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ON LIMIT DISTRIBUTIONS OF NORMALIZED TRUNCATED VARIATION,

UPWARD TRUNCATED VARIATION AND DOWNWARD TRUNCATED

VARIATION PROCESSES

RAFAŁ M. ŁOCHOWSKI AND PIOTR MIŁOŚ
WARSAW SCHOOL OF ECONOMICS AND UNIVERSITY OF WARSAW

Abstract. In the paper we introduce the truncated variation, upward truncated variation and
downward truncated variation. These are closely related to the total variation but are well-defined
even if the latter is infinite. Our aim is to explore their feasibility to studies of stochastic processes.
We concentrate on a Brownian motion with drift for which we prove the convergence of the above-
mentioned quantities. For example, we study the truncated variation when the truncation parameter
c tends to 0. We prove in this case that for “small” c’s it is well-approximated by a deterministic
process. Moreover we prove that error in this approximation converges weakly (in functional sense)
to a Brownian motion. We prove also similar result for truncated variation processes when time
parameter is rescaled to infinity. We stress that our methodology is robust. A key to the proofs was
a decomposition of the truncated variation (see Lemmas 11 and 12). It can be used for studies of
any continuous processes. Some additional results like an analog of the Anscombe-Donsker theorem
and the Laplace transform of time to given drawdown by c (and analogously drawup till time) are
presented.

1. Introduction

The variation of Brownian paths was the subject of study of many authors (cf. [6], [11], [3], [2] just
to name a few, for more detailed account see e.g. [9, Chapter 10]). It is well known that for any p ≤ 2,
p−variation of the Brownian motion is a.s. infinite and this arguably gave rise to the development
of Itô integral, which alone proves that studies of the variation is of an utmost importance for the
stochastic processes theory.

Intuitively, the above motioned infiniteness of the variation stems from “wild behaviour” at small
scales. A natural, yet not studied before, way to tackle this problem was introduced in the paper [7].
The idea introduced there was to neglect a moves of a process smaller than a certain (small) c > 0.
This led to the definition of the truncated variation. Let now f : [a, b] → R be a continuous function.
Its truncated variation on the interval [a, b] is given by

sup
n

sup
a≤t1<t2<...<tn≤b

n−1
∑

i=1

φc (|f(ti+1)− f(ti)|) ,

where φc (x) = max {x− c, 0}. This defines a functional which can be applied to the paths of any
continuous stochastic process. In the paper we study the case of (Wt)t≥0 being the Brownian motion
with drift µ ∈ R and covariance function cov(Ws,Wt) = s ∧ t. The reason for this is twofold. Firstly,
W is a widely studied process, which enables us making some explicit computations. Secondly, W is
an exemplar case of semimartingales and diffusions. The results for W will shed some light on the
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properties of the truncated variation in these more general classes. We stress that even this paper
contains some general results for continuous processes. In separate articles, we plan to apply them for
semimartingales and diffusions.

Therefore, the main object of our studies will be the truncated variation of the Brownian motion
with drift µ, which is given by

(1.1) TV µ
c [a, b] := sup

n
sup

a≤t1<t2<...<tn≤b

n−1
∑

i=1

φc

(∣

∣Wti+1
−Wti

∣

∣

)

,

for 0 ≤ a < b < ∞. We recall a closely related notion of the upward truncated variation of W ,
introduced in [8] and defined by

(1.2) UTV µ
c [a, b] := sup

n
sup

a≤t1<s1<t2<s2<...<tn<sn≤b

n
∑

i=1

φc (Wsi −Wti) ,

and, analogously, the downward truncated variation:

DTV µ
c [a, b] := sup

n
sup

a≤t1<s1<t2<s2<...<tn<sn≤b

n
∑

i=1

φc (Wti −Wsi) .

The properties of TV µ
c , UTV µ

c and DTV µ
c are known up to some degree. Indeed in the paper [8], the

author proved that all three have finite exponential moments. Moreover, there are explicit formulas for
the moment generating functions of UTV µ

c [0, T ] and DTV µ
c [0, T ] when T is an exponential random

variable, independent of W .
The calculations we mentioned, however, did not give explicit insight into the ”nature” of truncated

variation. We would like to obtain a more direct description of ”infiniteness level” of 1−variation
of Brownian paths. A tempting way of answering to this question, followed in this paper, may be
to study the divergence of the truncated variation as c ց 0. We denote TV µ

c (t) := TV µ
c [0, t] ,

UTV µ
c (t) := UTV µ

c [0, t] and DTV µ
c (t) := DTV µ

c [0, t]. In the paper we prove that the processes

√
3

(

TV µ
c (t)− t

c

)

,(1.3)

√
3

(

UTV µ
c (t)−

(

1

c
+ µ

)

t

2

)

,(1.4)

√
3

(

DTV µ
c (t)−

(

1

c
− µ

)

t

2

)

,(1.5)

converge (in the functional sense) weakly to a standard Brownian motion as c → 0. This is arguably the
most surprising result of the paper. It appears that the truncated variation (of the Wiener process) is
essentially a deterministic function. We believe that this is closely related to the fact that the quadratic
variation 〈W 〉t = t is also deterministic.

We prove a very useful decomposition of TV µ
c (t) , UTV µ

c (t) and DTV µ
c (t) stated in Lemmas 11

and 12. It is in fact valid for any continuous stochastic process and it will be starting point for our
further studies. In this paper setting the decomposition is particularly useful as it is very similar to a
renewal process. This is a crux of the proofs of the above-mentioned convergences.

For completeness we also investigate the convergence in distribution of properly normalized processes
TV µ

c (nt) , UTV µ
c (nt) and DTV µ

c (nt) for fixed c as n tends to infinity. Similarly as before we obtain
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that the processes

TV µ
c (nt)−m1nt

σ1
√
n

,
UTV µ

c (nt)−m2nt

σ2
√
n

and
DTV µ

c (nt)−m3nt

σ3
√
n

,

converge weakly (in the functional sense) to a standard Brownian motion, for some deterministic
constants m1,m2,m3, σ1, σ2, σ3. The result is very similar to the case of c ց 0 however it is more
“expected”.

For the purposes of our proofs we also prove some results which may be interesting on their own
and would be useful tools for some other applications. We calculate the bivariate Laplace transform
of the variables

TD (c) := inf

{

s : sup
0≤u≤s

Wu −Ws = c

}

and

ZD−c(c) = sup
0≤t<s≤TD(c)

max {Ws −Wt − c, 0} .

This result is similar to the one of [10], where the bivariate Laplace transform of TD (c) and sup0≤t≤TD(c)Wt

was calculated.
We also present a functional convergence theorem (Theorem 13) which may be viewed both as an

extension of the Donsker theorem and an analogue of the Anscombe theorem. Although the theorem
seems quite standard, up to our knowledge it was not known before.

Let us comment on the organization of the paper. In the next section we present the main results of
this paper - theorems about convergence in distribution of the normalized processes TV µ

c (t) , UTV µ
c (t)

and DTV µ
c (t) as c → 0 and processes TV µ

c (nt) , UTV µ
c (nt) and DTV µ

c (nt) as n → +∞. In the third
section we state and prove the lemmas concerning structure of the processes TV µ

c (t) , UTV µ
c (t) and

DTV µ
c (t) . In the fourth section we state and prove the general functional theorem. Finally, the fifth

section is devoted to the proofs of the theorems stated in Section 2. The bivariate Laplace transform
of TD (c) and ZD−c(c) is calculated in this section as well.

2. Results

2.1. Limit in distribution of truncated variation processes. In this subsection we present the
results concerning the limit distribution of the normalized truncated variation, upward truncated
variation and downward truncated variation processes. By Bt, t ≥ 0, we denote a standard Brownian
motion.

Now we are ready to present some functional limit theorems. Let us recall the definition of the
truncated variation (1.1) and that TV µ

c (t) = TV µ
c ([0, t]). We start with

Theorem 1. Let T > 0. We have

(TV µ
c (t)− c−1t) →d 3−1/2Bt, as c → 0,

where →d is understood as weak convergence in C([0, T ],R) topology.

Remark 2. The immediate consequence of Theorem 1 is that the variable
√
3(TV µ

c (t)−c−1t) converges
in law to the variable with normal distribution N (0, t) as c → 0.

Remark 3. This theorem reveals that for small c the truncated variation is almost a deterministic
process. Namely, TV µ

c (t) ≈ c−1t+ 3−1/2Bt and obviously the first term overwhelms the second one.

For fixed c and rescaled time parameter we have
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Theorem 4. Let T > 0 and c > 0. We have

TV µ
c (nt)−mµ

cnt

σµ
c
√
n

→d Bt, as n → +∞,

where →d is understood as weak convergence in C([0, T ],R) topology and

mµ
c =

{

µ coth(cµ) if µ 6= 0,

c−1 if µ = 0,

(σµ
c )

2
=

{

2−2cµ coth(cµ)
sinh2(cµ)

+ 1 if µ 6= 0,

1/3 if µ = 0.

Remark 5. The immediate consequence of Theorem 4 is that the variable (TV µ
c (T )−mµ

cT ) /
(

σµ
c

√
T
)

converges in law to the variable with standard normal distribution N (0, 1) as T → +∞.

Remark 6. We note that when µ = 0 both theorems are equivalent. It is enough to notice that by the

scaling property of the Brownian motion we have TV 0
c (nt) =

d
√
n
(

TV 0
c/

√
n
(t)
)

.

2.2. Limit distribution of upward and downward truncated variations processes. In this
subsection we present the results concerning the limit distribution of the normalized upward and
downward truncated variations processes. Since DTV µ

c [a, b] =d UTV −µ
c [a, b] we will only deal with

upward truncated variation. We recall the definition (1.2) and that UTV µ
c (t) = UTV µ

c ([0, t]). Firstly
we analyze the situation when c is small,

Theorem 7. Let T > 0. We have
(

UTV µ
c (t)−

(

1

2c
+

µ

2

)

t

)

→d 3−1/2Bt, as c → 0,

where →d is understood as weak convergence in C([0, T ],R) topology.

For fixed c and rescaled time parameter we have

Theorem 8. Let T > 0 and c > 0. We have

UTV µ
c (nt)−mµ

cnt

σµ
c
√
n

→d Bt, as n → +∞,

where →d is understood as weak convergence in C([0, T ],R) topology and

mµ
c =

{

1
2µ(coth(cµ) + 1) if µ 6= 0,

(2c)−1 if µ = 0,

(σµ
c )

2
=

{

2 exp(4cµ)(sinh(2cµ)−2cµ)

(exp(2cµ)−1)3
if µ 6= 0,

1/3 if µ = 0.

Remark 9. Analogously as before one checks that both theorems are equivalent if µ = 0. This is
a simple consequence of the scaling property of the Brownian motion which yields UTV 0

c (nt) =d

√
n
(

UTV 0
c/

√
n
(t)
)

.
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3. A structure of truncated variation, upward truncated variation and downward

truncated variation processes

In this section we develop tools to analyze TV,DTV, UTV processes. For the matter of convenience
we work with the Winer process with drift W but we stress that all results in this section are valid for
any continuous stochastic process.

3.1. A structure of truncated variation process. Firstly, we will prove that the process (TV µ
c (t))t≥0

has similar structure as a renewal process. To state it more precisely we first define

TD (c) = inf

{

s ≥ 0 : sup
0≤u≤s

Wu −Ws = c

}

,

TU (c) = inf

{

s ≥ 0 : Ws − inf
0≤u≤s

Wu = c

}

,

T (c) = min {TD (c) , TU (c)} .

and now let (Ti (c))
∞
i=0 be series of stopping times defined in the following way: T0 := 0 and

• if T (c) = TD (c) , then T1 (c) := T (c) and recursively, for k = 1, 2, ...,

T2k (c) := inf

{

s ≥ T2k−1 (c) : Ws − inf
T2k−1(c)≤u≤s

Wu = c

}

,

T2k+1 (c) := inf

{

s ≥ T2k (c) : sup
T2k(c)≤u≤s

Wu −Ws = c

}

;

• if T (c) = TU (c) , then T1 (c) := 0, T2 (c) := T (c) and recursively, for k = 1, 2, ...,

T2k+1 (c) := inf

{

s ≥ T2k (c) : sup
T2k(c)≤u≤s

Wu −Ws = c

}

,

T2k+2 (c) := inf

{

s ≥ T2k+1 (c) : Ws − inf
T2k+1(c)≤u≤s

Wu = c

}

.

(Observe that the event {TU (c) = TD (c)} is impossible, hence the definitions above do not interfere.)
Additionally we define series of times (Si (c))

∞
i=0 (which are not stopping ones): for k = 0, 1, 2, ...

• S2k (c) is the first time when the maximum of Wt on the interval [T2k (c) , T2k+1 (c)] is attained
(in particular for T1 = 0, S0 = 0);

• S2k+1 (c) is the first time when the minimum of Wt on the interval [T2k+1 (c) , T2k+2 (c)] is
attained.

We have

Lemma 10. For k = 1, 2, 3, ... the following equalities hold

TV µ
c (T2k (c)) = TV µ

c (T2k−1 (c)) +WT2k−1(c) − inf
T2k−1(c)≤s≤T2k(c)

Ws,

TV µ
c (T2k+1 (c)) = TV µ

c (T2k (c)) + sup
T2k(c)≤s≤T2k+1(c)

Ws −WT2k(c).

Moreover, a partition for which TV µ
c (T2k) and TV µ

c (T2k+1) in definition (1.1) are attained is given by
S0 (c) , S1 (c) , . . ..
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Proof. The proof will follow by induction.
It is easy to see that TV µ

c (T (c)) = 0. Let us consider two cases.

1. First case T (c) = TD (c).

We start with k = 1.
Let 0 = t0 < t1 < ... < tn ≤ T2 (c) be a partition of the interval [0, T2 (c)]. Without the loss

of generality we may assume that there is no element tj such that max
{∣

∣Wtj−1
−Wtj

∣

∣− c, 0
}

=

max
{∣

∣Wtj −Wtj+1

∣

∣− c, 0
}

= 0. Indeed, if it would be such element we may skip it and the sum (1.1)
will not decrease.

(1) It is easy to see that if max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

and max
{∣

∣Wti+2
−Wti+1

∣

∣− c, 0
}

are two
consecutive non-zero summands, then

max
{∣

∣Wti+2
−Wti

∣

∣− c, 0
}

≥ max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

+max
{∣

∣Wti+2
−Wti+1

∣

∣− c, 0
}

.

In fact, because we are before the first upward move by c we must have Wti+1
− Wti ≤

−c,Wti+2
−Wti+1

≤ −c hence

Wti+2
−Wti =

(

Wti+2
−Wti+1

)

+
(

Wti+1
−Wti

)

≤ −2c,

and

max
{∣

∣Wti+2
−Wti

∣

∣− c, 0
}

= Wti −Wti+2
− c

≥
(

Wti −Wti+1
− c
)

+
(

Wti+1
−Wti+2

− c
)

= max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

+max
{∣

∣Wti+2
−Wti+1

∣

∣− c, 0
}

.

(2) Similarly, if max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

and max
{∣

∣Wti+3
−Wti+2

∣

∣− c, 0
}

are two non-zero

summands, while max
{∣

∣Wti+2
−Wti+1

∣

∣− c, 0
}

= 0, we have Wti+1
−Wti ≤ −c,Wti+2

−Wti+1
≤

−c and Wti+2
−Wti+1

≤ c, hence

Wti+3
−Wti =

(

Wti+3
−Wti+2

)

+
(

Wti+2
−Wti+1

)

+
(

Wti+1
−Wti

)

≤ −c+ c− c ≤ −c,

max
{∣

∣Wti+3
−Wti

∣

∣− c, 0
}

= Wti −Wti+3
− c

≥
(

Wti+3
−Wti+2

− c
)

+
(

Wti+1
−Wti − c

)

= max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

+max
{∣

∣Wti+3
−Wti+2

∣

∣− c, 0
}

.

As a result we obtain that the sum
∑n−1

i=1 max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

attains its largest value
for a two-element partition 0 ≤ t1 < t2 ≤ T2 (c) .

Since WS0(c) = sup0≤s≤T2(c)Ws and WS1(c) = inf0≤s≤T2(c) Ws we get

TV µ
c (T2 (c)) = sup

n
sup

0≤t1<t2<...<tn≤T2(c)

n−1
∑

i=1

max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

= sup
0≤t1<t2≤T2(c)

n−1
∑

i=1

max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

= max
{∣

∣WS0(c) −WS1(c)

∣

∣ − c, 0
}

= WT1(c) − inf
T1(c)≤s≤T2(c)

Ws

= TV µ
c (T1 (c)) +WT1(c) − inf

T1(c)≤s≤T2(c)
Ws.
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(Note that TV µ
c (T1 (c)) = TV µ

c (T (c)) = 0)

Let us assume that the Lemma 11 holds for some k ≥ 1. We proceed with the induction step from
interval [0, T2k (c)] to the interval [0, T2k+1 (c)] .

We know that 0 ≤ S0 (c) < S1 (c) < ... < S2k−1 (c) < T2k (c) is the best partition of the interval
[0, T2k (c)] . We will prove that the best partition of the interval [0, T2k+1 (c)] is 0 ≤ S0 (c) < S1 (c) <
... < S2k−1 (c) < S2k (c) i.e.

n−1
∑

i=1

max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

≤
2k−1
∑

i=0

max
{∣

∣WSi+1(c) −WSi(c)

∣

∣− c, 0
}

,

for any partition 0 ≤ t1 < ... < tn ≤ T2k+1 (c) .
Again we will consider several cases.

(1) Firstly let us observe that if there exists such v ∈ {1, 2, ..., n} that S2k−1 (c) ≤ tv < T2k (c) ,
then, due to optimality of the partition 0 ≤ S0 (c) < S1 (c) < ... < S2k−1 (c) < T2k (c) ,

v−1
∑

i=1

max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

≤
2k−2
∑

i=0

max
{∣

∣WSi+1(c) −WSi(c)

∣

∣− c, 0
}

= TV µ
c (T2k (c)) .

Moreover, reasoning similarly as in the proof of the case (1) for k = 1, from definitions
of S2k−1 (c) , T2k (c) and T2k+1 (c) we obtain that for any S2k−1 (c) ≤ s < u ≤ T2k+1 (c) ,
Wu −Ws ≥ −c and the sum

∑n
i=v max

{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

attains its largest value for two

element partition and can not be larger than max
{∣

∣WS2k(c) −WS2k−1(c)

∣

∣− c, 0
}

. Collecting
these two inequalities, we get

n−1
∑

i=1

max
{∣

∣Wti+1
−Wti

∣

∣− c, 0
}

≤
2k−1
∑

i=0

max
{∣

∣WSi+1(c) −WSi(c)

∣

∣− c, 0
}

= TV µ
c (T2k (c)) + sup

T2k(c)≤s≤T2k+1(c)

Ws −WT2k(c).

(2) Now we may assume that there is no such indice v that S2k−1 (c) < tv < T2k (c) . In this case
let v be the largest index such that tv ≤ S2k.

We have two subcases.
(a) Wtv < WS2k−1(c).
In this case we have tv < S2k−2 (c) (since Wtv < WS2k−1(c), by definition of WS2k−1(c) as a

minimal value of Wt on the interval [T2k−1 (c) , T2k (c)] we have that tv < T2k−1 (c) , but since
WS2k−2(c) is the maximal value of Wt on the interval [T2k−2 (c) , T2k−1 (c)] and by definition
of T2k−1 (c) we must have tv < S2k−2 (c)) and we easily find that partition 0 ≤ t1 < ... <
tv < S2k−2 (c) < S2k−1 (c) < tv+1 < ...tn ≤ T2k+1 (c) gives a larger sum, than the partition
0 ≤ t1 < ... < tn ≤ T2k+1 (c) . So we have a new, better partition which satisfies the conditions
of the case (1) above.

(b)Wtv ≥ WS2k−1(c).

In this case, if Wtv ∈
[

WS2k−1(c),Wtv+1

]

then
∣

∣Wtv+1
−Wtv

∣

∣ ≤
∣

∣Wtv+1
−WS2k−1(c)

∣

∣ . If the

opposite holds, we get that
∣

∣Wtv+1
−Wtv

∣

∣ ≤
∣

∣Wtv −WS2k−1(c)

∣

∣ . In both cases we calculate

max
{∣

∣Wtv+1
−Wtv

∣

∣− c, 0
}

≤ max
{∣

∣WS2k−1
−Wtv

∣

∣ − c, 0
}

+max
{∣

∣Wtv+1
−WS2k−1

∣

∣− c, 0
}

.

So again we have a new, better partition which satisfies the conditions of the case (1) above.
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Now we may proceed to the proof of the step: form interval [0, T2k+1 (c)] to the interval [0, T2k+2 (c)].

This case is analogous to the previous one when we consider the process W̃t = −Wt instead of Wt.

2. Second case T (c) = TU (c).

Again this case is analogous to the previous case in such a way, that considering the process W̃t =

−Wt and the corresponding times
(

T̃i

)∞

i=0
,
(

S̃i

)∞

i=0
we get Ti+1 = T̃i, Si+1 = S̃i for i = 0, 1, 2, . . . So

in this case we obtain the thesis in a similar way as above. �

Let us now define

• for k = 0, 1, 2, . . . ,

(3.1) ZD,k(c) := sup
T2k(c)≤s≤T2k+1(c)

Ws −WT2k(c),

• and similarly
ZU,k(c) := WT2k+2(c) − inf

T2k+1(c)≤s≤T2k+2(c)
Ws.

Now, for k = 0, 1, 2, . . . , we define sequence of random variables

Dk(c) := T2k+2(c)− T2k(c),

Zk(c) := ZD,k(c) + ZU,k(c).

Let us note here that in the case of the Wiener process with drift W obviously {Dk(c)}k and {Zk(c)}k
are i.i.d sequences.

The immediate consequence of Lemma 10 is

Lemma 11. For the process (TV µ
c (t))t≥0 stopped at (Markov times) T2k+2(c), k = 0, 1, 2, ..., the

following equality holds

TV µ
c (T2k+2(c)) =

k
∑

l=0

Zl(c).

3.2. A structure of upward and downward truncated variation processes. Now we will state
an analog of Lemma 11 for the upward and downward truncated variation processes.

Let us first define two sequences of stopping times. Let TU,0(c) = TD,0(c) = 0 and

• recursively, for k = 1, 2, . . . ,

TD,k (c) := inf

{

s ≥ TD,k−1 (c) : sup
TD,k−1(c)≤u≤s

Wu −Ws = c

}

,

• and analogously

TU,k (c) := inf

{

s ≥ TU,k−1 (c) : Ws − inf
TU,k−1(c)≤u≤s

Wu = c

}

,

(notice that TD,1(c) = TD(c)). Further, we introduce

• recursively, for k = 1, 2, . . . ,

ZD−c,k (c) := sup
TD,k−1(c)≤t<s≤TD,k(c)

max {Ws −Wt − c, 0} ,

• and analogously

ZU−c,k (c) := sup
TU,k−1(c)≤t<s≤TU,k(c)

max {Wt −Ws − c, 0} .
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As the immediate consequence of [8, Lemma 3] we get

Lemma 12. For k = 1, 2, 3, ... the following equalities hold

UTV µ
c (TD,k (c)) =

k
∑

l=1

ZD−c,l (c) ,

DTV µ
c (TU,k (c)) =

k
∑

l=1

ZU−c,l (c) .

4. Anscombe like theorem

Our aim in this section is to present an Anscombe-like functional central limit theorem for renewal
processes. For the classical Anscombe theorem and for its functional extensions we refer to [5, Chapter
1, Chapter 2, Chapter 5]. From now one we will use "." to denote the situation when an equality or
inequality holds with a constant K > 0, which is irrelevant for calculations. Our setting is as follows.
Let

(Di(c), Zi(c)), i ∈ N,

be sequences of i.i.d. random vectors indexed by certain parameter c ∈ (0, 1]. We define

Mc(t) := min

{

n > 0 :
n
∑

i=1

Di(c) > t

}

,

Pc(t) :=





Mc(t)
∑

i=1

Zi(c)



 − EZ1(c)

ED1(c)
t, t ∈ [0, 1].

We will need the following assumptions

(A1) For any c > 0 we have D1(c) > 0 a.s. and ED1(c) → 0 as c → 0.
(A2) We denote Xi(c) := Zi(c)− (EZ1(c)/ED1(c))Di(c). We have EXi(c) = 0. Now we assume

that there exists σ > 0 such that

EX1(c)
2

ED1(c)
→ σ2, as c → 0.

(A3) There exists δ ∈ (0, 2] such that

E|X1(c)|2+δ

ED1(c)
→ 0, as c → 0.

(A4) There exists δ > 0, C > 0 such that

E|D1(c)|1+δ ≤ C(ED1(c))
1+δ.

Theorem 13. Let T > 0 and we assume that (A1)-(A4) hold. Then

Pc →d σB, as c → 0,

where σ2 is the same as in (A2), and convergence is understood as the weak convergence in the Skorohod
D([0, T ],R) topology.
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Remark 14. The theorem should be compared to a few results. However, we will not attempt to
present the whole related bibliography referring instead to [5]. Firstly, the convergence of Pc(1) could
be proved by the Anscombe theorem [5, Section 1.3 p.16]. Secondly, the result is closely related to
the theory of renewal process [5, Chapters 3, 4] - our theorem should be compared with [5, Chapter 4,
Theorem 2.3]. Thirdly, one should also bear in mind a functional version of [5, Chapter 4, Theorem
2.3], namely [5, Chapter 5, Theorem 4.1]. Let (Di, Zi) be an i.i.d. sequence. We define Di(n) := Di/n
and Zi(n) := Zi/

√
n. Using our theorem we recover the result of [5, Chapter 5, Theorem 4.1]. One

should be warned however that our assumptions are a bit stronger, namely in this case (A3) and
(A4) are not required. This is not surprising, conditions of the same nature are required in the CLT
for triangular arrays. Finally, in the same spirit, if we consider Fact 21, with Xi(n) = Xi/

√
n and

g(1/n) = n, for a certain i.i.d. sequence {Xi}i, we would get the classic Donsker theorem. Analogously
as before (A3) and (A4) could be dropped.

Remark 15. We will now discuss the assumptions. (A1) is pretty obvious it enforces that we indeed
we consider a sum of random variables of increasing length. (A2) is also quite straightforward as it
require proper normalization, it might be also considered as a requirement of convergence of second
moments. Finally, we demand (A3) and (A4) in order to have some control over the distribution as c
changes. They are by now means surprising e.g. (A3) is nothing else but the Lyapunov condition. As
we noticed in the previous remark these are natural in our setting (though may be dropped in some
very special situations).

Remark 16. We stress out that although we work with the Skorohod topology the convergence to a
continuous process implies also the convergence in the sup norm.

4.1. Proof of Anscombe like theorem. We define

(4.1) Sc(n) :=

n
∑

i=1

Zi(c), Vc(n) :=

n
∑

i=1

Di(c), n ∈ N.

Moreover let us denote f(c) := EZ1(c)
ED1(c)

and we recall that Xi(c) := Zi(c) − f(c)Di(c). The proof will

be less technical if we consider a “continuous version” of Mc (abusing the notation we keep the name).
We define it by declaring Mc to be linear on each segment (Vc(n), Vc(n+ 1)) and putting

Mc(Vc(n)) := n+ 1, n ∈ N.

Let us point out that this definition is valid as Dk(c) > 0 a.s. Moreover, by construction, Mc is a
continuous process therefore after a suitable truncation it can be considered as a random element of
C([0, T ],R), T > 0. Now we define a family of auxiliary processes which will be crucial for our proof

(4.2) P 1
c (t) := Hc(⌊g(c)t⌋) + (g(c)t− ⌊g(c)t⌋)(Hc(⌈g(c)t⌉)−Hc(⌊g(c)t⌋)), c > 0, t ∈ [0,∞).

where Hc(n) := Sc(n)− f(c)Vc(n) and g(c) := (ED1(c))
−1.

From now up to further notice we will work only with continuous process. All convergences in
distribution are denoted by →d and understood as the weak convergence in C([0, T ],R), C([0, T ],R2)
or R

d, where T > 0. For x ∈ R
2 we will use norm |x| := |x1| + |x2|. We recall the definition of a

module of continuity in C([0, T ], X)

(4.3) w(δ, f) = sup {|f(x)− f(y)| : x, y ∈ [0, T ], |x− y| < δ} ,
where the choice of | · | will be clear from a context. Before the actual proof we reinforce ourselves with
some preliminary facts.
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Lemma 17. Let T > 0. For any f = (f1, f2) ∈ C([0, T ],R2) we have

w(δ, f) ≤ w(δ, f1) + w(δ, f2).

Proof. Let x, y ∈ [0, T ] such that w(δ, f) = |f(x)− f(y)| we have

w(δ, f) = |f(x)− f(y)| = |f1(x)− f1(y)|+ |f2(x)− f2(y)| ≤ w(δ, f1) + w(δ, f2).

�

Fact 18. Let {Pc}c∈(0,1] be a sequence of random elements in C([0, 1],R2). It is tight if and only if

these two conditions hold:

(1) For any t ∈ [0, 1] set of variables {Pc(t)}c∈(0,1] is tight.

(2) For each ε, η > 0, there exists a δ ∈ (0, 1) and c0 > 0 such that

P (w(δ, Pc) ≥ ε) ≤ η, c ∈ (0, c0).

Proof. The proof hinges on an upgraded version of the Arzelà-Ascoli theorem valid for C([0, 1],R2).
It can be found in [4, Theorem 2.4.3]1. Now one should proceed along the lines of the proof of [1,
Theorem 7.2] with (4.3) instead the one-dimensional modulus of continuity. �

Lemma 19. Let c ∈ (0, 1], T > 0 and {Xc(t)}t∈[0,T ] , {Yc(t)}t∈[0,T ] be continuous stochastic processes

(not necessarily independent). We assume that Yc →d f , and Xi →d X as c → 0, where f is a
deterministic function and X is a certain (continuous) process X. Then

(Xc, Yc) →d (X, f), as c → 0,

where →d denotes the weak convergence in C([0, 1],R2).

Proof. First we recall an elementary fact that if Xc and Yc were real random variables then convergences
Xc →d X and Yc → a for a certain constant a ∈ R would yield Xi+Yi →d X+a. By using the Cramér-
Wold device we see that this fact holds also if Xc, Yc, a are R

n-valued. Let now (t1, t2, . . . , tn) ∈ [0, T ]n,
the above fact yields

(4.4) ((Xc(t1), Yc(t1)), (Xc(t2), Yc(t2)), . . . , (Xc(tn), Yc(tn)))

→d ((X(t1), f(t1)), (X(t2), f(t2)), . . . , (X(tn), f(tn))) , as c → 0.

Let {cn}n≥1 be a sequence cn ∈ (0, 1] and cn → 0. Using Lemma 17 and Fact 18 we will prove that

{(Xcn , Ycn)}n is tight in C([0, 1],R2) . The first condition follows easily from (4.4). Let ε, η > 0, by
Fact 18 and tightness of {Xcn}n , {Ycn}n there exists δ > 0 such that P (w(δ,Xcn) ≥ ε/2) ≤ η/2 and
P (w(δ, Ycn) ≥ ε/2) ≤ η/2 for any n ≥ 0. Hence by Lemma 17 we obtain

P (w(δ, (Xcn , Ycn) ≥ ε) ≤ P (w(δ,Xcn) + w(δ, Ycn) ≥ ε) ≤ P (w(δ,Xcn) ≥ ε/2)+P (w(δ, Ycn) ≥ ε/2) ≤ η.

Now, when the conditions have been verified we know that any sub-sequence of {(Xc, Yc)} contains a
further sub-sequence which is weakly convergent in C([0, T ],R2). By (4.4) we check that whatever the
sequence is the limit has the same distribution, viz. the one of (X, f). This concludes. �

Let T > 0. We define a functional F : C([0, T ],R2) → F : C([0, T ],R) by

F ((f, g))(t) := f((g(t) ∧ T ) ∨ 0).

It is obvious that F is well-defined. Moreover,

1Let us note that the formulation of the theorem contains a typo. Namely in b) should be sup
{

wf (δ;X) : f ∈ A
}

→ 0

as δ → 0+.
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Lemma 20. Functional F is continuous.

Proof. Let (fi, gi) ∈ C([0, T ],R2) such that (fi, gi) → (f, g). This implies (in fact is equivalent to)
fi → f and gi → g in C([0, T ],R). We estimate

|fi((gi(t) ∧ T ) ∨ 0)− f((g(t) ∧ T ) ∨ 0)|
≤ |fi((gi(t) ∧ T ) ∨ 0)− f((gi(t) ∧ T ) ∨ 0)|+ |f((gi(t) ∧ T ) ∨ 0)− f((g(t) ∧ T ) ∨ 0)|

≤ ‖fi − f‖C + w(‖gi − g‖C, f),
where ‖f‖C = sup0≤s≤T |f(s)|. Function f is continuous on a compact set, hence is uniformly contin-
uous and w(δ, f) → 0, as δ → 0. This concludes. �

We prove now a functional limit theorem.

Fact 21. Let T > 0 and let P 1
c be given by (4.2). We have

P 1
c →d σ2B, as c → 0.

where →d denotes the weak convergence in C([0, T ],R) and σ is given by assumption (A2).

Proof. Firstly, we prove the convergence of finite dimensional distributions. To this end we take
0 ≤ t1 < t2 < . . . < tn ≤ T and write

(

P 1
c (t1), P

1
c (t2), . . . , P

1
c (tn)

)

= (Hc(⌊g(c)t1⌋), Hc(⌊g(c)t2⌋, . . . Hc(⌊g(c)tn⌋))) +Rc,

where Rc is a residual term originating from the second summand of (4.2), consisting of terms of the
form (g(c)ti − ⌊g(c)ti⌋)(Hc(⌈g(c)ti⌉) −Hc(⌊g(c)ti⌋)). Let ε > 0 we have g(c)ti − ⌊g(c)ti⌋ ≤ 1 and we
observe that EX1(c) = 0 hence by assumptions (A1) and (A2) we get

P (|(g(c)ti − ⌊g(c)ti⌋)(Hc(⌈g(c)ti⌉)−Hc(⌊g(c)ti⌋))| ≥ ε) ≤ P (|X1(c)| ≥ ε)

≤ V ar(X1(c))

ε2
→ 0, as c → 0.

Therefore Rc → 0 in probability and a fortiori in law. We define Kc(i) := Hc(⌊g(c)ti+1⌋)−Hc(⌊g(c)ti⌋)
for i ∈ {1, 2, . . . , n− 1}. Our aim now is to prove their weak convergence. Assumptions (A1)-(A3) are
the assumptions of the classical CLT. One easily checks that

Kc(i) →d N (0, σ2(ti+1 − ti)), as c → 0.

Moreover for c’s small enough Kc(i) are independent hence we have proved P 1
c → σB in the sense of

finite-dimensional distributions.
We are now left with the proof of tightness. Let t ∈ (0, 1), ε > 0 and γ ∈ (0, 1) (this parameter is

to be adjusted), using fact that P 1
c is piecewise linear we have

A := P

(

sup
t<s<t+γ

|P 1
c (t)− P 1

c (s)| > 4ε

)

≤ P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

Xl(c) +R(c)

∣

∣

∣

∣

∣

> 4ε

)

where R(c) is a certain remainder term stemming from the second summand of (4.2). By assumption
(A3) we know that

P (|Xi(c)| > 1) ≤ E|Xi(c)|2+δ = g(c)−1h(c),

for a certain function h(c) such that h(c) → 0 as c → 0. Moreover,

(4.5) E|Xi(c)|1{|Xi(c)|>1} ≤ E|Xi(c)|2+δ1{|Xi(c)|>1} ≤ g(c)−1h(c).
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We define Yi(c) := Xi(c)1{|Xi(c)|≤1}. We have 0 = EXi(c) = EYi(c) + EXi(c)1{|Xi(c)|>1}. By (4.5) we

conclude that |EYi(c)| ≤ g(c)−1h(c). We now can estimate

A ≤ P (R(c) > 2ε) + P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

Yl(c)

∣

∣

∣

∣

∣

> 2ε

)

=: I + II.

We will deal firstly with the second summand. Obviously

II ≤ P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

Yl(c)

∣

∣

∣

∣

∣

> 2ε

)

+ P
(

∃i≤g(c)γ |Xi(c)| ≥ 1
)

≤ P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

(Yl(c)− EYl(c)) + iEYl(c)

∣

∣

∣

∣

∣

> 2ε

)

+ γh(c).

Now, we choose c0 such that for any c < c0 we have |g(c)γEYi(c)| ≤ ε. Thus for c < c0 we may write

II ≤ P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

(Yl(c)− EYl(c))

∣

∣

∣

∣

∣

> ε

)

+ γh(c).

We put this estimation aside for a moment. For any i.i.d. sequence {Qi}i such that EQi = 0 by simple
algebra we get

E

(

n
∑

i=1

Qi

)4

. nEQ4
1 + n2

(

EQ2
1

)2
.

By (A3) and obvious inequality we have E(Yi(c))
4 ≤ E|Xi(c)|2+δ ≤ g(c)−1h(c). Using the Minkowski

inequality we get

E(Yi(c)− EYi(c))
4 ≤

(

(

E(Yi(c))
4
)1/4

+ |EYi(c)|
)4

≤
(

(

g(c)−1h(c)
)1/4

+ g(c)−1h(c)
)4

. g(c)−1h(c).

The last inequality follows from the fact that g(c)−1h(c) → 0. By (A2) we have EYi(c)
2 ≤ EXi(c)

2 .

σg(c)−1. Let λ ≥ 0, using the above facts and the Doob inequality we estimate

P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

(Yl(c)− EYl(c))

∣

∣

∣

∣

∣

> γ1/2λ

)

≤ Kλ−4
(

γ−1h(c) + 1
)

,

where K is a certain constant depending only on σ. We pick now 0 < ε, η < 1. We can choose λ such
that Kλ−2 ≤ 1

2ηε
2 and λ−2 < ε−2. Now we fix γ = ε2λ−2. Putting these to the above expression we

obtain

P

(

max
i≤g(c)γ

∣

∣

∣

∣

∣

i
∑

l=1

(Y l(c)− EYl(c))

∣

∣

∣

∣

∣

> ε

)

≤ 1

2
η
(

λ2ε−2h(c) + 1
)

.

When c is small enough we have 1
2η
(

λ2ε−2h(c) + 1
)

≤ η. We may now come back to estimation of A.
We know that for any ε, η > 0 there exist γ ∈ (0, 1) and c0 > 0 that for any c < c0 we have

A ≤ P (R(c) > 2ε) + η + γh(c).

The tightness is thus established by appealing to [1, Theorem 7.3]. �
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Fact 22. We have
Mc

g(c)
→d id, as c → 0,

where →d denotes the weak convergence in C([0, T ],R) and id(t) = t.

Proof. We first define a family of processes

(4.6) Uc(t) :=

⌊g(c)t⌋
∑

i=1

D̃i(c) + (g(c)t− ⌊g(c)t⌋)D̃⌊g(c)t⌋+1(c), t ≥ 0,

where D̃i(c) := Di(c)− EDi(c) = Di(c)− g(c)−1. Our aim now is to prove that Uc →d 0.
Firstly let us notice that in assumption (A4) we may always assume δ ≤ 1. Indeed, if it is not the

case, by the Minkowski inequality we have

EDi(c)
2 ≤

(

EDi(c)
1+δ
)2/(1+δ) ≤

(

C(EDi(c))
1+δ
)2/(1+δ)

. (EDi(c))
2.

By assumption (A4) and by the Minkowski inequality one can show

E|D̃i(c)|1+δ . g(c)−1−δ.

Moreover E|D̃i(c)|1{|D̃i(c)|≥1} ≤ E|D̃i(c)|1+δ . We define truncated random variables

Ei(c) := D̃i(c)1{|D̃i(c)|<1}.

Without loss of generality we assume that (A4) holds with δ ≤ 1 and we easily get

(4.7) E(Ei(c))
2 ≤ E|D̃i(c)|1+δ . g(c)−1−δ.

Since EEi(c) = −ED̃i(c)1{|D̃i(c)|≥1} hence we get

(4.8) |EEi(c)| ≤ E|D̃i(c)|1+δ . g(c)−1−δ.

Let us fix T > 0, ε > 0. We obtain

I(c) := P

(

sup
0≤s≤T

|Uc(s)| > 2ε

)

≤ P

(

max
0≤j≤⌈g(c)T⌉

∣

∣

∣

∣

∣

j
∑

i=1

D̃i(c)

∣

∣

∣

∣

∣

> 2ε

)

≤ P

(

max
0≤j≤⌈g(c)T⌉

∣

∣

∣

∣

∣

j
∑

i=1

Ei(c)

∣

∣

∣

∣

∣

> 2ε

)

+ P

(

∃j≤⌈g(c)T⌉|D̃j(c)| ≥ 1
)

.

By (4.8) we can choose c small enough to have ⌈Tg(c)⌉|EEi(c)| ≤ ε, moreover we apply the Chebyshev
inequality and obtain

I(c) ≤ P

(

max
0≤j≤⌈g(c)T⌉

∣

∣

∣

∣

∣

j
∑

i=1

(Ei(c)− EEi(c))

∣

∣

∣

∣

∣

> ε

)

+ (g(c)T + 1)E|D̃j(c)|1+δ .

Estimate (4.7) and the Doob inequality for c small enough implies that

I(c) ≤ ε−2(g(c)T + 1)Var (Ei(c)) + (g(c)T + 1)E|D̃j(c)|1+δ . g(c)−δ → 0, as c → 0.

This proves that sup0≤s≤T |Uc(s)| →d 0. Now we notice that (Mc − 1)/g(c) = (t + Uc(t))
−1, where

−1 denotes the inverse function. This is always well-defined as t + Uc(t) is almost surely strictly
increasing. Let us fix 0 < ε < 1

2T and A :=
{

sup0≤s≤2T |Uc(s)| ≤ 1
2ε
}

. On the set A we have

sup0≤s≤T

∣

∣

∣

Mc(t)
g(c) − t

∣

∣

∣ ≤ ε, and P (A) → 1. �
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We are now ready to prove our main result.

Proof. (of Theorem 13) By Fact 21, Fact 22 and Lemma 19 we have

(P 1
c , g(c)

−1Mc) →d (B, id), as c → 0,

with respect to the topology of C([0, 2T ],R2). Applying Lemma 20 yields that the family of processes
{

P 2
c (t), t ∈ [0, 2T ]

}

c
, defined by the formula P 2

c (t) := P 1
c ((g(c)

−1Mc(t))∧2T ) converges in C([0, 2T ],R)
to σ2B. Our final step is to compare this process with Pc. We notice that they agree whenever Mc is
an integer, by the construction (4.2) and (A4) we conclude that

P

(

sup
0≤s≤T

|P 2
c (s)− Pc(s)| > ε

)

≤ P

(

max
i≤⌈Mc(T )⌉

|Xi(c)| > ε

)

≤ P

(

max
i≤⌈2Tg(c)⌉

|Xi(c)| > ε

)

+ P (Mc(T ) > 2g(c)T )

≤ ⌈2Tg(c)⌉ε−(2+δ)
E|Xi(c)|2+δ + P (Mc(T ) > 2g(c)T ) → 0,

as c → 0. An application of [1, Theorem 3.1] is enough to prove the convergence in the Skorohod
topology. �

5. Proofs of the results of functional convergence

5.1. Truncated variation.

Proof of Theorem 1. The strategy of the proof is to approximate the process TV µ
c using results of

Lemma 11 by a renewal-type process and then use Theorem 13. Let us recall the notation of Section
3 (e.g. (3.1)). By the strong Markov property of Brownian motion we have that ZD,k(c), k = 1, 2, ...,
is an i.i.d. sequence and

(T2k+1(c)− T2k(c), ZD,k(c)) =
d (TD(c), ZD(c)),

where ZD(c) := WTD(c) + c. The formula [10, (1.1)] reads as

(5.1) Eexp(αZD(c)− βTD(c)) =
δ exp(−(α+ µ)c) exp(αc)

δ cosh(δc)− (α+ µ) sinh(δc)
,

where δ =
√

µ2 + 2β. This formula is valid if α < coth(δc)− µ and β > 0. If µ 6= 0 we may also put
β = 0. From (5.1) we easily calculate

(5.2) ETD(c) =
e2cµ − 2cµ− 1

2µ2
= c+ o(c).

Further we notice that the distribution of

(T2k+2(c)− T2k+1(c), ZU,k(c)) ,

is the same as the distribution of (TU (c), ZU (c)), where ZU (c) := WTU (c) − c, and is the same as
(TD(c), ZD(c)) if we considered a Brownian motion with drift −µ.

For k = 1, 2, ... we also have (Dk(c), Zk(c)) =
d (TD(c) + TU (c), ZD(c) + ZU (c)) and (TD(c), ZD(c)),

(TU (c), ZU (c)) are independent.
We will use the renewal theory we developed in Section 4. To this end we define

(5.3) Mc(t) := min

{

k :

k
∑

l=1

Dl(c) > t

}

,
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and

Sc(k) =

k
∑

l=1

Zl(c).

We will apply Theorem 13 which will require verifying conditions (A1) - (A4). Hence we present
some auxiliary lemmas.

Lemma 23. For any p > 0 and non-negative random variables X and Y we have

E(X + Y )p ≤ E(2max {X,Y })p ≤ 2pE(Xp + Y p).

Lemma 24. We have

ED1(c)
4
. c8, EZ1(c)

4
. c4.

Proof. The proof goes by the simple computation using the Laplace transform (5.1). When µ 6= 0 we
have

ETD(c)4 =
3e8cµ + e6cµ(15− 42cµ) + 6e4cµ(2− 5cµ)2 − 18ce2cµµ(4 + 3cµ(−3 + 2cµ))

2µ8

+
2cµ(12 + cµ(−3 + cµ− 42)(−1 + cµ))

2µ8
.

For µ = 0 one has ETD(c)
4
= 277

21 c
8. In either case one checks that ETD(c)4/c8 → 277

21 , as c → 0,

hence ETD(c)4 . c8. Similarly one checks ETU (c)
4 . c8. Now, by Lemma 23 and definition of D1(c),

ED1(c)
4 . c8.

Analogously, one may check that ZD(c) has exponential distribution and

EZD(c)
4
=

{

3(exp (2cµ)−1)4

2µ4 if µ 6= 0,

24c4 if µ = 0.

In either case one checks that EZD(c)4/c4 → 24, as c → 0, hence EZD(c)4 . c4. Similarly EZU (c)
4 . c4

and by Lemma 23, EZ1(c)
4 . c4.

We used Mathematica to facilitate above computations. The appropriate Mathematica notebook is
available at http://www.mimuw.edu.pl/~pmilos/calculations.nb. �

Now we will check the assumptions of Theorem 13. Assumption (A1) is obvious. We have

(5.4) f(c) :=
EZ1(c)

ED1(c)
= µ coth(cµ) = c−1 +O(c).

We denote the fraction in assumption (A2) as σµ
c and calculate

(σµ
c )

2
=

{

2−2cµ coth(cµ)
sinh2(cµ)

+ 1 if µ 6= 0,

1/3 if µ = 0
→ 1

3
as c → 0.

Now we proceed to verification of assumption (A3). Using Lemma 23 and 24 we get

EX1(c)
4
. EZ1(c)

4 + f(c)4ED1(c)
4
. c4.

We easily check that ED1(c) ≈ c2 and see that assumption (A3) holds for δ = 2. We are left with
assumption (A4). By (5.2) and Lemma 24 it could be easily verified for δ = 3.

Thus, since f(c) = c−1 +O(c), by Theorem 13 we obtain:
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Corollary 25. Let Sc,Mc be defined according to (4.1) for the Zc(i), Dc(i) above. For any T > 0 we
have

(

Sc (Mc(t)) − c−1t
)

→d 3−1/2Bt,

where →d is understood as weak convergence in C([0, T ],R) topology.

The final stage is to compare process TV µ
c and process Sc (Mc(·)) with the use of Lemma 11. Since

D0(c) has different distribution than Dk(c) for k = 1, 2, ..., we introduce two auxiliary objects

M̃c(t) := min

{

k :
k
∑

l=0

Dl(c) > t

}

and

S̃c(k) =

k−1
∑

l=0

Zl(c).

These differ from Sc(k) and Mc by starting the summation from l = 0. After small changes of the
definitions of the appropriate processes we see that the thesis of Theorem 13 holds also in our case
and we obtain

(5.5)
(

S̃c

(

M̃c(t)
)

− c−1t
)

→d 3−1/2Bt,

where →d is understood as weak convergence in C([0, T ],R) topology.

From this definition and Lemma 11 we see that the processes TV c
µ and S̃c

(

M̃c(t)
)

coincide at

random times T2k, k = 0, 1, 2, ..., moreover, both are increasing, hence, for any t ≥ 0 and ε > 0

(5.6) P

(

sup
t∈[0,T ]

∣

∣

∣TV c
µ (t)− S̃c(M̃c(t))

∣

∣

∣ > ε

)

≤ P

(

sup
t∈[0,T ]

ZM̃c(t)
(c) > ε

)

.

Now, by (5.6) we estimate

P

(

sup
t∈[0,T ]

∣

∣

∣TV µ
c (t)− S̃c

(

M̃c(t)
)∣

∣

∣ > ε

)

≤ P

(

max
k≤2T/ED1(c)+1

Zk (c) ≥ ε

)

+ P

(

M̃c (t) ≥
2T

ED1 (c)
+ 1

)

.

The first term could be estimated by the Chebyshev inequality and the estimates of EZ1(c)
4 and

ED1(c)

P

(

max
k≤2T/ED1(c)+1

|Zi(c)| > ε

)

≤
(

2T

ED1(c)
+ 1

)

EZ1(c)
4

ε4
→ 0, as c → 0.

The convergence of the last term to 0 could be established by simple calculation using assumption
(A4). One could also use Fact 22. From this and (5.5) the thesis follows.

Proof of Theorem 4. The strategy of the proof is to find a renewal-type processes Gn which approx-
imates the process in the theorem. In order to prove the convergence of Gn we will use [5, Theorem
V.4.1]. In the final step we will show that the approximation error converges to 0.

Let us define a family of processes

Gn(t) :=
Sc(Mc(nt))−mµ

cnt

σµ
c
√
n

, t ≥ 0, n ∈ N,
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where mµ
c = f(c) = EZ1(c)

ED1(c)
and (σµ

c )
2
= Var((EZ1(c))D1(c) − (ED1(c))Zk(c))(ED1(c))

−3 were cal-

culated in the previous subsection. By [5, Theorem V.4.1] we know that Gn →d B in the Skorohod
topology. Similarly

G̃n(t) :=
S̃c(M̃c(nt))−mµ

cnt

σµ
c
√
n

→ Bt, as n → ∞.

Our final step is to estimate
TV µ

c (nt)− S̃c(M̃c(nt))

σµ
c
√
n

.

Similarly as in the proof of Theorem 1 we estimate

P

(

sup
t∈[0,T ]

|TV µ
c (nt)− S̃c(M̃c(nt))|√

n
> ε

)

≤ P

(

max
k≤2nT/ED1(c)+1

|Zk(c)| > ε
√
n

)

+ P

(

M̃c(nT ) >
2nT

ED1(c)
+ 1

)

.

The first term can be estimated by the Chebyshev inequality

P

(

max
k≤2nT/ED1(c)+1

|Zk(c)| > ε
√
n

)

≤
(

2nT

ED1(c)
+ 1

)

EZ1(c)
4

n2ε4
→ 0, as n → +∞.

The second one converges to 0 by the law of large numbers. In this way we proved that the limit of
the processes in theorem is the same as the one of G̃n’s.

5.2. Upward and downward truncated variation. While the proofs in the previous section rely
on Lemma 11, the ones in this section hinge on Lemma 12. The flow of the proofs of this section is much
alike the ones in the Section 5.1. The main difficulty is to calculate the of moments (TD,1(c), ZD,1(c)).

This will be done with the use of bivariate Laplace transform of (TD(c), ZD(c)) calculated in the
next subsection.

5.2.1. Bivariate Laplace transform of TD(c) and ZD(c). In [8] two-dimensional density of the variables
TD(c) and sup0≤s<t≤TD(c) {Ws −Wt} is calculated. This density is given by [8, formula (11)]. Using

it, we unconsciously calculated bivariate Laplace transform Eexp (λZD(c) + νTD(c)) which is given in
[8] by the formula (20). This formula reads (using notation from [8]) as

(5.7) E exp (λZD(c) + νTD(c)) =

(

1− λ
L−W
0 (−ν, c)

T−µ,1 (−ν, c) + λ

)

EeνTD(c),

where

L−W
0 (−ν, c) =

Uµ (ν)

−2ν

{

eµc (Uµ (ν) coth (cUµ (ν))− µ)

sinh (cUµ (ν))
− Uµ (ν)

sinh2 (cUµ (ν))

}

,

EeνTD(c) =
Uµ (ν) e

−µc

Uµ(ν) cosh (cUµ (ν))− µ sinh (cUµ (ν))
,

T−µ,1 (−ν, c) = µ− Uµ (ν) coth (cUµ (ν))

and
Uµ (ν) =

√

µ2 − 2ν.

Substituting the above formulas in (5.7) we obtain 2:

2see also http://www.mimuw.edu.pl/~pmilos/calculations.nb.
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Corollary 26. The bivariate Laplace transform of the variable (TD(c), ZD(c)) reads as

E exp (λZD(c)− νTD(c))

= 1−
(

1− λν−1

sinh (2cδ) /δ − 2 (λ+ µ) sinh2 (cδ) /δ2

)(

1− e−µc

cosh (cδ)− µ sinh (cδ) /δ

)

,

where δ =
√

µ2 + 2ν.

Proof of Theorem 7. This time we adhere to the proof of Theorem 1. We will concentrate on differences
leaving the reader the task of filling the rest of details. We calculate

f(c) :=
EZD,1(c)

ETD,1(c)
=

1

2
µ (coth(cµ) + 1) =

1

2
c−1 +

1

2
µ+O(c).

Further we have

(σµ
c )

2
=

{

2 exp(4cµ)(sinh(2cµ)−2cµ)

(exp(2cµ)−1)3
if µ 6= 0,

1/3 if µ = 0
→ 1

3
as c → 0.

To verify the assumption (A3) we firstly notice that TD,1(c) and ZD,1(c) are majorised by D1(c) and
Z1(c) respectively. Using it we get

EX1(c)
4
. EZD,1(c)

4 + f(c)4ETD,1(c)
4
. c4.

We easily check that ETD,1(c) ≈ c2 and see that assumption (A3) holds for δ = 2. Assumption (A4)
could be easily verified for δ = 3.

Next step - comparison of the process UTV µ
c (t) with the appropriate reneval process is even simpler,

since the distribution of ZD,1(c) - first term in the sum appearing in the first equation in Lemma 12 -
is the same as the distribution of the further terms.

Proof of Theorem 8. This proof goes along the lines of the proof of Theorem 4.
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