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We study the dynamics of the voter and Moran processes running on top of complex network
substrates where each edge has a weight depending on the degree of the nodes it connects. For
each elementary dynamical step the first node is chosen at random and the second is selected with
probability proportional to the weight of the connecting edge. We present a heterogeneous mean-
field approach allowing to identify conservation laws and to calculate exit probabilities along with
consensus times. In the specific case when the weight is given by the product of nodes degree raised
to a power θ, we derive a rich phase-diagram, with the consensus time exhibiting various scaling
laws depending on θ and on the exponent of the degree distribution γ. Numerical simulations give
very good agreement for small values of |θ|. An additional analytical treatment (heterogeneous pair
approximation) improves the agreement with numerics, but the theoretical understanding of the
behavior in the limit of large |θ| remains an open challenge.

PACS numbers: 89.75.-k, 89.75.Hc, 05.65.+b

I. INTRODUCTION

After a decade of intense activity on the application
of statistical physics tools to the understanding of the
structure and function of complex networks [1–3], recent
years have witnessed an increased research effort devoted
to investigate how topologically complex substrates can
affect dynamical processes taking place on top of them.
Theoretical analyses based mainly on a heterogeneous
mean-field theory [4–6] have shown that these effects are
particularly important in heterogeneous networks, where
the presence of a long tailed degree distribution P (k)
(defined as the probability that a vertex in the network is
connected to k other vertices) is at the core of the peculiar
properties observed in many dynamical processes. For
a general review on this subject we refer the reader to
Refs [5, 6].

In this context, a natural next step is to consider the
effect of a weighted topological structure on dynamical
processes. Many networks found in technological, biolog-
ical or social settings are intrinsically weighted, i.e. each
connection has associated an additional variable, called
weight, that gauges the intensity or traffic of that con-
nection, and that can exhibit widely varying fluctuations
[7–9]. The presence of weights can be extremely rele-
vant in some scenarios (consider for example the case of
transport in a network in which weights measure band-
width or capacity), and therefore they must be taken
into account when the effect of networks on dynamical
processes is assessed. Some results have already been
produced in this direction, dealing among other prob-
lems with diffusive processes [10, 11], epidemic spreading
[12, 13], general equilibrium and non-equilibrium phase
transitions [14, 15], or glassy dynamics [16]. In order to
deepen into the understanding of the effects of a com-
plex weighted topology on dynamic processes, here we
present a detailed investigation of the ordering dynamics

of voter-like models on weighted networks [17].

The voter model [18, 19] and the Moran process [20, 21]
are simple models of ordering dynamics that allow to un-
derstand how natural systems with an initial disordered
configuration are able to achieve order via local pairwise
interactions. Both models are described in terms of a col-
lection of individuals, each endowed with a binary vari-
able si, taking the values ±1. The elementary step in the
dynamics consists in randomly choosing a first individual
and then (again randomly) one of her nearest neighbors.
In the voter model the first individual will copy the state
of her neighbor. In the Moran process, on the other hand,
she will transmit her own state to the neighboring node,
that will adopt it. In both cases, starting from a disor-
dered initial state, the iteration of the elementary step
leads to the growth of correlated domains and, in finite
systems, to an absorbing uniform state in which all in-
dividuals share the same state (the so-called consensus).
In a social science context, the voter model represents
thus the simplest possible model of opinion formation in
a population, in which individuals can change their opin-
ion as a function of the state of their nearest neighbors
[17]. In the same way, in a biological context, the Moran
process represents the simplest example of two species
competing (through reproduction and neutral selection)
for the same environment [22].

While the voter and Moran processes are equivalent at
the mean-field level and on regular lattices, if the pattern
of connections is given by a complex (unweighted) topol-
ogy they behave differently, since the order in which inter-
acting individuals are selected becomes relevant [23, 24]
and is associated with different conservation laws. More-
over, the time to reach the final consensus state scales
with the system size in different ways, depending on
the degree distribution of the network [25–27]. The
consideration of a weighted topological substrate of the
models adds, as we will see, a richer and more com-
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plex phenomenology. Additionally, the extension to
weighted networks will allow to explore the relevance of
weights measuring the strength of relationships in opin-
ion/evolutionary dynamics. In the context of social sci-
ences, for example, weights can reflect the obvious fact
that the opinion of a given individual can be more eas-
ily influenced by a close friend rather than by a casual
acquaintance. On the other hand, in an evolutionary set-
ting, weights allow to gauge the effects of heterogeneous
replacement rates in different species.
In this paper we consider the generalization of the voter

and Moran dynamics to weighted networks: At each time
step a vertex i is selected randomly with uniform proba-
bility; then one nearest neighbor of i, namely j, is chosen
with a probability proportional to the weight wij ≥ 0
of the edge joining i and j. That is, the probability of
choosing the neighbor j is

Pij =
wij

∑

r wir
. (1)

Vertices i and j are then updated according to the rules of
the respective models. With this definition, the models
considered represent the natural extension for ordering
dynamics on weighted networks (and in particular of the
voter model) of the generalized Moran process proposed
in Refs. [28, 29], in which dynamics was defined as a func-
tion of a set of arbitrary interaction probabilities Pij . In
our case, however, the fact that these interaction prob-
abilities arise from the normalized weights arriving at a
vertex imposes some restrictions to the possible values of
Pij and yields therefore different outcomes and interpre-
tations.
To simplify the analytical treatment of the models

within a heterogeneous mean-field (HMF) approximation
[5, 6] we will assume that the weight between vertices
i and j depends only on the degrees at the edges end-
points, namely ki and kj , and therefore we can write
wij ≡ g(ki, kj)aij , where aij is the adjacency matrix
and g(k, k′) is a positive definite, symmetric function.
In this respect, it is worth noting three recent publi-
cations dealing with related, but not identical, models.
Schneider-Mizell and Sander [30] consider a generalized
voter model where the selection of the pair of interact-
ing vertices (i, j) occurs independently from the decision
on which one of the two vertices copies the other. The
probability that vertex i assumes the state of node j is
taken of the form kαj /(k

α
i +kαj ) where α is a real number.

The authors derive analytical predictions on the scaling
of consensus time with the system size, that are found
in agreement with numerical simulations only for small
positive α. Yang et al. [31], on the other hand, study
the model described in Ref. [30] with edges selected uni-
formly. Both on the Barabasi-Albert network [32] and on
a “growing network with redirection” they find numeri-
cally that the consensus time is minimum for α close to
3, the minimum becoming more shallow as 〈k〉 increases.
Similar results are also reported by Lin et al. [33].
Here we will be interested instead in a general in-

teraction probability proportional to the weight inten-
sity g(k, k′). The application of HMF theory and the
backwards Fokker-Planck formalism [25–27], allows us
to derive analytical expressions in degree uncorrelated
networks for the main relevant quantities (namely, exit
probability and consensus time [17]) in a more transpar-
ent way than in Refs. [28, 29]. In order to allow for
closed mathematical solutions of the models, we will fur-
ther specify the function g to be given by the product
of two independent functions g(k, k′) = gs(k)gs(k

′), an
assumption motivated by empirical observations in real
weighted networks [7]. Specializing both models to the
case of networks with power-law distributed degrees and
edge weights given by multiplicative powers the endpoint
degrees, gs(k) = kθ, a very rich phase-diagram is ob-
tained, with several different scaling regions of the con-
sensus time with the network size N . A numerical check
of the analytical predictions reveals a good agreement in
some regions of the parameters space and noticeable dis-
crepancies in others. In order to gain insights into the
observed numerical disagreement, we apply an improved
mean-field approach, the heterogeneous pair approxima-
tion [34], which turns out to provide better agreement
with numerics for small θ but is still not able to solve
the problems for large θ. The qualitatively different na-
ture of the dynamics for large θ is briefly discussed and
its understanding identified as an intriguing challenge for
future work.

II. HETEROGENEOUS MEAN-FIELD THEORY

In this Section, we perform a theoretical analysis of the
voter and Moran processes on weighted networks within
a HMF approximation [5], extending the Fokker-Planck
formalism developed for the unweighted case in Refs. [25–
27]. Let us consider the models defined by the interaction
probability Eq. (1), where the network weights take the
form

wij = g(ki, kj)aij . (2)

The simplest way to extend the Fokker-Planck approach
to weighted networks is to follow the annealed weighted
network approximation introduced in Ref. [11]. The key
point consists in considering the degree coarse-grained
interaction probability Pw(k → k′), defined as the prob-
ability that a vertex of degree k interacts (in this case,
chooses to interact) with a nearest neighbor vertex of de-
gree k′. In unweighted networks, this probability simply
takes the form of the conditional probability P (k′|k) that
a vertex of degree k is connected to a vertex of degree k′

[35]. In networks with weights given by Eq. (2), the inter-
action probability of the voter/Moran dynamics, Eq. (1),
can be coarse-grained by performing an appropriate de-
gree average, to yield [11]

Pw(k → k′) =
g(k, k′)P (k′|k)
∑

q g(k, q)P (q|k) . (3)
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The relevant function defining voter and Moran pro-
cesses is the probability Π(k; s) that a spin s at a vertex
of degree k flips its value to −s in a microscopic time
step [25–27]. This function can be expressed, within the
annealed weighted network approximation, in terms of
the density xk of +1 spins in vertices of degree k, taking
the form

ΠV (k; +1) = P (k)xk

∑

k′

Pw(k → k′)(1− xk′ ), (4)

ΠV (k;−1) = P (k)(1 − xk)
∑

k′

Pw(k → k′)xk′ , (5)

for the voter model. The origin of these probabilities is
easy to understand [25–27]. For example, Eq. (4) gives
the probability of flipping a vertex of degree k in the state
+1 as the product of the probability P (k) of choosing a
vertex of degree k, times the probability xk that the ver-
tex is in the state +1, times the probability k chooses
to interact with a neighbor vertex k′, that is in state −1
with probability 1−xk′ , averaged over all possible neigh-
bor degrees k′. Analogously, the flipping probabilities for
the Moran process can be expressed as

ΠM (k; +1) =
∑

k′

P (k′)(1 − xk′ )Pw(k
′ → k)xk, (6)

ΠM (k;−1) =
∑

k′

P (k′)xk′Pw(k
′ → k)(1− xk). (7)

Let us now present separately the mean-field analysis
for the two models under consideration.

A. Voter model

1. Rate equation, conservation laws and exit probability

Let us consider the time evolution of the density xk,
which is determined in terms of a rate equation. Follow-
ing [24–27], the change of the total number of +1 spins
in vertices of degree k, nk(t) = NP (k)xk(t), after a mi-
croscopic time step ∆t = 1/N , is given by

nk(t+∆t) = nk(t) + ΠV (k;−1)−ΠV (k; +1). (8)

From here, we obtain

ẋk(t) =
1

∆t

nk(t+∆t)− nk(t)

NP (k)

=
ΠV (k;−1)−ΠV (k; +1)

P (k)
. (9)

Using Eqs. (4) and (5), we have

ẋk(t) =
∑

k′

Pw(k → k′)xk′ (t)− xk(t)

=
∑

k′

g(k, k′)P (k′|k)
∑

q g(k, q)P (q|k)xk′(t)− xk(t), (10)

where in the last expression we have used Eq. (3). The
complete expression Eq. (10), valid for any correlation
and weight patterns, is quite difficult to deal with. In
order to obtain closed analytical expressions, we as-
sume that the underlying network is degree uncorrelated,
namely, P (k′|k) = k′P (k′)/〈k〉 [1], and moreover, that
the weights are simple multiplicative functions of the
edges’ end points, that is, g(k, k′) = gs(k)gs(k

′). In this
way, Eq. (10) becomes

ẋk(t) = ωV (t)− xk(t), (11)

where we have defined

ωV (t) =
∑

k′

k′gs(k
′)P (k′)

〈kgs(k)〉
xk′ (t), (12)

and 〈f(k)〉 ≡ ∑

k P (k)f(k).
It is easy to see that the total density of +1 spins,

x =
∑

k P (k)xk is not a conserved quantity, ẋ = −x+ωV .
The quantity ωV , however, is conserved, ω̇V (t) = 0, as
we can see by inserting Eq. (11) into the time derivative
of ωV (t). Finally, the steady state condition of Eq. (11),
ẋk = 0, implies

xk = ωV . (13)

As for the usual voter model [25, 27] the conservation
law allows the immediate determination of the exit (or
“fixation”) probability E, i.e. the probability that the
final state corresponds to all spins in the state +1. In
the final state with all +1 spins we have ωV = 1, while
ωV = 0 is the other possible final state (all −1 spins).
Conservation of ωV implies then ωV = E · 1+ [1−E] · 0,
hence

E = ωV . (14)

Starting from an homogeneous initial condition, with a
density x of randomly chosen vertices in the state +1, we
obtain, since ωV = x,

Eh(x) = x, (15)

as in the standard voter model [17]. On the other hand,
with initial conditions consistent of a single +1 spin in a
vertex of degree k, we have

E1(k) =
kgs(k)

N〈kgs(k)〉
. (16)

2. Consensus time

The backward Fokker-Planck formalism [36] can be ap-
plied to obtain expressions for the consensus time TN(x),
as a function of the initial density x of +1 spins and the
system size N . However, following Refs. [24–27], it is
simpler to apply a one-step calculation [37], and use the
recursion relation [25–27]
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TN({xk}) =
∑

s

∑

k

ΠV (k; s)[TN (xk − s∆k) + ∆t] +
∑

k

Q({xk})[TN ({xk}) + ∆t], (17)

Where Q = 1 −
∑

s

∑

k ΠV (k; s → −s) is the probability than no spin flip takes place and ∆k = 1/[NP (k)] is the
change in xk when a spin flips in a vertex of degree k. Rearranging the terms in Eq. (17), we find

−∆t =
∑

s

∑

k

ΠV (k; s)[TN (xk − s∆k)− TN({xk}). (18)

Plugging the values of ΠV (k; s) in Eq. (18), expanding to second order in ∆k, and replacing the expression for ∆k,
we obtain

1

2N

∑

k

xk + ωV − 2xkωV

P (k)

∂2TN

∂x2
k

+
∑

k

(xk − ωV )
∂TN

∂xk
= −1. (19)

Eq. (19) is simplified by observing that the ordering dynamics of the voter model is separated in two well distinct
temporal regimes [25, 38]. Over a short time the different densities xk all converge from their initial value to the
common value at the steady state xk = ωV . For infinite-size systems, this state survives forever. For finite size N ,
the system enters instead a different regime where the dynamics of densities xk is enslaved by the fluctuations of ωV ,
which performs a slow diffusion until it hits the absorbing values 0 or 1. The consensus time is dominated by this
second regime. This allows to apply the steady state condition, Eq. (13), which cancels the drift term in Eq. (19).
Taking as relevant quantity the conserved weighted magnetization ωV , we additionally perform the change of variables

∂

∂xk
=

∂ωV

∂xk

∂

∂ωV
=

kgs(k)

〈kgs(k)〉
P (k)

∂

∂ωV
. (20)

Substituting Eqs. (13) and (20) into Eq. (19), we obtain

1

2N

∑

k

2ωV − 2ω2
V

P (k)

(

kgs(k)

〈kgs(k)〉
P (k)

)2
∂2TN

∂ω2
V

=
1

N
ωV (1 − ωV )

〈k2gs(k)2〉
〈kgs(k)〉2

∂2TN

∂ω2
V

= −1. (21)

The integration of this equation leads to

TN (ωV ) = −N
〈kgs(k)〉2
〈k2gs(k)2〉

[ωV lnωV + (1− ωV ) ln(1− ωV )] .

Thus, the ordering time starting from homogeneous ini-
tial conditions, xk = ωV = 1/2 is

TN(x = 1/2) = N(ln 2)
〈kgs(k)〉2
〈k2gs(k)2〉

(22)

B. Moran process

1. Rate equation, conservation laws and exit probability

The derivation of the rate equation for the density xk

in the Moran process follows the same steps as in the
voter model, taking the form

ẋk(t) =
ΠM (k;−1)−ΠM (k; +1)

P (k)
. (23)

Substituting the flipping probabilities Eqs. (6) and (7)
we obtain the final equation

ẋk(t) =
1

P (k)

∑

k′

P (k′)Pw(k
′ → k)[xk(t)− xk′ (t)]

= k
∑

k′

P (k′|k)
k′

g(k′k)
∑

q g(k
′, q)P (q|k′) [xk(t)− xk′(t)],

where in the last step we used the degree detailed balance
condition kP (k)P (k′|k) = k′P (k′)P (k|k′) [39]. Assum-
ing again a degree uncorrelated network, and multiplica-
tive weights, we are led to

ẋk(t) =
kgs(k)

〈kgs(k)〉
[xk(t)− x(t)]. (24)

Again, the total density of +1 spins, x =
∑

k P (k)xk is
not conserved, while instead the quantity

ωM =
1

〈[kgs(k)]−1〉
∑

k

P (k)

kgs(k)
xk (25)
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is conserved, ω̇M = 0. Finally, from the steady state
condition, ẋk = 0, we obtain

xk = x. (26)

From the conservation of ωM the exit probability is im-
mediately derived as

E = ωM . (27)

Homogeneous initial conditions lead again to Eh(x) = x,
while a single +1 spin in a vertex of degree k leads to

E1(k) =
1

kgs(k)

1

N〈[kgs(k)]−1〉 . (28)

2. Consensus time

Following the same steps presented for the Voter
model, we can write down the equation

−∆t =
∑

s

∑

k

ΠM (k; s)[TN (xk−s∆k)−TN({xk}). (29)

Performing the appropriate expansion to second order in
∆k, we obtain the equation

∑

k

kgs(k)

〈kgs(k)〉
(xk − x)

∂TN

∂xk

+
1

2N

∑

k

kgs(k)

〈kgs(k)〉
xk + x− 2xkx

P (k)

∂2TN

∂x2
k

= −1.

The steady state condition Eq. (26) leads to the cancel-
lation of the drift term. The diffusion term is simplified
by changing variables with the conserved quantity ωM ,
namely

∂

∂xk
=

∂ωM

∂xk

∂

∂ωM
=

1

〈[kgs(k)]−1〉
P (k)

kgs(k)

∂

∂ωM
. (30)

This substitution leads to

1

2N

∑

k

kgs(k)

〈kgs(k)〉
2x− 2x2

P (k)

1

〈[kgs(k)]−1〉2
(

P (k)

kgs(k)

)2
∂2TN

∂ω2
M

=
1

N

1

〈[kgs(k)]−1〉
ωM (1 − ωM )

〈kgs(k)〉
∂2TN

∂ω2
M

= −1, (31)

where we have used the fact that, in the steady state, x = ωM . The solution of equation for the consensus time leads
now to

TN(ωM ) = −N〈kgs(k)〉〈[kgs(k)]−1〉 [ωM ln(ωM ) + (1− ωM ) ln(1− ωM )] . (32)

Thus, starting from homogeneous initial conditions, xk =
x = ωM = 1/2, we have

TN (x = 1/2) = N(ln 2)〈kgs(k)〉〈[kgs(k)]−1〉. (33)

III. NETWORKS WITH POWER-LAW DEGREE

DISTRIBUTION AND WEIGHT STRENGTHS

The actual behavior of the exit probability and the
consensus time depends, in view of the previous calcula-
tions, on the topological properties of the network under
consideration, as well as on the strength of the weights,
as given by the function gs(k). In this Section we con-
sider explicitly these dependencies for the particular case
of networks with a power-law degree distribution form,
P (k) ∼ k−γ , and a weight strength scaling also as a
power of the degree, gs(k) = kθ. This last selection is
reasonable in view of the weight patterns empirically ob-
served in real networks [7]. Let us focus on the consensus

time with homogeneous (x = 0.5) initial conditions for
the two models considered.

A. Voter model

In the case of the voter model, the ordering time with
homogeneous initial conditions and weights scaling as a
power of k takes the form

TN(1/2) = N ln(2)
〈k1+θ〉2
〈k2+2θ〉 . (34)

From this expression, we can obtain different scalings
with the network size N , depending on the characteristic
exponents γ and θ. We consider only γ > 2 and, in view
of the comparison with numerical results for the Uncorre-
lated Configuration Model [40] (see Sec. IV), we use the
scaling behavior of the network upper cutoff kc ∼ N1/2

for γ < 3 and kc ∼ N1/(γ−1) for γ > 3 [41].
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FIG. 1. (Color online) Phase diagram of the voter model on
weighted scale-free networks.

The different scalings of TN (1/2) are then the follow-
ing:

• If θ > γ−2 both 〈k1+θ〉 and 〈k2+2θ〉 diverge. In par-
ticular, 〈k1+θ〉 ∼ k2+θ−γ

c and 〈k2+2θ〉 ∼ k3+2θ−γ
c .

Thus

TN ∼ Nk1−γ
c . (35)

If γ < 3, kc ∼ N1/2, and TN ∼ N (3−γ)/2. If γ > 3,
then kc ∼ N1/(γ−1), and TN ∼ const.

• If γ−2 > θ > (γ−3)/2, then 〈k1+θ〉 converges and
〈k2+2θ〉 diverges. Thus

TN ∼ Nkγ−2θ−3
c . (36)

If γ < 3, TN ∼ N (γ−2θ−1)/2; if γ > 3, then TN ∼
N2(γ−θ−2)/(γ−1).

• If θ < (γ − 3)/2, then both 〈k1+θ〉 and 〈k2+2θ〉
converge, and we have

TN ∼ N. (37)

In Fig. 1 we represent graphically the different scalings
of the consensus time TN in the (θ, γ) space.

B. Moran process

For the Moran process, the ordering time scales with
the network size through the expression

TN(1/2) = N ln(2)〈k1+θ〉〈k−1−θ〉 (38)

For γ > 2, the different possible scalings are as follows:

2 3 4
γ

-4

-3

-2

-1

1

2

-5

θ θ = γ−2

θ = − γ
T

N
 ~ N

(2−γ−θ)/2

T
N

 ~ N

T
N

 ~ N
(4+θ−γ)/2

γ = 3

T
N

 ~ N
−(1+θ)/(γ−1)

T
N

 ~ N
(1+θ)/(γ−1)

T
N

 ~ N

FIG. 2. (Color online) Phase diagram of the Moran process
on weighted networks.

• If θ > γ−2, 〈k−1−θ〉 converges and 〈k1+θ〉 diverges.
Thus

TN ∼ Nk2+θ−γ
c . (39)

If γ < 3, kc ∼ N1/2, and TN ∼ N (4+θ−γ)/2. If
γ > 3, then kc ∼ N1/(γ−1), and TN ∼ N (1+θ)/(γ−1).

• If −γ < θ < γ − 2, both 〈k−1−θ〉 and 〈k1+θ〉 con-
verge and

TN ∼ N. (40)

• If θ < −γ then 〈k1+θ〉 converges and 〈k−1−θ〉 di-
verges. Therefore

TN ∼ Nk−θ−γ
c . (41)

If γ < 3, then TN ∼ N (2−θ−γ)/2. If γ > 3, on the
other hand, TN ∼ N−(1+θ)/(γ−1).

Fig. 2 depicts the different regimes associated to the
behavior of TN in the (θ, γ) space.

C. Summary of scaling results for the consensus

time

As a summary of the results obtained in this Section,
in Fig. 3 we plot the asymptotic scaling exponent α of the
consensus time, TN ∼ Nα, as a function of γ and θ, for
both the voter model and the Moran process in weighted
power-law distributed networks.
Some comments are in order here. First we notice that

all relevant quantities are in fact functions of the combi-
nation kθ+1. This implies that for θ = −1 both voter and
Moran dynamics are predicted to give the same results at
the mean-field level, independently of the degree distri-
bution. This observation can be easily understood in the
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FIG. 3. (Color online) Scaling exponents of the consensus
time TN ∼ Nα for the voter model (top) and Moran process
(bottom), as a function of γ and θ.

case of uncorrelated networks, where θ = −1 implies that
both interacting vertices are extracted completely at ran-
dom (independently of their degree) so that the asymme-
try distinguishing the voter model from the Moran pro-
cess vanishes. For other values of θ, on the other hand,
the effect of weights appears to be completely different
for the two dynamics. For the voter model, positive val-
ues of θ tend to reduce the consensus time, while θ < 0
leads to increased TN , i.e. the dynamics becomes slower.
In any case the consensus time is at most proportional to
the system size N , i.e. α ≤ 1 in the whole space (γ, θ):
The dynamics is always relatively fast. Interestingly, the
HMF analysis predicts the presence of a region (θ > γ−2
and γ > 3) for which α = 0 and the consensus time is
constant, i.e. the dynamics undergoes an instantaneous
ordering process, in contrast with what happens in other
regions, in which ordered regions of opposite states can
coexist for very long times, reaching consensus only in
finite systems and through a large stochastic fluctuation
[42]. As it will be shown below, this is true only on an-

nealed networks. Numerical simulations performed on
quenched graphs give different results.
For the Moran process, on the other hand, T ∼ N

represents a lower bound for the scaling of the consensus
time: The dynamics is always rather slow, with α ≥ 1
for all (γ, θ). Remarkably, the scaling of TN turns out
to depend symmetrically on |θ + 1|: A large positive or
a large negative value of θ + 1 are equally effective in
slowing down the ordering process.

IV. COMPARISON WITH NUMERICAL

SIMULATIONS

1. Algorithms

In order to check the different analytical mean-field
predictions for the voter model and Moran process, we
have performed numerical simulations of both models on
uncorrelated networks generated using the Uncorrelated
Configuration Model (UCM) [40]. The networks have a
preassigned degree exponent γ, a minimum degree km =
4 and a maximum degree smaller than or equal to

√
N ,

preventing the generation of correlations for γ < 3 [41].
A weight strength gs(k) = kθ is imposed by selecting a
nearest neighbor j of a vertex i with probability

Pij =
kθj

∑

v∈V(i) k
θ
v

, (42)

where V(i) is the set of nearest neighbors of i.
Moreover, since HMF equations describe in an exact

way dynamics taking place on annealed networks [11], we
have simulated the voter model and the Moran process
also on such structures, in order to provide a benchmark
of our analytical results. In weighted networks, the prob-
ability that a vertex of degree k interacts with a vertex
of degree k′ is given by

Pw(k → k′) =
k′gs(k

′)P (k′)

〈kgs(k)〉
=

k′1+θP (k′)

〈k1+θ〉 , (43)

where in the last equality we have assumed again that
gs(k) = kθ. An annealed weighted network is thus im-
plemented by choosing as neighbor of any given vertex
another vertex of degree k, randomly chosen in the net-
work with probability proportional to k1+θ [11].

2. Conservation laws and steady state

A critical assumption made in the HMF approxima-
tion used to obtain analytical expressions for the voter
and Moran processes is that the rate equations lead to a
steady state for the density of +1 spins, x, that becomes
equal to the corresponding conserved quantity, Eqs. (13)
and (26). Those very steady state conditions are the
ones that allow to solve the equations for the consensus
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FIG. 4. (Color online) Check of steady state conditions
Eqs. (13) and (26) for the voter model (top) and the Moran
process (bottom). Data are for quenched networks with
N = 104 nodes and γ = 2.5 for θ = −1 (black curves) and
θ = 1 (green curves).

time in a closed way. In Fig. 4 we check the validity of
the steady state approximation by plotting the quanti-
ties xk/ωV and xx/x as a function of time for the voter
model and Moran process, respectively, for two given val-
ues of the degree k. As we can see, both quantities fluc-
tuate around 1, indicating the effective enslavement of
the partial densities xk to the corresponding conserved
magnitude.

3. Exit probability

From the existence of conserved quantities, we have
derived expressions for the exit probability as a function
of the initial state of the system. While for homogeneous
initial conditions both the voter model and Moran pro-
cess lead to an exit probability equal to the standard
voter model, i.e. E(x) = x, invasion initial conditions
starting from a single +1 spin in a vertex of degree k
lead to exit probabilities that depend explicitly on the
initial degree considered. In particular, we find

Evoter
1 (k) ∼ k1+θ, EMoran

1 (k) ∼ k−(1+θ). (44)

While for the voter model a single +1 vertex has bet-
ter chances to invade the system if it starts from a high
degree vertex, for the Moran process the situation is pre-
cisely the opposite, a single +1 spin being favored when
initially located in the vertices of smallest degree. This
kind of behavior is actually to be expected from the very
definition of the models, and has been already reported
in unweighted networks [27]. In Fig. 5 we plot the values
of the exit probability E1(k) computed from numerical

simulations. As we can see, the results fit quite nicely the
mean-field predictions in Eq. (44): The larger the weight
intensity, the stronger the impact of high and low degree
vertices in the voter and Moran processes, respectively.

4. Consensus time

In Fig. 6 we check the validity of the scaling behaviors
predicted by the HMF treatment performed in Sec. III
and sketched in the form of a phase diagram in Figs. 1
and 2. In this figure, we plot the scaling of the con-
sensus time TN as a function of N , for different points
in the six regions in which the respective phase diagrams
are divided, compared with the corresponding theoretical
mean-field predictions.

Fig. 6 shows that, overall, the agreement between the
scaling predicted by theory and numerical data in an-
nealed networks is, as expected, very good. With re-
spect to the results for quenched networks, the agree-
ment between HMF theory and simulations is in general
restricted to small absolute values of θ, as reported for
other dynamical processes [11]. Differences are specially
important for large values of the weight parameter |θ|,
as testified, for example, by the point γ = θ = 4, show-
ing very strong deviations from the theoretical results.
In order to set better limits to the validity of the HMF
approximation, in Fig. 7 we report the numerical val-
ues of the consensus time obtained from simulations in
quenched networks of fixed size N = 3 × 103 in slices of
the phase diagrams in Figs. 1 and 2 performed at two
constant values of γ, one larger and one smaller than
3, and varying θ. These numerical values are compared

10 100
k

10
-4

10
-3

10
-2

E
1(k

)

FIG. 5. (Color online) Exit probability E1(k) starting from a
single +1 spin in a vertex of degree k, for the voter model (full
symbols) and the Moran process (empty symbols). Dashed
lines represent the expected theoretical scaling with k, circles
refer to the case θ = 0 and squares to θ = 1. Data from
quenched networks of size N = 103 with γ = 2.5 (voter model)
and γ = 2.2 (Moran process).
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different regions of the corresponding phase diagrams, Figs. 1 and 2. Squares represent data from simulations run on annealed
networks, while circles concern quenched graphs. Dashed lines represent the theoretical scaling predicted by HMF theory.

with numerical evaluations of the theoretical predictions
in Eqs. (34) and (38). From Fig. 7 we can conclude that,
for the Moran process, the HMF approximation yields
reasonably correct results in a small window of values of
|θ| approximately centered in θ = −1, precisely the value
that renders the models independent of topology. Inter-
estingly, the value of TN is smaller that the mean-field
prediction, with even an apparent smaller scaling expo-
nent with N , as can be seen in Fig. 6, resulting in an
ordering faster than expected. The behavior of the voter
model, on the other hand, appears to be more complex.
For small values of γ, the HMF approximation yields
reasonable results for positive θ, up to values as large
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FIG. 7. (Color online) Consensus time for the voter model
(left) and Moran process (right) in slices of the phase dia-
grams at two fixed values of γ and varying θ, compared with
the corresponding HMF predictions, Eqs. (34) and (38), re-
spectively (full lines). Results from simulations performed on
quenched networks of size N = 3× 103.

as θ = 4. Larger values of θ lead again to a failure of
the HMF prediction. Values of θ < −1 provide instead
big errors, that apparently increase when decreasing θ.
For large values of γ, on the other hand, large positive
θ > 1 leads to a very large mean-field underestimation of
the consensus time, which in fact increases with N (see
Fig. 6), while it should tend instead to a constant value.
Results for negative θ, on the other hand, are more or
less compatible with HMF predictions for θ > −2 and
deviate again for smaller values.

At the present stage we are not able to predict a priori
when the theoretical results fail to describe the behavior
of the dynamics taking place on quenched networks, but
we note that the numerical evidence suggests that the
theory works well for values of |θ| of the order of those
observed in real networks [7].

V. HETEROGENEOUS PAIR

APPROXIMATION

From the comparison of the predictions of the HMF
theory with numerics it turns out that the analytical
treatment works generally well in real quenched networks
for small values of θ while it gives in general largely incor-
rect predictions for the consensus time for large absolute
values of θ.

There are several possible assumptions in the approach
presented above that could fail in this regime of large θ.
One is the assumption that the time to reach consensus is
dominated by the diffusive wandering of the quasi steady
state, that is much larger than the time to reach such
state. More important is however the possibility that
the very first hypothesis at the core of mean-field theory,
namely that the dynamics of the system can be fully
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described in terms of the densities xk, breaks down [34,
38]. This assumption can be violated at several different
levels. A mild violation occurs when the probability of a
node to be in a +1 state is correlated with the state of its
nearest neighbors. In order to ascertain this possibility,
it is useful to consider the quantity ρk, defined as the
probability that an edge connected to a node of degree k

and selected for the dynamics is active, i.e. it connects
nodes in a different state. Focusing on the case of the
voter model, HMF theory, which explicitly assumes the
lack of dynamical correlations between the vertices at the
ends of any edge, predicts that this quantity should be
equal to

ρk =
∑

k′

Pw(k → k′) [xk(1− xk′ ) + (1− xk)xk′ ]

= xk(1− ωV ) + (1− xk)ωV (45)

and hence, for initial homogeneous conditions xk = x =
ωV = 1/2, we should have in the stationary state ρSk =
2x(1− x) = 1/2.

Fig. 8 shows that, for a case where mean-field is not
accurate, this assumption is not correct in two respects:
Firstly, the value of ρk is lower than 1/2 (dashed line),
indicating that, in fact, correlations build up in the sys-
tem. Secondly, ρk depends on k, implying that those
correlations depend moreover on the degree of the nodes.

In order to take into account these degree-dependent
dynamical correlations, one needs to consider, as rele-
vant dynamical variable, the probability ρk,k′ that an
edge connecting a node of degree k with another node of
degree k′ is active, i.e. the two nodes are in a different
state. This approach, termed heterogeneous pair approx-
imation (HPA), has been introduced and applied to voter
models on unweighted networks in Ref. [34]. Simple com-
binatorial arguments, reported in the Appendix, allow to
write down the equation of motion for ρk,k′ , which takes
the form

dρk,k′

dt
= ρk

k − 1

k
+ ρk′

k′ − 1

k′
− ρk,k′

[ 〈k〉
〈k1+θ〉

(

k′θ

k
+

kθ

k′

)

+
2ρk

1−m2

k − 1

k
+

2ρk′

1−m2

k′ − 1

k′

]

. (46)

where, m = 2x−1 is the magnetization and, at odds with
the case of unweighted networks, the definition of ρk is
now

ρk =
∑

k′

Pw(k → k′)ρk,k′ (47)

Solving numerically this equation in the stationary state,
it is possible to determine ρSk , that turns out to be in
good agreement with numerical simulations, see Fig. 8.
Moreover it is possible to compute the consensus time
TN , that for the voter model turns out to be

TN =
N〈k1+θ〉2

2
∑

k P (k)k2(1+θ)ρSk (x = 1/2)
. (48)

A remarkable agreement between this expression (evalu-
ated numerically) and simulations is found even for some
cases where HMF theory fails. Notice that no parameter
is fitted. Thus, as we can see in Fig. 9, for small val-
ues of θ (θ = 0.5) and small γ, both HMF theory and

the HPA provide accurate results for the consensus time.
Larger values of the weight exponent (θ = 1.5) are well
represented by HPA, while HMF fails. For larger values
of θ, however, even the HPA approximation is not suf-
ficient to capture the correct behavior of the model. In
this regime of very large θ, a much harsher breakdown
of the HMF assumptions occurs [11, 30]: The state of a
node of degree k (or of an edge joining vertices of degree
k and k′) depends not only on the degrees but on the de-
tailed quenched structure of the network, much beyond
single-node or single-pair features.

Some intuitive understanding about what goes on in
such cases comes form considering voter dynamics in the
limit θ = ∞ [11]. In this case each node can interact
with only one of its neighbors, namely the one having
the largest degree. In its turn such a neighbor will copy
the state of its most connected neighbor and so on. In
this way the whole network becomes effectively parti-
tioned into disjoint subgraphs, that on relatively short



11

10
2

10
3

10
4

10
5

N

10
2

10
3

10
4

T
N

10
1

10
2

10
3

10
4

10
5

10
6

N

10
1

10
2

10
3

T
N

HMF
Numerical 
HPA

10
1

10
2

10
3

10
4

10
5

N

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T
N

FIG. 9. (Color online) Comparison of the consensus time
TN as a function of N obtained in numerical simulations for
voter dynamics on quenched networks (empty circles) and the
results of the numerical evaluation of the HMF, Eq. (34) (filled
circles), and HPA, Eq. (48) (empty squares) predictions. Data
correspond to networks with γ = 2.75, θ = 0.5 (top), γ = 3.25,
θ = 1.5 (center), and γ = 4, θ = 4 (bottom).

times align with the state of their node with highest de-
gree. Since each of these regions will reach independently
one of the two possible consensus states ±1, the whole
network will remain in a frozen locally ordered but glob-
ally disordered state. For large but finite values of θ, the
consensus in each region will only be metastable, since
the weak interaction between the nodes at the bound-

aries of the regions will sometimes trigger collective spin
flippings leading eventually to full order. The dynamics
in this limit of large values of θ remains an interesting
topic for further investigations, which may take advan-
tage from recent work about partitions of networks into
basins of attraction [43, 44].

VI. CONCLUSIONS

In this paper we have presented a detailed investigation
of the behavior of voter model and Moran processes on
weighted complex networks. From the analytical point of
view we have presented a theoretical framework (hetero-
geneous mean-field theory plus backwards Fokker-Planck
formalism) that allows to deal with generic edge weights.
For a specific form of the weights we have derived in de-
tail all relevant properties of the dynamical processes,
such as the exit probability and the scaling of the con-
sensus time as a function of the network size. It turns
out that the presence of weights has the effect of slowing
down the Moran process with respect to the unweighted
case, while it generally speeds up ordering with voter
dynamics. Numerical simulations display a rather good
agreement with the theory for small absolute values of
θ, while for large |θ| large discrepancies show up. An
improved mean-field-like theoretical approach (heteroge-
neous pair approximation) taking into account two-body
correlations gives better agreement with numerics. Still
in the limit of large positive (negative) θ, when the state
of a node tends to be deterministically enslaved to the
state of its neighbor with largest (smallest) degree, the
theoretical approaches fail to describe in a satisfactory
manner the behavior of the system.

The positive news is that the mean-field equations
describe reasonably well the dynamics observed in real
(quenched) networks for weight intensities of the order
of the ones observed in real-world networks [7]. How-
ever, the generality of this finding, as well as the intrinsic
limits of the theory, are in need of a better understand-
ing (see also [11]). A theoretical approach able to take
into account the detailed quenched structure of weighted
networks is in order to successfully tackle this problem.
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FIG. 10. (Color online) Voter dynamics: Illustrative represen-
tation of a configuration contributing to dρ3,7/dt. The first
node selected has degree k = 7 and the second has degree
k′′ = 4, different from k′ = 3. Filled (empty) circles denote
spins in state s = +1 (s = −1). The variation to the den-
sity ρk,k′ is due to the j = 3 links that connect the flipping
node to nodes of degree k′. Before the flipping of the first
node selected, n = 1 of the links are active and j − n = 2 are
inactive. After the flipping the state of links is reversed and
the variation in the number of active links between nodes of
degree k and k′ is j − 2n = 1.

APPENDIX: HETEROGENEOUS PAIR

APPROXIMATION FOR THE VOTER MODEL

We want to determine the equation of motion of the
quantity ρk,k′ for the voter model on a weighted network.
This quantity is modified if the flipping node has degree

k and one of its neighbors has degree k′ (or vice versa).
Let us assume that the flipping (first selected) node has
degree k and call k′′ the degree of the copied (second
selected) node. It is useful to consider separately the two
cases where k′′ 6= k′ or k′′ = k′.
In the first case the variation ∆ρk,k′ for a single dynam-

ical step (occurring over a time ∆t = 1/N) is determined
as follows: The probability that a node in state s and de-
gree k flips is given by the probability P (k) that the first
node selected has degree k times the probability σ(s) that
it is in state s, times the probability Pw(k → k′′) that
the second has degree k′′ multiplied by the probability
ρk,k′′/[2σ(s)] that the link connecting the two is active.
One has then to multiply this quantity by the associated
variation of the fraction of active links between k and k′,
see Fig. 10.
Among the k − 1 other links of the flipping node, the

number of those connecting to a node of degree k′ will
be j distributed according to a binomial R(j, k− 1) with
probability of the single event equal to P (k′|k). In their
turn, only n out of these j links will be active, with n
binomially distributed (B(n, j)) with single event prob-
ability ρk,k′/[2σ(s)]. Finally one has to multiply by the
variation of ρk,k′ when n out of j links go from active to
inactive as a consequence of the flipping of the node in
k. This is given by the variation of the number of active
links [(j − n) − n] divided the total number of links be-
tween nodes of degree k and k′, namely NkP (k)P (k′|k).
One has then to sum over k′′ 6= k′, s, j and n, obtaining

∆ρk,k′ = P (k)
∑

s

σ(s)
∑

k′′ 6=k′

Pw(k → k′′)
ρk,k′′

2σ(s)
·
k−1
∑

j=0

R(j, k − 1)

j
∑

n=0

B(n, j)
j − 2n

NkP (k)P (k′|k) . (49)

By performing explicitly the summations (and using
∑

s 1/σ(s) = 4/(1 − m2), where m is the magnetization) the
formula becomes

∆ρk,k′

∆t
=

∑

k′′ 6=k′

Pw(k → k′′)ρk,k′′

(k − 1)

k

(

1− 2

1−m2
ρk,k′

)

. (50)

When k′′ = k′, the value of ∆ρk,k′ is similar to Eq. (49) with (obviously) Pw(k → k′) instead of Pw(k → k′′), no sum
over k′′, and in the numerator of the last factor j + 1− (n+ 1)− (n+ 1) = j − 2n− 1, because there are j + 1 links
to nodes of degree k, n + 1 of which are active in the initial state and inactive in the final. Summing up the two
contributions and adding the symmetric terms with k and k′ swapped, we get

dρk,k′

dt
= ρk

k − 1

k
+ ρk′

k′ − 1

k′
+−ρk,k′

[

Pw(k → k′)

P (k′|k)
1

k
+

Pw(k
′ → k)

P (k|k′)
1

k′
+

2ρk
1−m2

k − 1

k
+

2ρk′

1−m2

k′ − 1

k′

]

, (51)

which becomes Eq. (46) when uncorrelated networks are
considered, so that

Pw(k → k′)

P (k′|k) =
〈k〉

〈k1+θ〉k
′θ. (52)
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[23] K. Suchecki, V. M. Egúıluz, and M. S. Miguel, Europhys.
Lett. 69, 228 (2005).

[24] C. Castellano, AIP Conf. Proc. 779, 114 (2005).
[25] V. Sood and S. Redner, Phys. Rev. Lett. 94, 178701

(2005).
[26] T. Antal, S. Redner, and V. Sood, Phys. Rev. Lett. 96,

188104 (2006).
[27] V. Sood, T. Antal, and S. Redner, Phys. Rev. E 77,

041121 (2008).
[28] E. Lieberman, C. Hauert, and M. A. Nowak, Nature 433,

312 (2005).
[29] G. J. Baxter, R. A. Blythe, and A. J. McKane, Phys.

Rev. Lett. 101, 258701 (2008).
[30] C. M. Schneider-Mizell and L. M. Sander, J. Stat. Phys.

136, 59 (2009).
[31] H.-X. Yang, Z.-X. Wu, C. Zhou, T. Zhou, and B.-H.

Wang, Phys. Rev. E 80, 046108 (2009).
[32] A.-L. Barabsi and R. Albert, Science 286, 509 (1999).
[33] Y. Lin, H. Yang, Z. Rong, and B. Wang, International

Journal of Modern Physics C 21, 1011 (2010).
[34] E. Pugliese and C. Castellano, Europhysics Letters 88,

58004 (2009).
[35] R. Pastor-Satorras, A. Vázquez, and A. Vespignani,

Phys. Rev. Lett. 87, 258701 (2001).
[36] C. W. Gardiner, Handbook of stochastic methods

(Springer, Berlin, 1985), 2nd ed.
[37] R. Durret, Essentials of Stochastic Processes (Springer-

Verlag, New York, 1999).
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[41] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Euro.

Phys. J. B 38, 205 (2004).
[42] C. Castellano, D. Vilone, and A. Vespignani, Europhys.

Lett. 63, 153 (2003).
[43] S. Carmi, P. L. Krapivsky, and D. ben Avraham, Phys.

Rev. E 78, 066111 (2008).
[44] V. D. Blondel, J.-L. Guillaume, J. M. Hendrickx,

C. de Kerchove, and R. Lambiotte, Phys. Rev. E 77,
036114 (2008).


