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MOSER’S MATHEMAGICAL WORK ON THE EQUATION

1k + 2k + . . .+ (m− 1)k = mk

PIETER MOREE

In memory of Alf van der Poorten (1942-2010)

Abstract. If the equation of the title has an integer solution with k ≥ 2, then

m > 1010
6

. Leo Moser showed this in 1953 by amazingly elementary methods.
With the hindsight of more than 50 years his proof can be somewhat simplified.
Also we give a further proof showing that Moser’s result can be derived from a
Von Staudt-Clausen type theorem. Finally we discuss more recent developments
concerning this equation and derive a new result using the divisibility properties
of numbers in the sequence {22e+1 + 1}∞e=0.

1. Introduction

In this paper we are interested in non-trivial solutions, that is, solutions with k ≥ 2,
of the equation

1k + 2k + . . .+ (m− 2)k + (m− 1)k = mk. (1)

Conjecturally such solutions do not exist (this conjecture was formulated around
1950 by Paul Erdős in a letter to Leo Moser). For k = 1 one has clearly the solution
1 + 2 = 3 (and no further ones). From now on we will assume that k ≥ 2. Leo
Moser [24] established the following theorem in 1953.

Theorem 1. (Leo Moser, 1953). If (m, k) is a solution of (1), then m > 1010
6
.

His result has since then been improved on. Butske et al. [5] have shown, by
computing rather than estimating certain quantities in Moser’s original proof, that
m > 1.485·109321155. By proceeding along these lines this bound cannot be improved
on substantially. Butske et al. [5, p. 411] expressed the hope that new insights will

eventually make it possible to reach the more natural benchmark 1010
7
.

The main purpose of this paper is to make Moser’s remarkable proof of Theorem
1 better known. Indeed, with the hindsight of more than 50 years and given the
recent computer possibilities an even cleaner version of Moser’s proof can be given.
This is what we do in Section 2. We obtain the following variant of Moser’s result.

Theorem 2. Suppose that (m, k) is a solution of (1) with k ≥ 2, then
1) m > 1.485 · 109321155.
2) k is even, m ≡ 3(mod 8), m ≡ ±1(mod 3);
3) m− 1, (m+ 1)/2, 2m− 1 and 2m+ 1 are all square-free.
4) If p divides at least one of the above four integers, then p− 1|k.
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5) The number (m2 − 1)(4m2 − 1)/12 is square-free and has at least 4990906 prime
factors.

In fact, Moser proved that k is even, m ≡ 0(mod 8) or m ≡ 3(mod 8), part 3 and
4 of this result and a weaker version of part 5

The reader only interested in the cleanest proof of Theorem 2 presently known,
we refer to Moree [21].

In Section 3 we compare our alternative proof with Moser’s proof.
In Section 4 we a give a more systematic proof of Moser’s result, which uses a

variant of the Von Staudt-Clausen theorem. The relevance of this result for the
study of the Erdős-Moser equation was first pointed out in 1996 by Moree [17]. He
used the result to show that the Moser approach can also be used to study the
equation 1k + 2k + . . . + (m− 1)k = amk and a ≥ 1 an integer. The main result of
[17] will be improved on in Section 7.

In Section 5 we discuss some recent developments and in particular how very
recently the benchmark 1010

7
was achieved by Gallot, Moree and Zudilin [9].

This paper is partly scholarly and partly of a research nature. A large part of
the material in Section 2 is copied verbatim from Moser’s paper. The proof given
in Section 4 is implicit in Moree’s [17] on setting a = 1 there.

Section 6 is the most original part of the paper. Results on divisors of numbers
of the form 22e+1 + 1 are being used to show, e.g., that if (m, k) is a solution of
(1), such that m+ 2 is only composed of primes p satisfying p ≡ 5, 7(mod 8), then

m ≥ 1010
16
.

To wit, had Blaise Pascal’s computing machine from 1642 (developed for tax
collecting purposes !), the Pascaline, worked like a modern computer, then Theorem
2 could have been already proved in 1654, since the deepest result it uses is Lemma
1, a reproof of which was recently given by MacMillan and Sondow [14] using a
binomial identity due to Pascal from 1654.

Leo Moser (1921-1970) was a mathematician of the problem solver type. For bibli-
ographic information the reader is referred to the MacTutor History of Mathematics
archive [25].

2. Moser’s proof revisited

Let Sr(n) =
∑n−1

j=0 j
r. In what follows we assume that

Sk(m) = mk, k ≥ 2, (2)

that is we are interested in non-trivial solutions of (1).

Lemma 1. Let p be a prime. We have

Sr(p) ≡ ǫr(p)(mod p),

where

ǫr(p) =

{

−1 if (p− 1)|r;

0 otherwise.
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Proof. Let g be a primitive root modulo p. In case (p− 1) ∤ r we have

Sr(p) ≡

p−2
∑

j=0

(gj)r ≡
gr(p−1) − 1

gr − 1
(mod p),

and the numerator is divisible by p. In case (p − 1)|r, we find by Fermat’s Little
Theorem that Sr(p) = p− 1 ≡ −1(mod p) as desired. �

Another proof, using only Lagrange’s theorem on roots of polynomials over Z/pZ,
can be given, see Moree [21]. The most elementary proof presently known is due to
MacMillan and Sondow [14] and is based on Pascal’s identity (1654), valid for n ≥ 0
and a ≥ 2:

n
∑

k=0

(

n+ 1

k

)

Sk(a) = an+1 − 1.

Lemma 2. In case p is odd and in case p = 2 and r is even, we have Sr(p
λ+1) ≡

pSr(p
λ)(mod pλ+1).

Proof. Every 0 ≤ j < pλ+1 can be uniquely written as j = αpλ + β with 0 ≤ α < p
and 0 ≤ β < pλ. Hence we obtain on invoking the binomial theorem

Sr(p
λ+1) =

p−1
∑

α=0

pλ−1
∑

β=0

(αpλ + β)r ≡ p

pλ−1
∑

β=0

βr + rpλ
p−1
∑

α=0

α

pλ−1
∑

β=0

βr−1(mod p2λ).

Since the first sum equals Sr(p
λ) and 2

∑p−1
α=0 α = p(p − 1) ≡ 0(mod p), the result

follows. �

Proof of Theorem 2. Suppose that p|(m− 1), then using Lemma 1 we infer that

Sk(m) =

(m−1)/p−1
∑

i=0

p
∑

j=1

(j + ip)k ≡
m− 1

p
Sk(p) ≡

m− 1

p
ǫk(p)(mod p).

On the other hand m ≡ 1(mod p), so that by (2) we must have

m− 1

p
· ǫk(p) ≡ 1(mod p). (3)

Hence ǫk(p) 6≡ 0(mod p), so that from the definition of ǫk(p) it follows that ǫk(p) =
−1 and

p|(m− 1) implies (p− 1)|k. (4)

Thus (3) can be put in the form

m− 1

p
+ 1 ≡ 0(mod p), (5)

or
m− 1 ≡ −p(mod p2). (6)

We claim that m − 1 must have an odd prime divisor p and that hence, by (4), k
must be even. It is easy to see that m − 1 > 2. If m − 1 does not have an odd
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prime divisor, then m−1 = 2e for some e ≥ 2. However, by (6) we see that m−1 is
square-free. This contradiction shows that m− 1 has indeed an odd prime factor p.

We now multiply together all congruences of the type (5), that is one for each
prime p dividing m− 1. Since m− 1 is square-free, the resulting modulus is m− 1.
Furthermore, products containing two or more distinct prime factors of the form
(m− 1)/p will be divisible by m− 1. Thus we obtain

(m− 1)
∑

p|(m−1)

1

p
+ 1 ≡ 0(mod m− 1), (7)

or
∑

p|(m−1)

1

p
+

1

m− 1
≡ 0(mod 1). (8)

We proceed to develop three more congruences, similar to (8), which when combined
with (8) lead to the proof of part 1. Equation (2) can be written in the form

Sk(m+ 2) = 2mk + (m+ 1)k. (9)

Using Lemma 1 and the fact that k is even, we obtain as before

p|(m+ 1) implies (p− 1)|k. (10)

and
m+ 1

p
+ 2 ≡ 0(mod p), (11)

From (11) it follows that no odd prime appears with exponent greater than one in
m + 1. The prime 2 (according to H. Zassenhaus ‘the oddest of primes’), requires
special attention. If we inspect (1) with modulus 4, and use the fact that k is
even, then we find that m + 1 ≡ 1 or 4(mod 8). Now let us assume that we are
in the first case and we let 2f ||m (that is 2f |m and 2f+1 ∤ m). Note that f ≥ 3.
Using Lemma 2 we find that Sk(m+ 1) ≡ m

2f
Sk(2

f) ≡ 2f−1(mod 2f ), contradicting

Sk(m+1) = 2mk ≡ 0(mod 2f). Thus m+1 contains 2 exactly to the second power
and hence (11) can be put in the form

m+ 1

2p
+ 1 ≡ 0(mod p), (12)

We multiply together all congruences of type (12). The modulus then becomes
(m + 1)/2. Further, any term involving two or more distinct factors m+1

2p
will be

divisible by m+1
2

so that on simplification we obtain

∑

p|(m+1)

1

p
+

2

m+ 1
≡ 0(mod 1). (13)

We proceed to find two similar equations to (13). Suppose that p|(2m− 1) and let
t = 1

2
(2m−1

p
− 1). Clearly t is an integer and m− 1 = tp+ p−1

2
. We have ak = (−a)k

since k is even so that 2Sk(
p+1
2
) ≡ Sk(p)(mod p) and hence, by Lemma 1,

Sk(
p+ 1

2
) ≡

ǫk(p)

2
(mod p).
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It follows that

Sk(m) ≡

t−1
∑

i=0

p−1
∑

j=1

(j + ip)k +

(p−1)/2
∑

i=1

ik ≡ (t+
1

2
)ǫk(p)(mod p). (14)

On the other hand 1 ≡ (2m− 1 + 1)k ≡ (2m)k(mod p), hence mk 6≡ 0(mod p) so
that (2) and (14) imply ǫk(p) 6= 0. Hence p − 1|k and by Fermat’s little theorem
mk ≡ 1(mod p). Thus (2) and (14) yield −(t + 1

2
) ≡ 1(mod p). Replacing t by its

value and simplifying we obtain

2m− 1

p
+ 2 ≡ 0(mod p). (15)

Since 2m−1 is odd, (15) implies that 2m−1 is square-free. Multiplying congruences
of the type (15), one for each of the r prime divisors of 2m− 1, yields

2r−1
(

(2m− 1)
∑

p|(2m−1)

1

p
+ 2

)

≡ 0(mod 2m− 1).

Since the modulus 2m− 1 is odd this gives

∑

p|(2m−1)

1

p
+

2

2m− 1
≡ 0(mod 1). (16)

Finally we obtain a corresponding congruence for primes p dividing 2m+1, namely
(18) below. For this purpose we write (2) in the form

Sk(m+ 1) = 2mk. (17)

Suppose p|(2m + 1). Set v = 1
2
(2m+1

p
− 1). Clearly v is an integer. We have

m = pv + p−1
2

and find Sk(m + 1) ≡ (v + 1
2
)ǫk(p)(mod p). From this and (17) it is

easy to infer that ǫk(p) = −1 and so v + 1
2
≡ −2(mod p). We conclude that

p|(2m+ 1) implies (p− 1)|k.

Replacing v by its value and simplifying we obtain

2m+ 1

p
+ 4 ≡ 0(mod p).

Note that this implies that 2m+ 1 is square-free. Reasoning as before we obtain

∑

p|(2m+1)

1

p
+

4

2m+ 1
≡ 0(mod 1). (18)

If we now add the left hand sides of (8), (13), (16) and (18), we get an integer, at
least 4. By an argument similar to that showing 2 ∤ m, we show that 3 ∤ m (but in
this case we use Lemma 2 with p = 3 and 3λ||m and the fact that k must be even).
No prime p > 3 can divide more than one of the integers m− 1, m+ 1, 2m− 1 and
2m+1. Further, since m ≡ 3(mod 8) and 3 ∤ m, 2 and 3 divide precisely two of these
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integers. We infer that M = (m − 1)(m + 1)(2m − 1)(2m + 1)/12 is a square-free
integer. We deduce that

∑

p|M

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
≥ 4−

1

2
−

1

3
= 3

1

6
(19)

One checks that (16) has no solutions with m ≤ 1000. Thus (19) yields (with
α = 3.16)

∑

p|M
1
p
> α. From this it follows that if

∑

p≤x

1

p
< α, (20)

then m4/3 > M >
∏

p≤x p and hence

m > 31/4eθ(x)/4, (21)

with θ(x) =
∑

p≤x log p, the Chebyshev θ-function. Since for example (20) is satisfied

with x = 1000, we find that m > 10103 and infer from (19) that we can take
α = 31

6
−10−100 in (20). Next one computes (using a computer algebra package, say

PARI) the largest prime pk such that
∑

p≤pk
1
p
< 31

6
, with p1, p2, . . . the consecutive

primes. Here one finds that k = 4990906 and

4990906
∑

i=1

1

pi
= 3.1666666588101728584 < 3

1

6
− 10−9.

Using this part 1 of the Theorem is proved.
Notice that along our way towards proving part 1, the other parts of the Theorem

have also been proved. �

Remark 1. Since for a solution of (1), (m2 − 1)(4m2 − 1)/12 has at least 4990906
distinct prime factors, it is perhaps reasonable to expect that each of the factors
m−1, m+1, 2m−1 and 2m+1 must have many distinct prime factors. Brenton and
Vasiliu [4], using the bound given in condition 1 of Theorem 2, showed that m − 1
has at least 26 prime factors. Gallot et al. [9] increased this, using Theorem 5, to 33.

Remark 2. Moser considered (1) modulo m− 1, m+1, 2m− 1 and 2m+1. Sondow
and MacMillan [29] considered the equation also modulo (m−1)2 and obtained some
further information (this involves the Fermat quotient).

3. Comparison of the proof with Moser’s

In this section it is explained to what extent the proof of Theorem 2 is different
from Moser’s of Theorem 1.

Moser in his proof only uses Lemma 1, not Lemma 2. Not using Lemma 2, he
can only conclude that either m ≡ 3(mod 8) or m ≡ 0(mod 8). In the first case
he proceeds as above, in the latter case one has to note that we cannot use (13).
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Letting N = (m− 1)(2m− 1)(2m+ 1) we get from (8), (16), (18)

∑

p|N

1

p
+

1

m− 1
+

2

2m− 1
+

4

2m+ 1
> 3−

1

3
(22)

However, since 2 ∤ N , (22) is actually a stronger condition on m than is (19).
The idea to use 3 ∤ m, leading to a slight improvement for the bound on m, is

taken from Butske et al. [5] and not there in Moser’s proof. (Actually they consider
the case 3 ∤ m and 3|m separately. We show that only 3 ∤ m can occur.)

By using some prime number estimates from Rosser, Moser deduces that (20)
holds with x = 107 and α = 3.16. In his argument he claims that by direct com-
putation one see that (20) holds with x = 1000 and α = 2.18. This is not true (as
pointed out to me by Buciumas and Havarneanu). However, replacing 2.18 by 2.2
in Moser’s equation (21) one sees that his proof still remains valid. The present day
possibilities of computers allow us to proceed by direct computation, rather than to
resort to prime number estimates as Moser was forced to do.

The advantage of the proof given in Section 2 is that it shows, in contrast to
Moser’s proof and Butske et al.’s variation thereof, that every non-trivial solution
satisfies the crucial inequality (19).

4. A second proof using a von Staudt-Clausen type theorem

In this section we show that Moser’s four formulas (8), (13), (16) and (18) can be
easily derived from the following lemma. Indeed using it, even a fifth formula can
be derived, namely (25) below.

Theorem 3. (Carlitz-von Staudt, 1961). Let r, y be positive integers. Then

Sr(y) =

y−1
∑

j=1

jr =

{

0 (mod y(y−1)
2

) if r is odd;

−
∑

(p−1)|r, p|y
y
p
(mod y) otherwise.

(23)

Carlitz [6] gave a proof of Theorem 3 using finite differences and states that the
result is due to von Staudt. In the case r is odd, he claims that Sr(y)/y is an inte-
ger, which is not always true (it is true though that 2Sr(y)/y is always an integer).
The author [16] gave a proof of a generalization to sums of powers in arithmetic
progression using the theory of primitive roots and Kellner [13] a reproof (in case r
even only) using Stirling numbers of the second kind. For the easiest proof known
and some further applications of the Carlitz-von Staudt theorem, we refer the reader
to Moree [21].

Second proof of Theorem 2. We will apply Theorem 3 with r = k.
In case k is odd, we find on combining (23) (with y = m) with (1) on using the

coprimality of m andm−1 that m = 2 or m = 3, but these cases are easily excluded.
Therefore k must be even.

Take y = m− 1. Then, using (1), the left hand side of (23) simplifies to

Sk(m− 1) = 1k + 2k + . . .+ (m− 2)k = mk − (m− 1)k ≡ 1(mod m− 1).
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We get from (23) that

∑

p|(m−1), (p−1)|k

(m− 1)

p
+ 1 ≡ 0(mod m− 1). (24)

Suppose there exists p|(m − 1) such that (p − 1) ∤ k. Then on reducing both sides
modulo p we get 1 ≡ 0(mod p). This contradiction shows that in (24) the condition
p − 1|k can be dropped and thus we obtain (7). From (7) we see that m − 1 must
be square-free and also we obtain (8).

Take y = m. Then using (1) and 2|k we infer from (23) that

∑

(p−1)|k, p|m

1

p
≡ 0(mod 1). (25)

Since a sum of reciprocals of distinct primes can never be a positive integer, we infer
that the sum in (25) equals zero and hence conclude that if (p − 1)|k, then p ∤ m.
We conclude for example that (6, m) = 1. Now on considering (1) with modulus 4
we see that m ≡ 3(mod 8).

Take y = m+ 1. Then using (1) and the fact that k is even, the left hand side of
(23) simplifies to

Sk(m+ 1) = Sk(m) +mk = 2mk ≡ 2(mod m+ 1).

We obtain
∑

p|(m+1), (p−1)|k

(m+ 1)

p
+ 2 ≡ 0(mod m+ 1),

and by reasoning as in the case y = m−1, it is seen that p|(m+1) implies (p−1)|k
and thus (13) is obtained. From (13) and m ≡ 3(mod 8), we derive that (m+ 1)/2
is square-free.

Take y = 2m− 1. On noting that

Sk(2m− 1) =
m−1
∑

j=1

(jk + (2m− 1− j)k) ≡ 2Sk(m) ≡ 2mk(mod 2m− 1),

we find that

∑

p|(2m−1), (p−1)|k

(2m− 1)

p
+ 2mk ≡ 0(mod 2m− 1). (26)

Since m and 2m− 1 are coprime we infer that if p|(2m− 1), then (p− 1)|k, mk ≡
1(mod p) and furthermore that 2m − 1 is square-free. It follows by the Chinese
remainder theorem that 2mk ≡ 2(mod 2m− 1) and hence from (26) we obtain (16).

Take y = 2m+ 1. On noting that

Sk(2m+ 1) =

m
∑

j=1

(jk + (2m+ 1− j)k) ≡ 2Sk(m+ 1) ≡ 4mk(mod 2m+ 1)
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and proceeding as in case y = 2m − 1 we obtain (18) and the square-freeness of
2m+ 1. To finish the proof we proceed as in Section 2 just below (18). �

With some of the magic behind the four Moser identities revealed, the reader might
be well tempted to derive further ones. A typical example would start from

4k − 1k − 2k − 3k ≡ −
∑

p−1|k
p|(m−4)

(m− 4)

p
(mod m− 4). (27)

For simplicity let us assume that m ≡ 2(mod 3). We have (6, m− 4) = 1. For this
to lead to a further equation, we need the left hand side to be a constant modulo
m−4. If we could infer that p|(m−4) implies (p−1)|k, then the left hand side would
equal −2(mod m − 4) and we would be in business. (For the reader familiar with
the Carmichael function λ, this can be more compactly formulated as λ(m− 4)|k.)
Unfortunately a problem is caused by the fact that the left hand side could be
divisible by p. Thus all we seem to obtain is that if m ≡ 2(mod 3), and λ(m− 4)|k
or 4k − 1k − 2k − 3k and m− 4 are coprime, then

∑

p|(m−4)

1

p
−

2

m− 4
≡ 0(mod 1).

In Section 6 we will see that if we replace m− 4 by m+ 2 we can do a little better,
the reason being that in the left hand side in this case, 2k+1+1 appears and numbers
of these form have only a rather restricted set of possible prime factors.

5. Recent developments

Moree et al. [22], using properties of the Bernoulli numbers and polynomials, showed
that N1 := lcm(1, 2, . . . , 200) divides k. Kellner [12] in 2002 showed that also all
primes 200 < p < 1000 have to divide k. Actually Moree et al. [22, p. 814] proved a
slightly stronger result and on combining this with Kellner’s, one obtains that N2 | k
with

N2 = 28 · 35 · 54 · 73 · 112 · 132 · 172 · 192 · 23 · · ·997 > 5.7462 · 10427.

Gallot, Moree and Zudilin [9] study (1) using the theory of continued fractions.
This approach was first explored in 1976 by Best and te Riele [3] in their attempt
to solve a related conjecture of Erdős, see also Guy [10, D7]. Gallot et al. showed
that if (m, k) is a solution of (1) with k ≥ 2, then 2k/(2m− 3) is a convergent pj/qj
of log 2. Their main result reads as follows, where given N ≥ 1, we define

P(N) = {p : p− 1 | N} ∪ {p : 3 is a primitive root modulo p},

and if pf ||m, we put νp(m) = f .

Theorem 4. Let N ≥ 1 be an arbitrary integer. Let

log 2

2N
= [a0, a1, a2, . . . ] = a0 +

1

a1 +
1

a2 + · · ·
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be the (regular) continued fraction of (log 2)/(2N), with pi/qi = [a0, a1, . . . , ai] its
i-th partial convergent.

Suppose that the integer pair (m, k) with k ≥ 2 satisfies (1) with N | k. Let
j = j(N) be the smallest integer such that:
a) j is even;
b) aj+1 ≥ 180N − 2;
c) (qj , 6) = 1;
d) νp(qj) = νp(3

p−1 − 1) + νp(N) + 1 for all primes p ∈ P(N) dividing qj.
Then m > qj/2.

Condition d is derived using the Moser method, namely by analyzing the equation

2(3k − 1)(m− 1)k

2m− 3
≡ −

∑

p|2m−3
(p−1)|k

1

p
(mod 1), (28)

that a solution (m, k) of (1) has to satisfy.
Applying Theorem 2 with N = 28 ·35 ·53 or N = 28 ·35 ·54, and using that N |N2|k,

they obtained the current world record:

Theorem 5. If an integer pair (m, k) with k ≥ 2 satisfies (1), then

m > 2.7139 · 10 1 667 658 416 > 1010
9

.

6. A new result

The rest of the paper is the research part and here some familiarity with the
theory of divisors of second order sequences is helpful, see e.g. Ballot [2] or Moree
[20] for more introductory accounts.

Let S be an infinite sequence of positive integers. We say that a prime p divides
the sequence if it divides at least one of its terms. Here we will be interested in
the sequence S2 := {22e+1 + 1}∞e=0. It can be shown that p > 3 divides S2 iff
ord2(p) ≡ 2(mod 4), with ordg(p) (with p ∤ g) the smallest positive integer t such
that gt ≡ 1(mod p). The set of these primes is known to have natural density 7/24
[18]. Furthermore, if ord2(p) ≡ 2(mod 4) then

p|(22e+1 + 1) iff 2e ≡
ord2(p)

2
− 1(mod ord2(p)). (29)

In some coding theoretical work the sequence S2 and its variants play an important
role, see e.g. [7, 11]. Likewise in the study of the Stufe of cyclotomic fields, see e.g.
[8, 18].

If m + 2 is coprime with S2, then from (31) and 2|k we can infer that a fifth

identity of Moser type, (30), must hold true. This then leads to m > 1010
11
for such

m. We now consider the situation in greater detail.

Theorem 6. Suppose that (m, k) is a solution of (1) with

k ≥ 2, 24|M |k and m < 1010
11

,
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then m+ 2 has a prime divisor p > 3 such that:
1) (ord2(p),M) = 2;

2) k ≡ ord2(p)
2

− 1(mod ord2(p)).

In case m ≡ 2(mod 3), we can replace 1010
11

by 1010
16
. In case M = N2 we have

p ≥ 2099.

Corollary 1. If every prime divisor p > 3 of m+ 2 satisfies p ≡ 5, 7(mod 8), then

m ≥ 1010
11

if m ≡ 1(mod 3) and m ≥ 1010
16

otherwise. In particular, if every prime
divisor p of m+ 2 satisfies p ≡ 5, 7(mod 8), then m ≥ 1010

16
.

Proof. Using the supplementary law of quadratic reciprocity, (2
p
) = (−1)(p

2−1)/8,

one sees that if p ≡ 5, 7(mod 8), then ord2(p) 6≡ 2(mod 4). thus condition 1 is not
satisfied, as for this to be satisfied we must have ord2(p) ≡ 2(mod 4). �

Put
P (M) = {p > 3 : (ord2(p),M) = 2}.

Thus if p is to be in P (M), then p ≡ 1(mod 8) or p ≡ 3(mod 8). In the latter
case we have ord2(p) ≡ 2(mod 4). In the former case it is not necessarily so that
ord2(p) ≡ 2(mod 4) and numerically there is a strong preponderance of primes
p ≡ 3(mod 8) in P (M). Indeed, we have the following result.

Lemma 3. The relative density of primes p ≡ 1(mod 8) satisfying ord2(p) ≡
2(mod 4) is 1/6.

Proof. We have seen that if ord2(p) ≡ 2(mod 4), then p ≡ 1, 3(mod 8). If p ≡
3(mod 8), then ord2(p) ≡ 2(mod 4). From this and the fact that δ(ord2(p) ≡
2(mod 4)) = 7/24 and the prime number theorem for primes in arithmetic progres-
sion, we infer that the density of primes p ≡ 1(mod 8) such that ord2(p) ≡ 2(mod 4)
equals 7

24
− 1

4
= 1

24
. The sought for relative density is then 1

24
/1
4
= 1

6
. �

Thus if p ≡ 3(mod 8), then ord2(p) ≡ 2(mod 4) and if p ≡ 1(mod 8), then ord2(p) ≡
2(mod 4) in 1/6-th of the cases.

A further observation concerning the set P (M) is related to Sophie Germain
primes. A prime q such that 2q + 1 is a prime, is called a Sophie Germain prime.

Lemma 4. Let qM be the largest prime factor of M . If q > qM , q ≡ 1(mod 4) and
q is a Sophie Germain prime, then p = 2q + 1 ∈ P (M).

Proof. The assumptions imply that (2
p
) = −1 and since p > 3 we infer that

ord2(p) = 2q. Since (ord2(p),M) = (2q,M) = 2 we are done. �

There are 42 primes p in P (N2) not exceeding 10.000. Of those 7 primes p are such
that (p − 1)/2 is not Sophie Germain, the smallest one being 7699. However, the
Sophie Germain primes have natural density zero, whereas as we shall see P (M)
has positive natural density.

Given a rational number g such that g 6∈ {−1, 0, 1}, the natural density δg(d) of
the set of primes p such that the order of g(mod p) is divisible by d is known to



12 PIETER MOREE

exist and can be computed, see e.g. Moree [19]. Using inclusion and exclusion one
then finds that the set P (M) has natural density

δ(M) =
∑

d|M1

(δ2(2d)− δ2(4d))µ(d),

where M1 is the product of the odd prime divisors dividing M and µ denotes the
Möbius function. By Moree [19, Theorem 2] we then find that, for odd d,

δ2(2d)− δ2(4d) =
7

24

∏

p|d

p2

p2 − 1
,

and hence

δ(M) =
7

24

∏

p|M1

(

1−
p

p2 − 1

)

.

Taking M = N2 one finds that

δ(N2) =
7

24

∏

2<p≤1000

(

1−
p

p2 − 1

)

≈ 0.043578833 · · ·

Remark. In [7] an asymptotic for the number of integers n ≤ x that are coprime
with S2 is derived. Let us call an integer n M-good if none of its prime divisors
p satisfy condition 1. By the same methods it can be shown, cf. [7, 18], that
asymptotically the number of integers n ≤ x that are M-good, NG(x), satisfies

NG(x) ∼ cMx log−δ(M) x, where cM > 0 is positive constant depending on M .

Remark. Given positive integers a, b, c, d, the density of primes p ≡ c(mod d) such
that p|{ae + be}∞e=0 is known, see Moree and Sury [23]. Since S2 = {2 · 4e + 1}∞e=0,
that result cannot be applied to establish Lemma 3.

Proof of Theorem 6. The idea of the proof is to show if for every prime divisor p > 3
of m+ 2 at least one the conditions 1 and 2 is not satisfied, then the identity

∑

p|(m+2)

1

p
+

3

m+ 2
≡ 0(mod 1) (30)

holds. Using this we then show that m is bigger than the bound in the theorem. A
contradiction. As usual we make heavy use of the fact that k must be even.

We start with the equation

2k+1 + 1 ≡ −
∑

(p−1)|k, p|(m+2)

(m+ 2)

p
(mod m+ 2), (31)

found on noting that Sk(m + 2) = 2mk + (m+ 1)k ≡ 2k+1 + 1(mod m + 2) and on
invoking Theorem 3. Suppose that p|(m+ 2). The idea is to reduce (31) modulo p
(except if p = 3, then we reduce modulo 9).

If p = 3, then using 6|k we see that 2k+1 + 1 ≡ 3(mod 9) and we infer that
32||(m+ 2), that is we must have m ≡ 9, 16(mod 27). Next assume p > 3.

First assume that ord2(p) 6≡ 2(mod 4), Then p does not divide S2. Thus the right
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hand side of (31) is non-zero modulo p and this implies that (p−1)|k and p2 ∤ (m+2)
and hence 2k+1 + 1 ≡ 3(mod p).

Next assume that ord2(p) ≡ 2(mod 4) and condition 1 is not satisfied. Then
ord2(p) and M have an odd prime factor in common and by (29) (with e = k/2) we
get a contradiction with the assumption M |k.

Finally assume that condition 2 is not satisfied, but condition 1 is. Then also the
right hand side of (31) is non-zero modulo p and the same conclusion as before holds.
By the Chinese remainder theorem we then infer that 2k+1+1 ≡ 3(mod m+2) and
hence from (31) we see that (30) holds. It is easy to see that the left hand side of
Put N3 = (m2−1)(4m2−1)(m+2). By part 2 of Theorem 2 we infer that amongst
the numbers m− 1, m+ 1, m+ 2, 2m− 1, 2m+ 1, no prime p ≥ 7 occurs more than
once as divisor, the prime 2 occurs precisely twice, the prime 3 at most 3 times and
the prime 5 at most two times. Using this, we obtain on adding Moser’s equations
(8), (13), (16) and (18) to (30):

∑

p|N3

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
+

3

m+ 2
≥

109

30
, (32)

where
109

30
= 5−

1

2
−

2

3
−

1

5
= 3.6333333333333 · · ·

Using the estimate
∑

p≤x

1

p
< log log x+ 0.2615 +

1

log2 x
for x > 1,

due to Rosser and Schoenfeld [27, (3.20)], we find that
∑

p≤β 1/p < 3.63332 with

β = 4.33 · 1012. From another paper by the same authors [28] we have

|θ(x)− x| <
x

40 log x
, x ≥ 678407.

Hence

log(4m5) > log(N3) > log
∏

p≤β

p = θ(β) > .999β,

from which we infer that m ≥ 1010
11
.

In case m ≡ 2(mod 3) there are precisely two of the five terms m − 1, m +
1, 2m − 1, 2m + 1 and m + 2 divisible by 3, and in (32) we can replace 109/30 by
109/30 + 1/3 = 119/30 = 3.966666 · · · . In that case we can take β = 4.425 · 1017

and this leads to m ≥ 1010
16
.

The smallest two primes in P (N2) are 2027 and 2099. For p = 2027 we can
actually show that condition 2 is not satisfied. To this end we must show that
k 6≡ 1012(mod 2026). Computation shows that (1012, 6079), (3038, 6079) and
(5064, 6079) are good pairs. If (r, p) is a good pair, then k 6≡ r(mod p − 1), see
[22] for further details. The smallest prime that possibly satisfies both condition 1
and 2 is hence 2099. �
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Remark. Using the methods from Bach et al. [1], it should be possible to compute
the largest β such that

∑

p≤β 1/p < 109/30, respectively 119/30 exactly. They
found, e.g., that the prime p0 = 1801241230056600467 is the largest one such that
∑

p≤p0
1/p < 4.

7. The generalized Erdős-Moser conjecture

The Erdős-Moser conjecture has the following generalization.

Conjecture 1. There are no integer solutions (m, k, a) of

1k + 2k + . . .+ (m− 1)k = amk (33)

with k ≥ 2, m ≥ 2 and a ≥ 1.

In this direction the author proved in 1996 [17] that (33) has no integer solutions

(a,m, k) with k > 1 and m < max(1010
6
, a · 1022). With the hindsight of more than

10 years this can be improved.

Theorem 7. The equation (33) has no integer solutions (a,m, k) with

k ≥ 2, m < max
(

109·10
6

, a · 1028
)

.

Proof. (In this proof references to propositions and lemmas are exclusively to those
in [17].) The Moser method yields that 2|k and gives the following four inequalities

∑

p−1|k
p|m−1

1

p
+

a

m− 1
≥ 1,

∑

p−1|k
p|m+1

1

p
+

a+ 1

m+ 1
≥ 1. (34)

∑

p−1|k
p|2m−1

1

p
+

2a

2m− 1
≥ 1,

∑

p−1|k
p|2m+1

1

p
+

2(a+ 1)

2m+ 1
≥ 1. (35)

Since p|m implies p − 1 ∤ k (Proposition 9), we infer that (6, m) = 1. Using this
we see that G = (m2 − 1)(4m2 − 1)/12 is an even integer. Since no prime > 3 can
divide more than one of the numbers m− 1, m+ 1, 2m− 1 and 2m+ 1, and since 2
and 3 divide two of these numbers, we find on adding the inequalities that

∑

p−1|k, p|G

1

p
+

a

m− 1
+

a + 1

m+ 1
+

2a

2m− 1
+

2(a + 1)

2m+ 1
≥ 4−

1

2
−

1

3
= 3

1

6
.

Using that a(k + 1) < m < (a+ 1)(k + 1) (Proposition 2), we see that in the latter
equation the four terms involving a are bounded above by 6/(k+1). Since k ≥ 1022

(Lemma 2), we can proceed as in the proof of Theorem 2 and find the same bound
for m, namely m > 1.485 · 109321155.

Earlier it was shown that if k > 1, then k ≥ 1022. To this end Proposition 6 with
C = 3.16, s = 664579 = π(107) and n the 200-th highly composite number was
applied. Instead we apply it with C = 31

6
− 10−10, s = 4990906 and n the 259-th

composite number c250 (this has the property that the number of divisors of c259 < s,
whereas the number of divisors of c260 exceeds s). Since n = c259 > 5.5834 · 1027 it
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follows that k ≥ 2n > 1028. Since m > a(k + 1), the proof is completed. �

Remark 1. The above proof shows that if (33) has a solution with k ≥ 2, m ≥ 2
and a ≥ 1, then m must be odd. An easy reproof of this was given by MacMillan
and Sondow [15].

Challenge: Reach the benchmark 1010
7
in Theorem 7.
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