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Abstract

Predicting nonequilibrium fluctuations requires a knowledge of nonequilibrium distribution func-

tions. Despite the distributions’ fractal character some theoretical results, “Fluctuation Theorems”,

reminiscent of but distinct from, Gibbs’ equilibrium statistical mechanics and the Central Limit

Theorem, have been established away from equilibrium and applied to simple models. We summa-

rize the simplest of these results for a Gaussian-thermostated Galton Board problem, a field-driven

mass point moving through a periodic array of hard-disk scatterers. The data we analyze corre-

spond to periodic orbits with up to 482,761,061 collisions.
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Figure 1

time = 20

-0.7  <  x and y  <  +0.7

FIG. 1: A periodic hexagonal unit cell description of the thermostated Galton Board. A point

particle is scattered by the disk of unit diameter at the cell center. The scatterer density is 4/5 the

close-packed density, so that the center-to-center spacing of the scatterers is
√

5/4. The accelerating

field, E = 3, is directed toward the right, in the horizontal x direction. The preponderance of

collisions at the lefthandside of the scatterer reflects the resulting positive current, which has

a mean value 〈px〉 = 0.220. The magnitude of the velocity is unity so that the instantaneous

current always lies between −1 and +1. Accordingly, the time-averaged entropy production rate

is 〈σ〉/k = 〈Ṡ〉/k = E〈px〉/kT = 0.660. The combined length of the trajectory segments shown

in the Figure, 20, is equal to the elapsed time. A coarse-grained (twelve-digit) description of the

model with a fourth-order Runge-Kutta timestep dt = 0.0005 results in the 482,761,061-collision

periodic-orbit problem discussed in the text.

I. INTRODUCTION

In preparing a second edition of Time Reversibility, Computer Simulation, and Chaos1

we are presently summarizing some of the recent work in this field in a pedagogical form. We

would appreciate readers’ suggestions as to topics which ought to be included or expanded.

One such topic is considered here, “Fluctuation Theorems”.

By now there is a voluminous literature devoted to Fluctuation Theorems of the type

described first in 1993 by Evans, Cohen, and Morriss2,3. These theorems relate the relative

probabilities of sufficiently-long forward and reversed nonequilibrium trajectory segments

to the corresponding external entropy produced along the forward trajectory2–6. The time-

reversibility of deterministic thermostated motion equations simplifies such calculations.

Among the simplest applications is the “Galton Board” problem, the field-driven mo-
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tion of a point particle through a periodic array of hard-disk scatterers7,8. We illustrate

that application here as a worked-out pedagogical exercise problem. We simplify the anal-

ysis further (and make contact with other areas of the research literature, periodic orbit

analysis9–13, and the effects of finite precision on the results of computer simulation9,10) by

considering a phase-space distribution representing a single relatively-long (millions of colli-

sions and billions of timesteps – see the data below in Table I) periodic orbit, rather than the

idealized nonequilibrium ensemble average which this single orbit closely approximates. Re-

lated examples of the underlying Galton Board problem have also been discussed at length

in the literature4–6,13,14.

Table I. Number of decimal digits n, number of collisions, number of timesteps, and

collision rate Γ in periodic orbits where each collision is centered in a phase-space cell

described with a spacing of n decimal digits. The fourth-order Runge-Kutta timestep is

0.0005. The correlation dimension D2 = 1.583 from Reference 19 predicts orbit lengths

varying as 100.79n, 3× 109 for n = 12.

n collisions timesteps Γ

3 858 473 166 3.627

4 3 637 2 100 787 3.463

5 15 569 8 893 534 3.501

6 58 202 32 706 087 3.559

7 747 921 421 549 209 3.548

8 5 894 843 3 319 313 492 3.552

9 4 900 281 2 759 605 808 3.551

10 8 363 899 4 711 302 598 3.551

11 125 477 404 70 658 470 001 3.552

12 482 761 061 271 845 221 486 3.552
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Figure 2

Attractor Repellor
FIG. 2: 3637-point periodic attractor and the corresponding (mirror-image) repellor, using four

decimal digits to divide the collision space shown into 104×104 = 108 separate states. The abscissa

is 0 < α < π and the ordinate is −1 < sin(β) < +1; α gives the location of a collision relative

to the field direction, while β gives the angle between the post-collision velocity vector and the

outward normal vector at the collision location. Reversing the time corresponds to changing the

sign of the ordinate.

II. BACKGROUND

Consider the longtime phase-space probability density f(q, p, ζ) generated by motion in a

nonequilibrium steady state. Besides the details of the time-dependent coordinates {q} and
momenta {p}, included also is at least one thermostat variable ζ , which defines the external

time-dependent entropy production rate σ = Ṡ required to maintain the steady state. When

Nosé-Hoover thermostats are used the friction coefficient(s) {ζ} are independent variables,

obeying their own differential equations:

{ FNH ≡ −ζp } ; { ζ̇ ∝
∑

[(p2/mkT )− 1] } .

and guaranteeing that the thermostated momenta included in the sum(s) have longtime

average kinetic temperature(s) {T}.
In the one-body Galton Board simulation problem analyzed in Sections III and IV ζ is

not an independent variable, but is instead an explicit linear function of the momentum, a

“Gaussian thermostat”, keeping the kinetic temperature constant:

FG ≡ −ζp ; ζ = ζ(p) ∝ px −→ p2 ≡ mkT.
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To simplify our analysis we consider here computational models “solved” by generating

finite-difference approximations to their system trajectories. Finite-difference schemes in

bounded phase spaces eventually begin to repeat their history. Estimating the number of

steps both prior to and during the repetition is analogous to solving the “Birthday Problem”,

“How large must a randomly-chosen group of people be to make it likely that two share the

same birthday?”. Similarly, random jumps in an N -state phase space suggest a longest

periodic orbit length of order
√
N jumps, a second-longest orbit shorter by a factor of e, a

third-longest orbit shorter by e2, and so on. Thus in practice there are only a few (≃ ln
√
N)

periodic orbits in a finite-precision phase space9,10 with their combined lengths less than twice

that of the longest periodic orbit. In a nonequilibrium situation, with a multifractal attractor

having a reduced phase-space dimensionality, there are even-fewer, even-shorter paths. The

details can be expressed in terms of the multifractal distribution’s “correlation dimension”,

which gives the dimensionality of nearby pairs of trajectory points9,10.

By considering only the longest most-likely of these numerical orbits, the resulting “nat-

ural measure” in the space is a constant, f = 1/Ω at each of the Ω discrete points of the

orbit and is zero elsewhere in the space. In a typical nonequilibrium steady state the length

of this longest single orbit exceeds the combined lengths of all the rest in the fine-mesh

limit9,10. With double-precision arithmetic the typical mesh size is of order 10−14.

All of the longest-orbit system variables, including σ the rate of external entropy pro-

duction due to the thermostat, are necessarily periodic functions of time with period τ , the

orbit length. The external entropy produced per period is a positive constant, τ〈σ〉. Because
the nonequilibrium motion equations underlying our continuous-time problem are all time-

reversible, we can also usefully imagine a highly-improbable time-reversed backward version

of the periodic orbit. See Figure 2 for a four-digit example. This “repellor” trajectory, the

time-reversed attractor, is a bit artificial. It can be generated in either of two fully-equivalent

ways: [1] solve the differential equations for {q, p, ζ} as usual, but with a negative timestep

dt→ −dt or [2] take the stored solution of the equations with a positive dt and change the

signs of the {p} and {ζ}. Because a finite bounded phase-space distribution requires that

the Lyapunov instability12,13 of the reversed orbit necessarily exceeds that of the forward

attractor, the reversed orbit can only be generated in the two ways just mentioned.

Fluctuation Theorems describe the relative probability of finite-but-large segments of such

forward-backward pairs. Unlike the Central Limit Theorem, which predicts the (Gaussian)
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shape of the probability distribution, the Fluctuation Theorems instead predict ratios of

forward/backward probabilities. By considering the simplest computational case where the

phase-space motion is periodic, but dissipative, the discussion of this single-orbit problem

avoids the need to address ergodicity as well as sign changes in the values of the local

(coordinate-dependent) Lyapunov exponents.

Consider an observation time δτ (perhaps as small as a single timestep and possibly as

large as the total length τ of the periodic orbit under consideration). Averaging the location

of the observation time over the entire orbit gives exactly the same rate of external entropy

production (due to the thermostat) as characterizes the full orbit:

〈σ〉δτ = (1/δτ)∆Sδτ ≡ (1/τ)∆Sτ = 〈σ〉τ = (1/τ)(work/T )orbit = (1/τ)(heat/T )orbit .

The work done (by a driving external field), summed up over the entire orbit, is necessarily

equal to the total heat extracted by the constant-temperature thermostat. Dividing by the

thermostat temperature T gives the corresponding entropy produced, ∆S = (heat/T )orbit.

In the special case we consider in Sections III and IV the kinetic temperature is fixed by

using a “Gaussian” thermostat. Gauss’ Principle of Least Constraint provides a basis for

this approach. The Principle suggests using the smallest possible rms force to constrain the

kinetic temperature T. This “least” force is linear in the momentum. We define the kinetic

temperature T in the usual way: T = p2/mk = 1. Fluctuation Theorems with fluctuating

temperatures and with stochastic thermostats have also been considered and tested4–6,15.

The relative probabilities of the forward “attractor” and reversed “repellor” orbits (if we

now imagine them as the two infrequently communicating parts of an ergodic steady con-

tinuous distribution) can be expressed in terms of their orbit-averaged Lyapunov exponents.

The entire spectrum of Lyapunov exponents, both positive and negative, can be determined

using a finite-difference algorithm, as described by Bennetin16, or by using continuous-time

Lagrange multiplier constraints17,18. The positive exponents,which describe spreading, can

be used to express the loss rate of probability density from the neighborhoods of the forward

and backward orbits. These loss rates for the attractor A and repellor R must balance in a

steady state. Averaged over a single periodic orbit, this balance expresses the attractor and

repellor probabilities in terms of the dissipation induced by the thermostat:

fA exp[
∑

λA>0

−λAτ ] = fR exp[
∑

λR>0

−λRτ ]←→
fA
fR

=
e
∑

λAτ

e−
∑

λRτ
= e〈Ṡ〉τ/k .
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Because the positive exponents on the repellor are simply reversed-sign versions of the

negative exponents on the attractor the two Lyapunov-exponent sums can be combined:

ln
[

fforward
fbackward

]

= ln
[

fA
fR

]

=
∑

λA>0

λAτ −
∑

λR>0

λRτ ≡
∑

A

λτ = 〈Ṡ〉τ/k . [FT ]

The usual statement of this Fluctuation Theorem [FT] includes the proviso that the aver-

aging time τ must be sufficiently large. It is evident that the steady state quotient fA/fR is

typically positive, as the Second Law states, so that the longtime expression [FT ] fails as τ

approaches zero.

For Gauss’ or Nosé-Hoover thermostats the equality between the complete sum of all the

local Lyapunov exponents and the external rate of entropy production is an identity. For

the Galton Board example which we detail in Section III this equality follows directly from

an application of Liouville’s Theorem to the nonHamiltonian equations of motion suggested

by Gauss’ Principle.

The Fluctuation Theorem illustrated here was first demonstrated, numerically, for a

manybody shear flow2. We illustrate the same Theorem in the next Section for a simple

pedagogical example, the thermostated one-particle Galton Board1,4,6–8,10,13,14,19,20. We di-

vide up a single relatively-long finite-precision periodic orbit into portions δτ . Evidently

the overall averaged dissipation rate for these portions is the same as the rate for the entire

orbit 〈σ〉τ so that we can test the applicability of the Theorem as a function of the sampling

time δτ .

III. GALTON BOARD

The Galton Board problem provides an instructive example of all these ideas. A point

particle with unit mass is accelerated to the right by a field E through a triangular lattice

of fixed disk scatterers. For this problem the average current 〈px〉, dissipated energy, and

entropy production are all simply related:

p2 ≡ T ≡ 1←→ E〈px〉 = 〈(d/dt)work〉 = 〈(d/dt)heat〉 = 〈ζp2〉 .

The speed |p/m| of the point particle, as well as its “temperature” p2/mk, is kept constant

by the friction coefficient ζ = Epx/p
2:

ζ = (d/dt)work/kT = (d/dt)heat/kT = Ṡ/k .
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Here Ṡ = σ is the instantaneous external entropy production rate. The complete set of

motion equations for the isokinetic Galton Board is the following:

ẋ = px ; ẏ = py ; ṗx = Fx + E − ζpx ; ṗy = Fy − ζpy .

By switching to polar momentum coordinates these trajectory equations can be integrated

analytically7, though here we choose to use the equally accurate (machine accuracy) fourth-

order Runge-Kutta integration for simplicity’s sake. The hard-disk elastic force F is the

reflective interaction of the point particle and the fixed scatterer, where the collision location

and direction are given by the angles {α, β} defined in the caption of Figure 2. The collisional

“jumps” in the phase-space orbit contribute to the Lyapunov instability of the problem, but

make no contribution to the work done by the field or to the heat extracted by the thermostat

and converted to external entropy production. In the numerical work the coordinates and

momenta are rescaled,

x2 + y2 −→ 0.25 ; p2x + p2y −→ 1 ,

whenever the accurate Runge-Kutta trajectory returns {x, y} values inside the scatterer

radius of 1/2.

We apply this model to the Fluctuation Theorem by considering the situation indicated

in Figure 1 for a periodic unit cell. The Figure shows an illustrative trajectory portion

made up of 20 000 timesteps, with dt = 0.001. In the equilibrium case, with zero field,

the scatterer collisions make all velocity directions equally probable so that the probability

density for px = cos(θ) diverges at ±1:

dθ

2π
= prob(θ)dθ = prob(px)dpx →

prob(px) =
(|dθ/dpx|)

2π
=

1

2π| sin(θ)| =
1

2π
√

1− p2x
=

1

2π|py|
.

With the field turned “on” the downhill directions become more probable, as is illustrated

by the trajectory segment of Figure 1 and by the two probability densities, normalized for

400 momentum bins, shown in Figure 3. With the field “off”, and all velocity directions

equally likely the probability density for px diverges at the extrema, px = ±1.
The low-field dynamics is Lyapunov unstable20, with two nonzero Lyapunov exponents,

{λ = ±0.98} at zero field, and {λ} = {0.750;−0.9145} with a field strength of E = 3.00.
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0.000
0.001
0.002
0.003
0.004
0.005

Figure 3

-1 < current < +1

Probability Densities
 with 400 Bins

0.000
0.001
0.002
0.003
0.004
0.005

Figure 3

-1 < current < +1

Probability Densities
 with 400 Bins

−π  <  θ  <  +π−π  <  θ  <  +π−π  <  θ  <  +π
FIG. 3: 400-bin probability distributions for the current and for the direction of the velocity,

varying from parallel to antiparallel, θ = arctan(py/px) for no field (jagged symmetric data) and

for a field strength of 3.00. The peak at θ = 0 corresponds to the enhanced probability on the

lefthandside of the scatterer in Figure 1. A timestep of 0.0005 with 100 billion timesteps was used

in accumulating these data.

These data for the Galton Board, and many others, for simple models and for manybody

systems, are available in Christoph Dellago’s 1995 Dissertation20.

If the field strength is large enough, short periodic orbits with both exponents negative

(20 collisions for E = 3.69 and 2 collisions for E = 4.00) can be stabilized in the infinitesimal-

mesh limit. See Figures 2 and 5 of Reference 7. To avoid such nonergodic situations we

choose a field strength E = 3.00, for which the conductivity (current divided by field) is

0.0734, significantly reduced from the lowfield14 Green-Kubo value of 0.10, and corresponding

to a current 0.0734E

〈px〉 = p〈cos(θ)〉 = 0.0734× 3 = 0.220 ,

and a mean squared current of 0.574. These latter numerical results were obtained in 19877.

The probability densities for four different sampling times are shown in Figure 4. The

longest time shown corresponds to approximately 178 collision times, while the shortest is

about 1/6 of a collision time. Let us turn to the analysis of the sampling-time dependence

of these results from the standpoints of the Fluctuation Theorem and the Central Limit

Theorem.

9



IV. THE FLUCTUATION AND CENTRAL LIMIT THEOREMS

The “Fluctuation Theorem” expresses the ratios of probabilities of forward and reversed

processes, but not their shapes, ending up with expressions like this:

ln
[probf (+σ)

probb(−σ)

]

δτ
=

+σδτ

k
,

valid in the limit that δτ is sufficiently large. The Central Limit Theorem, also valid for

large δτ , can be expressed similarly:

ln
[probf (+σ)

probb(−σ)

]

δτ
= −(+σ − 〈σ〉)2

2Σ2
+

(−σ − 〈σ〉)2
2Σ2

= +
2σ〈σ〉
Σ2

,

where the average current here is 〈σ〉 = 0.22 and Σ is the “standard deviation” of the

Gaussian. Equating the two expressions (Fluctuation Theorem and Central Limit Theorem)

gives an explicit large-δτ expression for Σ:

Σ =
√

2〈σ〉/δτ .

A visual inspection of the current probabilities for a relatively large time averaging interval

δτ = 50 (nearly 200 collisions) reveals noticeable deviations from a smooth Gaussian shape.

Much larger intervals are not practical because the probability of observing negative currents

becomes small. For example, for a time interval of 200, the probability of the zero-current

Gaussian relative to its maximum (at an entropy production rate of 0.22) is

exp[−0.222/2Σ2] = exp[−(0.22/4)× 200] = exp[−11] = 0.000017 .

For this example problem it is evident that the two longtime relations are only semiquan-

titative (with errors of a few percent) and don’t give the detailed shape of the probability

distribution. To illustrate the Fluctuation Theorem relationship in the usual way we plot

the (logarithm of the) probability ratio for the most useful range of sampling times, from

104dt to 105dt. The data shown in Figure 5 demonstrate that the Theorem is indeed a useful

semiquantitative guide provided that the sampling time is more than a few collisions.

V. SUMMARY

The Fluctuation Theorem provides accurate estimates for the relative probability of for-

ward and reversed steady-state phase-space trajectories. The Theorem illustrates the use-

fulness of coarse-grained probability densities in microscopic interpretations of macroscopic
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Figure 4Figure 4Figure 4Figure 4

-3 <   < Ep  >   < +3   x

probability

-3 <   < Ep  >   < +3   x

probability

-3 <   < Ep  >   < +3   x

probability

-3 <   < Ep  >   < +3   x

probability

-3 <   < Ep  >   < +3   x

ln(probability)

FIG. 4: Entropy production rate averaged over averaging time intervals δτ = {50, 5, 0.5, 0.05}.

The mean time between collisions is 0.282.

thermodynamics. Results for short-term nonequilibrium fluctuations (most of the data in

Figure 4) are highly model dependent, and still lack accurate theoretically-based estimates.

The Fluctuation Theorem looks very much like Onsager’s (or Gibbs’) relation for proba-

blities in terms of a nonequilibrium phase-space entropy,

prob ≃ e∆S/k ,

even though the nonequilibrium entropy does not exist1,7,19–21 outside the linear-response

regime.

The Fluctuation Theorem goes beyond the Central Limit Theorem (which also applies

to nonequilibrium steady states) and so can be used to give an explicit prediction for the

halfwidth of the large-δτ Gaussian distribution:

ln
[

prob(+σ)

prob(−σ)

]

FT
= δτσ ≃ ln

[

prob(+σ)

prob(−σ)

]

CLT
= 2σ〈σ〉/∆2 ,

where ∆ is the standard deviation, and accordingly should be
√

2〈σ〉/δτ . The two Theorems

taken together do provide a useful semiquantitative guide to nonequilibrium fluctuations far

from the linear-response regime.

The relationship between the length of coarse-grained periodic orbits and the multifractal

correlation dimension can be derived from a statistical viewpoint, by imagining random

jumps among N phase space states, resulting in an orbit length somewhat less than
√
N . In

the present work the “jump” from one collision to the next can be viewed as such a process.
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0.0

0.2

0.4

0.6

0.8

1.0
Figure 5

ln[prob(   ) / prob(   )]/

δτ = {50, 20, 5}

0.0       <       +σ       <       1.0

+σ                 −σ    δτ

FIG. 5: (1/δτ) ln[prob(+σ/k)/prob(−σ/k)] as a function of the entropy production rate σ av-

eraged over intervals of length 5 (solid line), 20 (small filled circles), and 50 (large open circles),

corresponding to 18, 71, and 178 collision times. According to the “Fluctuation Theorem” the

slope of this curve is unity for sufficiently large averaging intervals.

Many generalizations of this simple isokinetic model have been elaborated in the liter-

ature. By adding a magnetic field4 the time-reversibility of the equations of motion can

be eliminated, but with the results still obeying the Fluctuation Theorem. A Nosé-Hoover

thermostat5 allows for fluctuations in the kinetic energy, but without affecting reversibility.

In both these cases the Fluctuation Theorem is obeyed for sufficiently large times. Results

in the short-time limit, instantaneous fluctuations in the entropy production rate, are more

highly model dependent and still cannot be predicted theoretically.
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Lorentz Gas”, Physical Review E 71, 025202 (2005).

6 T. Gilbert, “Fluctuation Theorem Applied to the Nosé-Hoover Thermostated Lorentz Gas”,
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