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HOMOTOPICAL ALGEBRA FOR C∗-ALGEBRAS

OTGONBAYAR UUYE

Abstract. Category of fibrant objects is a convenient framework to
do homotopy theory, introduced and developed by Ken Brown. In this
paper, we apply it to the category of C∗-algebras. In particular, we get
a unified treatment of (ordinary) homotopy theory for C∗-algebras, KK-
theory and E-theory, as all of these can be expressed as the homotopy
theory of a category of fibrant objects.
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0. Introduction

Basic homotopy theory for C∗-algebras can be developed in an analogues
way to the homotopy theory for topological spaces, using the Gelfand-
Naimark duality between pointed compact Hausdorff spaces and abelian
C∗-algebras. This is carried out by Schochet in [Sch84]. Thus, for instance,
we have a version of the Puppe exact sequence, with essentially the same
proof (cf. [Sch84, Proposition 2.6]).

There is one big difference: the homotopy theory for C∗-algebras does
not admit a Quillen model category structure (cf. [GA97, Remark 3.8]).
This is unfortunate, since model categories provide a standard and powerful
framework to study various aspects of homotopy theories. However, not
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2 OTGONBAYAR UUYE

everything is lost: it turns out that the category of C∗-algebras behave as if
it was the subcategory of the fibrant objects in a model category, and this is
enough for many purposes, because many proofs in model category theory
start by reducing to the case of (co)fibrant objects.

The notion of a “category of fibrant objects” is abstracted and developed
by Ken Brown in [Bro74]. In this paper, we apply Brown’s theory to the
category of C∗-algebras. In Section 1, we review some basic facts about
abstract homotopy theory in the setting of category of fibrant objects.

In Section 2, we first apply the abstract theory of Section 1 to the ordinary
homotopy theory for C∗-algebras (this essentially recovers [Sch84]). We also
show that the Meyer-Nest’s UCT category (cf. [MN06]), Kasparov’s KK-
theory (cf. [Kas80, Kas88]), Thom’s stable-homotopy category (cf. [Tho03])
and Connes-Higson’s E-theory (cf. [Hig90, CH90]) can be described as the
homotopy category of a category of fibrant objects. As a corollary, we get a
unified treatment of the triangulated structures on these categories.

We note that Brown’s theory of category of fibrant objects is of course
not the only way to approach the homotopy theory for C∗-algebras. The
main “reason” for the failure for the existence of a model structure on the
category of C∗-algebras is that the category is too small, so an alternative
approach would be to enlarge the category of C∗-algebras. Joachim and
Johnson produced a model category structure for KK-theory by enlarging
the category of C∗-algebras to a suitable category of topological algebras (cf.
[JJ06]). Paul Østvær developed a powerful homotopy theory by enlarging
the category of C∗-algebras to the category of C∗-spaces (cf. [Øst10]).

Acknowledgments. I would like to thank the Centre for Symmetry and
Deformation at the University of Copenhagen and the Danish National Re-
search Council for support.

1. Abstract Homotopy Theory

For the convenience of the reader we recall some basic notions and results
from abstract homotopy theory. See [Qui67][Bro74][KP97][GJ99] for details.

1.1. Categories of Fibrant Objects. The following is our main defini-
tion.

Definition 1.1 (Brown [Bro74]). Let C be category with terminal object ∗
and let F ⊆ C and W ⊆ C be distinguished subcategories. We say that C
is a category of fibrant objects if the following conditions (F0) - (FW2) hold.

(F0) The class F is closed under composition.
(F1) Isomorphisms of C are in F.
(F2) The pullback in C of a morphism in F exists and is in F.
(F3) For any object B of C, the morphism B → ∗ is in F.

Morphisms of F are called fibrations and denoted ։.

(W1) Isomorphisms of C are in W.
(W2) If two of f, g and gf are in W, then so is the third.
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Morphisms of W are called weak equivalences and denoted
∼
→.

(FW1) The pullback in C of a morphism in W ∩ F is in W ∩ F.

Morphisms of W ∩ F are called acyclic fibrations and denoted
∼
։.

(FW2) For any object B of C, the diagonal map B → B × B admits a
factorization

B
s
→
∼

BI d
։ B ×B, (1.1)

where s ∈ W is a weak equivalence, d = (d0, d1) ∈ F is a fibration.

The object BI or more precisely the tuple (BI , s, d0, d1) is called a path-
object of B.

If there is no risk for confusion, we simply say that C is a category of
fibrant objects. If the terminal object is also an initial object, we say that
C is a pointed category of fibrant objects.

Remark 1.2. (1) The condition (F0) is superfluous since F is assumed
to be a subcategory. But it is convenient to have a notation for this
property.

(2) The conditions (F1) and (W1) imply that F and W contain all
objects of C.

(3) The conditions (F2) and (F3) imply that C is has finite products.

The following is the motivating example.

Example 1.3. For any model category M, the full subcategory Mb con-
sisting of the fibrant objects in M is naturally a category of fibrant objects.
In particular, if Top denote the category of compactly generated weakly
Hausdorff topological spaces and continuous maps,

(1) Top, homotopy equivalences, Hurewicz fibrations;
(2) Top, weak homotopy equivalences, Serre fibrations;

are examples of categories of fibrant objects.

Occasionally, we find it convenient to isolate the notions of weak equiva-
lences and fibrations.

Definition 1.4. Let C be a category. A subcategory of weak equivalences
is a subcategory W ⊆ C satisfying (W1) and (W2). If C has a terminal
object, a subcategory of fibrations is a subcategory F ⊆ C satisfying (F0) -
(F3).

1.2. Fibre and Homotopy Fibre.
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Lemma 1.5 (Factorization Lemma). Let f : A → B be a morphism in a
category of fibrant objects. Consider the diagram

Nf
p

// B

Nf
d∗
0
(f)

//

��

BI

d0
��

d1

OO

A
f

//

i

II

B

s

HH

, (1.2)

where (BI , s, d0, d1) is a path-object for B and Nf is the pullback A×B BI

and p is the composition d1◦d
∗
0(f) and i is the map determined by the section

s.
Then p is a fibration and i is a right inverse to an acyclic fibration (in

particular, a weak equivalence) and f = p ◦ i.

Proof. [Bro74, Factorization Lemma]. �

Definition 1.6. We call Nf a mapping path-object of f .

Now we consider pointed categories.

Definition 1.7. Let p be a fibration in a pointed category of fibrant objects.
The fibre F of f is the pullback

F
i

//

��

E

p

��

∗ // B

. (1.3)

We express this situation by the diagram

F //
i

// E
p

// // B . (1.4)

Definition 1.8. Let f : A → B be a morphism in a pointed category of

fibrant objects. The homotopy fibre Ff of f is the fibre of Nf
p
։ B, where

p is as in the Factorization Lemma (Lemma 1.5).

Lemma 1.9. Let p be a fibration in a pointed category of fibrant objects
with fibre F . Then the natural map

F → Fp (1.5)

is a weak equivalence.

Proof. Apply [Bro74, Lemma 4.3] to

F // //

��

E

≀

��

p
// // B

Fp // // Np // // B

. (1.6)

�



HOMOTOPICAL ALGEBRA FOR C∗-ALGEBRAS 5

1.3. Homotopy Category.

Definition 1.10. The homotopy category of a category C of fibrant objects
with weak equivalences W is the localization

Ho(C) := C[W−1]. (1.7)

In other words, there is given a functor γ : C → Ho(C), called the
localization functor, with the property that for any functor k : C → D

such that k(t) is invertible in D for all t ∈ W, there exist a unique functor
Ho(C) → D making the diagram

Ho(C)

##
G

G
G

G
G

C

γ
;;wwwwwwwww k

// D

(1.8)

commute.

Definition 1.11. Let C be a category of fibrant objects. Two morphisms

f0, f1 : A ⇉ B (1.9)

are said to be right-homotopic if for some path-object (BI , s, d0, d1) of B,
there is a morphism h : A → BI such that f0 = d0h and f1 = d1h.

The two are said to be homotopic if there is a weak equivalence t : A′ → A

such that f0t, f1t : A
′ ⇉ B are right-homotopic.

Right-homotopy and homotopy are equivalence relations, and moreover,
homotopy is compatible with the composition in C (c.f. [Bro74, Section 2]).

Definition 1.12. Let C be a category of fibrant objects. We denote the
category of homotopy classes in C by πC and let π : C → πC denote the
quotient functor.

The following is the fundamental result of Brown. If C is a category, we
write A ∈∈ C to mean that A is an object of C and write MorC(A,B) for
the space of morphisms from A to B for A, B ∈∈ C.

Theorem 1.13 (Brown [Bro74, Theorem 2.1]). Let C be a category of fi-
brant objects. Then πW ⊆ πC admits a calculus of right fractions.

It follows that, for A, B ∈∈ C

MorHo(C)(A,B) ∼= colim
A′

∼

→A

MorπC(A
′, B) (1.10)

and hence if γ : C → Ho(C) is the localization functor, then

(1) any morphism in MorHo(C)(A,B) can be written as a right-fraction

A A′
γ(t)−1

oo
γ(f)

// B (1.11)

where t ∈ W is a weak equivalence, and
(2) if f0, f1 are morphisms in MorC(A,B), then γ(f0) = γ(f1) if and

only if f0 and f1 are homotopic i.e. π(f0) = π(f1).
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�

Corollary 1.14. Let C be a category of fibrant objects and let A be an
object in C. Suppose that the category WA of weak equivalences over A is
“coinitially small” i.e there exists a set SA of objects in C such that for any
A′ ∼

→ A, there is a A′′ ∼
→ A′ such that A′′ ∈ SA, then MorHo(C)(A,B) is a

small set for every B ∈∈ C. �

Proof. See [GZ67, Proposition 2.4]. �

Now we consider pointed categories.

Definition 1.15. Let B be an object of a pointed category of fibrant ob-
jects. A loop-object of B is the fibre ΩB of (d0, d1) : BI → B × B, where
(BI , s, d0, d1) is a path-object of B.

Lemma 1.16. Let C be a pointed category of fibrant objects. Then Ω defines
a functor

Ω : Ho(C) → Ho(C), (1.12)

called the loop-object functor.

(1) For any B ∈∈ C, the object ΩB is naturally a group object in Ho(C)
and Ω2B is naturally an abelian group object in Ho(C).

(2) For any fibration p : E ։ B with fibre F , there is a natural right-
action F × ΩB → F in Ho(C). In particular, we have a natural
map ΩB → F in Ho(C).

Proof. See [Bro74, Section 4]. �

Note that while Ho(C) depends only on the weak equivalences, the loop-
object functor Ω depends also on the fibrations.

Definition 1.17. Let C be a pointed category of fibrant objects. We define
the Spanier-Whitehead category of C as the category

SW(C) := Ho(C)[Ω−1], (1.13)

obtained from Ho(C) by inverting the endofunctor Ω.

Objects of SW(C) are (A,n) with A ∈∈ Ho(C) and n ∈ Z and the
morphisms are given by

MorSW(C)((A,n), (B,m)) := colim
k→∞

MorHo(C)(Ω
n+kA,Ωm+kB). (1.14)

Theorem 1.18. Let C be a pointed category of fibrant objects. Then SW(C)
is a triangulated category with the shift

Σ = Ω−1 : SW(C) → SW(C) (1.15)

given by (A,n) 7→ (A,n−1) and the distinguished triangles given by triangles
isomorphic to triangles of the form

(ΩB,n) // (F, n) // (E,n) // (B,n) , (1.16)

where n ∈ Z and E → B is a fibration, F → E is the fibre inclusion and
ΩB → F is the morphism obtained from Lemma 1.16.
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Proof. See [Hov99] or [May01]. �

Definition 1.19. We say that a pointed category of fibrant objects C is
stable, if the loop functor Ω : Ho(C) → Ho(C) is invertible.

Remark 1.20. If C is a stable pointed category of fibrant objects, then the
natural functor

Ho(C) → SW(C), A 7→ (A, 0) (1.17)

is an equivalence of categories. In particular, Ho(C) is naturally a triangu-
lated category with shift Σ = Ω−1 : Ho(C) → Ho(C).

1.4. Example of π0-Top. Now we consider a simple, but very useful, ex-
ample of a category of fibrant objects. Let Top denote the category of
compactly generated weakly Hausdorff topological spaces and continuous
maps.

Definition 1.21. A map p : E → B is called a π0-fibration if it satisfies the
following path-lifting property:

{0} //
� _

��

E

p

��

[0, 1] //

==|
|

|
|

B

. (1.18)

A map t : A → B is called a π0-equivalence if

t∗ : π0(A) → π0(B) (1.19)

is a bijection.
A π0-acyclic fibration is a π0-fibration which is also a π0-equivalence.

Lemma 1.22. All π0-acyclic fibrations are surjective.

Proof. Let p : E → B be a π0-acyclic fibration let b ∈ B. Then there is a
diagram

{0} //
� _

��

E

p

��

[0, 1]
h

// B

with h(1) = b. Lifting h to a path in E, and evaluating at 1, we get e ∈ E

such that p(e) = b. Hence p is surjective. �

Proposition 1.23. The π0-fibrations and π0-equivalences give the structure
of a category of fibrant objects on Top.

Proof. The π0-fibrations form a subcategory of fibrations essentially because
the path-lifting property is a right-lifting property:
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(F0) If E ։ D and D ։ B are π0-fibrations, so is their composition:

{0}
� _

��

// E

����

D

����

[0, 1] //

=={
{

{
{

FF
�

�
�

�
�

�
�

�

B

. (1.20)

(F1) If A → B is a homeomorphisms, then it is a π0-fibration:

{0}
� _

��

// A

∼=
��

[0, 1] //

==|
|

|
|

B

. (1.21)

(F2) If E ։ B is a π0-fibration, then for any A → B, the map A×BE → A

is a π0-fibration:

{0} //
� _

��

A×B E //

��

E

����

[0, 1] //

::u
u

u
u

u

55kkkkkkkkkk
A // B

. (1.22)

(F3) For any B, the map B → ∗ is a π0-fibration:

{0}
� _

��

// B

��

[0, 1] //

==|
|

|
|

∗

. (1.23)

The properties (W1) and (W2) are obvious.

(FW1) Let p : E
∼

։ B be a π0-acyclic fibration and let f : A → B be an
arbitrary map. Consider the pullback

A×B E //

f∗(p)
��

E

p≀

����

A
f

// B

. (1.24)

Then we need to show that f∗(p) is a π0-equivalence. The injectivity
of π0(f

∗(p)) follows from the fact that it is detected by the right-
lifting property with respect to {0, 1} →֒ [0, 1]. The surjectivity of
π0(f

∗(p)) follows from Lemma 1.22, since the pullback of a surjection
is again a surjection and surjections are surjective on π0.

(FW2) Let [a, b] be a compact interval, a < b, and let

B[a,b] := MorTop([a, b], B) (1.25)
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denote the space of continuous maps [a, b] → B. Then the constant-

path map s : B → B[a,b] is a π0-equivalence (in fact, a homotopy
equivalence).

Let ec : B[a,b] → B denote the evaluation at c ∈ [a, b]. Then the

map (ea, eb) : B[a,b] → B × B is a π0-fibration, since the rectangle
[0, 1] × [a, b] retracts to the union of its three sides ⊏.

Thus (B[a,b], s, ea, eb) is a path-object for B. For fixed a and b,
this is functorial.

�

2. Applications to the Category of C∗-algebras

Let C∗ denote the category of C∗-algebras and ∗-homomorphisms. It is
complete and cocomplete and pointed – the zero object is the zero algebra 0
– symmetric monoidal category with respect to the maximal tensor product.
We refer to [Mey08] for the details.

The category C∗ is naturally enriched over Top, the Cartesian closed cat-
egory of compactly generated weakly Hausdorff topological spaces. Indeed,
since C∗-algebras are normed, they are compactly generated and weakly
Hausdorff as spaces, hence there is a forgetgul functor C∗ → Top. For
C∗-algebras A and B, we give MorC∗(A,B) the subspace topology from
MorTop(A,B) via the forgetful functor. It is easy to see that MorC∗(A,B)
is a closed subspace of MorTop(A,B), hence itself a compactly generated
weakly Hausdorff space.

Let A∗ ⊂ C∗ denote the full subcategory of abelian C∗-algebras. By the
Gelfand-Naimark duality, A∗ is equivalent to the opposite category of the
category CH∗ of pointed, compact Hausdorff topological spaces and pointed
continuous maps. If X is a compact Hausdorff space, we write C(X) for the
(unital) C∗-algebra of continuous functions on X. If in addition X has a
base point, we write C0(X) for the C∗-algebra of continuous functions on X

vanishing at the base point.
If we enrich CH∗ over Top by the inclusion CH∗ ⊂ Top, the Gelfand-

Naimark duality becomes an equivalence of enriched categories.

Remark 2.1. The category C∗ of C∗-algebras is also enriched over the
category of Hausdorff spaces, using the compact-open topology on morphism
spaces. However, in order to facilitate the connection to algebraic topology,
we use the compactly generated compact-open topology. Note that if A is
separable, then the compact-open topology on MorC∗(A,B) is metrizable,
hence compactly generated.

Lemma 2.2. Let B be a C∗-algebra and let X be a compact Hausdorff space.
Then MorTop(X,B) is naturally a C∗-algebra isomorphic to C(X)⊗B.

Proof. By [Str, Proposition 2.13] the topology on MorTop(X,B) coincides
with the topology given by the norm ||f || := supx∈X ||f(x)||B . The rest is
standard (cf. [WO93, Corollary T.6.17]). �
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The following is the main property of the enrichment that we use. See
also [JJ06, Proposition 3.4] and [Mey08, Proposition 24].

Lemma 2.3. Let A and B be C∗-algebras and let X be a compact Hausdorff
space. Then there is an identification

MorTop(X,MorC∗(A,B)) ∼= MorC∗(A,C(X) ⊗B) (2.1)

natural in A, B and X.

Proof. Since A and B are compactly generated weakly Hausdorff spaces, we
have a natural identification

MorTop(X,MorTop(A,B)) ∼= MorTop(A,MorTop(X,B)), (2.2)

by [Str, Proposition 2.12]. Hence by Lemma 2.2

MorTop(X,MorTop(A,B)) ∼= MorTop(A,C(X)⊗B). (2.3)

Now it is easy to check that this restricts to the identification in (2.1).
�

Often we will make this identification implicitly.

Remark 2.4. Note that there are pointed analogues of Lemma 2.2 and
Lemma 2.3.

Corollary 2.5. For any D ∈∈ C∗, the functor MorC∗(D,−) : C∗ → Top

preserves pullbacks.

Proof. Let D be fixed and let F := MorC∗(D,−).
Consider a pullback diagram

A×B E //

��

E

��

A // B

(2.4)

in C∗. We need to prove that the natural map

Φ : F (A×B E) → F (A)×F (B) F (E) (2.5)

is a homeomorphism. It is clear that Φ is a continuous bijection. Hence it
suffices to prove that for any X compact Hausdorff, a map X → F (A×B E)
is continuous if the compositions X → F (A) and X → F (E) are continuous.
However, this follows from Lemma 2.3 and its proof. �

2.1. Ordinary Homotopy Theory. The (ordinary) homotopy category
of C∗-algebras is the category of C∗-algebras and homotopy classes of ∗-
homomorphisms, denoted π0C

∗ for the time being:

Morπ0C∗(A,B) := π0(MorC∗(A,B)). (2.6)

We now give C∗ the structure of a category of fibrant objects, whose
homotopy category is π0C

∗.
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Definition 2.6. A ∗-homomorphism t : A → B is called a homotopy equiv-
alence if the induced map

t∗ : MorC∗(D,A) → MorC∗(D,B) (2.7)

is a π0-equivalence, in the sense of Definition 1.21, for all D ∈∈ C∗.

Remark 2.7. By Yoneda’s Lemma, t ∈ C∗ is a homotopy equivalence if
and only if π0(t) ∈ π0C

∗ is invertible.

Definition 2.8. A ∗-homomorphism p : E → B is called a Schochet fibration
if the induced map

p∗ : MorC∗(D,E) → MorC∗(D,B) (2.8)

is a π0-fibration, in the sense of Definition 1.21, for all D ∈∈ C∗.

Remark 2.9. Schochet called these maps cofibrations in [Sch84], because,
under the Galfand-Naimark duality, the condition in Definition 2.8 for a ∗-
homomorphism of abelian algebras corresponds to the homotopy extension
property for the corresponding map of (pointed compact Hausdorff) spaces.

In a similar way, it is customary that MorTop
∗
(S1, B) ∼= C0(S

1) ⊗ B

is called the suspension of B, since C0(S
1) ⊗ C0(X) ∼= C0(S

1 ∧ X) for
B = C0(X). Here X is a pointed compact Hausdorff space and C0(X) is
the continuous functions vanishing at the base point. See also Remark 2.13.

However, for the sake of consistency, in this paper we will keep our nota-
tions and terminologies compatible with that of Section 1.

The following proposition is contained in [Sch84].

Proposition 2.10. The category of C∗-algebras C∗ is a pointed category
of fibrant objects with weak equivalences the homotopy equivalences and fi-
brations the Schochet fibrations, whose homotopy category is the ordinary
homotopy category i.e. Ho(C∗) = π0C

∗.

Proof. Everything follows from Proposition 1.23: we need to use Corol-
lary 2.5 for (F2) and (FW1), and Lemma 2.3 with X = [a, b] for (FW2).

It follows from the construction of the path-object in C∗ that two ∗-homo-
morphisms f0, f1 ∈ C∗ are right-homotopic if and only if π0(f0) = π0(f1) in
π0C

∗ and by Remark 2.7 this happens if and only if f0, f1 are homotopic in
the sense of Definition 1.11. Hence

Ho(C∗) = πC∗ = π0C
∗. (2.9)

�

Note that C∗ has a functorial path-object, given by C[0, 1] ⊗ B, hence
also a functorial loop-object1 ΩB := C0(0, 1) ⊗B.

The Spanier-Whitehead category SW(C∗) is the suspension-stable ho-
motopy category of C∗-algebras studied by Rosenberg [Ros82] and Schochet
[Sch84].

1usually called suspension in the C
∗-context
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Remark 2.11. Let S∗ denote the category of separable C∗-algebras. Then
considering only D separable in Definitions 2.6 and 2.8, we get a structure
of a category of fibrant objects on S∗.

Remark 2.12. The following are well-known and/or easy to see.

(1) The localization C∗ → Ho(C∗) preserves arbitrary coproducts and
arbitrary products:

MorHo(C∗)(
∐

i∈I

Ai, B) =
∏

i∈I

MorHo(C∗)(Ai, B), (2.10)

MorHo(C∗)(A,
∏

i∈I

Bi) =
∏

i∈I

MorHo(C∗)(A,Bi). (2.11)

(2) The loop Ω : Ho(C) → Ho(C) preserves finite products:

Ω(B1 ×B2) ∼= ΩB1 × ΩB2, (2.12)

but not infinite products (for example, the algebras Ω
∏

ℵ0
C and∏

ℵ0
ΩC have different K1 groups), nor coproducts (for example, the

natural map ΩC
∐

ΩC → Ω(C
∐

C) is not a homotopy equivalence).
(3) The “Spanier-Whitehead functor” Ho(C∗) → SW(C∗) preserves

finite products, but not finite coproducts.

Remark 2.13 (Abelian Algebras). Let A∗ ⊆ C∗ denote the full subcate-
gory consisting of abelian C∗-algebras. Then A∗ is a coreflexive monoidal
subcategory of C∗ – the left-adjoint of the inclusion i : A∗ → C∗ is the
abelianization −ab : C∗ → A∗:

MorC∗(D, iB) = MorA∗(Dab, B), (2.13)

for D ∈∈ C∗, B ∈∈ A∗. It follows that A∗ is a category of fibrant objects
and Ho(A∗) and SW(A∗) are full subcategories of Ho(C∗) and SW(C∗),
respectively.

2.2. C∗-Invariant Homotopy Theory. Let K be the algebra of compact
operators on a separable Hilbert space.

Proposition 2.14. Defining the weak equivalences to be

{t ∈ C∗ | t⊗ idK is a homotopy equivalence} (2.14)

and the fibrations to be

{p ∈ C∗ | p⊗ idK is a Schochet fibration} (2.15)

defines a category of fibrant objects on C∗, denoted M.

Proof. This is clear since −⊗ idK preserves pullbacks. �

Let e11 : C → K denote a rank-one projection. Then for any B ∈∈ M,
the morphism idB ⊗ e11 is a weak equivalence in M.
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It follows that Ho(M) is the “monoidal” localization Ho(C∗)[⊗e−1
11 ]:

MorHo(M)(A,B) ∼= MorHo(C∗)(A,B ⊗K) (2.16)

∼= MorHo(C∗)(A⊗K, B ⊗K). (2.17)

In the notation of [Hig90], the categories Ho(M) and SW(M) are the not
necessarily separable analogues of TH and TS respectively.

2.3. Topological K-Theory.

Definition 2.15 ([Sch84]). A fibre homology theory on C∗ is a homology
theory of the triangulated category SW(C∗).

Proposition 2.16. Let H be a fibre homology theory on C∗. Then H-
equivalences and Schochet fibrations define a category of fibrant objects on
C∗ with loop object ΩB = C0(0, 1) ⊗B, denoted RHC

∗.

Proof. It is clear that H-equivalences form a subcategory of weak equiva-
lences. Since homology theories are homotopy invariant by definition, ho-
motopy equivalences are H-equivalences, and thus path-objects exist.

It remains to show that a pullback f∗(p) of a Schochet fibration p : E ։ B

that is an H-equivalence is again an H-equivalence, where f : A → B is
arbitrary. But this follows from the long exact sequence applied to the
diagram

F // // E ×B A
f∗(p)

// //

��

A

f

��

F // // E
p

// // B

, (2.18)

where F = ker(p) is the kernel of p. �

Taking H to be topological K-theory in Proposition 2.16, we get a cat-
egory K = RKC∗ of fibrant objects whose weak equivalences are K-equi-
valences and fibrations are Schochet fibrations. Compare [JJ06] and [MN06].
It follows from Theorem 2.17, that Ho(K) has small hom sets.

Let K be the algebra of compact operators on a separable Hilbert space
and let e11 : C → K denote a rank-one projection. Then

idA ⊗ e11 : A → A⊗K (2.19)

is a K-equivalence. We also have a natural isomorphism Ω2A → A ⊗ K
in Ho(K), since Bott periodicity can be implemented by a boundary map
associated to a Toeplitz type extension. It follows that

Ω : MorHo(K)(A,B) → MorHo(K)(ΩA,ΩB) (2.20)

is invertible. HenceK is stable and the natural functorHo(K) → SW(K) is
an equivalence of categories. In particular, Ho(K) is a triangulated category
in a natural way, and SW(C∗) → Ho(K) is a triangulated functor.

The following is a version of the Universal Coefficient Theorem of Rosen-
berg and Schochet (cf. [RS87]). It can be deduced from results in [MN06],
but we give a self-contained proof.
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Theorem 2.17. For B ∈∈ K, we have

MorHo(K)(C, B) ∼= K0(B). (2.21)

More generally, for A, B ∈∈ K, there is a natural short exact sequence

Ext(K∗+1(A),K∗(B)) // // MorHo(K)(A,B) // // Hom(K∗(A),K∗(B)) ,

(2.22)
where

Hom(K∗(A),K∗(B)) :=
⊕

i=0,1

HomZ(Ki(A),Ki(B)) and (2.23)

Ext(K∗−1(A),K∗(B)) :=
⊕

i=0,1

Ext1Z(Ki−1(A),Ki(B)). (2.24)

Proof. We have a natural (additive) map

MorHo(K)(A,B) → HomZ(K∗(A),K∗(B)). (2.25)

We claim that this is an isomorphism if K∗(A) is free — for A = C we get
(2.21).

Indeed, suppose that K∗(A) is free. First note that we have natural
isomorphisms

K0(D) = MorHo(C∗)(qC,D ⊗K), (2.26)

K1(D) = MorHo(C∗)(ΩC,D ⊗K), (2.27)

where qC is the kernel of the folding map (C
∐

C → C). We have a K-

equivalence qC
∼
→ C.

Then it is clear that any map K∗(A) → K∗(B) can be implemented by
an element of the form

(
∐

I qC)
∐

(
∐

J ΩC)

≀

��

// B ⊗K

A⊗K

A

≀

OO

B

≀

OO
(2.28)

in Ho(K). Hence (2.25) is surjective. To see injectivity of (2.25), let

A A′ //
∼

oo B (2.29)
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be a morphism in MorHo(K)(A,B) that maps to 0 ∈ Hom(K∗(A),K∗(B)).
Then we can complete (2.29) to a homotopy-commutative diagram

(
∐

I qC)
∐

(
∐

J ΩC)

≀

��

∼
// A′ ⊗K // B ⊗K

A⊗K

A

≀

OO

A′ //
∼

oo

≀

OO

B

≀

OO
(2.30)

in Ho(C∗). Then the top horizontal map is null-homotopic, i.e. zero in
Ho(C∗), hence zero in Ho(K). In other words, (2.25) is injective if K∗(A)
is free.

The general case follows using a geometric resolution of K∗(A). See for
instance [Uuy04]. �

2.4. KK-Theory. In the next two subsections, we will concentrate on the
category S∗ of separable C∗-algebras.

Definition 2.18. A ∗-homomorphisms t : A → B in S∗ is called a KK-
equivalence if

t∗ : MorC∗(qD,A⊗K) → MorC∗(qD,B ⊗K) (2.31)

is a π0-equivalence for all D ∈∈ S∗, where qD is the kernel of the map
idD

∐
idD : D

∐
D → D.

Theorem 2.19. The category of separable C∗-algebras form a category of
fibrant objects with weak equivalences the KK-equivalences and fibrations
the Schochet fibrations, denoted KK, whose homotopy category Ho(KK) is
equivalent to the KK-category of Kasparov. It follows that Kasparov’s KK-
category is a stable triangulated category.

Proof. The proof of Proposition 2.10 works in this case as well and proves
that KK is a category of fibrant objects.

We use the Cuntz type picture of KK-theory:

KK(A,B) := MorHo(C∗)(qA⊗K, qB ⊗K). (2.32)

Consider the functor Φ : KK → KK that send f : A → B to the compo-
sition

q(f)⊗ idK : qA⊗K → qB ⊗K. (2.33)

Then Φ is indeed functor which is additive and Φ(f) is a homotopy equiv-
alence if and only if f is a KK-equivalence. Hence the induced functor
Ho(Φ) : Ho(KK) → KK is faithful. Moreover, by [Cun87, Theorem 1.6],
Φ(A) is homotopy equivalent to Φ(Φ(A)), hence Ho(Φ) is full. It follows
that Ho(Φ) is an equivalence of categories.

Stability follows from Bott Periodicity. �
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Remark 2.20. Note that in Theorem 2.19, we can take the semi-split sur-
jections, i.e. surjections with a completely positive contractive splitting, to
be the fibrations. Indeed, the only nontrivial part is (FW1): if p : E → B

is a semi-split surjection which is also a KK-equivalence and f : A → B is
arbitrary, then the pullback f∗(p) is also a KK-equivalence. However, this
is clear since if p is a semi-split surjection with kernel F , then F → Fp is a
KK-equivalence (see [Bla98, Theorem 19.5.5]), hence p is a KK-equivalence
if and only F is KK-contractible if and only if f∗(p) is a KK-equivalence
(see Diagram (2.18)).

Note also that Schochet fibrations and semi-split surjections give rise to
the same class of distinguished triangles on Ho(KK) ∼= SW(KK).

2.5. E-Theory. We consider S∗ as a category of fibrant objects with weak
equivalences the homotopy equivalences and fibrations the Schochet fibra-
tions. As in Definition 2.15, a fibre homology theory on S∗ is a homology
theory on the triangulated category SW(S∗) to Ab.

Definition 2.21. We say that a fibre homology theory H on S∗ is excisive
with respect to a surjection p : E → B, if the inclusion ker(p) → Fp is an
H-equivalence.

A homology theory on S∗ is a fibre homology theory excisive with respect
to all surjections.

Definition 2.22. We say that a morphism t ∈ S∗ is a weak equivalence if
it is an H-equivalence for all homology theories H on S∗.

Remark 2.23. Note that a homotopy equivalence is also a weak equiva-
lence.

Theorem 2.24. The category S∗ is a pointed category of fibrant objects
with weak equivalences as in Definition 2.22 and fibrations the surjections,
denoted AM. The Spanier-Whitehead category SW(AM) is equivalent to
the stable homotopy category of A. Thom [Tho03].

We start with some simple lemmas of independent interest.

Lemma 2.25. Schochet fibrations are surjections.

Proof. Let p : E → B be a Schochet fibration. Consider the universal
algebra generated by a positive contraction:

C := C∗(x | 0 ≤ x ≤ 1) = C0(0, 1]. (2.34)

Then for any b ∈ B, 0 ≤ b ≤ 1, there is a path

[0, 1] ∋ r 7→ (x 7→ rb) ∈ MorC∗(C,B), (2.35)

which lifts to 0 ∈ MorC∗(C,E) at r = 0. Lifting the path to MorC∗(C,E), we
get e ∈ E, 0 ≤ e ≤ 1, such that p(e) = b. It follows that p is surjective. �

Lemma 2.26. Let p : E → B be a surjection with kernel F . Then p is a
weak equivalence if and only if F is H-acyclic for all homology theories H
on S∗.
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Proof. First note that we have a map of extensions where the vertical maps
are all weak equivalences:

0 // F

≀

��

i
// E

p
//

≀

��

B // 0

0 // Fp // // Np // // B // 0

. (2.36)

Now the proof is complete by the naturality of the long exact sequence
associated to homology theories. �

Proof of Theorem 2.24. It follows from Lemma 2.26, that (FW1) holds. The
rest of the proof that AM is a category of fibrant objects is clear.

Now we prove that the functor j : S∗ → (SW(AM),Ω−1), A 7→ (A, 0) is
a universal triangulated homology theory in the sense of [Tho03, Definition
2.3.3]. Then [Tho03, Theorem 3.3.6] finishes the proof.

Clearly j : S∗ → (SW(AM),Σ = Ω−1) is a triangulated homology the-
ory. Let R : S∗ → (P,Ω−1) be another triangulated homology theory. By
[Tho03, Theorem 2.3.8], for any D ∈∈ AM, the functorH : SW(S∗) → Ab,
(A,n) 7→ HomR(D,ΣnA) is a homology theory on S∗. It follows that if
t : A → B ∈ AM is a weak equivalence then R(t) is invertible (by Yoneda’s
Lemma). Thus R∗ induces a functor R : Ho(AM) → P. By the proof of
[Tho03, Proposition 2.3.4], R∗ intertwines the Ω’s, hence induces a functor

R̂ : SW(AM) → P. Since R is a triangulated homology theory, R̂ is a

triangulated functor and R = R̂ ◦ j. The uniqueness of R̂ is clear, and thus
j is a universal triangulated homology theory. �

Remark 2.27. In Theorem 2.24, we can take the fibrations to be the Scho-
chet fibrations. However, the distinguished triangles on SW(AM) would
be the same (see the diagram (2.36)).

Let e11 : C → K be a rank-one projection.

Definition 2.28. A (fibre) homology theory H on S∗ is said to be C∗-
invariant if idB ⊗ e11 is an H-equivalence for all B ∈∈ S∗.

Definition 2.29. A morphism t ∈ S∗ is said to be an E-equivalence if it
induces isomorphism on all C∗-invariant homology theories.

Proposition 2.30. The category S∗ is a category of fibrant objects with
weak equivalences the E-equivalences and fibrations the surjections, denoted
E. The homotopy category Ho(E) is a triangulated category, equivalent to
the E-theory of Higson.

Proof. It is clear that E is a category of fibrant objects. By Cuntz’s Bott
periodicity, Ho(E) satisfies Bott periodicity. Hence Ω : Ho(E) → Ho(E)
is an equivalence and Ho(E) is equivalent to SW(E). Thus Ho(E) is a
triangulated category. Moreover, every homotopy invariant, half-exact, C∗-
invariant functor comes from a C∗-invariant homology theory. Universal
property of E finishes the proof. �
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in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR MR1711612
(2001d:55012)

[GZ67] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York,
Inc., New York, 1967. MR MR0210125 (35 #1019)

[Hig90] Nigel Higson, Categories of fractions and excision in KK-theory, J. Pure Appl.
Algebra 65 (1990), no. 2, 119–138. MR MR1068250 (91i:19005)

[Hov99] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63,
American Mathematical Society, Providence, RI, 1999. MR MR1650134
(99h:55031)

[JJ06] Michael Joachim and Mark W. Johnson, Realizing Kasparov’s KK-theory groups

as the homotopy classes of maps of a Quillen model category, An alpine anthology
of homotopy theory, Contemp. Math., vol. 399, Amer. Math. Soc., Providence,
RI, 2006, pp. 163–197. MR MR2222510 (2007c:46070)

[Kas80] G. G. Kasparov, The operator K-functor and extensions of C
∗-algebras, Izv.

Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719. MR MR582160
(81m:58075)

[Kas88] , Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91
(1988), no. 1, 147–201. MR MR918241 (88j:58123)

[KP97] K. H. Kamps and T. Porter, Abstract homotopy and simple homotopy theory,
World Scientific Publishing Co. Inc., River Edge, NJ, 1997. MR MR1464944
(98k:55021)

[May01] J. P. May, The additivity of traces in triangulated categories, Adv. Math. 163
(2001), no. 1, 34–73. MR MR1867203 (2002k:18019)

[Mey08] Ralf Meyer, Categorical aspects of bivariant K-theory, K-theory and noncommu-
tative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 1–39.
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