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We reveal that local interactions in graphene allow novel spin liquids between the semi-metal
and antiferromagnetic Mott insulating phases, identified with algebraic spin liquid and Z2 spin
liquid, respectively. We argue that the algebraic spin liquid can be regarded as the two dimensional
realization of one dimensional spin dynamics, where antiferromagnetic correlations show exactly the
same power-law dependence as valence bond correlations. Nature of the Z2 spin liquid turns out to
be d+ id

′ singlet pairing, but time reversal symmetry is preserved, taking d+ id
′ in one valley and

d−id
′ in the other valley. We propose the Josephson effect between two valleys for the mechanism of

time reversal symmetry and an experimental signature of the quantized thermal valley Hall effect.
Quantum phase transitions among the semi-metal, algebraic spin liquid, and Z2 spin liquid are
shown to be continuous while the transition from the Z2 spin liquid to the antiferromagnetic Mott
insulator turns out to be the first order. We emphasize that both algebraic spin liquid and d± id

′ Z2

spin liquid can be verified by the quantum Monte Carlo simulation, showing the enhanced symmetry
in the algebraic spin liquid and the quantized thermal valley Hall effect in the Z2 spin liquid.

PACS numbers:

I. INTRODUCTION

Interplay between the topological band structure and
interaction drives one direction of research in modern
condensed matter physics,1,2 where emergence of Dirac
fermions is at the heart of the interplay. The original ex-
ample is the system of one dimensional interacting elec-
trons, where interactions become enhanced at low en-
ergies, combined with one dimensionality, and electron
fractionalization results, giving rise to a new state of
matter, dubbed as the Tomonaga-Luttinger liquid.3 An
interesting aspect is that such fractionalized excitations
as spinons and holons are identified with topological ex-
citations, carrying fermion quantum numbers associated
with the topological structure of the Dirac theory.4

A recent study based on the quantum Monte Carlo
simulation5 has argued that essentially the same phe-
nomenon as electron fractionalization in the Tomonaga-
Luttinger liquid may happen in two dimensions when lo-
cal interactions are introduced in the graphene structure.
This study claimed existence of a paramagnetic Mott in-
sulator with a spin gap between the semi-metal and anti-
ferromagnetic Mott insulating phases. Immediately, the
nature of the spin gapped Mott state has been suggested
to be an s-wave spin-singlet pairing order between next
nearest neighbor spins,6–8 thus identified with a Z2 spin
liquid. We point out other scenarios9,10 for the nature of
the spin liquid state.

In the present study we revisit this problem, the na-
ture of possible spin liquids in the Hubbard model on
the graphene structure. An important point of our study
is to solve the Hubbard model directly beyond recent
studies,6–8 where an additional energy scale was intro-
duced to describe the spin-singlet pairing order. The
SU(2) slave-rotor representation, invented by one of the
authors,11 is at the heart of the methodology, where ex-

change correlations via virtual processes are naturally
caught to allow spin singlet-pairing. One may regard
the SU(2) slave-rotor theory of the Hubbard model as an
analogue of the SU(2) slave-boson theory12 for the t-J
model.

We find two kinds of spin liquids, identified with an
algebraic spin liquid and a Z2 spin liquid, respectively,
between the semi-metal and antiferromagnetic phases.
We argue that the algebraic spin liquid13,14 can be re-
garded as the two dimensional realization of one dimen-
sional spin dynamics, where antiferromagnetic correla-
tions show exactly the same power-law dependence as
valence bond correlations15,16. Increasing interactions,
pairing correlations between nearest neighbor sites be-
come enhanced. As a result, the algebraic spin liquid
is shown to turn into a gapped spin liquid state, where
the spin gap results from d+ id′ singlet pairing, believed
to originate from the interplay between the topological
structure and interaction. Actually, this pairing symme-
try solution has been argued to be stable, based on an
effective model in the weak coupling approach.17,18 How-
ever, we argue that time reversal symmetry is preserved,
taking the d+ id′ singlet pairing to one valley while the
d − id′ pairing to another. We suggest the Josephson
effect between two valleys for the mechanism of time re-
versal symmetry. We propose the quantized thermal val-
ley Hall effect for the fingerprint of this gapped Z2 spin
liquid.

We would like to emphasize that appearance of both
algebraic spin liquid and d ± id′ Z2 spin liquid can be
verified by the quantum Monte Carlo simulation in prin-
ciple. The fingerprint of the algebraic spin liquid is an
enhanced symmetry, giving rise to the same power-law
dependence between antiferromagnetic and valence bond
correlations. The hallmark of the d ± id′ Z2 spin liquid
is the quantized thermal valley Hall effect, as mentioned
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above. We hope that the present study motivates quan-
tum Monte Carlo simulation researchers to calculate such
correlation functions.
The present paper is organized as follows. In Sec. II

we present the SU(2) slave-rotor theory of the Hubbard
model, where general mean field equations are derived.
We perform the mean field analysis for possible quantum
phase transitions in Sec. III. In Sec. IV we give summary
and discussion.

II. SU(2) SLAVE-ROTOR THEORY OF THE
HUBBARD MODEL

A. Formulation

We start from the Hubbard model on the honeycomb
lattice

H = −t
∑

〈ij〉σ

c†iσcjσ +H.c. + U
∑

i

ni↑ni↓, (1)

where ciσ (c†iσ) is the annihilation (creation) operator
for an electron at site i with spin σ. t is the hopping
integral, and U is the on-site Coulomb interaction, where

niσ = c†iσciσ represents the density of electrons with spin
σ.
Introducing the Nambu-spinor representation

ψi =

(
ci↑
c†i↓

)
,

and performing the Hubbard-Stratonovich transforma-
tion for the pairing, density (singlet) and magnetic
(triplet) interaction channels, we obtain an effective La-
grangian

L =
∑

i

ψ†
i (∂τ1− µσz)ψi − t

∑

〈ij〉

ψ†
i σzψj +H.c.

−i
∑

i

[ΦR
i (ψ

†
iσxψi) + ΦI

i (ψ
†
i σyψi) + ϕi(ψ

†
i σzψi)]

+
3

2Uκc

∑

i

[(ΦR
i )

2 + (ΦI
i )

2 + (ϕi)
2]

+
1

2Uκs

∑

i

m2
i −

∑

i

mi(ψ
†
iψi). (2)

Here, Φ
R(I)
i and ϕi are associated with pairing-

fluctuation and density-excitation potentials, introduced
to decouple the charge channel. mi is an effective mag-
netic field, which decouples the spin channel. κc and κs
are introduced for decoupling between singlet and triplet
interactions in respect that we do not know how they be-
come renormalized at low energies. One may regard these
two decoupling coefficients as phenomenological param-
eters to overcome the mean-field approximation. Several
examples for decoupling are shown in appendix A.

The SU(2) slave-rotor representation11 means to write
down an electron field as a composite field in terms of a
charge-neutral spinon field and a spinless holon field

ψi = Z†
i Fi, (3)

where Fi =

(
fi↑
f †
i↓

)
is a fermion operator in the Nambu

representation, and Zi is an SU(2) matrix

Zi =

(
zi↑ −z†i↓
zi↓ z†i↑

)
. (4)

Here, ziσ is a boson operator, satisfying the unimodular

(rotor) constraint, z†i↑zi↑ + z†i↓zi↓ = 1.

The key point of the slave-rotor representation19 is
to extract out collective charge dynamics explicitly from
correlated electrons. Such charge fluctuations are identi-
fied with zero sound modes in the case of short range in-
teractions while plasmon modes in the case of long range
interactions. Actually, one can check that the dispersion
of the rotor variable (zi↑) is exactly the same as that of
such collective charge excitations.
In the slave-rotor theory the Mott transition is de-

scribed by gapping of rotor excitations.19 Until now, the
Mott transition has not been achieved successfully, based
on the diagrammatic approach starting from the Fermi
liquid theory. In this respect the slave-rotor theory can
be regarded as an effective field theory, not bad for the
Mott transition.
Resorting to the SU(2) slave rotor representation in

Eq. (3), we rewrite the effective Lagrangian Eq. (2) as
follows

L = L0 + LF + LZ , (5)

L0 = t
∑

〈ij〉

Tr[XijY
†
ij + YijX

†
ij ] +

1

2Uκs

∑

i

m2
i , (6)

LF =
∑

i

F †
i (∂τ1− iΩi·σ)Fi

−t
∑

〈ij〉

(F †
i XijFj +H.c.)−

∑

i

mi(F
†
i Fi), (7)

LZ =
3

4Uκc

∑

i

Tr[Ωi·σ−iZi∂τZ
†
i + iµZiσzZ

†
i ]

2

−t
∑

〈ij〉

Tr[Ziσ
zZ†

jY
†
ij +H.c.]. (8)

It is not difficult to see equivalence between the SU(2)
slave-rotor effective Lagrangian and the decoupled Hub-
bard model [Eq. (2)]. Integrating over field variables of
Xij and Yij , and shifting Ωi·σ as

Ωi·σ+iZi∂τZ
†
i − iµZiσzZ

†
i ,

whereΩi = (ΦR
i ,Φ

I
i , ϕi) is the pseudospin potential field,

we recover Eq. (2) exactly with an introduction of an
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FIG. 1: Graphene. A distance between two next nearest
neighbor sites is chosen as the length unit. a1 and a2 are
primitive translation vectors. δ1, δ2, and δ3 are three nearest
neighbor bonds.

electron field Z†
i Fi → ψi. This procedure is well de-

scribed in the previous study.11 An important feature in
the SU(2) slave-rotor description is appearance of pair-
ing correlations between nearest neighbor electrons, given
by off diagonal hopping in Xij which results from on-site
pairing (virtual) fluctuations, captured by the off diago-
nal variable zi↓ of the SU(2) matrix field Zi. We note that
the diagonal rotor field zi↑ corresponds to the zero sound
mode, giving rise to the Mott transition via gapping of
their fluctuations. The additional boson rotor variable
zi↓ allows us to catch super-exchange correlations in the
Mott transition. But, the appearance of pairing correla-

tions does not necessarily lead to superconductivity be-
cause their global coherence, described by condensation
of SU(2) matrix holons, is not guaranteed. The similar
situation happens in the SU(2) slave-boson theory12 of
the t-J model.

B. Mean-field ansatz

We perform the mean-field analysis, taking the follow-
ing ansatz

Xij =

(
wδ v∗δ
vδ −w∗

δ

)
· σz , (9)

Yij =

(
w̃δ ṽ∗δ
ṽδ −w̃∗

δ

)
· σz, (10)

where δ denotes the bond between the nearest neighbor
sites. In the honeycomb lattice there are three near-
est neighbor bonds. We choose wδ = wγδ, vδ = vζδ,
w̃δ = w̃γδ, and ṽδ = ṽζδ, where γδ and ζδ are symmetric
factors for the hopping parameter w (w̃) and the pairing
order parameter v (ṽ). The choice for γδ and ζδ depends
on the symmetry of the considered phase. For example,
the s-wave pairing symmetry is given by ζδ = (1, 1, 1), the
dx2−y2-wave symmetry ζδ = (− 1

2 ,− 1
2 , 1), and the dxy-

wave symmetry ζδ = (− 1
2 ,− 1

2 , 0). For the magnetic or-
der parameter mi we choose an antiferromagnetic ansatz
mi = (−1)im.

Particle-hole symmetry at half filling results in µ +
iϕi = 0 while pairing potentials of ΦR

i and ΦI
i vanish in

the mean-field level. Then, we obtain a general expres-
sion for the free energy

F = − 1

β

∑

k,iω

log[(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| +m)2]− 1

β

∑

k,iω

log[(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| −m)2]

+
2

β

∑

k,iν

log[(− 3

4κcU
(iν)2 + λ)2 − 4t2w̃2|γ(k)|2 − 4t2ṽ2|ζ(k)|2] + 4tN

∑

δ

(ww̃|γδ|2 + vṽ|ζδ|2) +
N

2κsU
m2 −Nλ, (11)

where γ(k) =
∑

δ γδ exp(irδ · k) is the energy dispersion for spinons and holons, and ζ(k) =
∑

δ ζδ exp(irδ · k) is
associated with the pairing potential.

∑
δ is performed in the unit cell. λ is a Lagrange multiplier field, introduced

to keep the slave-rotor constraint. N is the total number of sites.
Minimizing the free energy, we obtain fully self-consistent equations for order parameters

w̃
∑

δ

|γδ|2 = − 2tw

4Nβ

∑

k,iω

[ |γ(k)|2
(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| +m)2

+
|γ(k)|2

(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| −m)2

]
, (12)

ṽ
∑

δ

|ζδ|2 = − 2

4Nβ

∑

k,iω

[
(tv|ζ(k)| +m)|ζ(k)|

(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| +m)2
+

(tv|ζ(k)| −m)|ζ(k)|
(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| −m)2

]
, (13)

w
∑

δ

|γδ|2 =
4tw̃

N

∑

k

|γ(k)|2
(− 3

4κcU
(iν)2 + λ)2 − 4t2w̃2|γ(k)|2 − 4t2ṽ2|ζ(k)|2 , (14)
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v
∑

δ

|ζδ|2 =
4tṽ

N

∑

k

|ζ(k)|2
(− 3

4κcU
(iν)2 + λ)2 − 4t2w̃2|γ(k)|2 − 4t2ṽ2|ζ(k)|2 , (15)

m = −2κsU

Nβ

∑

k,iω

tv|ζ(k)| +m

(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| +m)2
+

2κsU

Nβ

∑

k,iω

tv|ζ(k)| −m

(iω)2 − t2w2|γ(k)|2 − (tv|ζ(k)| −m)2
, (16)

1 =
4

Nβ

∑

k,iν

(− 3
4κcU

(iν)2 + λ)

(− 3
4κcU

(iν)2 + λ)2 − 4t2w̃2|γ(k)|2 − 4t2ṽ2|ζ(k)|2 . (17)

In this study our objective is to reveal the phase structure of the Hubbard model on the honeycomb lattice. It
is convenient to take the zero temperature limit. Performing the Matsubara frequency summation, we obtain self-
consistent mean-field equations at zero temperature

w̃
∑

δ

|γδ|2 =
w

8N/2

∑

k

|γ(k)|2
D(k,m)

+
w

8N/2

∑

k

|γ(k)|2
D(k,−m)

, (18)

ṽ
∑

δ

|ζδ|2 =
1

8N/2

∑

k

(v|ζ(k)| + m
t )|ζ(k)|

D(k,m)
+

1

8N/2

∑

k

(v|ζ(k)| − m
t )|ζ(k)|

D(k,−m)
, (19)

w
∑

δ

|γδ|2 =

√
κbU

3

w̃

2N/2

∑

k

|γ(k)|2
E(k)

(
1√

λ− 2tE(k)
− 1√

λ+ 2tE(k)

)
, (20)

v
∑

δ

|ζδ|2 =

√
κbU

3

ṽ

2N/2

∑

k

|ζ(k)|2
E(k)

(
1√

λ− 2tE(k)
− 1√

λ+ 2tE(k)

)
, (21)

m =
κsU

2N/2

∑

k

v|ζ(k)| + m
t

D(k,m)
− κsU

2N/2

∑

k

v|ζ(k)| − m
t

D(k,−m)
, (22)

1 =

√
κbU

3

1

N/2

∑

k

(
1√

λ− 2tE(k)
+

1√
λ+ 2tE(k)

)
, (23)

where

E(k) =
√
w̃2|γ(k)|2 + ṽ2|ζ(k)|2, (24)

D(k,m) =

√
w2|γ(k)|2 + (v|ζ(k)| + m

t
)2 (25)

are holon, spinon energy spectra in the presence of pair-
ing and antiferromagnetism, respectively.
Considering symmetry, it is natural to take into ac-

count spatially uniform hopping

|γ(k)|2 = 3 + 2 cos(ky) + 4 cos(
1

2
ky) cos(

√
3

2
kx). (26)

On the other hand, the s-wave pairing potential is not
allowed due to repulsive interactions. Counting the lat-

tice symmetry of the honeycomb structure, the next can-
didate will be dx2−y2 or dxy for nearest neighbor singlet
pairing18. We introduce a general combination of dx2−y2-
and dxy-wave pairing for the pairing term ζ(k)

|ζ(k)|2 = | cos(θ)ζx2−y2(k) + i sin(θ)ζxy(k)|2, (27)

where θ is a combination factor, and ζx2−y2 (ζxy) is the
dx2−y2 (dxy) -wave symmetry function. For θ = π/3 this
pairing symmetry becomes d+ id′. We also consider the
d+ d′-wave pairing symmetry

|ζ(k)|2 = | cos(θ)ζx2−y2(k) + sin(θ)ζxy(k)|2, (28)

but this pairing order turns out to be not a solution of the
mean-field equations. If one tunes κc and κs parameters,
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he can make this pairing symmetry a solution. However,
this solution does not give the lowest free energy, com-
pared with the d + id′ pairing solution, consistent with
earlier studies.17,18

III. SADDLE-POINT ANALYSIS

A. From semi-metal to algebraic spin liquid

The semi-metal phase is described by condensation of
holons 〈zσ〉 6= 0 with v = ṽ = m = 0. Considering the

symmetry factor γδ = (1, 1, 1), the condensation occurs
when the effective chemical potential given by the La-
grange multiplier field λ touches the maximum point of
the holon dispersion, i.e., λc = 2tw̃c max |γ(k)| = 6tw̃c.
These collective charge excitations become gapped when
λ > λc, and a Mott insulating state appears.

Taking λ = λc with v = ṽ = m = 0, we can determine
the quantum critical point from the following mean-field
equations

w̃c

∑

δ

|γδ|2 =
1

4N/2

∑

k

|γ(k)|, (29)

wc

∑

δ

|γδ|2 =

√
κcUc

6tw̃c

1

2N/2

∑

k

|γ(k)|
(

1√
3− γ(k)

− 1√
3 + γ(k)

)
, (30)

1 =

√
κcUc

6tw̃c

1

N/2

∑

k

(
1√

3− γ(k)
+

1√
3 + γ(k)

)
. (31)

Inserting w̃c from Eq. (29) into Eq. (31), one obtains
the critical value for the interaction strength

κcUc

t
=

3

2

1
N/2

∑
k

|γ(k)|

∑
δ

|γδ|2
[

1
N/2

∑
k

(
1√

3−γ(k)
+ 1√

3+γ(k)

)]2

= 0.312. (32)

It is interesting to notice that the resulting param-
agnetic Mott insulator has all kinds of lattice symme-
tries. In particular, spin dynamics is described by gapless
spinons. An effective field theory for spinon dynamics
was proposed to be an SU(2) gauge theory with Dirac
fermions.13

It is not at all straightforward to understand dynamics
of such gapless spinons due to complexity of the SU(2)
gauge theory. It has been shown that an interacting sta-
ble fixed point arises in the large-Nf limit,13 where Nf

is the number of fermion flavors. Such a conformal in-
variant fixed point was also shown to appear in the U(1)
gauge theory with gapless Dirac fermions.20 An interest-
ing property of the stable fixed point is that the sym-
metry of the original microscopic model, here the Hub-
bard model, is enhanced, associated with special trans-
formation properties of Dirac spinors.14,15 As a result,
spin-spin correlations at an antiferromagnetic wave vec-
tor have exactly the same power-law dependence as va-
lence bond-valence bond correlations, which means that

the scaling dimension of the staggered spin operator is
the same as that of the valence bond operator.16 This
situation is completely unusual because scaling dimen-
sions of these two operators cannot be the same in the
level of the microscopic model.
It is clear that one direct way to verify the algebraic

spin liquid state is to observe the symmetry enhancement
at low energies. If the staggered-spin correlation function
turns out to display the same power-law behavior as the
valence-bond correlation function, this will be an undis-
putable evidence for the algebraic spin liquid phase be-
tween the semi-metal phase and gapped spin liquid state.
In the recent quantum Monte Carlo simulation data there
seems to be uncertainty between the semi-metal phase
and the gapped spin liquid state because such a simu-
lation should be performed at finite temperatures. But,
calculations for correlation functions need not be done
at zero temperature. It is sufficient to show equivalent
correlation behaviors in the quantum critical region at
finite temperatures.

B. From algebraic spin liquid to Z2 spin liquid

Increasing κcU
t more from the semi-metal to algebraic

spin liquid critical point κcUc

t , we find another paramag-
netic Mott insulating phase with a spin gap. The alge-
braic spin liquid to gapped spin liquid critical point is
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found with an ansatz of v = ṽ = 0 but v/ṽ ≡ ϑ 6= 0. We obtain the mean-field equations at the critical point

w̃v

∑

δ

|γδ|2 =
1

4N/2

∑

k

|γ(k)|, (33)

1

ϑv

∑

δ

|ζδ|2 =
1

4wv

1

N/2

∑

k

|ζ(k)|2
|γ(k)| , (34)

wv

∑

δ

|γδ|2 =

√
κcUv

6tw̃c

1

2N/2

∑

k

|γ(k)|
(

1√
λ̃v − γ(k)

− 1√
λ̃v + γ(k)

)
, (35)

ϑv
∑

δ

|ζδ|2 =

√
κcUv

6tw̃v

1

2w̃vN/2

∑

k

|ζ(k)|2
γ(k)

(
1√

λ̃v − γ(k)

− 1√
λ̃v + γ(k)

)
, (36)

1 =

√
κcUv

6tw̃v

1

N/2

∑

k

(
1√

λ̃v − γ(k)

+
1√

λ̃v + γ(k)

)
, (37)

where λv = 2tw̃vλ̃v is redefined.
The strategy for the critical interaction strength is to

solve Eq. (37) with w̃v from Eq. (33). The point is how

to find λ̃v from other equations. This procedure is well
shown in appendix B.
Numerically, we find that the free energy reaches the

lowest value for the d + id′ pairing symmetry. The crit-
ical value turns out to be κcUv/t = 0.315. Note that
Uv > Uc. This intermediate phase between the semi-
metal and gapped spin liquid is the algebraic spin liquid
with an enhanced symmetry, as discussed in the previous
subsection. We would like to emphasize that this region
of Uc < U < Uv is not wide at zero temperature. But,
the quantum critical region at finite temperatures will
not be so narrow, and it will not be so difficult to ver-
ify the algebraic spin liquid, considering staggered-spin
correlations and valence-bond correlations.
The nature of the gapped spin liquid state is the d+id′

singlet pairing order within our SU(2) slave-rotor theory,
where only nearest neighbor correlations are introduced.
Because this pairing state breaks time reversal symme-
try, our Z2 spin liquid state is certainly in contrast with
the quantum Monte Carlo simulation result,5 where the
gapped spin liquid state preserves time reversal symme-
try. In order to overcome this inconsistency, we propose
d− id′ singlet pairing to the other valley. Then, the edge
state from the d + id′ pairing in one valley is cancelled
by that from the d− id′ pairing in the other valley, pre-
serving time reversal symmetry. One may regard this
cancellation of such edge states as anomaly cancellation

due to fermion doubling in condensed matter physics.21

We propose the Josephson coupling effect between two
valleys as the mechanism for different phases in the sin-
glet pairing order. An important point is that the two
valleys are apart in the momentum space. Thus, the
Josephson coupling needs the corresponding finite mo-
mentum. If singlet pairs in these two valleys have the
same phase, this Josephson coupling effect cancels the
Josephson current. On the other hand, if the d + id′

pairing is assigned to one valley and the d− id′ pairing is
taken to the other valley, the Josephson current will be
maximized. We believe that this quantum process will
lower the ground state energy than that of the time re-
versal symmetry broken state. Of course, this quantum
process is beyond the saddle-point analysis of the SU(2)
slave-rotor theory.
This pairing state can be verified by the quantized

thermal valley Hall effect.22–24 The spinon number is not
conserved due to particle-particle pairing, thus the charge
Hall conductivity is not useful. On the other hand, both
spin and energy (thermal) Hall coefficients are important
probes. But, the spin Hall conductivity vanishes due to
the different assignment between two valleys. The ther-
mal valley Hall effect should be observed in this state,
regarded as the fingerprint of our Z2 spin liquid phase.
This can be verified by the quantum Monte Carlo simu-
lation without serious difficulty.
It should be noted that our time reversal symmetry

preserving Z2 spin liquid state is beyond the classification
scheme based on the projective symmetry group because
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their possible Z2 spin liquids in the projective symmetry
group are constrained with complete time reversal sym-
metric pairing.6,7 In other words, d ± id′ singlet pairing
orders are excluded from the first although these pairing
orders are not only found but also argued to be stable in
recent studies.17,18

C. From Z2 spin liquid to antiferromagnetic Mott
insulator

Our last subject is to investigate the quantum phase
transition from the Z2 spin liquid to the antiferromag-
netic Mott insulator. Here, we should take into account
two order parameters such as the d ± id′ pairing and
antiferromagnetic ones. Generically, we expect four pos-

sibilities. The first candidate is coexistence between such
two orders, where the two critical lines cross each other.
As a result, we have two critical points inside each phase.
The second possibility is the multi-critical point, where
the two critical points meet at one point. The third sit-
uation will be the first order transition between them.
The last corresponds to an intermediate state without
any ordering, where the two critical points do not meet.
First of all, we can exclude the last possibility because
this phase is nothing but the algebraic spin liquid and
there is no reason for this reentrant behavior.
We start to examine the possibility of coexistence. The

antiferromagnetic critical point inside the Z2 spin liquid
phase can be determined by m = 0 while v and ṽ are
finite, thus determined self-consistently. The mean field
equations at this transition point are given by

w̃m

∑

δ

|γδ|2 =
1

4N/2

∑

k

wm|γ(k)|2√
w2

m|γ(k)|2 + v2m|ζ(k)|2
, (38)

ṽm
∑

δ

|ζδ|2 =
1

4N/2

∑

k

vm|ζ(k)|2√
w2

m|γ(k)|2 + v2m|ζ(k)|2
, (39)

wm

∑

δ

|γδ|2 =

√
κcUm

3

w̃m

2N/2

∑

k

|γ(k)|2
E(k)

(
1√

λm − 2tE(k)
− 1√

λm + 2tE(k)

)
, (40)

vm
∑

δ

|ζδ|2 =

√
κbUm

3

ṽm
2N/2

∑

k

|ζ(k)|2
E(k)

(
1√

λm − 2tE(k)
− 1√

λm + 2tE(k)

)
, (41)

1 =
κsUm

t

1

N/2

∑

k

1√
w2

m|γ(k)|2 + v2m|ζ(k)|2
, (42)

1 =

√
κcUm

3

1

N/2

∑

k

(
1√

λm − 2tE(k)
+

1√
λm + 2tE(k)

)
. (43)

Introducing xm = vm/wm and x̃m = ṽm/w̃m, we rewrite the above equations as

w̃m

∑

δ

|γδ|2 =
1

4N/2

∑

k

|γ(k)|2√
|γ(k)|2 + x2m|ζ(k)|2

, (44)

ṽm
∑

δ

|ζδ|2 =
1

4N/2

∑

k

xm|ζ(k)|2√
|γ(k)|2 + x2m|ζ(k)|2

, (45)

wm

∑

δ

|γδ|2 =

√
κcUm

6tw̃m

1

2N/2

∑

k

|γ(k)|2√
|γ(k)|2 + x̃2m|ζ(k)|2

×
(

1√
λ̃m −

√
|γ(k)|2 + x̃2m|ζ(k)|2

− 1√
λ̃m +

√
|γ(k)|2 + x̃2m|ζ(k)|2

)
, (46)
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vm
∑

δ

|ζδ|2 =

√
κcUm

6tw̃m

x̃m
2N/2

∑

k

|ζ(k)|2√
|γ(k)|2 + x̃2m|ζ(k)|2

×
(

1√
λ̃m −

√
|γ(k)|2 + x̃2m|ζ(k)|2

− 1√
λ̃m +

√
|γ(k)|2 + x̃2m|ζ(k)|2

)
, (47)

1 =
κsUm

twm

1

N/2

∑

k

1√
|γ(k)|2 + x2m|ζ(k)|2

, (48)

1 =

√
κcUm

6tw̃m

1

N/2

∑

k

(
1√

λ̃m −
√
|γ(k)|2 + x̃2m|ζ(k)|2

+
1√

λ̃m +
√
|γ(k)|2 + x̃2m|ζ(k)|2

)
, (49)

where λm = 2tw̃mλ̃m is redefined.
The strategy is how to reduce the number of self-

consistent equations. Following the procedure in ap-
pendix C-1, we obtain two self-consistent equations for

two unknown variables, xm and λ̃m. These equations
can be solved numerically. We fix xm first, and solve

these two equations for λ̃m. Then, we obtain two func-

tions, λ̃m of xm. When two lines of these functions in-
tersect, we obtain the solution of such equations. Once

xm and λ̃m are determined, the critical value of Um is
also found from Eq. (48). For the first (κc = 1, κs = 1)

and third (κc = 3/2, κs = 1/2) decomposition schemes in
appendix A, we could show that there are no mean field
solutions at the transition point. On the other hand,
we find Um/t = 0.360 in the case of the d + id′ pairing
symmetry for the second decomposition scheme (κc = 1,
κs = 1/2).

The Z2 spin liquid critical point inside the antiferro-
magnetic phase can be found when v = ṽ = 0 but m is
finite, determined self-consistently. The mean field equa-
tions at this critical point are given by

w̃a

∑

δ

|γδ|2 =
1

4N/2

∑

k

|γ(k)|2√
|γ(k)|2 + (ma

twa

)2
, (50)

1

ϑa

∑

δ

|ζδ|2 =
1

4waN/2

∑

k

|ζ(k)|2√
|γ(k)|2 + ( ma

twa

)2
, (51)

wa

∑

δ

|γδ|2 =

√
κcUa

6tw̃a

1

2N/2

∑

k

|γ(k)|
(

1√
λ̃a − γ(k)

− 1√
λ̃a + γ(k)

)
, (52)

ϑa
∑

δ

|ζδ|2 =

√
κcUa

6tw̃a

1

2w̃aN/2

∑

k

|ζ(k)|2
γ(k)

(
1√

λ̃a − γ(k)

− 1√
λ̃a + γ(k)

)
, (53)

1 =
κsUa

twa

1

N/2

∑

k

1√
|γ(k)|2 + (ma

twa

)2
, (54)

1 =

√
κcUa

6tw̃a

1

N/2

∑

k

(
1√

λ̃a − γ(k)
+

1√
λ̃a + γ(k)

)
, (55)

where λa = 2tw̃aλ̃a is redefined. We solve these equa- tions basically in the same way as the previous case.
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First, we reduce the system of six equations into two
equations of two unknown variables, and solve the two
equations numerically. See appendix C-2.

Equations (C11) and (C13) are the last two equations

determining λ̃a and ma/twa. We fix ma/twa first, and

solve the two equations for λ̃a numerically. Then, we

obtain two functions, λ̃a of ma/twa. When two lines of

λ̃a and ma/twa intersect, we find the solution of these
equations. However, we could not find any solution.

However, if the phase transition from the semi-metal
to the antiferromagnetic Mott insulator is concerned, we
find that the critical point occurs at Um/t = 0.330 for
the second decomposition scheme (κc = 1, κs = 1/2).
This demonstration confirms the existence of our Z2 spin
liquid state between the algebraic spin liquid and anti-
ferromagnetic Mott insulator.

Our analysis for the quantum phase transition from
the Z2 spin liquid to the antiferromagnetic Mott insu-
lator shows that the nature of this transition depends
on our phenomenological parameters of κc and κs. We
could find the antiferromagnetic quantum critical point
inside the Z2 spin liquid state for particular values of
κc and κs while we could not obtain the Z2 spin liquid
quantum critical point inside the antiferromagnetic Mott
insulating phase. We could not find the multi-critical
point solution, either. As mentioned before, it is difficult
to expect the algebraic spin liquid solution between the
Z2 spin liquid and antiferromagnetic phases. Actually,
we could find only one solution for the Z2 spin liquid
to algebraic spin liquid transition, given by the previous
subsection. The remaining possibility is the first order
transition between the Z2 spin liquid and antiferromag-
netic Mott insulator. We believe that the first order tran-
sition is the generic case for the phase transition between
these two phases. The formal procedure will be to inte-
grate over spinons and holons and to obtain an effective
Landau-Ginzburg-Wilson free energy functional for both
d ± id′ spin singlet pairing and antiferromagnetic order
parameters. Based on the effective field theory, we can
perform the renormalization group analysis and find the
nature of the phase transition. This study is beyond the
scope of the present study.

One may ask the possibility of the Landau-Ginzburg-
Wilson forbidden continuous transition between the Z2

spin liquid with the d± id′ pairing symmetry and the an-
tiferromagnetic Mott insulator. Classification of Landau-
Ginzburg-Wilson forbidden continuous transitions in two
spatial dimensions has been performed in Ref. 25. Inves-
tigating the classification table carefully, we can find that
this transition does not belong to any cases. The main
reason is that the singlet pairing order parameter cannot
be symmetrically equivalent to the antiferromagnetic or-
der parameter. The classification scheme reveals that
the Néel order parameter can form a hyper-vector with a
triplet pairing order parameter. In this respect we are al-
lowed to exclude the possibility of the Landau-Ginzburg-
Wilson forbidden continuous transition between the Z2

spin liquid and the antiferromagnetic Mott insulator.

IV. DISCUSSION AND SUMMARY

In this paper we investigated the phase structure of the
Hubbard model on the honeycomb lattice. Physics of one
dimensional interacting electrons is our reference. As well
known, even if we start from weak interactions, they be-
come enhanced at low energies, destabilizing the Fermi
liquid state. In one dimension such quantum corrections
can be summed exactly, resorting to the Ward identity.26

The resulting electron Green’s function shows two kinds
of branch cuts, corresponding to collective charge and
spin excitations. In this diagrammatic approach it is
difficult to see the nature of such fractionalized excita-
tions. But, the bosonization approach is helpful at low
energies, revealing that spinons and holons are identi-
fied with topological solitons such as domain walls.3 One
can interpret this phenomenon in another respect that
topological solitons acquire fermion quantum numbers
via fermion zero modes, regarded as realization of quan-
tum anomaly.4 We believe that the spin-charge separa-
tion in one dimensional interacting electrons results from
not only just interaction effects but also hidden topolog-
ical properties of Dirac fermions. Then, the next natural
question is whether we can find this physics in higher
dimensions.
The graphene structure is an ideal system for realiza-

tion of Dirac fermions. The first observation in this Dirac
fermion system is that the vanishing density of states
needs a finite value of the interaction strength U for an
antiferromagnetic order to be achieved. Then, the ques-
tion is whether we can find intermediate phases between
the semi-metal and antiferromagnetic Mott insulator, al-
lowing fractionalized excitations as one dimensional in-
teracting electrons. Indeed, we could find two kinds of
paramagnetic Mott insulating phases, which show frac-
tionalized excitations.
The algebraic spin liquid appears from the semi-metal

state via the Higgs transition, gapping of charge fluc-
tuations. Although it is not clear how the topological
nature of Dirac fermions is introduced to result in such a
spin liquid state, spinon excitations in the algebraic spin
liquid can be identified with topological excitations cor-

U/tUc Uv Um

SM ASL GSL AFM

X

FIG. 2: Schematic phase diagram. Abbreviations: SM is the
semi-metal phase, ASL is the algebraic spin liquid, GSL is the
gapped spin liquid, coex is coexistence of the gapped spin liq-
uid and antiferromagnetism, and AFM is antiferromagnetism.
The SM-ASL and ASL-GSL quantum phase transitions be-
long to the second order while the GSL-AFM quantum phase
transition is the first order.
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responding to meron (half skyrmion) excitations.27 The
underlying mechanism is that the symmetry of the origi-
nal microscopic model is enhanced at low energies, allow-
ing a topological term to assign a fermion quantum num-
ber to such a topological excitation. The algebraic spin
liquid turns out to have an O(5) symmetry in the physi-
cal case, where antiferromagentic correlations exhibit the
same power-law dependence for distance as valence-bond
correlations.14–16 It was pointed out that the correspond-
ing effective field theory would be given by an O(5) Wess-
Zumino-Witten theory,16 identifying spinons with such
topological excitations. Comparing the algebraic spin liq-
uid with the Tomonaga-Luttinger liquid, there is one to
one correspondence between them except that charge ex-
citations are critical in the Tomonaga-Luttinger liquid.
Actually, spin dynamics in one dimension is governed by
the O(4) Wess-Zumino-Witten theory,3 describing criti-
cal dynamics of spinons.

Because the stability of the algebraic spin liquid is not
guaranteed beyond the large-Nf limit, we proposed how
the quantum Monte Carlo simulation can prove the exis-
tence of such a phase. As discussed before, the symmetry
enhancement can be verified, calculating both antiferro-
magnetic and valence-bond correlations at finite temper-
atures. If such correlations turn out to have the same
scaling behavior, we have the algebraic spin liquid phase
just beside the semi-metal state.

When interactions are increased more, pairing corre-
lations between nearest neighbor sites become enhanced
in the singlet channel, destabilizing the algebraic spin
liquid. As a result, spinon excitations are gapped due
to their pairing orders. An interesting point is that the
nature of this gapped spin liquid state is given by the
d + id′ singlet pairing order, which breaks time reversal
symmetry. We would like to emphasize that time rever-
sal symmetric combinations based on the d-wave pair-
ing symmetry turn out to give higher energies than the
d+ id′ pairing order. We suspect that this time reversal
symmetry breaking may be related with the Berry phase
effect of the momentum space.28 One way to verify this
statement is to check how the d + id′ pairing symme-
try is changed, increasing the chemical potential from
the Dirac point, where the Berry phase effect becomes
weaken. Unfortunately, the quantum Monte Carlo sim-
ulation claimed that there is no time reversal symmetry
breaking in the gapped spin liquid state. This incon-
sistency was resolved, taking d − id′ pairing to another
valley. As a result, the edge state from the d+ id′ pairing
is cancelled by that from the d − id′ one. We proposed
the Josephson coupling effect between two valleys, which
stabilizes this phase difference. Because this argument is
beyond the present saddle-point analysis, we suggested
an experimental signature, that is, the quantized ther-
mal valley Hall effect as the fingerprint of this gapped
spin liquid.

Finally, we investigated the quantum phase transition
from the Z2 spin liquid to the antiferromagnetic Mott
insulator. We concluded that the first order transition

will take place generically. We argue that this first order
transition is involved with two symmetrically unrelated
order parameters, displaying different discrete symmetry
properties, here time reversal symmetry. We claim that
the Landau-Ginzburg-Wilson forbidden continuous tran-
sition between these two phases will not appear, based on
the existing classification scheme in the two dimensional
Dirac theory on the honeycomb lattice.25

Before closing, we would like to point out that the
SU(2) slave-rotor theory seems to overestimate quantum
fluctuations. If one sets κc as the order of 1, the criti-
cal strength of the Mott transition is the order of 10−1

for the critical value, compared with that from the quan-
tum Monte Carlo simulation. This overestimation origi-
nates from strong band renormalization for spinons and
holons, given by effective hopping integrals, Xij and Yij .
Qualitatively the same situation also happens in the U(1)
slave-rotor theory13 while the SU(2) slave-rotor theory
seems to overestimate quantum fluctuations more. We
believe that this aspect should be investigated more sin-
cerely.
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Appendix A: Decoupling scheme

We discuss several decoupling schemes. The first ex-
ample is

2HU =
U

6

∑

i

(ψ†
i σxψi)

2 +
U

6

∑

i

(ψ†
i σyψi)

2

+
U

6

∑

i

(
∑

σ

niσ − 1)2 +
U

6

∑

i

(
∑

σ

niσ − 1)

− U

2

∑

iσ

(σc†iσciσ)
2 +

U

2

∑

iσ

niσ. (A1)

Formally, this magnetic decoupling does not correspond
to the conventional Hartree-Fock analysis for antifer-
romagnetism because the interaction strength is twice
larger the standard mean field value.
The second possible decoupling is

2HU =
U

6

∑

i

(ψ†
i σxψi)

2 +
U

6

∑

i

(ψ†
i σyψi)

2

+
U

6

∑

i

(
∑

σ

niσ − 1)2 +
U

6

∑

i

(
∑

σ

niσ − 1)

+
U

4

∑

i

[(
∑

σ

c†iσciσ)
2 − (

∑

σ

σc†iσciσ)
2]. (A2)
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This decoupling recovers the standard mean field theory
for antiferromagnetism, but the coefficient of the term∑
i

(
∑
σ
niσ − 1)2 is 5

12U , not equal to the coefficient of the

term
∑
i

(ψ†
i σxψi)

2.

The third possible decoupling is

2HU =
U

4

∑

i

(ψ†
i σxψi)

2 +
U

4

∑

i

(ψ†
i σyψi)

2

+
U

4

∑

i

[(
∑

σ

c†iσciσ)
2 − (

∑

σ

σc†iσciσ)
2]. (A3)

The third decoupling scheme seems natural, but we in-
troduce phenomenological parameters κc and κs.

Appendix B: The algebraic spin liquid to Z2 spin
liquid critical point

From Eqs. (35) and (37) we obtain

wv =

1
2N/2

∑
k

|γ(k)|
(

1√
λ̃v−γ(k)

− 1√
λ̃v+γ(k)

)

∑
δ

|γδ|2 1
N/2

∑
k

(
1√

λ̃v−γ(k)
+ 1√

λ̃v+γ(k)

) . (B1)

Inserting Eq. (B1) into Eq. (34), we get

ϑv =

2
∑
δ

|ζδ|2

∑
δ

|γδ|2 1
N/2

∑
k

|ζ(k)|2

|γ(k)|

1
N/2

∑
k

|γ(k)|
(

1√
λ̃v−γ(k)

− 1√
λ̃v+γ(k)

)

1
N/2

∑
k

(
1√

λ̃v−γ(k)
+ 1√

λ̃v+γ(k)

) . (B2)

From Eqs. (36) and (37) we obtain

ϑv
∑

δ

|ζδ|2 =

1
N/2

∑
k

|ζ(k)|2

γ(k)

(
1√

λ̃v−γ(k)
− 1√

λ̃v+γ(k)

)

2w̃v
1

N/2

∑
k

(
1√

λ̃v−γ(k)
+ 1√

λ̃v+γ(k)

) . (B3)

Equations (B2) and (B3) with w̃v from Eq. (33) give

[∑
δ

|ζδ|2
]2

1
N/2

∑
k

|ζ(k)|2

|γ(k)|

=

[∑
δ

|γδ|2
]2

1
N/2

∑
k

|γ(k)|

1
N/2

∑
k

|ζ(k)|2

γ(k)

(
1√

λ̃v−γ(k)
− 1√

λ̃v+γ(k)

)

1
N/2

∑
k

|γ(k)|
(

1√
λ̃v−γ(k)

− 1√
λ̃v+γ(k)

) . (B4)

This equation determines λ̃v. Once we find λ̃v, we can obtain the critical value from Eq. (37) together with Eq. (33),
given by

κcUv

t
=

3 1
N/2

∑
k

|γ(k)|

2
∑
δ

|γδ|2
[

1
N/2

∑
k

(
1√

λ̃v−γ(k)
+ 1√

λ̃v+γ(k)

)]2 . (B5)

Appendix C: To analyze the quantum phase transition from the Z2 spin liquid to the antiferromagnetic Mott
insulator

1. To find the antiferromagnetic quantum critical point inside the Z2 spin liquid state

From Eqs. (44) and (45) we get

x̃m

∑
δ

|ζδ|2
∑
δ

|γδ|2
= xm

1
N/2

∑
k

|ζ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

. (C1)



12

Similarly, Equations (46) and (47) give

xm

∑
δ

|ζδ|2
∑
δ

|γδ|2
= x̃m

1
N/2

∑
k

|ζ(k)|2√
|γ(k)|2+x̃2

m
|ζ(k)|2

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

− 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

)

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x̃2

m
|ζ(k)|2

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

− 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

) . (C2)

From Eqs. (46) and (49) we obtain

wm

∑

δ

|γδ|2 =
1

2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x̃2

m
|ζ(k)|2

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

− 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

)

1
N/2

∑
k

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

+ 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

) . (C3)

Taking both sides of Eq. (46) to the square power with w̃m from Eq. (44), we obtain

wm

∑

δ

|γδ|2 =
κcUm

6twm

[
1

N/2

∑
k

|γ(k)|2√
|γ(k)|2+x̃2

m
|ζ(k)|2

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

− 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

)]2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

. (C4)

Inserting Um/wm from Eq. (48) into this equation, we obtain

wm

∑

δ

|γδ|2 =
κc
6κs

[
1

N/2

∑
k

|γ(k)|2√
|γ(k)|2+x̃2

m
|ζ(k)|2

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

− 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

)]2

1
N/2

∑
k

1√
|γ(k)|2+x2

m
|ζ(k)|2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

. (C5)

Equations (C3), (C4), and (C5) give us

κc
3κs

1

N/2

∑

k

|γ(k)|2√
|γ(k)|2 + x̃2m|ζ(k)|2

(
1√

λ̃m −
√
|γ(k)|2 + x̃2m|ζ(k)|2

− 1√
λ̃m +

√
|γ(k)|2 + x̃2m|ζ(k)|2

)

=

1
N/2

∑
k

1√
|γ(k)|2+x2

m
|ζ(k)|2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

1
N/2

∑
k

(
1√

λ̃m−
√

|γ(k)|2+x̃2
m
|ζ(k)|2

+ 1√
λ̃m+

√
|γ(k)|2+x̃2

m
|ζ(k)|2

) . (C6)

Inserting

x̃m = xm

∑
δ

|γδ|2
∑
δ

|ζδ|2

1
N/2

∑
k

|ζ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+x2

m
|ζ(k)|2

(C7)

from Eq. (C1) into Eqs. (C2) and (C6), we obtain two self-consistent equations for two unknown variables, xm and

λ̃m.

2. To find the Z2 spin liquid quantum critical point inside the antiferromagnetic Mott insulator

From Eqs. (52) and (55) we get

wa =
1

2
∑
δ

|γδ|2

1
N/2

∑
k

|γ(k)|
(

1√
λ̃a−γ(k)

− 1√
λ̃a+γ(k)

)

1
N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

) . (C8)
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Equations (53) and (55) together with w̃a from Eq. (50) give

ϑa =
1

2w̃a

∑
δ

|ζδ|2

1
N/2

∑
k

|ζ(k)|2

γ(k)

(
1√

λ̃a−γ(k)
− 1√

λ̃a+γ(k)

)

1
N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

)

=

2
∑
δ

|γδ|2
∑
δ

|ζδ|2

1
N/2

∑
k

|ζ(k)|2

γ(k)

(
1√

λ̃a−γ(k)
− 1√

λ̃a+γ(k)

)

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+( ma

twa
)2

1
N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

) . (C9)

From Eqs. (51) and (C8) we obtain

ϑa =

2
∑
δ

|ζδ|2
∑
δ

|γδ|2

1
N/2

∑
k

|γ(k)|
(

1√
λ̃a−γ(k)

− 1√
λ̃a+γ(k)

)

1
N/2

∑
k

|ζ(k)|2√
|γ(k)|2+( ma

twa
)2

1
N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

) . (C10)

Equations (C9) and (C10) leads to

[∑
δ

|γδ|2
]2

[∑
δ

|ζδ|2
]2 =

1
N/2

∑
k

|γ(k)|
(

1√
λ̃a−γ(k)

− 1√
λ̃a+γ(k)

)
1

N/2

∑
k

|γ(k)|2√
|γ(k)|2+( ma

twa
)2

1
N/2

∑
k

|ζ(k)|2

γ(k)

(
1√

λ̃a−γ(k)
− 1√

λ̃a+γ(k)

)
1

N/2

∑
k

|ζ(k)|2√
|γ(k)|2+( ma

twa
)2

. (C11)

From Eqs. (54) and (55) we obtain

1 =
6κs
κc

w̃a

wa

1
N/2

∑
k

1√
|γ(k)|2+( ma

twa
)2

[
1

N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

)]2 . (C12)

Inserting wa and w̃a from Eqs. (50) and (C8) into this equation, one obtains

1 =
3κs
κc

1
N/2

∑
k

|γ(k)|2√
|γ(k)|2+( ma

twa
)2

1
N/2

∑
k

|γ(k)|
(

1√
λ̃a−γ(k)

− 1√
λ̃a+γ(k)

)
1

N/2

∑
k

1√
|γ(k)|2+( ma

twa
)2

1
N/2

∑
k

(
1√

λ̃a−γ(k)
+ 1√

λ̃a+γ(k)

) . (C13)

Equations (C11) and (C13) are the last two equations.
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