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AN ARONSSON TYPE APPROACH TO EXTREMAL

QUASICONFORMAL MAPPINGS

LUCA CAPOGNA AND ANDREW RAICH

In memory of Juha Heinonen

Abstract. We study C2 extremal quasiconformal mappings in space and establish neces-
sary and sufficient conditions for a ‘localized’ form of extremality in the spirit of the work
of G. Aronsson on absolutely minimizing Lipschitz extensions. We also prove short time
existence for smooth solutions of a gradient flow of QC diffeomorphisms associated to the
extremal problem.

1. Introduction

A quasiconformal (qc) mapping is a homeomorphism, u : Ω ⊂ R
n → R

n whose components
are in the Sobolev space W 1,n

loc and such that there exists a constant K ≥ √
n for which

|du|n ≤ K det du a.e. in Ω. Here we denote |A|2 =
∑n

i,j=1 a
2
ij to be the Hilbert-Schmidt

norm of a matrix and du the Jacobian matrix of u = (u1, ..., un) with entries duij = ∂ju
i.

At a point of differentiability du(x) maps spheres into ellipsoids and the smallest possible K
in the inequality above, roughly provides a bound for the ratio of the largest and smallest
axes of such ellipsoids. In this sense qc mappings distort the geometry of the ambient space
in a controlled fashion. Quoting F. Gehring [19], qc mappings “constitute a closed class
of mappings interpolating between homeomorphisms and diffeomorphisms for which many
results of geometric topology hold regardless of dimension.”

Quasiconformality can be measured in terms of several dilation functions. Here we will
focus on the trace dilation

(1.1) K(u,Ω) = ‖Ku(x)‖L∞(Ω) with Ku(x) =
|du(x)|

(det du(x))
1
n

.

Other dilation functionals used in the literature are the outer, inner and linear dilation (see
[36] for more details) as well as mean dilations for mappings with finite distortion (see [10]).

There are a variety of extremal mapping problems in the theory of qc mappings, in fact qc
mappings were introduced in just such a context in [22]. Extremal problems usually involve
two domains Ω,Ω′ ⊂ R

n, (or two Riemann surfaces) for which there exists a quasiconformal
mapping f : Ω → Ω′, and ask for a quasiconformal map u : Ω → Ω′ which minimizes
a dilation function in a given class of competitors. Such competitors are usually other
quasiconformal mappings with same boundary data as f on a portion (or all) of ∂Ω or in
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the same homotopy class as the given map f . Existence and uniqueness of extremals depend
strongly on the dilation function used. Typically, existence follows from compactness and
lower-semicontinuity arguments applied to a particular dilation function, and uniqueness
does not hold unless the class of competitors is suitably restricted (for instance to Teichmüller
mappings1).

Quasiconformal extremal problem arose first in the work of Grötzsch in the late 1920’s
and were later studied in the two dimensional case both for open sets and for Riemann
surfaces, see for instance [35], [2], [23], [34] and references therein. A celebrated result of
Teichmüller, which was subsequently proved using two very different methods by Ahlfors
[2] and by Bers [12], states that given any orientation preserving homeomorphism f : S →
S ′ between two closed Riemann surfaces of genus g > 1 there exists among all mapping
homotopic to f , a unique extremal which minimizes the L∞ norm of the complex dilation2

K(f, S) = ‖Kf‖L∞(S). Moreover, the extremal mapping is a Teichmüller map, real analytic
except at isolated points and with constant dilation Kf = const. In [23], Hamilton studied
the extremal problem with a boundary data constraint, and one of his results is a maximum
principle of sorts stating that if f is extremal, then the maximum of its Beltrami coefficient
in S is the same as the maximum on ∂S.

In higher dimensions, the problem becomes even more difficult and the references in the
literature more sparse. The extremality problem without imposing boundary conditions is
studied in the landmark paper [20]. Existence and uniqueness for the analogue of Grötzsch
problem in higher dimensions is established in [18] and a maximum principle for C2 extremal
qc mappings is proved in [8]. More recently, in [10], [9] and [1] the study of extremal problems
for mappings of finite distortion is carried out for Lp norms (and more general means) of the
dilation functions with p finite, rather than with the L∞ norm. In the same vein, the paper
[11] examines extremal problems in the mean for dilation functions based on the modulus of
families of curves.

In the literature discussed above, the study of extremal problems for qc mappings in space
rests on a careful analysis of compactness properties for families of qc mappings with a
uniform bound on dilation and on techniques from geometric function theory to establish
uniqueness. The finite distortion problem relies on techniques from direct methods of calculus
of variations, in which the study of the functional itself, rather than its Euler-Lagrange
equations, is used. This approach is only natural as the extremal problem is posed in the
class of qc mappings, and so there should be no additional hypothesis concerning second
order derivatives. With this approach, however, there is so little regularity that finding
information about the structure of extremal mappings (let alone the uniqueness) has proven
intractable thus far. In particular, there is a huge gap between the findings in the two
dimensional setting vs. the higher dimensional theory.

In the present work we propose an approach to the extremal problem that is motivated by
two classic papers: One by Ahlfors [2] in which an Lp approximation of the L∞ distortion
is used to solve the extremal problem in the setting of Riemann surfaces. The other is by

1Roughly speaking, a planar qc mapping f is Teichmüller if there exist local conformal transformations
φ, ψ such that φ ◦ f ◦ ψ−1 is affine and φ and ψ give rise to well defined quadratic differentials.

2The dilation Kf = |∂zf |+|∂z̄f |
|∂zf |−|∂z̄f |

.
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Aronsson [6], (see also [7]) where he assumes the extra hypothesis of C2 regularity and carries
out his program to determine the structure of absolute minimizing Lipschitz extensions.

The extremal problem for qc mappings is a L∞ variational problem that can be rephrased
as follows: Given the boundary restriction u0 : ∂Ω → R

n of a C1(Ω̄,Rn) qc mapping, find the
qc extensions of u0 to Ω with minimal trace dilation. From this viewpoint the problem has
a superficial similarity to the problem of finding and studying minimal Lipschitz extensions
u ∈ Lip(Ω) for scalar valued functions u0 ∈ Lip(Γ) to a neighborhood Γ ⊂ Ω in such a
way that Lip(u,Ω) = Lip(u0,Γ).

3 The existence of minimal Lipschitz extensions was settled
in 1934 by McShane (see also [15] for a more recent outlook of the problem), but simple
examples show that uniqueness fails. In 1967, Aronsson showed that if the extremal condition
is suitably localized to absolute minimal Lipschitz extension (AMLE), i.e., u ∈ Lip(Ω) is
AMLE with respect to u0 ∈ Lip(∂Ω) if Lip(u, V ) = Lip(u, ∂V ) for all V ⊂ Ω, then a C2

function u is AMLE if and only if it solves the ∞−Laplacian

(1.2) uiujuij = 0 in Ω.

In essence, this PDE tells us that |∇u| is constant along the flow lines of ∇u. Aronsson
also discovered several links between the geometry of the flow lines and the regularity and
rigidity properties for ∞−harmonic functions in planar regions. In the 1960’s, solutions of
(1.2) could only be meaningfully defined as C2 smooth. In the 1980’s, however, a number
of authors (see for instance [14], [25]) developed the theory of viscosity solutions, leading to
Jensen’s uniqueness theorem for AMLE and for the Dirichlet problem for the ∞−Laplacian.
Recent, exciting extensions of Aronsson’s work to the vector-valued case provide further
links with qc extremal problems (see Sheffield and Smart’s preprint [33]) but, as the theory
of viscosity solutions has no vector valued counterpart, the standing C2 hypothesis is present
even in these very recent developments.

The similarities with the AMLE theory prompted us to study a local form of the classical
extremality condition, in which the qc mapping is required to have minimum dilation in every
subset of the domain with respect to competitors having the same boundary values on that
subset. Our goal is to find an operator that plays an analogous role to that of the∞-Laplacian
in the characterization of extremals and would provide a platform for the qualitative study
of these mappings. The non-linear relation between the dilation of a diffeomorphism and the
dilation of its trace on a hypersurface introduce further complications in our work.

In order to be more specific about our results we need to introduce some basic definitions:
If φ is a n× n matrix of C1 functions, then the Ahlfors operator S(φ) is given by

(1.3) S(φ) =
φ+ φT

2
− 1

n
tr(φ)I

(see [3], [29], [4]). If u : Ω → Ω′ is a C1(Ω̄) orientation-preserving diffeomorphism then it is
quasiconformal and det du ≥ ǫ > 0. For such a mapping we define the normalized pull back
of the Euclidean metric under u−1 as the Riemannian metric g−1. In coordinates, the metric

3We have set Lip(u,Ω) = supx,y∈Ω,x 6=y
|u(x)−u(y)|

|x−y| .
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is expressed by the matrix4

(1.4) g−1
ij (u(x)) =

(

du−1,Tdu−1

(det du−1)2/n
(x)

)

ij

=
du−1

ki du
−1
kj

(det du−1)2/n
(x).

The inverse

gij =
(duduT )ij
(det du)2/n

=
duikdujk
(det du)2/n

.

In [24] the metric g is called the distortion tensor. As in the work of Ahlfors [2] we consider
Lp approximations

inf
v

∫

Ω

K
np
v (x)dx,

of the L∞ variational problem (these approximations have been studied in depth in [10]).
Let Ω ⊂ R

n be a bounded open set. An orientation preserving QC mapping u : Ω →
R

n is p−extremal if ‖Ku‖Lp(Ω) ≤ ‖Kv‖Lp(Ω) for all orientation preserving QC mappings
v : Ω → R

n with u = v on ∂Ω. It is straightforward to derive Euler-Lagrange equations
for the Lp variational problem: Every orientation preserving p−extremal diffeomorphism
u = (u1, ..., un) ∈ C2(Ω,Rn) satisfies the fully nonlinear system of PDE

(Lpu)
i = np∂j

[

K
np−2
u

(

S(g)du−1,T
)

ij

]

= np∂j

[

K
np−2
u S(g)ℓidu

jℓ
]

= 0

in Ω, for i = 1, ..., n. Here (du)ij denotes the ij entry of du−1, gij is defined by (1.4) and
S(g) by (1.3). For C2 smooth mappings with non-singular Jacobian, the operator Lp can
be expressed in the non-divergence form (Lpu)

i = Aik
jℓ(du)u

k
jℓ. The quasi-convexity of the Lp

variational functional [24] implies that the system satisfies the Legendre-Hadamard ellipticity
conditions (see Lemma 3.1). Motivated by the work of Aronsson, we consider the formal
limit as p→ ∞ of the PDE Lpu = 0 and obtain

(1.5) (L∞u)
i =

n2|du|4
K3

u

(

S(g)du−1,T
)

ij
∂xj

Ku = 0,

or equivalently S(g̃)∇Ku = 0, where g̃ = duT du
(det du)2/n

(see Section 4 below). This PDE tells us

that the trace dilation Ku is constant along the flow lines of the rows of the matrix S(g)du−1,T

(and their linear combinations with C1 coefficients). Since the derivation of (1.5) is formal,
a priori there need not be any links between solutions of this PDE and the extremal problem
for qc mappings. However, such links exist and are addressed by the main results of the
present paper.

Theorem 1.1. Let Ω ⊂ R
n be an open set. If u ∈ C2(Ω̄,Rn) is an orientation preserving

diffeomorphism solution of L∞u = 0 in Ω, then for any bounded subdomain D̄ ⊂ Ω,

K(u, D̄) ≤ sup
∂D

Ku.

4This metric has the following property: for all V,W ∈ Tu(x)R
n we observe that 〈V,W 〉g−1(u(x)) =

〈du−1V,du−1W 〉Eucl

(det du−1)2/n
. Hence u : (Ω, dx2) → (u(Ω), g−1) is a conformal map in the sense that 〈duV, duW 〉g−1 =

(det du)2/n〈V,W 〉Eucl.
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Moreover, if n ≥ 3 and Ku has a strict maximum on ∂D in the sense that Ku(z) < sup∂D Ku

for z ∈ D, then

(1.6) K(u, D̄) = sup
∂D

Ku ≤
√
n(n− 1)−

n−1
2n sup

∂D
K

n−1
n

u,∂D,

where Ku,∂D denotes the dilation of the trace of u on ∂D (see Definition 6.1).

Corollary 1.2. Given the hypothesis of the previous theorem,

(1) if minx∈∂ΩKu(x) >
√
n, then

min
x∈Ω

Ku(x) = min
x∈∂Ω

Ku(x);

(2) If Ku is constant with Ku >
√
n on ∂Ω then Ku is constant in Ω. Moreover, if n = 2

and u is affine and is not conformal on ∂Ω, then u is an affine map.

Theorem 1.3. If u ∈ C2(Ω,Rn) ∩ C1(Ω̄,Rn) is an orientation preserving diffeomorphism,
such that for every D̄ ⊂ Ω and v ∈ C2(D,Rn)∩C1(D̄,Rn) orientation preserving diffeomor-
phism with u = v on ∂D we have K(u, D̄) ≤ K(v, D̄) then L∞u = 0 in Ω. If n ≥ 3 and for
every D ⊂ Ω,

(1.7) K(u, D̄) ≤ n− 1
2n sup

∂D
K

n−1
n

u,∂D,

then L∞u = 0 in Ω.

Corollary 1.4. Let u, v ∈ C2(D,Rn)∩C1(D̄,Rn) be orientation preserving diffeomorphisms,
such that u = v on ∂D. If L∞u = L∞v = 0 in D then K(u, D̄) = K(v, D̄).

These results echo some of the n = 2 theory, in particular the maximum principle for the
dilation in Theorem 1.1 recalls Hamilton’s result [23, Corollary 2]. The fact that the dilation
is constant along flow lines of a conformally invariant set of vectors recalls the analogous
planar result about dilation being constant along the image of lines under the action of the
conformal mappings associated to the quadratic differentials of Teichmüller mappings (see
[34, Page 175] for a more detailed description).

Remark 1.5. Theorem 1.1 and (6.1) tell us that if L∞u = 0 in Ω ⊂ R
n, n ≥ 3, then for every

D̄ ⊂ Ω for which Ku has a strict maximum on ∂D, u is a quasi-minimizer for the extremal
problem for the trace dilation in D. In fact, if v ∈ C2(D,Rn) ∩ C1(D̄,Rn) orientation
preserving diffeomorphism with u = v on ∂D,

K(u, D̄) ≤
√
n(n−1)−

n−1
2n sup

∂D
K

n−1
n

u,∂D =
√
n(n−1)−

n−1
2n sup

∂D
K

n−1
n

v,∂D ≤
√
n(n−1)−

n−1
2n n

1
2nK(v, D̄).

On the other hand, Theorem 1.3 tells us that those diffeomorphisms that are minimizers
for the extremal problem for the trace dilation on every subset D ⊂ Ω are also solutions of
L∞u = 0. This lack of symmetry in our result follows from the fact that the constants in
(1.6) and (1.7) are different. While the constant in (1.6) seems to be sharp, we are confident
that is possible to improve on the constant in (1.7) and conjecture: If u ∈ C2(Ω,Rn) then
the condition L∞u = 0 in Ω is equivalent to minimizing the dilation K(u, D̄) ≤ K(v, D̄), on
any subset D ⊂⊂ Ω, among competitors v ∈ C2(D,Rn) ∩ C1(D̄,Rn) with v = u on ∂D.

5



A large class of solutions of L∞u = 0 is provided by observing that (in any dimension)
the set of C2 solutions of L∞u = 0 is invariant by transformations ũ = F ◦ u and v = u ◦ F
with F conformal. In particular, all the known explicit extremal QC mappings (that we are
aware of) have constant trace dilation and hence satisfy the PDE (1.5).

Corollary 1.6. (1) Any Teichmüller map of the form u := ψ ◦ v ◦ φ−1 with ψ, φ conformal
and v affine is a solution of L∞u = 0. (2) the QC mappings u(x) = |x|α−1x for α > 0 solve
L∞u = 0 away from the origin. (3) Let 0 < α < 2π and (r, θ, z) be cylindrical coordinates
for x = (x1, ..., xn) where x1 = r cos θ, x2 = r sin θ and xj = zj, 3 ≤ j ≤ n. The QC mapping

(1.8) u(r, θ, z) =

{

(r, πθ/α, z) 0 ≤ θ ≤ α

(r, π + π θ−α
2π−α

, z) α < θ < 2π

solves L∞u = 0 away from the set r = 0.

The proofs of Theorems 1.1 and 1.3 rest on the analysis of the flow lines of the rows of
the distortion tensor S(g̃) and the geometric interpretation of L∞u = 0. We show that if u
is not conformal on the boundary then these flow lines fill (row by row) the open set.

The smoothness assumptions we make here are not natural for the problem, as they do not
guarantee the necessary compactness properties that we need to prove existence of extremals.
However, in the spirit of Aronsson’s work on C2 AMLE, it is plausible that the study of C2

mappings can yield a measure of intuition for the general setting.
We observe that in the proof of the first part of Theorem 1.1, the smoothness hypothesis

can be decreased to W 2,p for p sufficiently high, using the work of DiPerna and Lions [16]
(see also [5]) on solutions of ODE with rough coefficients. In fact, we can rephrase the PDE
(1.5) in the following terms: A QC mapping u : Ω → Ω′ is a weak solution of L∞u = 0 in
Ω if the trace of the corresponding distortion tensor g̃ is constant along flow lines of linear
combinations of the rows of S(g̃). In this formulation, the components of du need only be
in a suitable Sobolev space or in BV. At present we are unable to decrease the smoothness
hypothesis to the natural category of QC mappings and still obtain the maximum principle.

Although currently we do not know how to prove existence of solutions of L∞u = 0 or how
to attack the extremal problems for a fixed homotopy class of qc mappings, we indicate a
possible strategy for a proof which involves the construction of a competitor for u by flowing
u along a gradient flow for the Lp norm of the dilation, then letting p → ∞. The initial
value problem we need to control is the following:

(1.9)

{

∂tup − Lpup = 0 in Q

up = u on ∂parQ,

where Q = Ω× (0, T ) and ∂parΩ = Ω× {0} ∪ ∂Ω × (0, T ). We prove the following

Proposition 1.7. Let u0 : Ω → R
n be a C2,α diffeomorphism, for some 0 < α < 1 with

det du0 ≥ ǫ > 0 in Ω̄. Assume that

Aik
jl (du0)∂j∂lu

k
0 = 0,

for all x ∈ ∂Ω and i = 1, . . . , n.
For every µ ∈ (0, α) there exists positive constants C > 0 depending on p, n,Ω, ǫ, ‖u0‖C1,α(Ω̄),

and T > 0 depending on p, n,Ω, ǫ, ‖u0‖C2,α(Ω̄) and a diffeomorphism u ∈ C2,µ(Q) solving (1.9)
6



such that

(1.10) ‖u‖C2,µ(Q) + ‖∂tu‖C0,µ(Q) ≤ C‖u0‖C2,α(Ω),

(1.11) det du ≥ ǫ

2
for all (x, t) ∈ Q.

We remark that although flows of qc mappings have been studied and used several times
in the literature, see for instance [3], [29], [4], [13], and [32], this is the first instance of
a gradient flow used in this context. Study of this flow may also contribute to a better
understanding of the well-posedness and long-time behavior of initial value problems related
to gradient flows of quasi-convex (and non convex) functionals (see [17]).

Acknowledgments. It is a pleasure to thank Hans Martin Reimann and Jeffrey Rauch for
their interest and encouragement for this project. L. C. would like to dedicate this paper in
fond memory of Juha Heinonen, who continues to be an inspiring role model.

2. Preliminaries

A map F : Rn → R
n is conformal if at every point

dF TdF = λIn,

for some scalar function λ. Liouville’s theorem states that if n > 2 then 1−quasiconformal
mappings are conformal and that the only conformal mappings are compositions of rotations,
dilations, and the inversion x 7→ x/|x|2. If n = 2, then orientation preserving conformal
mappings are biholomorphisms (and vice versa). A simple computation shows that λ =

|dF |2/n and det dF =
√
λn. We now list some equivalent formulations of conformality.

Lemma 2.1. Let F : Rn → R
n be a diffeomorphism. The following are equivalent:

(a) F is conformal;
(b) KF =

√
n identically;

(c) The expression (dF )ji − n
(dF )ij
|dF |2 vanishes identically;

(d) S( dFdFT

(det dF )2/n
) = 0.

Note that if n = 2 and u is holomorphic with ∂u/∂z 6= 0, then (du)ji − n
(du)ij
|du|2 = 0 is a

restatement of the Cauchy-Riemann equations.
The action of conformal mappings on S,Ku and g follows immediately from the definitions.

Lemma 2.2. Let u : Rn → R
n be a diffeomorphism and F be an orientation preserving

conformal mapping. If we set ũ = F ◦ u and denote by K̃ and g̃ the corresponding dilation
and distortion tensor, then

(a) K̃ = Ku;
(b) g̃ = λ−1dFgdF T ;
(c) S(g̃) = λ−1dFS(g)dF T ;
(d) (dũ−1)T − n dũ

|dũ|2 = −nK−2
u (dF T )−1S(g)(du−1)T .

In a similar fashion we will be interested in compositions with conformal mappings from
the right, i.e., ũ = u ◦ F , for which we can show:

7



Lemma 2.3. Let u : Rn → R
n be a diffeomorphism and F be an orientation preserving

conformal mapping. If we set ũ = u ◦ F and denote by K̃ and g̃ the corresponding dilation
and distortion tensor, then

(a) K̃ = Ku;
(b) g̃ = g;
(c) S(g̃) = S(g);
(d) (dũ−1)T − n dũ

|dũ|2 = −nK−2
u S(g)(du−1)T (dF T )−1.

3. The Euler-Lagrange system

Let Ω ⊂ R
n be a bounded, smooth, open set and u : Ω → R

n a smooth, orientation
preserving diffeomorphism with 0 < det du < ∞. For 1 ≤ p ≤ ∞, we define, whenever the
expression if finite,

Fp(u,Ω) =
1

|Ω|

∫

Ω

K
np
u dx.

For any ψ ∈ C∞
0 (Ω, Rn) we set h(s) := Fp(u+ sψ,Ω) and compute

d

ds
h(s)

∣

∣

∣

∣

s=0

=
1

|Ω|

∫

Ω

np(det du)−p|du|np−2du · dψ − p(det du)−p−1∂jψ
i(cof du)ij|du|npdx

=
1

|Ω|p
∫

Ω

∂j

(

|du|np
(det du)p+1

(cof du)ij −
n|du|np−2

| det du|p ∂ju
i

)

ψi dx(3.1)

where cof du denotes the cofactor matrix of du, so that (cof du)Tdu = det duI. Define the
operator Lp on R

n-valued functions by

(Lpu)
i =− p∂j

([

(du)ji − n
(du)ij
|du|2

] |du|np
(det du)p

)

= −p∂j
(

du−1

[

In − n
duduT

|du|2
] |du|np
(det du)p

)

ji

= np∂j

[

K
np−2
u

(

du−1S(g)
)

ji

]

= np∂j

[

K
np−2
u S(g)ℓidu

jℓ
]

,(3.2)

where duij denotes the ij entry of the inverse of du, and In is the n×n identity matrix, and
Ku is defined in (1.1), gij by (1.4) and S(g) by (1.3). Note that the equality of the first and
third expressions in (3.2) uses

(3.3) (du−1)T − n
du

|du|2 = −nK−2
u S(g)(du−1)T .

We write (Lpu)
i = ∂jA

i
j(du) where

Ai
j(q) = −p

[

qji − n
qij
|q|2
] |q|np
(det q)p

,

defined for any non-singular n×nmatrix q. Notice that Ai
j(q)qij = 0. Set Aik

jℓ(q) :=
∂

∂qkℓ
Ai

j(q).

Recalling that

∂qkℓ(cof q)ij = cof qkℓq
ji − cof qiℓq

jk and ∂qkℓq
ji = −qℓiqjk,

8



we compute
(3.4)

Aik
jℓ(q) = −p |q|np−2

(det q)p

[

np(qkℓq
ji + qijq

ℓk)− n(np− 2)
qijqkℓ
|q|2 − |q|2(qℓiqjk + pqℓkqji)− nδkiδjℓ

]

.

For C2 smooth maps with non-singular Jacobian, the operator Lp can be expressed in non-
divergence form:

(3.5) (Lpu)
i = Aik

jℓ(du)u
k
jℓ.

We remark that, in this form, the operator satisfies a Legendre-Hadamard ellipticity con-
dition. This result can be inferred by observing that the functional Fp(u,Ω) is quasi-convex
(it is actually polyconvex, this is proved in [24, Corollary 8.8.1]), and consequently, given
sufficient smoothness, satisfies Legendre-Hadamard conditions. As we need explicit expres-
sions for the constants involved, we provide the following estimates, whose elementary proof
we omit.

Lemma 3.1. For n ≥ 3 and p ≥ 1 or n ≥ 2 and p > 1 and for all non-singular matrices q
and vectors ξ, η ∈ R

n, we have

(3.6) C1(n, p)p|η|2|ξ|2
|q|np−2

(det q)p
≤ Aik

jℓ(q)ηiξ
jηkξ

ℓ ≤ C2(n)p
2|η|2|ξ|2

( |q|np−2

(det q)p
+

|q|n(p+2)−2

(det q)p+2

)

,

where we can choose C1(n, p) = n for n ≥ 4 and p ≥ 1 and for n ≥ 3 and p > 1; C1(n, p) =
6p−3
p+1

if n = 3 and p ≥ 1 and C1(n, p) = 2p−1
p+1

for n = 2 and p > 1. The constant C2(n) does

not depend on p and can be chosen to be C2(n) = 100n3.

Remark 3.2. The operator Lp does not satisfy the stronger ellipticity condition Λ|η|2 ≥
Aik

jℓηijηkℓ ≥ λ|η|2.

As the dilation functional is invariant under the action of conformal mappings (i.e.,
Fp(u,Ω) = Fp(F (u),Ω) for all conformal mappings F : Rn → R

n that map Ω into itself),
we can expect a corresponding invariance for the solutions of Lpu = 0.

Proposition 3.3. Let u : Ω → R
n be a orientation preserving diffeomorphism.

(i) If F : Rn → R
n is a conformal map and ũ = F (u), then

(L̃pũ)
i =

(

[dF−1|u]TLpu

)i

,

where

(L̃pu)
i = −p∂j

(

du−1

[

In − n
duduT

|du|2
] |du|np
(± det du)p

)

ji

,

with the sign in the denominator being +1 if F is orientation preserving and −1
otherwise.

(ii) If F : Ω → Ω a composition of dilations, translations, and the inversion x 7→ x/|x|2,
then v = u ◦ F satisfies

(L̃pv)
i = (Lpu)

i
∣

∣

F
.
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Remark 3.4. Case (i) holds for all conformal mappings, including in n = 2 all invertible
holomorphic and anti-holomorphic functions. In contrast, case (ii) only applies to the given
set of conformal transformations, as in the plane it fails to hold except for linear invertible
holomorphic and anti-holomorphic functions.

4. The Aronsson-Euler-Lagrange system and the operator L∞

In this section we assume that for each p > 1 we have a solution up of the PDE

(4.1) Lpup = 0, in Ω,

and that up → u∞ in C2 norm on subcompacts of Ω. Our goal is to formally derive a system
of PDE for u∞.

Observe that ∂j |du|np = np|du|np−2ukℓu
k
ℓj and ∂j | det du|−p−1 = −(p+1)| det du|−p−2(cof du)kℓu

k
ℓj.

Using the fact that ∂j(cof du)ij = 0 for i = 1, . . . , n, we compute

(4.2) (Lpu)
i = −p |du|

np−4

| det du|p
{

np
|du|2
det du

(

ukℓ (cof du)ij + uij(cof du)kℓ

)

− (p+ 1)
( |du|2
det du

)2

(cof du)kℓ(cof du)ij − n(np− 2)ukℓu
i
j − n|du|2δℓjδik

}

ukℓj

for all i = 1, . . . , n.

Dividing the expression above by p2 |du|np−4

(det du)p
and letting p → ∞, we obtain that equation

(4.1) formally converges to
L∞u∞ = 0,

where

(L∞u)
i = −

[

n
|du|2
det du

(

(cof du)iju
k
ℓ + (cof du)kℓu

i
j

)

−
( |du|2
det du

)2

(cof du)ij(cof du)kℓ − n2uiju
k
ℓ

]

ukℓj

= (nduij − |du|2duji)(ndukℓ − |du|2duℓk)∂jdukℓ.
(4.3)

Observe that the system does not satisfy the Legendre-Hadamard conditions.

Proposition 4.1. (1) Let u(x) = |x|α−1x where α ∈ R and α 6= 0. Then

L∞u(x) = 0

and

Lpu(x) = −
(

n+ α2 − 1

α2

)
np
2 n(α2 − 1)(n− 1)

(n + α2 − 1)α

x

|x|α+1
,

away from the origin.
(2) If u(r, θ, z) is defined by (1.8) from Corollary 1.6, then L∞u = 0 in the set r 6= 0.

Proof. For (1), direct computation yields Ku(x)
2 = n+α2−1

α2/n for all x 6= 0 and

S(g)ij =
α2 − 1

α2/n

(

xixj
|x|2 − δij

n

)

.

The proof follows from these identities and from the definition of L∞ and Lp.
For (2), for the case 0 ≤ θ ≤ α, we have det du = π/α and |du|2 = (n− 1) + π2/α2. The

computation in the α < θ < 2π case is similar. �
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Note that u(x) = |x|α−1x is conformal exactly when α = ±1, the only cases for which
Lpu = 0.

5. Extremal mappings and the equation L∞u = 0

In this section we establish some analogues of Aronsson’s results in [6, Section 3].

Lemma 5.1. If u ∈ C2(Ω,Rn), then

(5.1) (L∞u)
i =

n2|du|4
K3

u

(

S(g)du−1,T
)

ij
∂xj

Ku.

Proof. Observe that

(5.2) ∂qijKu =
1

n

(

n
duij
|du|2 − duji

)

Ku = K
−1
u

(

S(g)du−1,T
)

ij
,

and ∂xj
Ku = (∂qkℓKu)u

k
jℓ. The result follows quickly from (3.3) and (4.3). �

The following proposition on conformal invariance of solutions of L∞u follows immediately
from combining previous lemma with Lemma 2.2 and Lemma 2.3.

Proposition 5.2. The set of C2 solutions of L∞u = 0 is invariant by transformations
ũ = F ◦ u and v = u ◦ F with F conformal.

Corollary 5.3. In the plane any Teichmüller map of the form u := ψ ◦ v ◦ φ−1 with ψ, φ
conformal and v affine is a solution of L∞u = 0.

Lemma 5.4. If Ku = K0 >
√
n, then there exists ǫ = ǫ(K0) > 0 so that

ǫ ≤ |S(g)|2 ≤ K
4
u

(

1− 1

n

)

.

Proof. Let 0 ≤ λ1 ≤ · · · ≤ λn be the eigenvalues of g. We can write S(g) = g − tr g
n
I and

K
2
u = tr(g). Direct computation yields

|S(g)|2 = tr

(

[

g − tr g

n
I
]2
)

= tr(g2)− 1

n
tr(g)2.

Note that the upper bound for |S(g)|2 is now immediate.
We now prove the lower bound. Note that the n-tuple of positive numbers (λ1, . . . , λn)

satisfy λ1 · · ·λn = 1 and K
2
u = λ1+ · · ·λn ≥ n with equality if and only if λ1 = · · · = λn = 1.

Set λ̄ = K
2
u/n = 1

n
(λ1 + · · ·λn). Since tr(g2) =

∑n
i=1 λ

2
i , it follows that

n
∑

i=1

(

λi − λ̄
)2

=
n
∑

i=1

λ2i − 2λ̄
n
∑

i=1

λi + nλ̄2 = tr(g2)− 1

n
tr(g)2 = |S(g)|2.

We now claim that for δ > 0, there exists ǫ = ǫ(δ) so that whenever K2
u/n = λ̄ ≥ 1 + δ then

∑

i(λi − λ̄)2 ≥ ǫ.
To prove the claim, we argue by contradiction. Assume that there exists δ0 > 0 such that

for each k ∈ N we can find positive λki as in the hypothesis with λ̄k − 1 ≥ δ0 > 0 and

(5.3)
∑

i

(λki − λ̄k)2 ≤ 1

k
.

11



If λ̄k is a bounded sequence then so are λki (as λki ≥ 0), hence for an appropriate subse-
quence we may assume that λ̄k → λ̄ ≥ 1 + δ0 and λki → λi as k → ∞. As λk1 · · ·λkn = 1
for all k, it follows that λ1 · · ·λn = 1 and λi > 0. From (5.3) we conclude that λi = λ̄ and
1 = λ1 · · ·λn = λ̄n ≥ (1 + δ0)

n, a contradiction.
If λ̄k is an unbounded sequence then for each M > 0 there exists ℓ = ℓM > 0 such

that λ̄ℓ ≥ M . On the other hand, in view of (5.3) we have λℓi ≥ M/2 and consequently
1 = λℓ1 · · ·λℓn ≥ (M/2)n, a contradiction. �

Remark 5.5. When n = 2, we can find an explicit lower bound. In this case, λ1λ2 = 1 and

|S(g)|2 = λ21 + λ22 −
1

2
(λ1 + λ2)

2 =
1

2
(λ1 + λ2)

2 − 2λ1λ2 =
1

2
(K4

u − 4).

We are now ready to study the relation between C2 extremal quasiconformal mappings
and the operator L∞.

Proposition 5.6. Let Ω ⊂ R
n be an open set. If u ∈ C2(Ω,Rn) is an orientation preserving

diffeomorphism solution of L∞u = 0 in Ω then for any bounded sub-domain D̄ ⊂ Ω,

sup
D

Ku ≤ sup
∂D

Ku.

Proof. Let µ = sup∂D Ku and assume that there exists p0 ∈ D such that Ku(p0) = k0 > µ ≥√
n. Since u ∈ C2 and det du ≥ ǫ > 0, S(g)(du−1)T is Lipschitz in D̄. Consequently, for each

p0 ∈ D and i = 1, .., n there exists a unique trajectory γi(s) defined for s ∈ I ⊂ R through
p0 satisfying d

ds
γji (s) = [S(g)(du−1)T ]ij(γi(s)) for j = 1, ..., n. Using (5.1) and the fact that

L∞u = 0, we have

d

ds
Ku(γi(s)) =

d

ds
γji (s)∂xj

Ku(γ(s)) = S(g)(du−1)Tij∂xj
Ku(γ(s)) = 0,

so
Ku(γi(s)) = Ku(p0)

for all s ∈ I and all i = 1, . . . , n. If a curve γi terminates at a point p inside D, than at
p there must exist another flow curve γl that flows out of it. In fact, not all γi can have
vanishing speed simultaneously at a point inside D. Arguing by contradiction, if this were
to happen then we would have S(g) = 0 at the end point. This would would yield Ku =

√
n

at the end point, while Ku(γi(s)) = k0 >
√
n, a contradiction. We choose i so that

sup
j

∣

∣

∣
S(g)ij(γi(s))

∣

∣

∣
≥ Cn|S(g)| > 0,

for Cn ≥ 1
n2 .

The argument yields a piecewise C1 curve γ inside D, passing through p0 with Ku(γ(s)) =
k0 with

d

ds
γj(s) = [S(g)(du−1)T ]ij(γ(s))

for some index i = 1, ..., n and

(5.4) sup
j

∣

∣

∣
S(g)ij(γ(s))

∣

∣

∣
≥ Cn

∣

∣S(g)
∣

∣

for all s ∈ I. There are two alternatives: (i) the curve γ has finite length and so touches
the boundary ∂D in two points P,Q ∈ D; (ii) The curve γ does not touch ∂D and so has
infinite length.

12



In (i), it follows that Ku(P ) = k0 > sup∂D Ku ≥ Ku(P ), a contradiction that k0 > µ.
We need to exclude the second alternative. For simplicity we assume that the composition

of flow lines is actually one single flow line, the general case is proved in the same way. For
each i = 1, ..., n, we have

ui(γ(t))− ui(p0) =

∫ t

0

d

ds
ui(γ(s))ds

(for some l = 1..., n) =

∫ t

0

[

S(g)(du−1)T
]

lj

(γ(s))duij(γ(s))ds

=

∫ t

0

S(g)li(γ(s))ds(5.5)

Consequently, for some 0 ≥ tl ≥ t,

sup
i=1,...,n

|ui(γ(t))− ui(p0)| ≥ t sup
i=1,...,n

|S(g)li|(γ(tl)),

and by (5.4), we conclude

sup
i=1,...,n

|ui(γ(t))− ui(p0)| ≥ Cn|S(g)|(γ(tl))t.

Since |S(g)| is bounded from below by Lemma 5.4, |u(γ(t))−u(p0)| has at least linear growth.
Consequently, if γ has infinite length, then u(D) would have to be unbounded, whereas since
D is bounded so is u(D). �

We can now prove Corollary 1.2.

Proof of Corollary 1.2. Using the argument from the previous proof, we have that the set of
points x ∈ Ω with Ku(x) >

√
n can be covered by compositions of flow lines of the rows of

S(g)(du−1)T with Ku constant along these curves. We have shown that if Ku >
√
n on such

a curve then it must reach the boundary ∂Ω. To prove (1) we observe that for any ǫ > 0
such that Ku >

√
n + ǫ on ∂Ω, if x0 ∈ {x ∈ Ω|Ku(x) ∈ (

√
n,

√
n + ǫ)} then there exists

a composition of flow lines passing through x0 which must reach the boundary and hence
contradict the hypothesis Ku >

√
n + ǫ on ∂Ω. As for (2), we observe that by virtue of (1)

every point in Ω can be connected to the boundary with a composition of flow lines along
which Ku is constant, thus concluding the proof. �

Remark 5.7. Arguing as in the proof of (5.1), we can show that for each i = 1, ..., n, if we
let γ : [0, ǫ) → Ω be a flow line of the i-th row of S(g)du−1,T , then for any j = 1, ..., n and
0 < t < ǫ we have

duij(γ(t))− duij(γ(0)) =

∫ t

0

d

ds
uij(γ(s))ds =

∫ t

0

γ̇kuijk(γ(s))ds

=

∫ t

0

(

S(g)du−1,T
)

ik
uijk(γ(s))ds =

∫ t

0

Ku∂xj
Ku(γ(s))ds.

This formula allows us to recover the differential of u from the dilation and the flow lines of
the distortion tensor. In particular, if Ku is constant in Ω then the rows of du are constant
along the flow lines of the corresponding rows of S(g)du−1,T .

The previous remark yields:
13



Proposition 5.8. In the hypothesis of the previous theorem, if Ω ⊂ R
2 and du (and hence

Ku) is constant in ∂Ω, with Ku >
√
n on ∂Ω, then du is constant in Ω and hence u is affine.

Proof. The remark above implies that if Ku is constant then the rows of du are constant
along the flow lines of the corresponding rows of S(g)du−1,T . It suffices then to show that
for every point p0 ∈ Ω we can find flow lines of both rows of S(g)du−1,T passing through
that point and touching the boundary ∂Ω. To establish this fact we recall that |S(g)| > 0
in Ω and that, since we are in the planar case, both rows of S(g) cannot vanish unless they
vanish simultaneously, which is impossible. Since du is invertible the rows of S(g)du−1,T

cannot vanish at any point in Ω. Repeating the argument in the proof of Theorem 1.1 we
see that the flow lines of the two rows of S(g)du−1,T through p0 cannot end in Ω, nor can
they continue for an infinite time, hence they must reach the boundary in a finite time. �

Remark 5.9. If n = 2 and Ku >
√
n on ∂Ω then L∞u = 0 actually implies that Ku is constant

along any path in Ω. Hence, in the plane there will be no C2(Ω,R2) ∩ C1(Ω̄,R2) solutions
of L∞u = 0 in Ω unless Ku|∂Ω = const.

We conclude this section with the proof of the necessity of the condition L∞u = 0 for a
C2 qc mapping to locally minimize dilation in subsets D ⊂ Ω, among competitors with the
same dilation on ∂D.

Proposition 5.10. Let u ∈ C2(Ω,Rn) be an orientation preserving diffeomorphism which
does not solve L∞u = 0 in a closed ball D̄ ⊂ Ω. There exists v ∈ C2(D̄,Rn) orientation
preserving diffeomorphism with u = v on ∂D such that K(v, D̄) < K(u, D̄).

Proof. Let u ∈ C2(Ω,Rn) be an orientation preserving diffeomorphism which does not solve
L∞u = 0 in a closed ball D̄ ⊂ Ω. In view of the conformal invariance of the PDE we can
assume without loss of generality that D = B(0, 1). Let E = {x ∈ D̄|K(u, D̄) = Ku(x)}.
Since ∇xKu = 0 at any interior point x ∈ E, we must have E ⊂ ∂D and consequently
K(u, D̄) = sup{Ku(x)|x ∈ ∂Ω}. If ~n denotes the outer unit normal at x to ∂D, then the
latter yields that ∇xKu(x) = α~n for some α > 0 at each x ∈ E. The identity (5.1) then
implies

(5.6) S(g)du−1,T~n 6= ~0.

For λ ∈ R and χ ∈ C2(D̄,Rn), vanishing on ∂D, we define uλ(x) = u(x) + λχ(x). Using
(5.2) and a Taylor expansion of Kuλ

in λ, we have that

(5.7) Kuλ
= Ku + λ∂qijKudχij +O(λ2) = Ku + λK−1

u

(

S(g)du−1,T
)

ij
dχij +O(λ2).

We claim that given u satisfying (5.6), we can find a mapping χ ∈ C2(D̄,Rn), vanishing on
∂D, such that the coefficient of λ in (5.7) is strictly negative in a neighborhood U of E, for
small values of λ. This fact would allow us to the conclude the proof of the proposition.
Indeed, for x ∈ U ∩D and small values of λ, we would have Kuλ

< Ku ≤ K(u, D̄). On the
other hand, for x ∈ D \U , there would exist ǫ > 0 such that Ku < K(u, D̄)− ǫ, thus yielding
that Kuλ

< K(u, D̄)− ǫ+ Cλ ≤ K(u, D̄) for small values of λ and C = C(‖u‖C1, ‖χ‖C2 , D).
Given such inequalities we would then conclude that v = uλ is a qc diffeomorphism with the
same boundary data as u and strictly smaller dilation K(uλ, D̄) < K(u, D̄).

To find χ, observe that if p ∈ E then as a consequence of (5.6) there exists ~v ∈ R
n such

that

(5.8) 〈S(g)du−1,T~n,~v〉 > 0
14



in a neighborhood B(p, r). Since we can cover E with a finite set of such neighborhoods,
we obtain vectors ~v1, ..., ~vk ∈ R

n for which (5.8) holds in B(pk, r) and such that E ⊂
⋃k

l=1B(pl, r). For each l = 1, ..., k, let φl : S
n−1 → R be a positive smooth function such

that φ = 0 outside B(pl, r) ∩ Sn−1. We set

(5.9) χ(x) = (1− |x|2)
[ k
∑

l=1

φl

( x

|x|
)

~vl

]

.

Clearly this mapping vanishes on ∂D and it can be easily modified near the origin to yield
a smooth mapping in D̄. Observe that at every point in Sn−1,

dχ = −2

( k
∑

l=1

~vlφl

)

⊗ ~n.

Substituting the latter in (5.7) we obtain that for every point in ∂D,
(5.10)

Kuλ
= Ku−2λK−1

u

(

S(g)du−1,T
)

ij
~nj~vl,iφl+O(λ

2) = Ku−2λK−1
u

k
∑

l=1

〈S(g)du−1,T~n,~vl〉φl+O(λ
2).

In view of (5.8) and the choices of φl and ~vl, it follows that for all x in a neighborhood
E ∩B(pl, r) ⊂ B(pl, r) ∩ ∂D and λ sufficiently small, the coefficient of λ is strictly negative
as

−2K−1
u

k
∑

l=1

〈S(g)du−1,T~n,~vl〉φl < 0.

Thus, the strict inequality Kuλ
< Ku holds, whereas elsewhere in ∂D \ ∪k

l=1B(pl, r) we have
equality. �

6. Dilation of traces of diffeomorphisms

Throughout this section Ω ⊂ R
n is an open set, n ≥ 3, u ∈ C2(Ω,Rn) is an orientation

preserving diffeomorphism, M ⊂ Ω and M ′ = u(M) are closed, C1 hypersurfaces endowed
with metrics induced by the Euclidean metric. For x ∈ M , we denote by e1, ..., en−1 an
orthonormal basis of TxM and by w1, ..., wn−1 an orthonormal basis of Tu(x)M

′. We let w0

be the unit normal field to M ′ such that 〈du~n, w0〉 > 0. We denote by

U = u|M
the trace of u on M . For each x ∈M consider the (n− 1)× (n− 1) matrix dMU(x) = (dij)
with dij = 〈duei, wj〉2.
Definition 6.1. The tangential dilation of U = u|M at a point x ∈M is given by

Ku,M(x) =
|dMU |

[det dMu]
1

n−1

.

If v ∈ C1(Ω,Rn) is an orientation preserving diffeomorphism with u = v on M then
Ku,M = Kv,M on M . The following lemma is probably well known but we give a short proof
as we did not find it in the literature.
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Lemma 6.2. For every x ∈M , the dilation

(6.1) K
2
u,M ≤ n

1
n−1K

2n
n−1
u − |du~n|2〈du~n, w0〉

2
n−1

[det du]
2

n−1

.

Proof. We consider the two orthonormal frames of Rn given by

{~n, e1, ..., en−1} and {w0, w1, ..., wn−1}
and observe that in these frames du(x), x ∈ M , can be represented as a block matrix

du =

(

〈du~n, w0〉 0
〈du~n, wi〉 dMU

)

.

Consequently,

|du|2 = |dMU |2 + |du~n|2 and det du = 〈du~n, w0〉 det dMU.
The estimate (6.1) then follows from the latter and from recalling 〈du~n, w0〉 ≤

√
n|du|. �

Lemma 6.2 and Proposition 5.10 immediately yield

Proposition 6.3. If u ∈ C2(Ω,Rn) is an orientation preserving diffeomorphism that does
not solve L∞u = 0 in a ball D ⊂ Ω then

n− 1
2n sup

∂D
K

n−1
n

u,∂D < K(u, D̄).

Theorem 1.3 now follows from Propositions 5.10 and 6.3.
We now turn to the final step in the proof of Theorem 1.1. In order to estimate the dilation

of the extension of u|M in terms of the tangential dilation we need more information about
the extension.

Lemma 6.4. Let u be a solution of L∞u = 0 in a neighborhood of M . If x ∈ M satisfies
∇Ku(x) 6= 0 and ~n ‖ ∇Ku(x), then

(6.2)
n− 1

n
n

(n−1)

K

2n
n−1
u (x) = K

2
u,M(x).

Proof. We observe that L∞u = 0 at x is equivalent to

(6.3) duTdu~n− 1

n
|du|2~n = 0,

at x. In particular, ~n is an eigenvector of duTdu(x) with eigenvalue |du|2/n. Representing
duTdu in the orthonormal frame ~n, e1, ..., en−1, with ei eigenvectors of du

Tdu(x), tangent to
M corresponding to eigenvalues λ2i , i = 1, ..., n− 1, we have the diagonal matrix

(6.4) duTdu(x) =

(

|du|2
n

0 ... 0
0 λ21 ... 0
0 0 ... 0
0 0 ... λ2n−1

)

.

We remark that duTdu|TxM = dMUTdMU , so that |dMU |2 =
∑n−1

i=1 λ
2
i . From (6.4), we

immediately obtain

|du|2 = tr duTdu =
|du|2
n

+
n−1
∑

i=1

λ2i =
|du|2
n

+ |dMU |2
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and

det du2 = det(duTdu) =
|du|2
n

(det dMU)2.

To conclude, we have

K
2
u,M =

|du|2 − |du|2
n

(det du)
2

n−1

|du| 2
n−1n− 1

n−1 =

(

1− 1

n

)

n− 1
n−1

|du| 2n
n−1

(det du)
2

n−1

.

�

Remark 6.5. It is interesting to compare these conclusions with the example u(x) = |x|α−1x

on ∂B(0, 1). In this case, K2
u = n−1+α2

α2/n and K
2
u,∂B(0,1) = n − 1. Note that the proof above

does not apply as ∇Ku = 0.

Proof of Theorem 1.1. The first part of Theorem 1.1 is proven in Proposition 5.6. For the
second statement, observe that if x ∈ ∂D satisfies K(u, D̄) = sup∂D Ku = Ku(x) then either
∇Ku(x) = 0 or it must be normal to ∂D. If ∇xKu(x) = 0, then the point x must be a local
maximum of Ku in Ω. Consequently, there must exist a continuum F through x on which
Ku is constant and with F ∩D 6= 0, otherwise x would be an isolated strict maximum point,
an impossibility by the first part of Theorem 1.1. However the existence of points in D for
which Ku = sup∂D Ku contradicts the hypothesis Ku(z) < sup∂D Ku for z ∈ D and hence
∇Ku(x) 6= 0. The proof now follows immediately from Proposition 5.6 and from (6.2). �

7. Quasiconformal Gradient Flows

For a fixed diffeomorphism u0 : Ω → R
n, we want to study diffeomorphism solutions u(x, t)

of the initial value problem (1.9). If there is a T > 0 such that a solution u ∈ C2(Ω× (0, T ))
exists with det du > 0 in Ω× (0, T ), then by the same computations as in (3.1),

d

dt
Fp(u,Ω) = −

(

1

|Ω|

∫

Ω

|Lpu|2dx
)

≤ 0,

meaning that the p-distortion is nonincreasing along the flow. Hence we obtain

Proposition 7.1. If u ∈ C2(Ω× [0, T ),Rn) ∩ C1(Ω̄× [0, T ),Rn) is a solution of (1.9) with

det du > 0 in Ω̄×[0, T ), then for all 0 ≤ t < T , ‖Kup‖pLp(Ω) = ‖Ku‖pLp(Ω)−
∫ T

0
‖Lpu(·, t)‖L2(Ω)dt

and consequently

(7.1) ‖Ku‖Lp(Ω×{t}) ≤ ‖Ku0‖Lp(Ω).

By Lemma 2.2 and Lemma 2.3, the functional Fp(u,Ω) is invariant by conformal defor-
mation. Therefore, if we let s 7→ Fs : R

n → R
n be a one-parameter semi-group of conformal

transformations, then solutions to the PDE system

∂tu = Lpu+
d

ds
Fs(u)

∣

∣

∣

∣

s=0

would also satisfy (7.1). Recall that the flow Fs is conformal if

S(dD) =
dD + dDT

2
− 1

n
trace (dD)In = 0
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where D = ( d
ds
Fs)

∣

∣

∣

∣

s=0

◦ F−1
0 = ( d

ds
Fs)

∣

∣

∣

∣

s=0

and S denotes the Ahlfors operator. If n = 2 then

this amounts to ∂z̄D = 0. If n ≥ 3 there is more rigidity and conformality requires that

D(x) = a +Bx+ 2(c · x)x− |x|2c
for any vectors a, c and matrix B with S(B) = 0 (see [30]).

We observe that in light of Proposition 3.3, if u(x, t) is a solution of (1.9) in Ω × (0, T )
and v(x, t) = δu(λx, δ−2t) for some λ, δ > 0, then v(x, t) is still a solution with initial data
v0(x) = δu0(λx) in an appropriately scaled domain. Applying inversions in a suitable way
will also yield new solutions from u(x, t).

7.1. Short-time existence from smooth initial diffeomorphisms. Throughout this
section Ω ⊂ R

n is a bounded, C2,α smooth, open set.

Definition 7.2. Let Ω ⊂ R
n be a smooth bounded domain and for T > 0 let Q = Ω×(0, T ).

The parabolic boundary is defined by ∂parQ = (Ω × {t = 0}) ∪ (∂Ω × (0, T )). The parabolic

distance is d((x, t), (y, s)) := max(|x − y|,
√

|t− s|). For α ∈ (0, 1) we define the parabolic
Hölder class C0,α(Q) := {u ∈ C(Q,R)| ‖u‖Cα(Q) := [u]α + ‖u‖0 <∞}, where

[u]α := sup
(x,t),(y,s)∈Q and (x,t)6=(y,s)

|u(x, t)− u(y, s)|
d((x, t), (y, s))α

and |u|0 = supQ |u|. For K ∈ N we let CK,α(Q) = {u : Q→ R| ∂xi1
· · ·∂xiK

u ∈ C0,α(Q)}.

Proposition 7.3. Let u0 : Ω → R
n be a C2,α diffeomorphism for some 0 < α < 1 with

det du0 ≥ ǫ > 0 in Ω̄. Assume that Lpu0 = 0 for all x ∈ ∂Ω. There exist constants C, T > 0
depending on p, n,Ω, ǫ, ‖u0‖C1,α(Ω̄), and a sequence of diffeomorphisms {uh} in C2,α(Q) with
Q = Ω× (0, T ) so that

(a) det uh ≥ ǫ
2
for all (x, t) ∈ Q,

(b) ‖uh‖C2,α(Q) + ‖∂tuh‖C0,α(Q) ≤ C‖u0‖C2,α(Ω),

(c)

{

∂tu
h,i − Aik

jl (du
h−1)∂j∂lu

h,k = 0 in Q

uh = u0 on ∂parQ.

Proof. We prove the result by induction. We start with the base case h = 0. Since u0 ∈
C2,α(Ω), if we set a0,ikjl (x) := Aik

jl (du0(x)) then a0,ikjl ∈ C1,α(Ω) and in view of Lemma 3.1,

a0,ikjl satisfies for all ξ, η ∈ R
n and x ∈ Ω

(7.2) λh|ξ|2|η|2 ≤ ah,ikjl ξiξkηjηl ≤ Λh|ξ|2|η|2,
with h = 0 and

(7.3) Λh = C2(n)p
2

( |duh|np−2

(det duh)p
+

|duh|n(p+2)−2

(det duh)p+2

)

≤ C2(n)p
2 (‖du0‖L∞(Ω))

n(p+2)−2

ǫp+2

and

(7.4) λh = C1(n, p)p
|duh|np−2

(det duh)p
≥ C(n)

Ch‖du0‖L∞(Ω)

with h = 0 and C0 = 1. We have also used the bound det q ≤ n|q|n.
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Applying Lemma A.1 with T0 = 1 we obtain a constant C0 = C0(n, p, ǫ, ‖du0‖Cα(Ω)) > 0
and a map u1 ∈ C2,α(Q) that solves (c) and satisfies

(7.5) T α/2
(

T−1/2‖duh‖Cα(Q) + ‖uh‖C2,α(Q) + ‖∂tuh‖C0,α(Q)

)

≤ Ch−1‖u0‖C2,α(Ω),

for h = 1.
Next, the bound on T will be imposed to keep the determinant from vanishing. Set

w = u1 − u0 and observe that this map solves the equation

(7.6)

{

∂tw
i −Aik

jl (du
0)∂j∂lw

i = Aik
jl (du

0)∂j∂lu
i
0 in Q

w = 0 on ∂parQ

for i = 1, . . . , n. An application of the Schauder estimates (A.4) yields

(7.7) T− 1−α
2 ‖dw‖Cα(Q) ≤ C(n, p, ǫ, ‖du0‖Cα(Ω))‖u0‖C2,α(Ω).

Choose T1 < 1 sufficiently small depending only on n, p, α, ‖du0‖Cα(Ω) and ǫ = minΩ det du0
so that ‖dw‖Cα(Q) ≪ ǫ

2
. Since the determinant has polynomial dependence on the coeffi-

cients, we have (a) for h = 1 in Q1 = Ω× (0, T1).
Next we iterate this process to generate uh from uh−1, h ≥ 2, yielding estimates of the

form (7.5) in Qh = Ω × (0, Th) for some constants Ch, Th > 0. The difficulty resides in
controlling the constants Ch and Th independently of h. In the following lemma, we show
how to (re)choose the constants Ch = C and Th = T̄ uniformly in h ∈ N and while keeping
det duh+1 > ǫ/2 in Qh = Ω× (0, T̄ ).

Lemma 7.4. Using the notation of Proposition 7.3, if there exist C, T > 0 with T ≤ 1 such
that

(7.8) ‖duh − du0‖Cα(Q) ≤ ǫ and ‖∂j∂luh‖Cα(Q) ≤ C‖u0‖C2,α(Ω)

for h = 1, ..., N−1 and Q = Ω×[0, T ], then there exist constants C = C(n, p, ‖u0‖C1,α(Ω)) > 0
and T ≥ T = T(C, n, p, ‖u0‖C1,α(Ω)) > 0 that are independent of N and such that

‖duN − du0‖Cα(Q) ≤ ǫ and ‖∂j∂luN‖Cα(Q) ≤ C‖u0‖C2,α(Ω)

in Q = Ω× [0,T].

Proof. We set wN = uN − uN−1 and observe that wN satisfies
(7.9)
{

∂tw
N,i −Aik

jl (du
N−1)∂j∂lw

N,k =

[

Aik
jl (du

N−1)− Aik
jl (du

N−2)

]

∂j∂lu
N−1,k in Q

wN = 0 on ∂parQ.
Applying the Schauder estimates (A.4) in the cylinder Ω × [0,T] with 0 < T ≤ T to be
chosen, we obtain

‖dwN‖Cα(Q) ≤ C(n, p, ǫ, ‖duN−1‖Cα(Q))T
(1−α)/2

∥

∥

∥

∥

∥

[

Aik
jl (du

N−1)−Aik
jl (du

N−2)

]

∂j∂lu
N−1,k

∥

∥

∥

∥

∥

Cα(Q)

.

The hypothesis (7.8) yields a bound on the Hölder norm of the second derivatives

‖∂j∂luN−1‖Cα(Q) ≤ C‖u0‖C2,α(Ω),
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and at the same time a strictly positive lower bound on det duh > ǫ
2
, for h = 1, . . . , N − 1 in

Q so that

(7.10) ‖dwN‖Cα(Q) ≤ C(n, p, ǫ, ‖duN−1‖Cα(Q))C‖u0‖C2,α(Ω)T
(1−α)/2‖dwN−1‖Cα(Q)

≤ C(n, p, ǫ, ‖du0‖Cα(Q))C‖u0‖C2,α(Ω)T
(1−α)/2‖dwN−1‖Cα(Q).

Choosing T sufficiently small depending only on C, n, p and ‖u0‖C2,α(Ω) and independent of
the index N , it follows that

‖dwN‖Cα(Q) ≤ θ‖dwN−1‖Cα(Q),

where θ ∈ (0, 1). The latter yields

‖duN − du0‖Cα(Q) ≤
N
∑

j=1

‖duj − duj−1‖Cα(Q) ≤
θ

1− θ
‖du1 − du0‖Cα(Q).

We have proved the first part of the conclusion. To establish the estimate ‖∂j∂luN‖Cα(Q) ≤
C‖u0‖C2,α(Ω) it is now sufficient to apply Schauder estimates to (c) with h = N − 1 and
observe that the ellipticity bounds on Λ and λ are independent of N in light of the estimate
‖duN − du0‖Cα(Q) ≤ ǫ. �

We now complete the proof of Proposition 7.3. Applying Lemma 7.4 to the case h = N = 2
yields bounds

‖du2 − du0‖Cα(Q) ≤ ǫ and ‖∂j∂luh‖Cα(Q) ≤ C‖u0‖C2,α(Ω)

in Q = Ω × [0,T], with T = T(C1‖u0‖C2,α(Ω), n, p, ǫ) > 0 and C = C(n, p, ǫ, ‖u0‖C1,α(Ω)) > 0.
As C is a constant independent of C1, we can eliminate the dependence on h by applying
Lemma 7.4 again, yielding

(7.11) ‖duh − du0‖Cα(Q) ≤ ǫ and ‖∂j∂lu2‖Cα(Q) ≤ C‖u0‖C2,α(Ω)

for h = 2 in Q = Ω× [0, T̄ ] with

T̄ = T̄ (C, n, p, ǫ, ‖u0‖C2,α(Ω)) = T̄ (n, p, ǫ, ‖u0‖C2,α(Ω)) > 0.

At this point we proceed by induction on h: If (7.11) holds for h = 1, . . . , N in Q = Ω× [0, T̄ ]
with T̄ = T̄ (n, p, ǫ, ‖u0‖C2,α(Ω)) > 0 and C = C(n, p, ǫ, ‖u0‖C1,α(Ω)) > 0, then applying Lemma
7.4 at the level of N + 1 leads to (7.11) for h = N + 1 in Q = Ω × [0, T̄ ] with T̄ and C as
above; there is no degeneracy of the constants. Finally, since T is uniform in h, (b) follows
from the Schauder estimate (A.7). This concludes the proof of the proposition. �

The previous proposition and Arzela-Ascoli theorem yields Proposition 1.7.

Remark 7.5. The proof of the short time existence is quite standard and uses only the
Legendre-Hadamard ellipticity rather than the specific structure of the non-linearity in the
PDE. It seems plausible to expect that techniques such as those in the paper [26] may also
be used in our setting to establish short-time existence for C1,α initial data.

Note that the Schauder estimates in the appendix yield uniqueness of a C2,µ solution (for
short time) but nevertheless there still may exist rough solutions of the equations with the
same initial data [28].
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Appendix A. Existence and basic estimates for classical solutions of

parabolic systems

We recall results of Schlag [31] and Misawa [27] concerning classical (i.e., two spatial and
one time derivative in Cα) solutions of the system5

(A.1)

{

∂tw −Aik
jl (x, t)w

k
jl = f(x, t) in Q

w = 0 on ∂parQ

assuming that Ω is a C2,α domain, Q = Ω×(0, T ), A, f ∈ Cα(Q), the compatibility condition
f = 0 on ∂Ω× {t = 0} and an ellipticity assumption

(A.2) λ|ξ|2 ≤ Aik
jl (x, t)ξ

i
jξ

k
l ≤ Λ|ξ|2,

for some λ,Λ > 0 and for all (x, t) ∈ Q and ξ ∈ R
n×n.

Schlag proves that there exists a constant C = C(n, λ,Λ, ‖A‖0,α,Ω) > 0 such that if
w ∈ C2,α(Q) and ∂tw ∈ C0,α(Q) solves (A.1) then

(A.3) [wjl]α + [wt]α ≤ C(|w|0 + [f ]α).

Misawa proved that such solutions exist and that the estimate can be slightly strengthened

‖wjl‖Cα(Q) + ‖wt‖Cα(Q) + ‖∇w‖Cα(Q) + ‖w‖Cα(Q) ≤ C‖f‖Cα(Q),

with a constant C > 0 depending on n, λ,Λ, ‖A‖Cα(Q),Ω and T .
We address the dependence of the constants in the Schauder estimates from the parameter

T . Since these estimates have a local character we expect the constant to blow up as T → ∞
and to be bounded for T > 0 fixed.

Let T0 ≥ T > 0 and set 1√
T
Ω := {x ∈ R

n|
√
Tx ∈ Ω}. Observe that if w solves (A.1) then

the function w̃(x, t) := w(
√
Tx, T t) solves

{

∂tw̃ − Aik
jl (

√
Tx, T t)w̃k

jl = f̃(x, t) := Tf(
√
Tx, T t) in 1√

T
Ω× (0, 1)

w̃ = 0 on ∂par
1√
T
Ω× (0, 1)

Note that ∂tw̃(x, t) = T∂tw(
√
Tx, T t), ∂jlw̃(x, t) = T∂jlw(

√
Tx, T t) and∇w̃(x, t) =

√
T∇w(

√
Tx, T t).

The Hölder norm of Ã(x, t) := A(
√
Tx, T t) is bounded by

min{1, T α/2}‖A‖Cα(Q) ≤ ‖Ã‖Cα( 1√
T
Ω×(0,1)) ≤ ‖A‖Cα(Q)(1 + T

α/2
0 ).

Since the ellipticity constants of the coefficients are not affected by the rescaling, the Schauder
estimates for w̃ read

‖w̃jl‖Cα( 1√
T
Ω×(0,1))+‖w̃t‖Cα( 1√

T
Ω×(0,1))+‖∇w̃‖Cα( 1√

T
Ω×(0,1))+‖w̃‖Cα( 1√

T
Ω×(0,1)) ≤ C‖f̃‖Cα( 1√

T
Ω×(0,1)),

with a constant C > 0 depending on n, λ,Λ, ‖A‖Cα(Q),Ω. Rescaling back this estimate to
the parabolic cylinder Q = Ω× (0, T ), we obtain
(A.4)
min{1, T α/2}
1 + T

α/2
0

(

‖wjl‖Cα(Q) + ‖wt‖Cα(Q) + T−1/2‖∇w‖Cα(Q) + T−1‖w‖Cα(Q)

)

≤ C‖f‖Cα(Q),

with C depending on the quantities above and on T0.

5Both papers address more general systems.
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Using the standard method based on applying Fourier transform to the integral
∫

Ω

Aik
jl (u

kφ)l(u
iφ)j dx

(see for instance [21]) we note that the Schauder estimates continue to hold when weakening
the ellipticity assumption from (A.2) to the Legendre-Hadamard ellipticity

(A.5) λ|ξ|2|η|2 ≤ Aik
jl (x, t)ξ

iξkηjηl ≤ Λ|ξ|2|η|2

for some λ,Λ > 0 and for all (x, t) ∈ Q and ξ, η ∈ R
n. Recasting these results for the system

(A.6)

{

∂tu
i − Aik

jl (x, t)∂j∂lu
k = 0 in Q

u(x, 0) = u0(x) for all x ∈ ∂parQ

we obtain the following:

Lemma A.1. Assume that ∂Ω is C1,α, T0 > 0 and for 0 < T ≤ T0, Q = Ω × (0, T ). If
A ∈ C0,α(Q) and the compatibility condition

Aik
jl (x, 0)∂j∂lu

k
0(x) = 0 for all x ∈ ∂Ω and i = 1, . . . , n,

holds, then given u0 ∈ C2,α(Ω) there exists a solution u ∈ C2,α(Q) of (A.6) with ut ∈ C0,α(Q)
and such that

(A.7) ‖u‖C2,α(Q) + ‖∂tu‖Cα(Q) ≤ C1‖u0‖Cα(Q).

The positive constant C1 depends only T, n,Ω, λ,Λ and the C2,α norm of the coefficients of
A. The time-scaled version of (A.7) is
(A.8)
min{1, T α/2}
1 + T

α/2
0

(

‖ujl‖Cα(Q) + ‖ut‖Cα(Q) + T−1/2‖∇u‖Cα(Q) + T−1‖u‖Cα(Q)

)

≤ C2‖u0‖Cα(Q),

where C2 depends only T0, n,Ω, λ,Λ and the Cα norm of the coefficients of A.

Appendix B. Evolution equations for the Jacobian and the distortion

tensor.

Let u ∈ C1([0, T ], C3(Ω,Rn)) be a classical solution of (1.9) and Ω̃ be the range of u0 (or
equivalently, the range of u(·, t) for all t ∈ [0, T ]). Denote by v(·, t) = u−1(·, t) the inverse of
the diffeomorphism u at time t and set β(y) = det dv(y). For a fixed time t, set y = u(x, t)
and dv(y, t) = du−1(x, t). Let ξ ∈ C∞

0 (Ω̃× [0, T ],R).
The argument in [17, Theorem 2.1] yields

0 =

∫ T

0

∫

Ω

[

∂tu
i − ∂xj

Ai
j(du)

]

(∂yiξ)
∣

∣

u
dx dt

=

∫ T

0

∫

Ω

[

− ∂t(ξ(u(x, t), t)) + ∂tu
i(∂yiξ)

∣

∣

u

]

− ∂xj
Ai

j(du)(∂yiξ)
∣

∣

u
dx dt(B.1)

=

∫ T

0

∫

Ω

(

− ∂tξ
∣

∣

u
det dv

∣

∣

u
− ∂xj

Ai
j(du) det dv

∣

∣

u
(∂yiξ)

∣

∣

u

)

det du dx dt
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Next, we define

Ãi
j(q) = Ai

j(q
−1) = −p

(

qji − n
qij

|q−1|2
) |q−1|np
(det q)p

for all non-singular matrices q and observe that

∂xj
Ai

j(du(x, t)) = ∂xj
Ãi

j(dv(u(x, t), t)) = dvhj(u(x, t), t)[∂yhÃ
i
j(dv(y, t))]

∣

∣

u
.

Also, on Ω̃,

dvhj∂yhÃ
i
j(dv)β = −∂yh

[

p(cof dv)jh

(

duji − n
duij
|du|2

)
∣

∣

∣

∣

v

|du|np
(det du)p

∣

∣

∣

∣

v

]

= −∂yh
[

p(cof dv)jh

(

duji − n
duij
|du|2

)
∣

∣

∣

∣

v

|du|np
(det du)p

∣

∣

∣

∣

v

]

= −∂yh
[

pβ

(

δhi − n
duhjduij
|du|2

)
∣

∣

∣

∣

v

|du|np
(det du)p

∣

∣

∣

∣

v

]

since ∂yh(cof dv)jh = 0. The latter and (B.1) yield

0 =

∫ T

0

∫

Ω

(

− ∂tξ
∣

∣

u
det dv

∣

∣

u
− dvhj

∣

∣

u
[∂yhÃ

i
j(dv(y, t))]

∣

∣

u
det dv

∣

∣

u
(∂yiξ)|u

)

det du dx dt

=

∫ T

0

∫

Ω̃

−∂tξβ −
[

dvhj[∂yhÃ
i
j(dv(y, t))]β

]

∂yiξdy dt

=

∫ T

0

∫

Ω̃

ξ∂tβ − ∂yi∂yh

[

β

(

δhi − n
duhjduij
|du|2

)

∣

∣

∣

∣

∣

v

|du|np
(det du)p

∣

∣

∣

∣

∣

v

]

ξ dy dt.

We have then proved the following:

Lemma B.1. Let u ∈ C1([0, T ], C3(Ω,Rn)) be a classical solution of (1.9). If we set v(·, t) =
u−1(·, t) and β(y) = det dv(y), then β satisfies

(B.2) ∂tβ = ∂yi∂yh

[

Bih(du)

∣

∣

∣

∣

v

β

]

,

in Ω̃× (0, T ), with

Bih(du) = p

(

δhi − n
duhjduij
|du|2

) |du|np
(det du)p

,

as well as Neumann type conditions

∂ν

[

dvjh[∂yhÃ
i
j(dv)]β

]

= ∂ν∂yh

[

Bih(du)
∣

∣

∣

v
β
]

= 0

for all (y, t) ∈ ∂Ω̃× (0, T ).

Let η ∈ R
n and q a non-singular matrix, and consider the quantity

Bih(q)η
iηh = p

(

δhiη
iηh − n

[(ηq)j]2

|q|2
) |q|np
(det q)p

= p|η|2
(

1−
|ηq|2
|η|2
|q|2
n

) |q|np
(det q)p
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In the model case when n = 2, q is diagonal with eigenvalues 0 < λ1 ≤ λ2, and for unit η,
one has

Bih(q)η
iηh = p

(

1− η21λ
2
1 + η22λ

2
2

λ2
1+λ2

2

2

)(

λ21 + λ22
λ1λ2

)p

The matrix does not have a sign, it vanishes when λ1 = λ2. Unlike the case studied in
[17], the parabolic maximum principle does not apply.

Lemma B.2. If u is as in Lemma B.1 then the corresponding conformal metric evolves
according to

(B.3) ∂tgαβ = npb2/n

{

∂k∂j

[

S(g)lαdu
−1
jl K

np−2

]

duβk + ∂k∂j

[

S(g)lβdu
−1
jl K

np−2

]

duαk

−2

n
b
−1

[

∂xj
∂xk

(

Sih(g) det du
−1Knp−2

)

dukhduji−∂xk

(

Sih(g) det du
−1Knp−2

)

dushdukl∂xj
∂xsu

lduji

+ (det du)−1duklduis∂k∂su
l∂j

(

S(g)midu
−1
jmK

np−2

)]

duαh1duβh1

}

in Q = Ω× (0, T ) with g = g0 on ∂parQ, and where b = (det du)−1 = det du−1 ◦ u.
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