρ dim(ρ) =
1

|G|
∑

τ∈X

Tr[ρ(τ)] =
1

|G|
∑

τ∈X

χρ(τ).

From (6), λρ = |G|cρ, completing the proof.

2.4 Hoffman’s bound

First, a word regarding normalization, as this is always a potential source of
confusion when doing Fourier analysis. Given a graph G, we use the uniform
probability measure on the vertex-set V of G, not the counting measure. The
uniform measure induces the following inner product on R[V ]:

〈f, g〉 = 1

|V |
∑

v∈V

f(v)g(v);

this induces the Euclean norm

||f ||2 =
√

〈f, f〉.

If G = (V,E) is a graph, the adjacency matrix A of G is defined by

Av,w = 1{vw∈E(G)} (v,w ∈ V (G)).

This is a real, symmetric, n × n matrix, so there exists an orthonormal
system of n eigenvectors of A, which forms a basis for R[V ]. (Note that the
eigenvalues of A are often referred to as the eigenvalues of G.)

Hoffman [17] observed the following useful bound on the measure of an
independent set in a regular graph, in terms of the eigenvalues of the graph:

Theorem 11. [17] Let G = (V,E) be a d-regular, n-vertex graph. Let A be
the adjacency matrix of G. Let {v1, v2, . . . , vn} be an orthonormal system of
eigenvectors of A, with corresponding eigenvalues d = λ1 ≥ λ2 ≥ . . . ≥ λn =

12



λmin (so that v1 is the all-1’s vector). If I ⊂ V is an independent set in G,
then

|I|
|V | ≤

−λmin

λ1 − λmin
. (8)

If equality holds, then

1I ∈ Span ({v1} ∪ {vi : λi = λmin}) .

Proof. Let f = 1I , and let α = |I|
|V | . Observe that

f tAf =
∑

v,w∈I

Av,w = 2e(G[I]) = 0,

since I is independent. Write f as a linear combination of the eigenvectors:

f =

n∑

i=1

aivi.

Then α = 〈f, v1〉 = a1. Moreover, by Parseval’s identity, we have
∑

i a
2
i =

||f ||22 = α. Now,

0 = f tAf =

n∑

i=1

a2iλi ≥ a21λ1 +

n∑

i=2

a2i λmin = α2λ1 + (α− α2)λmin.

Rearranging gives (8). If equality holds, then ai 6= 0 implies that i = 1 or
λi = λmin, completing the proof.

A variant of Hoffman’s theorem, which will be crucial for us, comes from
weighting the edges of the graph G with real (possibly negative) weights.

Theorem 12. Let G = (V,E) be an n-vertex graph. Let G1, . . . , Gt be
regular, spanning subgraphs of G, all having {v1, v2 . . . , vn} as an orthonor-

mal system of eigenvectors (where v1 is the all-1’s vector). Let λ
(j)
i be the

eigenvalue of vi in Gj . Let β1, . . . , βt ∈ R, and let λi =
∑

j βjλ
(j)
i , and let

λmin = mini λi. If I ⊂ V is an independent set in G, then

|I|
|V | ≤

−λmin

λ1 − λmin
. (9)

If equality holds, then

1I ∈ Span ({v1} ∪ {vi : λi = λmin}) .
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Proof. The proof is a simple generalization of that of Theorem 11. For each
j, let Aj be the adjacency matrix of Gj , and let A =

∑
j βjAj . We have

0 = f tAf =

t∑

j=1

βjf
tAjf =

t∑

j=1

βj

n∑

i=1

a2iλ
(j)
i =

n∑

i=1

a2i λi

≥ λ1a
2
1 +

∑

i

a2i λmin = α2λ1 + (α− α2)λmin.

Rearranging gives (9). If equality holds, then ai 6= 0 implies that i = 1
or λi = λmin, completing the proof.

We may think of the λi’s above as the eigenvalues of the linear combi-
nation of graphs

Y =
t∑

j=1

βjGj .

The corresponding linear combination of adjacency matrices

A =

t∑

j=1

βjAj

is a so-called pseudo-adjacency matrix for G, meaning a symmetric matrix
such that Av,w = 0 whenever vw /∈ E(G); the λi’s are the eigenvalues of A.

Finally, we will need the following cross-independent version of Hoffman’s
Theorem. Variants of this theorem can be found in several sources, e.g. [2].

Theorem 13. Let G = (V,E) be a d-regular, n-vertex graph, and let
{v1, v2, . . . , vn} be an orthonormal system of eigenvectors of G, with cor-
responding eigenvalues d = λ1, λ2, . . . , λn ordered by descending absolute
value (so that v1 is again the all-1’s vector). Let I, J ⊂ V be (not necessar-
ily disjoint) sets of vertices in G such that there are no edges of G between
I and J . Then √

|I|
|V | ·

|J |
|V | ≤

|λ2|
λ1 + |λ2|

. (10)

If equality holds, then

1I , 1J ∈ Span ({v1} ∪ {vi : |λi| = |λ2|}) .

14



Proof. Let f and g be the characteristic functions of I and J respectively.
As in the proof of Hoffman’s Theorem, write

f =
n∑

i=1

aivi, g =
n∑

i=1

bivi.

Let α = |I|
|V | , β = |J |

|V | . We have

0 = 2e(I, J) = f tAg =

n∑

i=1

aibiλi = αβλ1 +

n∑

i=2

aibiλi. (11)

Hence, by the Cauchy-Schwarz inequality,

αβλ1 =

∣∣∣∣∣
n∑

i=2

aibiλi

∣∣∣∣∣ ≤
n∑

i=2

|aibiλi| ≤ |λ2|
√
α− α2

√
β − β2.

Rearranging gives √
αβ

(1− α)(1 − β)
≤ |λ2|

λ1
.

Recall the AM-GM inequality for two real variables (see for example [15]):

(α+ β)/2 ≥
√
αβ.

This implies that

(1− α)(1− β) = 1− α− β + αβ ≤ 1− 2
√
αβ + αβ = (1−

√
αβ)2,

and therefore √
(1− α)(1 − β) ≤ 1−

√
αβ.

Hence, √
αβ

1−√
αβ

≤ |λ2|
λ1

.

Rearranging gives
√
αβ ≤ |λ2|

λ1 + |λ2|
,

as required. The case of equality is dealt with as in the original Hoffman
theorem.

Note that the generalization of Hoffman’s theorem that we mention
above holds, with the obvious modifications, in the cross-independent case.
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3 Representation Theory of Sn

In this section we gather all the necessary background and results regarding
the representation theory of Sn. Readers familiar with the basics of this
theory are invited to skip the following subsection.

3.1 Basics

Our treatment follows Sagan [27].
A partition of n is a non-increasing sequence of integers summing to n,

i.e. a sequence λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ . . . ≥ λk and
∑k

i=1 λi = n;
we write λ ⊢ n. For example, (3, 2, 2) ⊢ 7; we sometimes use the shorthand
(3, 2, 2) = (3, 22). The following two orders on partitions of n will be useful.

Definition 4. (Dominance order) Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs)
be partitions of n. We say that λDµ (λ dominates µ) if

∑i
j=1 λi ≥

∑i
j=1 µi

for all i (where we define λi = 0 for all i > r, and µj = 0 for all j > s).

It is easy to see that this is a partial order.

Definition 5. (Lexicographic order) Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs)
be partitions of n. We say that λ > µ if λj > µj, where j = min{i ∈ [n] :
λi 6= µi}.

It is easy to see that this is a total order which extends the dominance
order.

The cycle-type of a permutation σ ∈ Sn is the partition of n obtained
by expressing σ as a product of disjoint cycles and listing its cycle-lengths
in non-increasing order. The conjugacy-classes of Sn are precisely

{σ ∈ Sn : cycle-type(σ) = λ}λ⊢n.

Moreover, there is an explicit one-to-one correspondence between irreducible
representations of Sn (up to isomorphism) and partitions of n, which we now
describe.

Let λ = (λ1, . . . , λk) be a partiton of n. The Young diagram of λ is an
array of n boxes, or cells, having k left-justified rows, where row i contains
λi cells. For example, the Young diagram of the partition (3, 22) is:
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If the array contains the numbers {1, 2, . . . , n} inside the cells, we call it
a λ-tableau, or a tableau of shape λ; for example:

6 1 7
5 4
3 2

is a (3, 22)-tableau. Two λ-tableaux are said to be row-equivalent if they
have the same numbers in each row; if a λ-tableau t has rows R1, . . . , Rl ⊂ [n]
and columns C1, . . . , Cl ⊂ [n], then we let Rt = SR1

×SR2
× . . .×SRl

be the
row-stablizer of t and Ct = SC1

× SC2
× . . . × SCk

be the column-stabilizer.
A λ-tabloid is a λ-tableau with unordered row entries (or formally, a

row-equivalence class of λ-tableaux); given a tableau t, we write [t] for the
tabloid it produces. For example, the (3, 22)-tableau above produces the
following (3, 22)-tabloid:

{1 6 7}
{4 5}
{2 3}

Consider the natural permutation action of Sn on the set Xλ of all λ-
tabloids; let Mλ = R[Xλ] be the corresponding permutation module, i.e.
the real vector space with basis Xλ and Sn action given by extending the
permutation action linearly. In general, Mλ is reducible. However, we can
describe a complete set of real irreducible representations, as follows.

If t is a tableau, let κt =
∑

π∈Ct
sgn(π)π; this is an element of the group

module R[Sn]. Let et = κt{t}. This is a (±1)-linear combination of tabloids,
so is an element of Mλ; we call the et’s polytabloids.

Definition 6. Let µ be a partition of n. The Specht module Sµ is the
submodule of Mµ spanned by the µ-polytabloids:

Sµ = Span{et : t is a µ-tabloid}.

Theorem 14. The Specht modules are a complete set of pairwise inequiva-
lent, irreducible representations of Sn.

Hence, any irreducible representation ρ of Sn is isomorphic to some Sλ;
in this case, we say that ρ has Young diagram λ. For example, S(n) =M (n)

is the trivial representation; M (1n) is the left-regular representation, and
S(1n) is the sign representation sgn.

17



From now on we will write [λ] for the equivalence class of the irreducible
representation Sλ, χλ for the character χSλ , and ξλ for the character of Mλ.
Notice that the set of λ-tabloids forms a basis for Mλ, and therefore ξλ(σ),
the trace of the corresponding permutation representation, is precisely the
number of λ-tableaux fixed by σ.

We now explain how the permutation modules Mµ decompose into irre-
ducibles.

Definition 7. Let λ, µ be partitions of n. A λ-tableau is produced by placing
a number between 1 and n in each cell of the Young diagram of λ; if it has
µi i’s (1 ≤ i ≤ n) it is said to have content µ. A generalized λ-tableau is
said to be semistandard if the numbers are non-decreasing along each row
and strictly increasing down each column.

Definition 8. Let λ, µ be partitions of n. The Kostka number Kλ,µ is the
number of semistandard generalized λ-tableaux with content µ.

Theorem 15. (Young’s rule) Let µ be a partition of n. Then the permuta-
tion module Mµ decomposes as

Mµ ∼= ⊕λ⊢nKλ,µS
λ.

Hence,

ξµ =
∑

λ⊢n

Kλ,µχλ.

For example, M (n−1,1), which corresponds to the natural permutation
action of Sn on [n], decomposes as

M (n−1,1) ∼= S(n−1,1) ⊕ S(n),

and therefore ξ(n−1,1) = χ(n−1,1) + 1.
The restriction of an irreducible representation of Sn to the subgroup

{σ ∈ Sn : σ(i) = i ∀i > n − k} = Sn−k can be decomposed into irreducible
representations of Sn−k as follows:

Theorem 16. (The branching rule.) Let α be a partition of n− k, and λ a
partition of n. We write α ⊂k λ if the Young diagram of α can be produced
from that of λ by sequentially removing k corners (so that after removing
the ith corner, we have the Young diagram of a partition of n− i.) Let aα,λ
be the number of ways of doing this; then we have

[λ] ↓ Sn−k =
∑

α⊢n−k: α⊂kλ

aα,λ[α],
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and therefore

χλ ↓ Sn−k =
∑

α⊢n−k: α⊂kλ

aα,λχα.

Definition 9. Let λ = (λ1, . . . , λk) be a partition of n; if its Young diagram
has columns of lengths λ′1 ≥ λ′2 ≥ . . . ≥ λ′l ≥ 1, then the partition λt =
(λ′1 . . . , λ

′
l) is called the transpose of λ, as its Young diagram is the transpose

of that of λ.

Theorem 17. Let λ be a partition of [n]; then [λ] ⊗ [1n] = [λt]. Hence,
χλt = χλ · sgn, and dim[λ] = dim[λt].

Definition 10. The hook of a cell (i, j) in the Young diagram of a partition
µ is Hi,j = {(i, j′) : j′ ≥ j} ∪ {(i′, j) : i′ ≥ i}. The hook length of (i, j) is
hi,j = |Hi,j|.

Theorem 18 (Frame, Robinson, Thrall [9]). If λ is a partition of n with
hook lengths (hi,j), then

dim[λ] =
n!∏
i,j hi,j

. (12)

3.2 Lemmas regarding representations and characters

In this subsection we state and prove several lemmas regarding representa-
tions of Sn and their characters; these will be instrumental in proving our
main theorem.

3.2.1 Dimensions of irreducible representations

Lemma 2. Let k ∈ N. Then there exists Ek > 0 depending on k alone such
that for any irreducible representation [λ] of Sn with all rows and columns
of length greater than n− k, dim[λ] ≥ Ekn

k+1.

To prove this lemma, we need two simple claims dealing with irreducible
representations with a relatively long row or column, and a separate result
dealing with the rest.

Claim 1. Let [λ] be an irreducible representation whose first row or column
is of length n− t. Then

dim[λ] ≥
(
n

t

)
e−t. (13)
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Proof. Note that if λ has first column of length n− t, then λt has first row
of length n− t. Since dim[λ] = dim[λt], we may assume that λ has first row
of length n− t.

By the hook formula (12), it suffices to prove that

∏

i,j

hi,j ≤ t!(n − t)!et.

Delete the first row R1 of the Young diagram of λ; the resulting Young
diagram D corresponds to a partition of t, and therefore a representation of
St, which has dimension

t!∏
(i,j)∈D hi,j

≥ 1.

Hence, ∏

(i,j)∈D

hi,j ≤ t!.

We now bound the product of the hook lengths of the cells in the first row;
this is of the form

∏

(i,j)∈R1

hi,j =

n−t∏

j=1

(j + cj),

where
∑n−t

j=1 cj = t. Using the AM/GM inequality, we obtain:

n−t∏

j=1

j + cj
j

=
n−t∏

j=1

(
1 +

cj
j

)

≤




n−t∑

j=1

1 +
cj
j

n− t




n−t

≤
(
n− t+

∑n−t
j=1 cj

n− t

)n−t

=

(
1 +

t

n− t

)n−t

< et.

Hence, ∏

i,j

hi,j ≤ t!(n − t)!et,

as desired.
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Note that, if t is suffiently small depending on n,
(
n
t

)
e−t is an increasing

function of t:

Claim 2. Let L(n, t) =
(n
t

)
e−t. Then L(n, t) ≤ L(n, t + 1) for all t ≤

(n− e)/(e + 1).

Proof. Observe that
L(n, t)

L(n, t+ 1)
=
e(t+ 1)

n− t
.

Solving for when this expression is at most 1 proves the claim.

For the representations not covered by Claim 1, we use the following.

Theorem 19 ([24]). If α, ǫ > 0, then there exists N(α, ǫ) ∈ N such that for
all n > N(α, ǫ), any irreducible representation [λ] of Sn which has all rows
and columns of length at most n/α has

dim[λ] ≥ (α− ǫ)n.

The proof of Lemma 2 is now immediate.

Proof of Lemma 2: If the partition λ contains a row or column of length
between n− (n− e)/(e + 1) and n− k − 1, then by Claims 1 and 2,

dim[λ] ≥ e−(k+1)

(
n

k + 1

)
≥ Ekn

k+1,

provided we choose Ek > 0 sufficiently small. Otherwise, the conditions of
Theorem 19 hold with α = (e+1)/e−ǫ′ for some small ǫ′ > 0, and therefore,
by Theorem 19,

dim[λ] ≥ nk+1,

provided n is sufficiently large depending on k, completing the proof.

3.2.2 Character tables and their minors

We will be working with certain minors of the character table of Sn. The
following lemmas imply that certain related matrices are upper-triangular
with 1’s all along the diagonal.

Lemma 3. If λ,µ are partitions of n, let Kλ,µ denote the Kostka number,
the number of semistandard λ-tableaux of content µ. If Kλ,µ ≥ 1, then
λ ≥ µ. Moreover, Kλ,λ = 1 for all λ.
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Proof. Observe that if there exists a semistandard generalized λ-tableau of
content µ, then all µi i’s must appear in the first i rows, so

∑i
j=0 µj ≤∑i

j=0 λj for each i. Hence, λ D µ. Since the lexicographic order extends
the dominance order, it follows that λ ≥ µ. Observe that the generalized
λ-tableau with λi i’s in the ith row is the unique semistandard generalized
λ-tableau of content λ, so Kλ,λ = 1 for every partition λ.

Lemma 4. Let λ be a partition of n, and let ξλ be the character of the
permutation module Mλ. Let σ ∈ Sn. If ξλ(σ) 6= 0, then cycle-type(σ)E λ.
Moreover, if cycle-type(σ) = λ, then ξλ(σ) = 1.

Proof. The set of λ-tabloids is a basis for the permutation module Mλ.
Thus, ξλ(σ), which is the trace of the corresponding representation on the
permutation σ, is simply the number of λ-tabloids fixed by σ. If ξλ(σ) 6= 0,
then σ fixes some λ-tabloid [t]. Hence, every row of length l in [t] is a union
of the sets of numbers in a collection of disjoint cycles of total length l in σ.
Thus, the cycle-type of σ is a refinement of λ, and therefore cycle-type(σ)Eλ,
as required. If σ has cycle-type λ, then it fixes just one λ-tabloid, the one
whose rows correspond to the cycles of σ, so ξλ(σ) = 1.

Theorem 20. Let C be the character table of Sn, with rows and columns
indexed by partitions / conjugacy classes in decreasing lexicographic order
(so Cλ,µ = χλ(σµ) where σµ is a permutation with cycle-type µ, and the top-
left corner of C is χ(n)(σ(n)).) Then the contiguous square minor C̃ of C

with rows and columns ψ : ψ > (n− k, 1k) is invertible and does not depend
on n, provided n > 2k.

Proof. Let K be the Kostka matrix, and let D be the matrix of permutation
characters,

Dλ,µ = ξλ(σµ), (14)

where σµ denotes a permutation with cycle-type µ. Let K̃ and D̃ denote
the top-left minor of K and D respectively (i.e. the minor with rows and
columns ψ : ψ > (n− k, 1k)).

Recall that by Young’s rule (Theorem 15), we have

Mµ ∼= ⊕λKλ,µS
λ, (15)

and therefore
ξµ =

∑

λ

Kλ,µχλ. (16)
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Hence,

(KtC)λ,µ =
∑

τ

Kτ,λCτ,µ =
∑

τ

Kτ,λχτ (σµ) = ξλ(σµ) = Dλ,µ, (17)

and therefore
KtC = D. (18)

Since the rows and columns of K are sorted in decreasing lexicographic
order, K is upper-triangular with 1’s all along the diagonal, by Lemma 3.
Therefore, Kt is lower-triangular with 1’s all along the diagonal.

Since Kt is lower-triangular, in addition to (18), we also have

K̃tC̃ = D̃. (19)

Since K̃t is lower-triangular with 1’s all along the diagonal, it is invertible,
and therefore

C̃ = (K̃t)−1D̃.

By Lemma 4, D̃ is upper-triangular with 1’s all along the diagonal, and is
therefore invertible. It follows that C̃ is invertible also.

We will now show that K̃ and D̃ are independent of n, provided n > 2k;
this will prove that C̃ is also independent of n.

Let λ > (n − k, 1k) be a partition. Then λ1 ≥ n − k. Write λ′ =
(λ1 − (n − k), λ2, . . .). (Note that this may not be a bona fide partition, as
it may not be in non-increasing order.) Now the mapping λ 7→ λ′ has the
same image over {λ : λ > (n− k, 1k)} for all n ≥ 2k: namely, ‘partitions’ of
k where the first row is not necessarily the longest.

We first consider K. Recall once again that Kλ,µ is the number of
semistandard λ-tableaux of content µ. Let t be a semistandard λ-tableau of
content µ; we now count the number of choices for t. Since the numbers in
a semistandard tableau are strictly increasing down each column and non-
increasing along each row, and µ1 ≥ n− k, we must always place 1’s in the
first n − k cells of the first row of t. We must now fill the rest of the cells
with content µ′. Provided n ≥ 2k, µ′ is independent of n, and the remaining
cells in the first row have no cells below them, so the number of ways of
doing this is independent of n. Hence, the entire minor K̃ is independent of
n.

Now consider D. Recall that Dλ,µ = ξλ(σµ) is simply the number of
λ-tabloids fixed by σµ. To count these, first note that the numbers in the
long cycle of σ (which has length at least n− k) must all be in the first row
of the λ-tabloid (otherwise the long cycle of σ must intersect two or more
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rows, as n − k > k.) This leaves us with a (λ1 − µ1, λ2, . . . , λr)-‘tableau’,
which we need to fill with the remaining n−µ1 elements in such a way that
σ fixes it. It is easy to see that, again, the number of ways of doing this is
independent of n.

In particular, if n ≥ 2k, the number of partitions λ of n such that
λ ≥ (n− k, 1k) is independent of n; we denote it by qk. Note that

qk =
k∑

t=0

pt,

where pt denotes the number of partitions of t.
We need a slightly more general result, which allows us to split some of

the partitions.

Definition 11. Assume that n > 3k + 1, and let µ = (µ1, . . . , µr) be a
partition of n with µ1 ≥ n− k. We define

Split(µ) = (µ1 − k − 1, k + 1, µ2, . . . , µr).

It is easy to see that Split(µ) is indeed a partition (i.e. it is in descending
order). Further, exactly one of µ and Split(µ) is even.

Theorem 21. Let C be as above, and let n > 3k + 1. Let φ1, . . . , φqk−1 be
the partitions > (n − k, 1k). Let µ1, . . . , µqk−1 be partitions such that, for
each j, either µj = φj or else µj = Split(φj). Then the square minor C̆ of C
with ith row φi and jth column µj is independent of the choices of the µj’s,
so is always equal to the top-left minor C̃.

Proof. It is easy to see that if λ, µ > (n − k, 1k), σ has cycle-type µ and σ′

has cycle-type Split(µ), then in fact, ξλ(σ) = ξλ(σ
′). (All rows of a λ-tabloid

below the first have length at most k. Hence, if a permutation σ′ with cycle-
type Split(µ) fixes a λ-tabloid [t], the numbers in (µ1 − k− 1)-cycle and the
(k+1)-cycle must all lie in the first row of [t]. It follows that a permutation σ
produced by merging these two cycles of σ′ fixes exactly the same λ-tabloids
as σ′ does.) Since the Kostka matrix K is upper-triangular with 1’s all down
the diagonal, {ξλ : λ > (n − k, 1k)} and {χλ : λ > (n − k, 1k)} are bases
for the same linear space, and therefore

χλ(σ) = χλ(σ
′)

for each λ > (n− k, 1k). Thus,

Cλ,Split(µ) = Cλ,µ ∀λ, µ > (n− k, 1k),

as required.
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3.2.3 Functions with Fourier transform concentrated on the ‘fat’
irreducible representations

One of the recurring themes in applications of discrete Fourier analysis to
combinatorics is proving that certain functions depend on few coordinates,
by showing that their Fourier transform is concentrated on the ‘low frequen-
cies’, the characters indexed by small sets. Examples of this can be found for
example in [5], [11] and [12]. In this paper, we need a non-Abelian analogue.
We show that functions on Sn whose Fourier transform is supported on ir-
reducible representations which are large with respect to the lexicographic
order, are spanned by the cosets of the pointwise stabilizers of small sets.

Definition 12. Let Vk be the linear space of functions whose Fourier trans-
form is supported only on representations ≥ (n− k, 1k).

We are now ready to prove

Theorem 7. Vk is the span of the k-cosets.

Proof. First, we show that the characteristic function of any k-coset is indeed
in Vk. Let T = Ta1 7→b1,...,ak 7→bk . It is easy to check that if f : Sn → R,
τ, π ∈ Sn, and

g : Sn → R

σ 7→ f(πστ),

i.e. the function g is a ‘double-translate’ of f , then f̂(ρ) = 0 ⇒ ĝ(ρ) = 0.
Hence, if f ∈ Vk, so is g. (This is saying that Vk is a ‘two-sided ideal’ of the
group algebra R[Sn].)

Hence, by double-translation, without loss of generality, we may assume
that ai = bi = i for each i ∈ [k], i.e. T = T17→1,...,k 7→k, so T ∼= Sn−k. We
use the branching rule (Theorem 16.) If ρ < (n− k, 1k), then ρ has at least
k + 1 cells outside the first row. In that case, every µ ⊂k ρ is a nontrivial
irreducible representation of Sn−k. We claim that this implies

∑

σ∈Sn−k

µ(σ) = 0.

To see this, observe that the linear map
∑

σ∈Sn−k
µ(σ) commutes with µ,

and therefore by Schur’s Lemma, it must be a scalar multiple of the identity
map. Its trace is zero, since χµ is orthogonal to the trivial character, so it

must be the zero map. Hence, 1̂T (ρ) = 0 for each ρ < (n− k, 1k).
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(Note also that if ρ = (n − k, 1k), then the only µ ⊂k ρ with nonzero
sum on T is that corresponding to the partition (n − k), i.e. the trivial
representation, which has sum (n−k)! on T . Therefore, 1̂T ((n−k, 1k)) 6= 0.
This will be useful in the proof of Theorem 22.)

In the other direction, let f ∈ Vk. Using the Fourier inversion formula,
we have

f(σ) =
∑

ρ≥(n−k,1k)

dim[ρ]Tr
[
f̂(ρ)ρ(σ−1)

]
. (20)

Consider the permutation module M (n−k,1k). By Young’s Rule (Theorem

15), M (n−k,1k) must contain at least one copy of every Schur module Sρ

with ρ ≥ (n − k, 1k), and no others. We can therefore rewrite the previous
formula as:

f(σ) = Tr
[
Aψ(σ−1)

]
, (21)

where ψ is a matrix representation corresponding to M (n−k,1k), and A is a
block-diagonal matrix whose blocks correspond to the irreducible modules
Sρ, i.e. it has Kρ,(n−k,1k) blocks corresponding to ρ, all equal to

dim[ρ]

Kρ,(n−k,1k)

f̂(ρ),

where the Kostka number Kρ,(n−k,1k) is the multiplicity of Sρ in M (n−k,1k).

Next, recall that the permutation module M (n−k,1k) corresponds to the
permutation action of Sn on (n − k, 1k)-tabloids, which can be identified
with ordered k-tuples of distinct numbers between 1 and n. Since trace is
conjugation-invariant, we can perform a change of basis, replacing A and ψ
by similar matrices B and φ, so that

f(σ) = Tr
[
Bφ(σ−1)

]
, (22)

where φα,β(τ) is 1 if τ takes the ordered k-tuple α to the ordered k-tuple β,
and 0 otherwise. But then equation (22) means precisely that

f =
∑

α,β

Bα,βTα7→β,

completing the proof.
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4 Proof of main theorems

4.1 Proof strategy

In this section we finally proceed to eat the pudding. In view of Theorem 7,
we would like to prove that whenever I is a maximum-sized k-intersecting
family, the Fourier transform of its characteristic function is supported on
the irreducible representations corresponding to partitions ρ ≥ (n − k, 1k),
i.e. those whose Young diagram has first row of length at least n − k. Let
us call these representations the ‘fat’ representations, and their transposes
(those whose Young diagram has first column of height at least n − k) the
‘tall’ representations. The rest will be called ‘medium’ representations.

Given a k-intersecting family I ⊂ Sn, we will first consider it as an
independent set in the Cayley graph Γk on Sn generated by FPFk, the set
of permutations with less than k fixed points. Since FPFk is a union of
conjugacy classes, by Theorems 10 and 14, the eigenvalues of Γk are given
by

λ(k)ρ =
1

dim[ρ]

∑

σ∈FPFk

χρ(σ) (ρ ⊢ n). (23)

Fixed-point-free permutations are also called derangements, and Γ1 is
also called the derangement graph. Let dn = |FPF1(n)|; it is well-known
(and easy to see, using the inclusion-exclusion formula), that

dn =

n∑

i=0

(−1)i
(
n

i

)
(n− i)! =

n∑

i=0

(−1)i
n!

i!
= (1/e + o(1))n!.

For n ≥ 5, the eigenvalues of Γ1 satisfy:

λ
(1)
(n) = dn

λ
(1)
(n−1,1) = −dn/(n − 1)

|λ(1)ρ | < cdn/n
2 < dn/(n − 1) for all other ρ ⊢ n

(where c is an absolute constant). Hence, the matrix Γ1 has

λmin/λ1 = −1/(n − 1).

As observed in [14] and [25], this implies via Hoffman’s bound (Theorem
11) that any 1-intersecting family I ⊂ Sn satisfies |I| ≤ (n− 1)!. If equality
holds, then 1I ∈ V1, from which we may conclude (e.g. from the k = 1
case of Theorems 7 and 8) that I is a 1-coset. Also, we may conclude via
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Theorem 13 that any 1-cross-intersecting pair of families I, J ⊂ Sn safisfy
|I||J | ≤ ((n − 1)!)2. If equality holds, then 1I , 1J ∈ V1, which enables us to
conclude that I = J is a 1-coset of Sn. This proves Leader’s conjecture on
1-cross-intersecting families in Sn for n ≥ 5 (it can be verified directly for
n = 4).

However, for k fixed and n large, calculating the least eigenvalue of Γk

and applying Hoffman’s bound only gives an upper bound of Θ((n− 1)!) for
the size of a k-intersecting subset of Sn. Indeed,

λ
(k)
(n−1,1) =

1

dim[n− 1, 1]

∑

σ∈FPFk

χ(n−1,1)(σ)

=
1

n− 1

∑

σ∈FPFk

(ξ(n−1,1)(σ)− 1)

=
1

n− 1

k−1∑

i=0

(
n

i

)
dn−i(i− 1)

= − 1

n− 1
(1/e + o(1))n!

(
1−

k−2∑

i=1

i

(i+ 1)!

)
.

Note that
∞∑

i=1

i

(i+ 1)!
=

d

dx

ex − 1

x

∣∣∣∣
x=1

= 1,

so for any k ∈ N,

1−
k−2∑

i=1

i

(i+ 1)!
> 0,

and therefore λ
(k)
(n−1,1) = −Θk((n − 1)!). It turns out that |λ(k)ρ | ≤ akn!/n

2

for all partitions ρ 6= (n), (n−1, 1), where ak > 0 depends on k alone. Hence,
if k is fixed and n is large, Γk has

λmin = λ
(k)
(n−1,1) = −Θk((n− 1)!).

Hence, applying Hoffman’s bound only gives

|I| ≤ Θk((n − 1)!),

for a k-intersecting I ⊂ Sn.
Instead, we will construct a linear combination Y of subgraphs of Γk

(each a Cayley graph generated by a conjugacy-class within FPFk) which
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has the correct eigenvalues for us to prove Theorems 5 and 6 from Theorem
12. By Theorem 10, if X1, . . . ,Xt are conjugacy-classes within FPFk, and
β1, . . . , βt ∈ R, then the eigenvalues of the linear combination

Y =
t∑

j=1

djCay(Sn,Xj)

are

λρ =
1

dim[ρ]

t∑

j=1

dj
∑

σ∈Xj

χρ(σ) =
1

dim[ρ]

t∑

j=1

dj |Xj |χρ(τj), (ρ ⊢ n) (24)

where τj denotes any permutation in Xj . So the eigenvalues of Y still
correspond to partitions of n, and are therefore relatively easy to handle.

The value of λmin/λ1 required in Theorem 12 to produce the upper bound
in Theorem 5 is as follows:

Corollary 1. Define

ω = ωn,k = − (n− k)!

n!− (n− k)!
= − 1

n(n− 1) . . . (n− k + 1)− 1
.

Assume the conditions of Theorem 12. If λmin/λ1 = ω, and I is an inde-
pendent set in G, then |I| ≤ (n− k)!.

Proof. Immediate from Theorem 12.

Since rescaling the linear combination of graphs makes no difference
to the above, our aim will be to construct a linear combination Y with
λ1 = 1 and λmin = ω. Since equality has to hold in Theorem 12 when the
independent set is a k-coset, we know that for any k-coset T , we must have

1T ∈ Span ({v1} ∪ {vi : λi = ω}) .

By Theorem 7, it follows that we must have λρ = ω for each fat partition
ρ 6= (n).

We will in fact construct two linear combinations, Yeven and Yodd, from
Cayley graphs generated by respectively even/odd conjugacy-classes within
FPFk. We design these linear combinations so that λ(n) = 1 and λρ = ω for
all fat ρ 6= (n). Recalling for any partition ρ, we have χρt = χρ · sgn, where
sgn is the sign character, we see from (24) that for any partition ρ, we have:

• λρt = λρ in Yeven, whereas
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(n) fat, 6= (n) (1n) tall, 6= (1n) medium

Yeven 1 ω 1 ω o(|ω|)
Yodd 1 ω −1 −ω o(|ω|)
Y 1 ω 0 0 o(|ω|)

Table 1: Eigenvalues

• λρt = −λρ in Yodd.

Hence, simply taking
Y = 1

2(Yeven + Yodd)

will ensure that the eigenvalues of Y corresponding to the tall representations
are all zero.

Moreover, we will show that in both Yeven and Yodd (and consequently
in Y ), the eigenvalues corresponding to the medium representations all have
absolute value |λ| ≤ ck|ω|/

√
n = o(|ω|), where ck > 0 depends on k alone.

So provided n is sufficiently large, ω is both the minimal eigenvalue of Y and
the second-largest in absolute value, and is attained only on the non-trivial
fat irreducible representations. The situation is summarized in Table 4.1;
note that the o(|ω|) function is always the same function.

Applying Theorem 12 to Y will not only prove that |I| ≤ (n − k)!, but
also that if equality holds, then the Fourier transform of the characteristic
function of I is totally supported on the fat representations, yielding the
proof of our main theorem (pending the results of section 5). Since ω is
also the eigenvalue of second-largest absolute value, we will also be able to
deduce Theorem 4, concerning k-cross-intersecting families.

In order to carry out our plan, we will identify appropriate conjugacy-
classes Xj to use as the generating sets for our Cayley graphs, and appro-
priate coefficients dj . The set of linear equations the dj ’s must satisfy will
always correspond to a specific square minor of the character table of Sn,
which turns out to be non-singular and independent of n (for n sufficiently
large). The latter statement is precisely the content of Theorems 20 and 21.

As for the medium representations, we will show that their eigenvalues
have small absolute value using the lower bound we proved on their dimen-
sions in Lemma 2.

4.2 Calculations of eigenvalues of Cayley graphs

The Cayley graphs we will use to construct our linear combination will be
generated by conjugacy-classes of permutations with specific cycle-types.
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These cycle-types will fall into two categories: those corresponding to par-
titions > (n− k, 1k), and those corresponding to partitions π, where

(n− k − 1, k + 1) ≥ π > (n− 2k − 1, k + 1, 1k).

Note that the second category is exactly the split of the first category
(see definition 11). We need to use the split partitions in order to ensure
that our conjugacy-classes have the correct sign.

We will need the following bounds on the sizes of the above conjugacy-
classes:

Lemma 5. Let X be a conjugacy class of Sn with a cycle of length n − t,
where t < n/2. Then

n!

(n− t)tt
≤ |X| ≤ 2(n − 1)!.

Proof. Suppose the cycle-type of X is (n − t, c1, . . . , cl), where l ≤ t and∑l
i=1 ci = t. Define a mapping

F : Sn → X

by taking a permutation σ ∈ Sn, writing it in sequence-notation

σ(1), σ(2), . . . , σ(n),

and then placing parentheses at the appropriate points, producing a per-
mutation in X (written in disjoint cycle notation). This mapping is clearly
surjective, and each element of X has the same number of preimages, N
say. Note that the preimages of a permutation in X are obtained by rotat-
ing each cycle and then permuting the cycles of length j for each j. Let
aj = |{i : ci = j}| for each j; then

N = (n − t)
∏

j

aj !

l∏

i=1

ci.

Observe that

n/2 < n− t ≤ N ≤ (n− t)l!
l∏

i=1

ci ≤ (n− t)l!(t/l)l ≤ (n − t)tl ≤ (n− t)tt,

using the AM/GM inequality. Hence,

n!

(n− t)tt
≤ |X| ≤ 2(n − 1)!,

as required.
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We now proceed to the key step of the proof.

Theorem 22. If ρ is a partition of n, let Xρ denote the conjugacy class
of permutations with cycle-type ρ. Assume that n > 3k + 1, and let qk
denote the number of partitions ≥ (n − k, 1k). Let φ1, . . . , φqk−1 be the
partitions of n which are > (n − k, 1k) (in decreasing lexicographic order).
Let µ1, . . . , µqk−1 be such that for all j, either µj = φj or else µj = Split(φj).

Let Gj = Cay(Sn,Xµj
), and let (λ

(j)
i )i be the eigenvalues of Gj , in decreasing

lexicographic order of their representations (so that λ
(j)
1 = |Xµj

|).
Then there exist d1, . . . , dqk−1 ∈ R such that:

∑

j

djλ
(j)
i =

{
1, for i = 1
ω, for 1 < i ≤ qk

(25)

Moreover, there exists Bk > 0 depending only on k such that

max
j

|dj | ≤
Bk

(n − 1)!
.

Theorem 22 will enable us to get the correct eigenvalues on the fat rep-
resentations, but we will also need the following, which ensures that the
eigenvalues for the medium representations are smaller in absolute value:

Theorem 23. Under the assumptions and notation of Theorem 22, let ρ be

a medium partition, and let λρ =
∑qk−1

j=1 djλ
(j)
ρ . Then

|λρ| ≤ ck|ω|/
√
n = o(|ω|),

where ck > 0 depends only on k.

We defer the proof of this until later, and turn first to the proof of
Theorem 22.

Proof of Theorem 22: There are three steps in the proof. Step 1 is showing
the existence of coefficients dj such that equation (25) holds for i < qk. Step
2 is showing that with these coefficients, the equation also holds for i = qk.
Step 3 is obtaining the bound on maxj |dj |.

Step 1 (i < qk): Consider the system of linear equationsMd = b, where

d = (d1, . . . , dqk−1), b = (1, ω, . . . , ω), and Mji = λ
(j)
i . By Theorem 10,

λ
(j)
i =

1

dim[φi]

∑

τ∈Xj

χφi
(τ) =

|Xj |
dim[φi]

χφi
(τj), (26)
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where τj is a representative for the conjugacy-class Xj (recall that characters
are class-functions). Equivalently,

M = N1C̆
tN2,

where C̆ denotes the minor of the character table of Sn with rows φ1, . . . , φqk−1

and columns µ1, . . . , µqk−1, andN1 andN2 are the diagonal row- and column-
normalization matrices respectively; explicitly,

(N1)i,j =
δi,j

dim[φi]
, (N2)i,j = δi,j |Xj |. (27)

Recall from Theorem 21 that C̆ is always equal to the top-left minor C̃,
and that C̃ (and therefore C̃t) is invertible. Therefore, there is a (unique)
solution for d, so we can find appropriate values for d1, . . . , dqk−1.

Step 2 (i = qk): Write

λ =
∑

j

djλ
(j)
qk
.

We must show that λ = ω. This will follow from analyzing the proof of the
generalized Hoffman bound, Theorem 12, when G = Γk and the independent
set I is a k-coset.

Let T be a k-coset of Sn, and let f = 1T be its characteristic function.
Choose the orthonormal basis of eigenvectors {vi} in Theorem 12 to be
the normalization of the orthogonal basis formed by the entries of (matrix-
equivalents of) the irreducible representations [ρ] (see section 2.3). Observe
that

α = Ef =
(n− k)!

n!
.

By the argument in the proof of Theorem 7, we see that

f̂(ρ) 6= 0 ⇒ ρ ≥ (n− k, 1k), (28)

and moreover, f̂((n− k, 1k)) 6= 0.
Let W (ρ) = Tr[f̂(ρ)(f̂(ρ))t]. This is simply the L2-weight of the coeffi-

cients of eigenvectors vi which correspond to entries of (the matrix-equivalent
of) [ρ], i.e. if we write as usual f =

∑
aivi, then W (ρ) =

∑
a2i , where the

sum is over all i such that vi is (the normalization of) one of the (dim ρ)2

eigenvectors which are entries of [ρ]. Hence,

W (ρ) 6= 0 ⇒ ρ ≥ (n− k, 1k),
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and moreover, W ((n− k, 1k)) 6= 0.
Using the coefficients d1, . . . , dqk−1 in Theorem 12, we have λ1 = 1 and

λt = ω for 1 < t < qk. Since T is an independent set in the graph G = Γk,
we have

0 =
∑

ρ≥(n−k,1k)

λρW (ρ)

= α2 + ω(α− α2 −W ((n− k, 1k))) + λW ((n− k, 1k)).

By definition of ω, we have ω(α−α2) = −α2; combining this with the above
yields λ = ω, as required.

Step 3 (bounding the coefficients dj) : Recall that M = N1C̃
tN2,

and by Theorem 21, C̃ is invertible and independent of n. Hence, the entries
of (C̃t)−1 are uniformly bounded by some function of k alone. SinceMd = b,
we have

d =M−1b = (N2)
−1(C̃t)−1(N−1

1 b). (29)

We now proceed to bound uniformly the entries of the vector N−1
1 b. We

have
(N−1

1 )ij = δij dim[φi],

and therefore
(N−1

1 b)i = dim[φi]bi.

For i = 1, we have

(N−1
1 b)1 = dim[φ1]b1 = 1 · 1 = 1.

For i > 1, we have

dim[φi] + 1 ≤ dim(M (n−k,1k)) = n(n− 1) . . . (n− k + 1),

since both φi and the trivial representation are constituents of M (n−k,1k).
Hence,

|(N−1
1 b)i| = |dim[φi]||ω| ≤ 1.

We now bound uniformly the entries of the matrix (N2)
−1. Using Lemma

5, we have

(N−1
2 )ij =

δij
|Xj |

≤ (n− 2k − 1)(2k − 1)2k−1

n!
≤ bk

(n− 1)!
,

where bk > 0 depends only on k.
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Combining these bounds with (29), we see that there exists Bk > 0
depending only on k such that

|dj | ≤
Bk

(n− 1)!
∀j < qk,

completing the proof.

Next, we need two more lemmas to assist in the proof of Theorem 23.

Lemma 6. Let G be a finite group, let X ⊂ G be inverse-closed and
conjugation-invariant, and let Cay(G,X) be the Cayley graph on G with
generating set X. Let ρ be an irreducible representation of G with dimension
d, and let λρ be the corresponding eigenvalue of Cay(G,X), as in Theorem
10. Then

|λρ| ≤
√

|G||X|
d

.

Proof. Since the irreducible characters of G are orthonormal, we have

〈χρ, χρ〉 =
1

|G|
∑

g∈G

|χρ(g)|2 = 1.

By the Cauchy-Schwarz inequality,

|〈χρ, 1X〉| ≤
√

〈χρ, χρ〉〈1X , 1X〉 =
√

|X|/|G|.

Substituting into Equation 7, we obtain

|λρ| =
|G||〈χρ, 1X〉|

d
≤
√

|G||X|
d

,

as required.

Combining this with Lemma 5 yields:

Lemma 7. Let X be a conjugacy-class of Sn, with cycle-type having a cycle
of length at least n − 2k − 1. Let Cay(Sn,X) be the Cayley graph on Sn
generated by X. For any Ck > 0, there exists Dk > 0, depending only on k,
such that if ρ is an irreducible representation of dimension at least Ckn

k+1,
then the corresponding eigenvalue λρ of Cay(Sn,X) satisfies

|λρ| < Dk
(n− 1)!|ωn,k|√

n
.

35



Proof. Note that |ωn,k| = Θ(1/nk). By choosing Dk large enough, we may
assume that n > 4k + 2, so n− 2k − 1 > n/2, and therefore the hypotheses
of Lemma 5 hold. Assume that dim ρ ≥ Ckn

k+1. Then

|λρ| ≤
√

|G||X|
Cknk+1

≤
√

2n!(n− 1)!

Cknk+1

=

√
2(n− 1)!

Cknk+1/2

≤ Dk
(n− 1)!|ωn,k|√

n
,

as required.

We can now prove Theorem 23.

Proof of Theorem 23: Assume the hypotheses of Theorem 23. By Lemma
2, we have dim[ρ] ≥ Ekn

k+1. Hence, we see that

|λρ| =

∣∣∣∣∣∣

qk−1∑

j=1

djλ
(j)
ρ

∣∣∣∣∣∣
≤ (qk − 1)max

j
|dj |max

j
|λ(j)ρ |

≤ (qk − 1)
Bk

(n − 1)!
Dk

(n− 1)!|ωn,k|√
n

= ck|ω|/
√
n,

as required.

4.3 The linear combination of Cayley graphs

Finally, we can now construct the linear combination of Cayley graphs we
will use to prove our main theorem.

Theorem 24. There exists a linear combination Yeven of Cayley graphs
generated by conjugacy-classes of even permutations within FPFk, such that
its eigenvalues are as described in the first line of Table 1, i.e.,

• λ(n) = 1,
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• λρ = ω for each fat ρ 6= (n),

• λ(1n) = 1,

• λρ = ω for each tall ρ 6= (1n), and

• |λρ| ≤ ck|ω|/
√
n ≤ o(|ω|) for each medium ρ, where ck > 0 depends

only on k.

Proof. Recall that for each partition φj > (n− k, 1k), exactly one of φj and
Split(φj) is even. For each partition φj > (n− k, 1k), define

µj =

{
φj , if Xφj

is an even conjugacy class;

Split(φj), if Xφj
is an odd conjugacy class.

Then each Xµj
consists of even permutations. Take

Yeven =

qk−1∑

j=1

djCay(Sn,Xµj
),

where the dj ’s are as defined in Theorem 22. Then we have λ(n) = 1, and
for each fat ρ 6= (n), we have λρ = ω. By Theorem 17, for any partition ρ,
we have χρt = χρ · sgn. So by equation (24), for any partition ρ, we have
λρt = λρ, since our Cayley graphs are all generated by conjugacy-classes of
even permutations. Therefore, λ(1n) = 1, and λρ = ω for each tall ρ 6= (1n).
By Theorem 23, |λρ| ≤ ck|ω|/

√
n ≤ o(|ω|) for each medium ρ, completing

the proof.

Theorem 25. There exists a linear combination Yodd of Cayley graphs gen-
erated by conjugacy-classes of odd permutations within FPFk, such that its
eigenvalues satisfy

• λ(n) = 1,

• λρ = ω for all fat ρ 6= (n),

• λ(1n) = −1,

• λρ = −ω for each tall ρ 6= (1n), and

• |λρ| ≤ ck|ω|/
√
n ≤ o(|ω|) for each medium ρ, where ck > 0 depends

only on k.
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Proof. For each partition φj > (n− k, 1k), define

µj =

{
φj , if Xφj

is an odd conjugacy class;

Split(φj), if Xφj
is an even conjugacy class.

Then each Xµj
consists of odd permutations. Take

Yodd =

qk−1∑

j=1

djCay(Sn,Xµj
),

where the dj ’s are as defined in Theorem 22. Then we have λ(n) = 1, and
for each fat ρ 6= (n), we have λρ = ω. This time, our Cayley graphs are all
generated by odd permutations, so we have λρt = −λρ for every partition ρ.
Hence, λ(1n) = −1, and λρ = −ω for each tall ρ 6= (1n). Again, by Theorem
23, |λρ| ≤ ck|ω|/

√
n ≤ o(|ω|) for each medium ρ, completing the proof.

Theorem 26. There exists a linear combination Y of Cayley graphs gener-
ated by conjugacy-classes within FPFk, such that its eigenvalues satisfy:

• λ(n) = 1,

• λρ = ω for each fat ρ 6= (n),

• λρ = 0 for each tall ρ, and

• |λρ| ≤ ck|ω|/
√
n ≤ o(|ω|) for each medium ρ, where ck > 0 depends

only on k.

Proof. Set Y = 1
2(Yeven + Yodd).

Proof of Theorems 5 and 6: If n is sufficiently large depending on k, then
ck|ω|/

√
n < |ω|, so ω is both the minimum eigenvalue of Y and the second-

largest in absolute value. By our choice of ω, applying the generalized
Hoffman Theorem 12 to Y , we see that if I ⊂ Sn is k-intersecting, then
|I| ≤ (n − k)!, and that if equality holds, then the characteristic function
1I ∈ Vk. Similarly, applying Theorem 13 to Y , we see that if I, J ⊂ Sn
are k-cross-intersecting, then |I||J | ≤ ((n− k)!)2, and that if equality holds,
then 1I , 1J ∈ Vk.
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5 Boolean functions

Recall that Vk is the linear space of real-valued functions on Sn whose Fourier
transform is supported only on irreducible representations ≥ (n − k, 1k).
Theorem 7 states that Vk is spanned by the k-cosets of Sn. We now wish
to characterize the Boolean functions in Vk, proving (a strengthened version
of) Theorem 8.

We will show that every non-negative function in Vk can be written as
a linear combination of the characteristic functions of k-cosets with non-
negative coefficients, and every 0/1 valued function in Vk can be written
with 0/1 coefficients.

Let Ak be the set of ordered k-tuples of distinct numbers between 1 and
n, and let (n)k = |Ak| = n!

(n−k)! = n(n− 1) . . . (n− k+1). We will prove the
following

Theorem 27. Let f ∈ Vk be non-negative. Then there exist non-negative
coefficients (bα,β)α,β∈Ak

such that f =
∑
bα,β1Tα7→β

. Furthermore, if f is
Boolean, then f is the characteristic function of a disjoint union of k-cosets.

For didactic reasons, we begin by dealing with the case k = 1.

Theorem 28. If f ∈ V1 is nonnegative, then there exist bi,j ≥ 0 such that
f =

∑
i,j bi,j1Ti7→j

.

Proof. We say a real n × n matrix A = (ai,j)i,j∈[n] represents a function
f ∈ V1 if

f =
∑

i,j

ai,j1Ti7→j
,

or equivalently,

f(σ) =

n∑

i=1

ai,σ(i) ∀σ ∈ Sn.

Let A be a matrix representing f . Our task is to find a non-negative matrix
B which also represents f . Let x1, . . . , xn and y1, . . . , yn be real numbers
such that

n∑

i=1

xi +
n∑

j=1

yj = 0.

Let B = (bi,j)i,j∈[n] be the matrix produced from A by adding xi to row i
for each i, and then adding yj to column j for each j, i.e.

bi,j = ai,j + xi + yj (i, j ∈ [n]).
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Note that B also represents f . We wish to show that there exists a choice
of xi’s and yj’s such that the matrix B has all its entries non-negative, i.e.
we wish to solve the system of inequalities

xi + yj ≥ −ai,j (1 ≤ i, j ≤ n) subject to
∑

i

xi +
∑

j

yj = 0. (30)

By the strong duality theorem of linear programming (see [23]), this is un-
solvable if and only if there exist ci,j ≥ 0 such that

∑

j

ci,j = 1 (1 ≤ i ≤ n),
∑

i

ci,j = 1 (1 ≤ j ≤ n),
∑

i,j

ci,jai,j < 0.

Suppose for a contradiction that this holds. The matrix C = (ci,j)i,j∈[n] is
bistochastic, and therefore by Birkhoff’s theorem (see [4]), it can be written
as a convex combination of permutation matrices,

C =
r∑

t=1

stPσt ,

where st ≥ 0 (1 ≤ t ≤ r),
∑r

t=1 st = 1, σ1, . . . , σt ∈ Sn, and Pσ denotes the
permutation matrix of σ, i.e. (Pσ)i,j = 1{σ(i)=j}. But then

∑
i,j ci,jai,j is a

convex combination of values of f :

∑

i,j

ci,jai,j =

r∑

t=1

st
∑

i,j

(Pσt)i,jai,j =

r∑

t=1

st

n∑

i=1

ai,σt(i) =

r∑

t=1

stf(σt) (31)

and is therefore non-negative, a contradiction. Hence, the system (30) is
solvable, proving the theorem.

The following corollary is immediate.

Corollary 2. If f ∈ V1 is Boolean, then it is the characteristic function of
a disjoint union of 1-cosets.

Proof. By induction on the number of non-zero values of f . Let f ∈ V1
be a Boolean function, and suppose the statement is true for all Boolean
functions with fewer non-zero values. By Theorem 28, there exist bi,j ≥ 0
such that

f =
∑

i,j

bi,j1Ti7→j
.

Choose i, j such that bi,j > 0. Then f > 0 on Ti 7→j, so f = 1 on Ti,j. Hence,
f − 1Ti7→j

is also Boolean, with fewer non-zero values than f , and so by the
induction hypothesis, it is the characteristic function of a disjoint union of
1-cosets. Hence, the same is true of f , as required.

40



We now extend this proof to the case k > 1, proving Theorem 27. How-
ever, some preliminaries are necessary.

Let A be an (n)k × (n)k matrix with rows and columns indexed by Ak.
Choose an ordering of the k coordinates of the k-tuples, or equivalently a
permutation π ∈ Sk, and consider the natural lexicographic ordering on Ak

induced by this ordering, i.e. α < β iff απ(m) < βπ(m), where m = min{l :
απ(l) 6= βπ(l)}. This lexicographic ordering on Ak recursively partitions A
into blocks: first it partitions A into n2 (n− 1)k−1 × (n− 1)k−1 blocks Bi,j

according to the π(1)-coordinate of each k-tuple; then it partitions each
block Bi,j into (n− 1)2 (n− 2)k−2 × (n− 2)k−2 sub-blocks according to the
π(2)-coordinate of each k-tuple, and so on.

The following two recursive definitions concerning such matrices will be
crucial.

Definition 13. We define a k-line in an (n)k × (n)k matrix A as follows.
If k = 1, i.e. A is an n × n matrix, a 1-line in A is just a row or column
of A. If k > 1, and A is an (n)k × (n)k matrix, a k-line in A is given by
choosing an ordering π of the k-coordinates, partitioning A into n2 blocks
according to the π(1)-coordinate of each k-tuple as above, choosing a row or
column of (n − 1)k−1 × (n − 1)k−1 blocks Bi,j, and then taking a union of
(k − 1)-lines, one from each block.

Definition 14. We say that an (n)k × (n)k matrix A is k-bistochastic if
the following holds. If k = 1, an n × n matrix A is 1-bistochastic if it
is bistochastic in the usual sense, i.e. all its entries are non-negative, and
all its row and column sums are 1. If k > 1, an (n)k × (n)k matrix A is
k-bistochastic if, for any partition into n2 blocks Bi,j of size (n − 1)k−1 ×
(n − 1)k−1 according to a lexicographic order on Ak induced by any of the
k! orderings of the coordinates, there exists a bistochastic n×n matrix R =
(ri,j) and n2 (k − 1)-bistochastic matrices Mi,j of order (n − 1), such that
Bi,j = ri,jMi,j.

The following two self-evident observations indicate the relevance of these
two notions.

Observation 1. An (n)k × (n)k matrix with non-negative entries is k-
bistochastic if and only if the sum of the entries of every k-line in it (coming
from any of the k! recursive partitions into blocks) is 1.

Observation 2. Given a k-line ℓ, the corresponding k-cosets {Tα7→β : (α, β) ∈
ℓ} partition Sn.
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Any permutation σ ∈ Sn induces a permutation of Ak; we write P
(k)
σ for

the corresponding (n)k × (n)k permutation matrix, i.e.

(P (k)
σ )α,β = 1{σ(α)=β}.

These n! permutations are only a small fraction of all ((n)k)! permutations of

Ak. It is not hard to show that any P
(k)
σ is k-bistochastic. It is a bit harder

to show that any other permutation matrix is not k-bistochastic (for this
it is important to note that we demand taking into account lexicographic
orderings induced by all possible orderings of the coordinates.)

The authors thank Siavosh Benabbas for suggesting the correct formu-
lation of the following theorem and for help in proving it.

Theorem 29. (Generalized Birkhoff theorem)[Benabbas, Friedgut, Pilpel]
An (n)k × (n)k matrix M is k-bistochastic if and only if it is a convex
combination of (n)k×(n)k matrices of permutations of Ak which are induced
by permutations of [n].

Proof. By induction on k.
For k = 1, this is Birkhoff’s theorem.
For the induction step, let M = ri,j ·Mi,j be a block decomposition of

M as in the definition of k-bistochasticity, according to the natural ordering
of the coordinates, i.e. π = id. By Birkhoff’s theorem, R = (ri,j) is a
convex combination of permutation matrices, and therefore it is either a
permutation matrix, or else it can be written as a convex combination R =
sP + (1 − s)T , with P a permutation matrix, and T a bistochastic matrix
with more zero entries than R. Treating P separately, and proceeding in this
manner by induction, we may assume that R is a permutation matrix, and
without loss of generality, we may assume that R = I, the identity matrix.
So in M , every non-zero entry is indexed by a pair of k-tuples of the form
((i, ∗, ∗, . . . , ∗), (i, ∗, ∗, . . . , ∗)) for some i.

Now, we reorder the rows and columns of M with a lexicographic order
on Ak determined by the transposition π = (1 2). Consider now an off-
diagonal block in this ordering of the form ((∗, i, ∗, ∗, . . . , ∗), (∗, j, ∗, ∗, . . . , ∗))
with i 6= j. It breaks into (n−1)2 sub-blocks of size (n−2)k−2× (n−2)k−2,
but only n − 2 of them have nonzero entries, namely the sub-blocks of the
form ((l, i, ∗, ∗, . . . , ∗), (l, j, ∗, ∗, . . . , ∗)) for some l 6= i, j. Hence, the block
has a row of zero sub-blocks, namely the sub-blocks

((j, i, ∗, ∗, . . . , ∗), (m, j, ∗, ∗, . . . , ∗))
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for m 6= j, and a column of zero sub-blocks, namely the sub-blocks

((m, i, ∗, ∗, . . . , ∗), (i, j, ∗, ∗, . . . , ∗))

for m 6= i. Since the block is (k−1)-bistochastic, it must be the zero matrix.
As for the diagonal blocks of M in the new ordering of Ak, blocks of the

form ((∗, i, ∗, ∗, . . . , ∗), (∗, i, ∗, ∗, . . . , ∗)), they can only have nonzero sub-
blocks on the diagonal. Since they are (k−1)-bistochastic, by the induction

hypothesis they are each equal to a convex linear combination of P
(k−1)
σ ’s

where each σ is a permutation of [n]\{i}. But if any of these σ’s has σ(l) 6= l
for some l, then the off-diagonal sub-block

((l, i, ∗, ∗, . . . , ∗), (σ(l), i, ∗, ∗, . . . , ∗))

is non-zero, a contradiction. Hence, each permutation σ must be the identity,
and therefore all the diagonal blocks are copies of the (n−1)k−1×(n−1)k−1

identity matrix. Hence, M is the identity matrix, and we are done.

We now can prove Theorem 27.

Proof of Theorem 27: We follow the lines of the proof of Theorem 28. Let
f ∈ Vk be non-negative, and let M = (Mα,β)α,β∈Ak

be an (n)k× (n)k matrix
(with rows and columns indexed by Ak) which represents f , meaning that

f =
∑

α,β∈Ak

Mα,β1Tα7→β
,

i.e.
f(σ) =

∑

α∈Ak

Mα,σ(α) ∀σ ∈ Sn.

Let Lk be the set of all k-lines. Recall from Observation 2 that every k-line
corresponds to a partition of Sn into k-cosets. Therefore, adding a constant
x ∈ R to a single k-line inM corresponds to increasing f by x. We therefore
associate with every line ℓ ∈ Lk a variable xℓ. We wish to solve the following
system of linear inequalities

∑

ℓ:(α,β)∈ℓ

xℓ ≥ −Mα,β (ℓ ∈ Lk) subject to
∑

ℓ∈Lk

xℓ = 0.

Again, by the strong duality theorem of linear programming, this is
possible unless there exists an (n)k × (n)k matrix C = (cα,β)α,β∈Ak

with
non-negative entries, such that

∑

(α,β)∈ℓ

cα,β = 1 ∀ℓ ∈ Lk,
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and ∑

α,β∈Ak

cα,βMα,β < 0.

By Observation 1, C is k-bistochastic. By the Generalized Birkhoff Theo-
rem, C is in the convex hull of the permutation matrices induced by permu-
tations of [n]. This means, as before, that

∑

α,β∈Ak

cα,βMα,β

is a convex linear combination of values of f , and is therefore non-negative, a
contradiction. Therefore, the system of linear inequalities above is solvable,
proving the first part of the theorem. The second part follows as in the
k = 1 case, by induction on the number of non-zero values of f .

This completes the proof of Theorems 3 and 4.

6 Open Problems

In their landmark paper [1], Ahlswede and Khachatrian characterized the
largest k-intersecting subsets of [n](r) for every value of k, r and n. In our
opinion, the most natural open problem in the area is to characterize the
largest k-intersecting subsets of Sn for every value of n and k. We make the
following

Conjecture 2. A k-intersecting family in Sn with maximum size must be
a ‘double translate’ of one of the families

Mi = {σ ∈ Sn : σ has ≥ k+ i fixed points in [k+ 2i]} (0 ≤ i ≤ (n− k)/2),

i.e. of the form σMiτ where σ, τ ∈ Sn.

This would imply that the maximum size is (n − k)! for n > 2k. It is
natural to ask how large n must be for our method to give this bound, i.e.
when there exists a weighted graph Y which is a real linear combination of
Cayley graphs on Sn generated by conjugacy-classes in FPFk, such that Y
has maximum eigenvalue 1 and minimum eigenvalue

ωn,k = − 1

n(n− 1) . . . (n − k + 1)− 1
.

It turns out that this need not be the case when n = 2k + 2; indeed, it fails
for k = 2 and n = 6. We believe that new techniques will be required to
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prove Conjecture 2.
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