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RICCI FLOW OF CONFORMALLY COMPACT METRICS

ERIC BAHUAUD

Abstract. In this paper we prove that given a smoothly conformally compact metric there
is a short-time solution to the Ricci flow that remains smoothly conformally compact. We
apply recent results of Schnürer, Schulze and Simon to prove a stability result for conformally
compact metrics sufficiently close to the hyperbolic metric.

1. Introduction

In 1989, W. X. Shi initiated the study of the Ricci flow on a noncompact manifold by
proving that there is a short-time solution to the flow starting at a complete metric of bounded
curvature, and moreover the flow remains in this class. Recently there has been intense
activity to understand to what extent the Ricci flow preserves other geometric conditions on
noncompact manifolds, see [2, 5, 13, 11, 12, 18] for examples. In this paper we prove that the
Ricci flow preserves the set of smoothly conformally compact metrics in general dimension for
a short time. We begin by introducing these metrics.

Let Mn+1 be the interior of a compact manifold with boundary M . Suppose that x is a
boundary defining function for ∂M . This is to say that x is a smooth non-negative function
on M that vanishes to first order precisely at ∂M . We say that a metric h is smoothly
conformally compact if h := x2h extends to be smooth metric on M . The Poincaré ball model
of hyperbolic space provides an easy example.

We may use x to identify a collar neighbourhood of ∂M in M with [0, ǫ) × ∂M . We then
write h as

h =
dx2 + ĥ(x)

x2
,

for a smooth family of metrics ĥ on ∂M .
If h is smoothly conformally compact, with |dx|2

h
= 1 on ∂M , and K denotes the curvature

4-tensor of constant sectional curvature +1, then the curvature 4-tensor R of h satisfies

|R+K|h = O(x), and

|∇(j)
h R|h = O(x), for all j.

For this reason conformally compact manifolds with |dx|2
h
= 1 on ∂M are asymptotically

hyperbolic. It is well known that h is complete and of bounded geometry.
Recall the Ricci flow is the system of equations

(1.1)

{
∂tg = −2Rc g(t),
g(0) = h.

As previously mentioned, it follows from [24] that there is a solution to the Ricci flow, g(t),
with initial metric h for a short time.
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It will be more convenient to study a normalized Ricci flow. Set τ = 1
2n(e

2nt − 1), and set

gN (x, t) = 1
1+2nτ g(x, t). It is a simple matter to verify that gN solves the normalized Ricci

flow:

(1.2)

{
∂τg

N
ij = −2ngNij − 2Rc gNij ,

gN (0) = h.

As solutions to the Ricci flow and normalized Ricci flow differ by a rescaling in the time
variable, we see that spatial regularity is preserved. Thus a conformally compact solution to
the normalized Ricci flow yields a conformally compact solution to the Ricci flow and vice
versa.

The first main result of this paper is the following

Theorem A. If h is smoothly conformally compact then there exists a unique smoothly con-
formally compact solution g(t) to (1.2) (and hence (1.1)) for a short time.

The proof of this Theorem proceeds in three steps. First we apply the DeTurck trick to
obtain a system that may be solved by parabolic PDE techniques. Then conditioning the
equation appropriately we are able to apply a contraction mapping argument to reprove the
existence of a short-time solution to the flow in 0-Hölder spaces, which are Hölder spaces
associated to conformally compact metrics that respect the interior geometry. Finally we
prove that the solution is smoothly conformally compact by applying regularity techniques
modeled on [20]. By chasing regularity at each step of the argument it would be possible to
give a finite regularity version of this theorem.

Given short-time existence for the Ricci flow it is natural to study the stability of the flow
about fixed points. Recently, Schnürer, Schulze and Simon studied the stability of hyperbolic
space under the Ricci flow [23]. Using their work and the regularity result underlying Theorem
A, we are able to quickly obtain the second main result of this paper.

Theorem B. Let n + 1 ≥ 4. For all K > 0 there exists ǫ1 = ǫ1(n,K) > 0 such that the
following holds. Let g0 be a smoothly conformally compact metric close to the hyperbolic metric
h on the unit ball in the sense that∫

Hn+1

|g0 − h|2hdvolh ≤ K,

and

sup
Hn+1

|g0 − h|h ≤ ǫ1.

Then there exists a long-time solution g(t) to the Ricci-DeTurck flow (with initial metric g0)
such that

sup
Hn+1

|g(t)− h|h ≤ C(n,K)e
− 1

4(n+3)
t
.

Moreover, g(t) −→ h exponentially and g(t) remains conformally compact for all time.

Note in the above theorem, unlike in the original source, we have transcribed the dimension
to n+ 1 to match the convention of the rest of the paper.

It follows from the work of Fefferman and Graham [9] that there is an obstruction to find-
ing a smooth conformally compact Einstein metric on generic manifolds when the boundary
dimension (in our convention n) is even. In view of this fact, one expects there to be con-
siderable challenges to using the Ricci flow to produce conformally compact Einstein metrics
more generally.
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We take this opportunity to mention two related papers. First, recent work by Hu, Qing
and Shi [11] proves the Ricci flow preserves a certain class of asymptotically hyperbolic metrics
for a short-time. These metrics are defined by curvature decay conditions and, as shown in [3]
and [11], are conformally compact of only a limited regularity. Hu, Qing and Shi subsequently
prove an interesting rigidity result. On the other hand, in view of the applications of smoothly
conformally compact metrics to geometry and physics (see for example [6] and references
therein), it is natural to study the Ricci flow in the smooth conformally compact setting.
Second, the author and Helliwell have recently proved short-time existence results for higher-
order geometric flows on compact manifolds [4]. We observed that many short-time existence
results depend only on the special algebraic structure of the flow. Both [4] and the present
paper were developed in parallel, and were inspired by recent work of Koch and Lamm [14].
The short-time existence of the Ricci flow we give here, while in the setting of conformally
compact metrics, may be regarded as a concrete application of the ideas in [4].

This paper is structured as follows. In Section 2, we outline the DeTurck trick and reduction
of the flow to a parabolic system. In Section 3, we define function spaces and outline the main
results from linear parabolic theory on conformally compact manifolds. This theory is based
on the edge and heat calculus for 0-operators that appears in [19] and [1]. In order to not
distract from the main Ricci flow argument, we have kept this section short and instead
sketched several of the proofs of the analytic results in the Appendix. In Section 4, we
condition the flow equations and provide the contraction mapping argument. We discuss the
regularity argument in Section 5, and the stability argument in Section 6. Finally, in the
Appendix we provide sketches for the various analytic facts quoted in Section 3.

It is a pleasure to thank Rafe Mazzeo for ideas and many helpful discussions during the
course of this work. I am also in debt to Pierre Albin, Dean Baskin, and András Vasy
for useful conversations. Finally I would like to thank my collaborators in related projects,
Emily Dryden, Dylan Helliwell and Boris Vertman as their input has greatly shaped my
understanding and this paper.

2. Preliminaries

As is well known, the Ricci flow is not a parabolic system due to the diffeomorphism
invariance of the Ricci tensor. We will break this invariance using the standard DeTurck
trick. Choosing h as the background metric, and writing all Christoffel symbols and curvature
quantities with respect to h with tildes, we define a time dependent vector field

W k = gpq
(
Γk
pq − Γ̃k

pq

)
.

The normalized Ricci-DeTurck flow is given by

(2.1)

{
∂tgij = −2ngij − 2Rc gij +∇iWj +∇jWi,
g(0)ij = hij .

Standard computations, for example given in [24], show that this flow may be written

(2.2)





0 = ∂tgij − gab∇̃a∇̃bgij + 2ngij + gabgiph
pqR̃jaqb + gabgjph

pqR̃iaqb

−1
2g

abgpq
(
∇̃igpa∇̃jgqb + 2∇̃agjp∇̃qgib − 2∇̃agjp∇̃bgiq

− 2∇̃jgpa∇̃bgiq − 2∇̃igpa∇̃bgjq

)
,

g(0) = h.

From this equation we see the Ricci-DeTurck flow is a quasilinear parabolic system for the
metric.
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Once we prove short-time existence of a smoothly conformally compact solution g to the
Ricci-DeTurck flow, the time-dependent vector field W k will have coefficients smooth up to
the boundary of M and vanishing to first order there. If φt denotes the flow generated by
W k, then ĝ = φ∗

t g is a solution to the normalized Ricci flow [8]. It is straightforward to see
that ĝ is smoothly conformally compact.

Finally, we only prove the existence of a short-time solution to the Ricci flow. The unique-
ness assertion in Theorem A follows from the work of Chen and Zhu [7].

3. Parabolic theory on conformally compact spaces

In this section we outline linear parabolic theory for uniformly degenerate operators on
conformally compact manifolds. We just state the results we need here; sketches of proofs are
deferred to the appendix. The primary references for the material in this section are [19] and
[1].

Let (M,h) be a smoothly conformally compact manifold as defined in the introduction.
Suppose that x is a boundary defining function and that {y1, · · · , yn} are coordinates on the
boundary, extended to be constant in x. We will refer to these coordinates as background
coordinates. The metric h decomposes as

h =
dx2 + ĥab(x, y)dy

adyb

x2
,

where the components of ĥ are smooth up to the boundary.
The 0-vector fields are generated by

{
x∂x, x∂y1 , · · · , x∂yn

}
,

and form the basis of a vector bundle, the 0-tangent bundle 0TM . We will also have occasion
to discuss b-vector fields, which are generated by

{
x∂x, ∂y1 , · · · , ∂yn

}
.

We will denote the space of smooth functions on M by C∞(M) and functions smooth up
to the boundary by C∞(M ). The vector bundle of symmetric 2-tensors on M will be denoted

Σ2(M). We will use dx
x and dyb

x as the preferred basis for this bundle.
An operator L on functions is uniformly degenerate of order m if in local coordinates it is

given by:

L =
∑

j+|β|≤m

aj,β(x, y, t)(x∂x)
j(x∂y)

β .

where the coefficients aj,β are at least continuous up to the boundary. In order to use Albin’s
heat calculus, we require that aj,β be smooth up to the boundary and independent of time.

The principal symbol of a uniformly degenerate operator L is a homogeneous polynomial
on 0T ∗M given by

0σ(L)(ξ, η) =
∑

j+|β|=m

aj,βξ
jηβ .

We say that L is elliptic if 0σ(L) is invertible away from (ξ, η) = 0.
For the Ricci flow analysis, we will have to deal with systems of equations as our operators

will act on the vector bundle of symmetric two tensors. An operator between tensor bundles
E and F is uniformly degenerate if in local coordinates it may be written as a system:

(Lu)i =
∑

j+|β|≤m

(aj,β)
k
i (x∂x)

j(x∂y)
βuk.
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where the coefficients aj,β are now entries of a dimF×dimE matrix that is at least continuous
up to the boundary. The principal symbol is defined as before. We will not need to consider
the most general notions of ellipticity for systems as the Ricci flow system (2.2) is ‘diagonal’
at top order, i.e. (aj,β)

i
k = (aj,β) · δik. From this we can see that all coupling occurs at lower

order. We now say that L is elliptic if dimF = dimE and the symbol is invertible away from
(ξ, η) = 0.

For the remainder of this section we suppose that L is a second order uniformly degenerate
elliptic operator with diagonal principal symbol.

3.1. Function spaces. We work in the 0-Hölder spaces defined for example in [17, 19, 21].
We describe the anisotropic version of these Hölder function spaces, and refer the reader to
the references for the purely spatial version. For any manifold M , the notation MT will denote
the cylinder M× [0, T ). Fix a smoothly conformally compact metric h, which in the Ricci flow
analysis, will be the initial metric. We assume a covering of M by background coordinates
has been fixed.

Cover M by a Whitney decomposition of countably many uniformly locally finite coordinate
balls Bi with centre (xi, yi) and radius 1

2xi. We will consider the product of each ball with a
time interval [0, T ). For any 0 < a < 1, consider the norm

||u||a, a
2
:= ||u||∞ + sup

i

{
sup

(x,y,t)6=(x′,y′,t)∈(Bi)T

(x+ x′)a |u(x, y, t) − u(x′, y′, t)|
|x− x′|a + |y − y′|a

+ sup
(x,y,t)6=(x,y,t′)∈(Bi)T

|u(x, y, t) − u(x, y, t′)|
|t− t′|a/2

}
.

The prefactor x+x′ comes from using the euclidean metric in background coordinates instead
of the intrinsic g-distance, see [21]. Note that we may also use an affine map fi : BT → (Bi)T
from a fixed cylinder BT to define these norms.

Let C
a, a

2
e (MT ) be the closure of C∞(MT ) with respect to this norm. We define

C
k+a, k+a

2
e (MT ) to consist of all functions u such that (∂t)

i(x∂x)
j(x∂y)

βu ∈ C
a, a

2
e (MT ) for

all 2i + j + |β| ≤ k. Note that we also weight these spaces: u ∈ xνC
k+a, k+a

2
e (MT ) if and only

if u = xνv for some v ∈ C
k+a, k+a

2
e (MT ).

We will also need Hölder spaces of tensors. As previously stated, we use the vector fields
x∂x and x∂yb and covector fields dx/x and dyb/x as a basis for bundles of tensors, and with

this convention ∇h involves only derivatives by the 0-vector fields. In this way a section of a
tensor bundle is an element of a Hölder space if and only if its components are. Furthermore,
for j ≤ k

(∇h)j : xνC
k+a, k+a

2
e (MT ;E) −→ xνC

a, a
2

e (MT ;E ⊗ 0T ∗M).

Finally, in what follows since we always deal with the bundle of symmetric 2-tensors, we will
not explicitly mention it in the notation.

We mention also that the norm on Ck
e (M) is equivalent to the usual intrinsic Ck norm,∑k

i=0 ||(∇h)iu||L∞(M).
As proved in [17, 19], elliptic estimates in 0-Hölder spaces are proved from scaling and classi-

cal interior elliptic estimates on the balls Bi, as the pullback of a uniformly degenerate elliptic
operator under fi becomes uniformly elliptic. Similarly we may obtain parabolic estimates
from scaling and classical parabolic estimates. In particular we have the following regularity
result, see [15, Theorem 8.11.1, Theorem 8.12.1] for the classical parabolic statements.
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Proposition 3.1 (Parabolic regularity). Let L be a second order uniformly degenerate elliptic

operator. Suppose that Dγaj,β ∈ C
a, a

2
e (MT ) for |γ| ≤ k, and Dγf ∈ C

a, a
2

e (MT ), D
γφ ∈ Ca

e (M)

for all |γ| ≤ k. If u ∈ C
2+a, 2+a

2
e (MT ) is a solution to (∂t − L)u(ζ, t) = f(ζ, t) then Dγu ∈

C
2+a, 2+a

2
e (MT ) for all |γ| ≤ k.

3.2. Parabolic Schauder estimates. We now state the main facts from linear parabolic
PDE theory that we need. We will be interested in the following problem

(3.1)

{
(∂t − L)u(ζ, t) = f(ζ, t)

u(ζ, 0) = 0,

The basic result is

Theorem 3.2. Suppose L is a second order uniformly degenerate elliptic operator with

time-independent coefficients. For every f ∈ xµC
a, a

2
e (MT ) there is a solution u to (3.1) in

xµC
2+a, 2+a

2
e (MT ). Moreover, u satisfies the parabolic Schauder estimate

(3.2) ||u||
xµC

2+a,
2+a
2

e (MT )
≤ K||f ||

xµC
a, a2
e (MT )

.

The Schauder constant K that appears in the statement depends on T but remains bounded
as T → 0.

3.3. Mapping properties of the heat operator. Given the homogeneous Cauchy problem

(3.3)

{
(∂t − L)u(ζ, t) = 0

u(ζ, 0) = φ(ζ),

let A denote the heat operator such that takes φ to the solution of this problem, i.e.
(Aφ)(ζ, t) = u(ζ, t). We also use the notation that A = etL. In the appendix we describe
how A is given by an integration against a specific polyhomogeneous distribution on a certain
manifold with corners that covers M ×M × R

+. The mapping properties of such operators
follow from the asymptotics at each of the boundary hypersurfaces. A key result that we will
need is that if Vb is a b-vector field and A is a heat operator, then the commutator [A,Vb] has
the same asymptotics as A, and will enjoy the same mapping properties. See Proposition A.6
for a precise formulation.

Let H denote the following time convolution of the heat operator

(Hf)(ζ, t) =

∫ t

0
e(t−s)Lf(·, s)ds.

This operator provides a solution to the inhomogeneous Cauchy problem with zero initial
data. The precise mapping properties we need are given in the following

Proposition 3.3. (see Corollary A.4) If φ ∈ xµC∞(M ) and f ∈ xµC∞(MT ) then

(1) Aφ ∈ xµC∞(MT ).
(2) Hf ∈ xµC∞(MT ).

4. Short-time existence

In this section we prove short-time existence of a solution to (2.2) in the 0-Hölder spaces.
This is based on a contraction mapping argument.

We begin by making several observations that will be needed later. Let E = R + K
be the curvature ‘error’ tensor for the conformally compact metric h, where K denotes the
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+1 constant curvature 4-tensor. By our convention for function spaces, if h is smoothly
conformally compact then

h = hij
dxi

x

dxj

x
∈ C∞

e (M).

We also have E ∈ xC∞
e (M ;T 4M).

We need an expansion for the inverse of the metric. Suppose that v ∈ xC
k+a, k+a

2
e (MT ) with

sufficiently small norm, then the symmetric 2-tensor h+ v will be invertible and (h+ v)−1 ∈
C

k+a, k+a
2

e (MT ). Furthermore, we document a useful expansion

(4.1) (h+ v)ab = hab − halhbmvml + (h+ v)blhamhpqvlpvmq.

4.1. Conditioning the Ricci-DeTurck system. Here we pursue short-time existence of
the normalized Ricci-DeTurck flow. We will look for a solution of the form

gij(x, y, t) = hij(x, y) + vij(x, y, t)

where vij ∈ xC
k+a, k+a

2
e (MT ). The system (2.2) for v may be written in the following way,

which will facilitate treating the quasilinear system with a contraction mapping argument.
Here we handle the quasilinearity as a quadratic error.

(4.2)





0 = ∂tvij − hab∇̃a∇̃bvij −
(
(h+ v)ab − hab

)
∇̃a∇̃bvij + 2n(h+ v)ij

−(h+ v)ab(h+ v)iph
pqR̃jaqb − (h+ v)ab(h+ v)jph

pqR̃iaqb

+[(h+ v)−1 ∗ (h+ v)−1 ∗ ∇̃v ∗ ∇̃v]ij ,
v(0) = 0.

Note that in this expression we have switched curvature sign conventions from [24]. Shi lowers
an index in the curvature tensor to the third slot whereas I lower to the fourth slot. The
asterisk denotes linear contractions whose precise formula is unimportant for what follows.

Let us introduce notation for some of the terms above. Define

(T1v)ij :=
(
(h+ v)ab − hab

)
∇̃a∇̃bvij ,

(T2v)ij := 2n(hij + vij) +
(
−(h+ v)ab(h+ v)iph

pqR̃jaqb − (h+ v)ab(h+ v)jph
pqR̃iaqb

)
,

(T3v)ij := (h+ v)−1 ∗ (h+ v)−1 ∗ ∇̃v ∗ ∇̃v.

We begin by studying the various mapping properties of the terms of this equation. Much
of the argument depends on the special algebraic structure of these equations. We introduce
the following notation. We will say various terms are Q(v) if they are linear combinations of
contractions of bounded tensors with either v or its first two h-covariant derivatives. We will
loosely refer to this dependence as being ‘quadratic’, and we will make precise the estimates
we need at the end of this section. Note that indices on Q index the term of origin in the
decomposition above.

Lemma 4.1.

T1v = Q1(v), and

Q1 : x
νC

k+a; k+a
2

e (MT ) −→ x2νC
k−2+a; k−2+a

2
e (MT ).
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Proof. We begin by applying the expansion for the inverse in equation 4.1

(T1v)ij :=
(
(h+ v)ab − hab

)
∇̃a∇̃bvij

=
(
hab − halhbmvml + (h+ v)blhamhpqvlpvmq − hab

)
∇̃a∇̃bvij

= h−1 ∗ h−1 ∗ v ∗ ∇̃2v + (h+ v)−1 ∗ h−1 ∗ h−1 ∗ v ∗ v ∗ ∇̃2v,

which shows the expression is quadratic in v. Noting that h−1 ∈ C∞
e (M) and v ∈

xνC
k+a; k+a

2
e (MT ), we see that while we lose two 0-derivatives we gain decay in x, i.e.

Q1v ∈ x2νC
k−2+a; k−2+a

2
e (MT ). �

The expression for T2 simplifies considerably.

Lemma 4.2.

(T2v)ij = 2Eij + 2nvij + vipR̃c
p

j + vjpR̃c
p

i + 2vmlR̃
m l
ij +Q2(v)ij .

Q2 : x
νC

k+a; k+a
2

e (MT ) −→ x2νC
k+a; k+a

2
e (MT ).

Proof. By applying the expansion for the inverse to terms in T2 we find the expression contains
inhomogeneous terms as well as terms linear in v which we must separate from the main
expression. In particular, considering one of the constituent terms in T2 we find

−(h+ v)ab(h+ v)iph
pqR̃jaqb = −(h+ v)ab(h+ v)ipR̃

p
ja b

= −
(
hab − halhbmvml + (h+ v)blhamhpqvlpvmq

)
(hip + vip)R̃

p
ja b

= R̃cij + vipR̃c
p

j − vmlR̃
m l
ij + [h−1 ∗ h−1 ∗ v ∗ v ∗ R̃]ij ,

where R̃ in this calculation denotes the (1, 3) tensor. One may check that the final quadratic

contraction terms map xνC
k+a; k+a

2
e (MT ) −→ x2νC

k+a; k+a
2

e (MT ).
Consequently,

−(h+ v)ab(h+ v)iph
pqR̃jaqb − (h+ v)ab(h+ v)jph

pqR̃iaqb

= 2R̃cij + vipR̃c
p

j + vjpR̃c
p

i − 2vmlR̃
m l
ij +Q2(v)ij

Note that by the curvature asymptotics R̃cij = −nhij +Eij where Eij ∈ xC∞(M). There-
fore, re-assembling T2 we find

(T2v)ij = 2Eij + 2nvij + vipR̃c
p

j + vjpR̃c
p

i − 2vmlR̃
m l
ij +Q2(v)ij

�

The third term requires no additional conditioning.

Lemma 4.3.

(T3v)ij = Q3(v), and

Q3 : x
νC

k+a; k+a
2

e (MT ) −→ x2νC
k−1+a; k−1+a

2
e (MT ).
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The preceding lemmas allows us to condition the equation for v further. We now move
the terms linear in v to the other side of the equation. We also have from [8] that the term

hab∇̃a∇̃bvij is the rough Laplacian on 2-tensors. In fact, we see the linear elliptic part of the
equation is the Lichnerowicz Laplacian on 2-tensors,

L = ∆h
Lvij + 2nvij = hab∇̃a∇̃bvij + vipR̃c

p

j + vjpR̃c
p

i − 2vmlR̃
m l
ij + 2nvij .

We may write:

(4.3)

{
∂tvij − (Lv)ij = Qvij + 2Eij ,
vij(0) = 0.

For the remainder of the argument we drop indices.
To summarize the argument so far, we have conditioned the flow equations to recognize a

strongly parabolic equation for the metric. As the quadratic terms Q depend on v and up to
its first two covariant derivatives in a polynomial fashion, there is a constant C > 0 depending
on the algebraic structure of Q such that for all u, v ∈ xµC2+a, a

2 (MT ),

(1)

||Q(v)||
xµC

a, a2
e (MT )

≤ C||v||2
xµC

2+a, a2
e (MT )

,

(2)

||Q(u)−Q(v)||
xµC

a, a2
e (MT )

≤ Cmax

{
||u||

xµC
2+a, a2
e (MT )

, ||v||
xµC

2+a, a2
e (MT )

}
||u− v||2

xµC
2+a, a2
e (MT )

.

Note in these estimates that we are relaxing control of one time derivative. This will facilitate
the contraction mapping argument given in the next section. Note also that this part of the
argument will not explicitly use the gain of decay by Q.

In the regularity argument of Section 5, we will need this additional decay. We conclude
with the following lemma.

Lemma 4.4. All of the quadratic mapping terms satisfy

Q : xνC
k+a; k+a

2
e (MT ) −→ x2νC

k−2+a; k−2+a
2

e (MT ).

Moreover, if w = w′ + w′′, where w′ ∈ xνC
k+a; k+a

2
e (MT ) and w′′ ∈ xµC

k+a; k+a
2

e (MT ), (ν < µ)
then

Q(w) ∈ x2νC
k−2+a; k−2+a

2
e (MT ) + xµ+νC

k−2+a; k−2+a
2

e (MT ).

Proof. The first mapping property stated follows from the previous lemmas. We need only
check the final claim. The explicit contraction structure of each of the terms that form Q are:

Q1v = h−1 ∗ h−1 ∗ v ∗ ∇̃2v

Q2v = h−1 ∗ h−1 ∗ v ∗ v ∗ R̃
Q3v = (h+ v)−1 ∗ (h+ v)−1 ∗ ∇̃v ∗ ∇̃v.

Now insert w = w′ + w′′ into the expression and notice the cross terms have the decay
expected of w′ ∗ w′′. �
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4.2. The contraction mapping argument. We now explain the contraction mapping ar-
gument that leads to short-time existence for equation (4.3). Write the heat operator for
∂t − L as etL. Apply Duhamel’s principle to (4.3) to get an equivalent integral equation

(4.4) v(t) =

∫ t

0
e(t−s)L (E +Q(v)) ds

︸ ︷︷ ︸
:=Ψv

.

Note the definition of the map Ψ in the displayed equation above.

For a parameter µ and T to be specified, define a subspace Zµ,T of xC
2+a, a

2
e (MT ) by

Zµ,T =

{
u ∈ xC

2+a, a
2

e (MT ) : u(x, 0) = 0, ||u||
xC

2+a, a2
e (MT )

≤ µ.

}
.

This is a closed subset of a Banach space.
Suppose that u ∈ Zµ,T , it follows that v = Ψu is a solution to

{
(∂t − L)v = Q(u) + E,
v(0) = 0.

As Q(u) + E ∈ xCa, a
2 (MT ), the Schauder estimate implies v ∈ xC

2+a,1+ a
2

e (MT ) ⊂
xC

2+a, a
2

e (MT ), and so

Ψ : Zµ,T −→ xC
2+a, a

2
e (MT ).

We would like to prove that Ψ is in fact an automorphism of Zµ,T and a contraction for µ
and T sufficiently small.

Lemma 4.5. Ψ : Zµ,T −→ Zµ,T for µ and T sufficiently small.

Proof. To begin, let u ∈ Zµ,T and set

v1 :=

∫ t

0
e(t−s)LQ(u)ds

v2 :=

∫ t

0
e(t−s)LEds.

Consider v1. This is a solution to
{

(∂t − L)v1 = Q(u),
v1(0) = 0.

The Schauder estimate, followed by the estimate for Q given on page 9 gives

||v1||
xC

2+a, a2
e (MT )

≤ ||v1||
xC

2+a,1+a
2

e (MT )

≤ K||Qu||
xC

a, a2
e (MT )

≤ KC||u||2
xC

2+a, a2
e (MT )

≤ KCµ||u||
xC

2+a, a2
e (MT )

.

Taking µ sufficiently small allows us to force KCµ < 1
2 . So ||v1||

xC
2+a, a2
e (MT )

≤ µ
2 . Note that

this same µ works if we shrink T .
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Regarding v2, note that this is a solution to
{

(∂t − L)v2 = E,
v2(0) = 0.

We recall that E and the coefficients of L are smooth, time-independent and have bounded
0-derivatives of all orders, and so by parabolic regularity any finite number of derivatives of
v2 are bounded. Fixing any ζ we may write

v2(ζ, t) =

∫ t

0
E(ζ) + Lv2(ζ, s)ds, t ∈ [0, T ).

We may now estimate the xC
2+a,1+ a

2
e (MT ) norm of v2. The L∞ norm of spatial derivatives

may be controlled through the Schauder estimates by the norm of E, and can be made as small
as we like by choosing T sufficiently small. Further, as the time derivative of v2 is bounded

and v2(x, 0) = 0, the C
a, a

2
e (MT ) norm of v2 can be made arbitrarily small by choosing T

sufficiently small. We conclude for T small enough

||v2||xC2+a, a2 (MT )
≤ µ

2
.

Thus Ψ : Zµ,T −→ Zµ,T for t ∈ [0, T ]. �

Lemma 4.6. For the µ and T specified in the previous lemma, Ψ : Zµ,T −→ Zµ,T is a
contraction.

Proof. Schauder’s estimate applied to Ψu−Ψv implies

||Ψu−Ψv||
xC

2+a, a2
e (MT )

≤ ||Ψu−Ψv||
xC

2+a,1+a
2

e (MT )

≤ K||Qu−Qv||
xC

a, a2
e (MT )

≤ KCmax{||u||
xC

2+a, a2
e (MT )

, ||v||
xC

2+a, a2
e (MT )

}||u− v||
xC

2+a, a2
e (MT )

≤ KCµ||u− v||
xC

2+a, a2
e (MT )

.

Where K and C are the same constants from the previous proof. Consequently KCµ < 1
2 ,

and Ψ is a contraction. �

We are now ready to prove the existence of a solution to the Ricci-DeTurck flow with full
0-regularity.

Theorem 4.7. If h is a smoothly conformally compact metric, then there exists T > 0 and a
solution g ∈ C∞,∞

e (MT ) to (2.2).

Proof. The existence of a solution to (4.3) in Zµ,T follows from the Banach fixed point theorem.
The Schauder estimate applied to the fixed point equation shows that the solution lies in

C
2+a, 2+a

2
e (MT ). This short-time solution yields a solution in the same space to the Ricci-

DeTurck flow by taking g = h + v. We now improve the regularity by using a bootstrap
procedure, applied to the system (2.2). We may write this abstractly as

∂tg +

2∑

|β|=0

aβ(h, g)D
βg,
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where the coefficients aβ at worst satisfy Dγaβ ∈ Ca, a
2 (MT ), for |γ| = 1. By parabolic

regularity (c.f. Proposition 3.1) we conclude Dγg ∈ C
2+a, 2+a

2
e (MT ) for all |γ| = 1, which

allows us to improve the spatial regularity. By bootstrapping, and then using the equation to
improve regularity in time, we find g ∈ C∞,∞

e (MT ). �

5. Beyond 0-regularity

In the previous section we proved short-time existence of the Ricci-DeTurck flow starting
at a smoothly conformally compact metric. The solution was constructed in 0-Hölder spaces
and is smooth in time and 0-derivatives. We can expect more as the inhomogeneous terms in
equation (4.4) are smooth up to the boundary with respect to background derivatives. In this
section we prove the solution remains smoothly conformally compact on the entire interval of
existence. The arguments of this section are modeled on the arguments in [20].

We begin by writing (4.4) more compactly as

(5.1) v = −HE −HQv,

where H is the time convolution of the heat operator appearing in (4.4).
We will need to introduce function spaces intermediate between the 0-Hölder spaces and

functions smooth up to the boundary. Define xµCk
b (MT ) to be the space of functions such

that up to k b-derivatives of the function lie in C
a, a

2
e (MT ). The following lemma gives the

main mapping property of H on these spaces.

Lemma 5.1. For k ≥ 1,

H : xµCk
b (MT ) −→ xµCk

b (MT )

Proof. Suppose that f ∈ xµC1
b (MT ). Consider taking an arbitrary b-derivative of Hf , we

write

∂y(Hf) = H(∂yf) + [H, ∂y ]f.

Since ∂yf ∈ xµC
a, a

2
e (MT ), and H : xµC

a, a
2

e (MT ) −→ xµC
2+a, 2+a

2
e (MT ), the first term lies again

in xµC
a, a

2
e (MT ). For the other term, by Proposition A.6 and Corollary A.5, [H, ∂y] has the

same mapping properties as H, and again maps xµC1
b (MT ) ⊂ xµC

a, a
2

e (MT ) to xµC
a, a

2
e (MT ).

This implies that Hf ∈ xµC1
b (MT ).

By iteration one shows H : xµCk
b (MT ) −→ xµCk

b (MT ). �

We now state the main result of this section

Theorem 5.2. Let g be a solution to (2.2) in C∞,∞
e (MT ), with h smoothly conformally

compact. Then g(t) is smoothly conformally compact for all t ∈ [0, T ).

Proof. Consider the term HE. As h is smoothly conformally compact, E ∈ xC∞(MT ). Now
H preserves polyhomogeneity via Proposition 3.3, and so HE ∈ xC∞(MT ). Thus we need
only focus on the second term.

In order to handle the term HQv we take advantage of the improved decay of Qv. If
v ∈ xC∞,∞

e (MT ), then Qv ∈ x2C∞,∞
e (MT ), which H maps to x2C∞,∞

e (MT ). Consequently,
taking any b-derivative of HQv yields

∂yHQv = x−1 (x∂y(HQv)) ∈ xC∞,∞
e (MT ),

which shows a gain of one tangential derivative. This argument iterates, as we now show.
Step 1: The tensor v is fully tangentially regular, i.e. v ∈ xC∞

b (MT ).
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Fix any finite k. Given control of k 0-derivatives, we iterate the fixed point equation k
times to obtain an expression of the form

v =

k−1∑

j=0

(HQ)jHE + (HQ)kv,

The summation term causes no problems, already being smooth up to the boundary.
The term (HQ)kv ∈ x2kC∞,∞

e (MT ), and upon taking 2k − 1 tangential derivatives we find

(∂y)
2k−1(HQ)kv ∈ xC∞,∞

e (MT ). We conclude v ∈ xC2k−1
b (MT ). As k is arbitrary, this step

is complete.
Step 2: v ∈ xC∞(MT ).

We return to the equation

v = −HE −HQv,

Note that initially, v ∈ xC∞
b (MT ). Since 0-vector fields are combinations of x∂x and x∂y,

we find that Q(v) ∈ x2C∞
b (MT ).

We will now use the structure of the heat kernel as a polyhomogeneous distribution to
prove polyhomogeneity of v. Given that v ∈ xC∞

b (MT ) satisfies

v = −HE −HQv,

We see that Qv ∈ x2C∞
b (MT ), and so we may decompose v as

v = v′ + v′′ ∈ xC∞(MT ) + x2C∞
b (MT ).

We now insert this back into (5.1). Using Lemma 4.4, we find

Q(v′ + v′′) = x2C∞(MT ) + x3C∞
b (MT ).

Equation (5.1) now lets us conclude

v ∈ xC∞(MT ) + x3C∞
b (MT ).

Iterating we conclude v ∈ xC∞(MT ). �

We have proved v ∈ xC∞(MT ), i.e. that

v = xvij
dxi

x

dxj

x
,

where vij is smooth up to the boundary. So now x2v = xvijdx
idxj and consequently g = h+v

is smoothly conformally compact. This completes the proof of Theorem A.

6. Stability about hyperbolic space

In [23] the authors proved a stability result for hyperbolic space under the Ricci flow.
We review their main theorem. In the following h denotes the standard hyperbolic metric
on H

n. Ck denotes the space of sections of a bundle with up to k continuous covariant
derivatives with respect to h in L∞(Hn). M0(Hn) denotes the space of continuous metrics on
H

n. M∞
0 (Hn × [0,∞)) denotes the space of continuous metrics which are smooth for positive

times and, when restricted to time intervals of the form [δ,∞) are uniformly bounded in Ck.
In particular the main result of [23] is
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Theorem 6.1. Let n ≥ 4. For all K > 0 there exists ǫ1 = ǫ1(n,K) > 0 such that the
following holds. Let g0 ∈ M0(Hn) satisfy

∫

Hn

|g0 − h|2hdvolh ≤ K,

and

sup
Hn

|g0 − h|h ≤ ǫ1.

Then there exists a long-time solution g ∈ M∞
0 (Hn, [0,∞)) to the Ricci-DeTurck flow (with

initial metric g0) such that

sup
Hn

|g(t)− h|h ≤ C(n,K)e
− 1

4(n+2)
t
.

Moreover, g(t) −→ h exponentially in Ck as t → ∞ for all k ∈ N.

As the reader may check, Ck in this theorem corresponds to Ck
e : covariant derivatives with

respect to a smoothly conformally compact metric (in this case h) are bounded if and only
if the 0-derivatives are bounded. In view of this, starting with an initial metric sufficiently
close to h in the C0 sense, and of bounded distance from h in the L2 sense, the solution to
the Ricci-DeTurck flow converges in the 0-Hölder spaces to h.

In view of our work, if g0 is initially smoothly conformally compact, then this shows that
the Ricci-DeTurck flow g(t) exists for all time and converges to h in C∞

e . By Theorem 5.2
in the previous section, g(t) remains smoothly conformally compact for all time. This proves
Theorem B.

Appendix A. More on Linear Parabolic PDE theory

In this appendix we give more detail surrounding linear parabolic theory on conformally
compact manifolds. Our approach to understanding these operators is based on the edge heat
calculus developed in [1]. Note that in this appendix we deal exclusively with the 0-case but
the arguments generalize in a straightforward manner to the full complete edge case.

The point of view we adopt is that for a second order uniformly degenerate elliptic operator
with time-independent coefficients, we can explicitly construct the heat kernel as a polyho-
mogeneous distribution on an appropriate manifold with corners that covers M × M × R

+.
In this section we will first describe this blow up space. We then proceed to discuss the heat
kernel as constructed in [1]. We then prove several mapping properties of these kernels. We
conclude by proving Schauder type estimates.

We now introduce the appropriate blow up spaces for the construction of the heat kernel.
First we define the 0-double space: M2

e , originally introduced in [19] for the elliptic edge
calculus. This is a manifold with corners that covers M2, and is obtained by introducing
polar coordinates around the submanifold

∂M ×B ∂M = {(w,w′) ∈ ∂M × ∂M : w = w′}.
So M2

e = [M × M ; ∂M ×B ∂M ]. This will introduce three new boundary hypersurfaces;
following Albin we denote these by B11 (the front face), B01 (the right boundary) and B10

(the left boundary). We denote the blowdown map

βe : M
2
e → M2,

and the edge diagonal by

diage = β−1
e (diag \∂M ×B ∂M).
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We describe the edge double space in terms of coordinate charts. In the interior of M2
e we

may use the usual coordinates
(
(x, y), (x′, y′)

)
=

(
ζ, ζ ′

)
,

where y will always denote coordinates along B and z will always denote coordinates along
F . We will favour the following projective coordinates for M2

e , defined away from B10 and
that express the edge diagonal easily are given by(

(x, y, z),

(
s :=

x′

x
, v :=

y′ − y

x

))
.

Note that in these coordinates, s = 0 is a defining function for B01 and x = 0 for the front
face (away from B10). By reversing the roles of x and x′ in the obvious manner, one may
obtain a second chart covering the remainder of M2

e .
We now introduce the heat space HM2

e . This is given by a parabolic blow up of the
manifoldM2

e ×R+ along the submanifold diage×{0}. This gives us a number of new boundary
hypersurfaces. We keep Albin’s notation for these, illustrated in Figure 1.

B

B

B

B

B

01,011,0

00,1

00,2

10,0

Figure 1. The blown up heat space, HM2
e

We now discuss the coordinate systems we can use on HM2
e . In what follows we work away

from B10,0 (i.e. away from x = 0). Near B11,0, and away from B00,1 we can use
(
(x, y),

(
s′ :=

x′

x
, v′ :=

y′ − y

x

)
, τ := t1/2

)
.

Near B11,0 and the ‘top’ of B00,2 we may use

(A.1)
(
(S,U), ζ ′, τ

)
:=

((
x− x′

x′t1/2
,
y − y′

x′t1/2

)
, (x′, y′), t1/2

)
.

Finally, near B11,0 and the ‘bottom’ of B00,2, close to B00,1 we appear to need to introduce
another coordinate system. However, we observe that this region is reached using the above
coordinates as |(S,U)| → +∞. We will soon see that our heat kernels vanish to infinite order
along this boundary.

We will denote the full blow down map β : HM2
e → M2 × R

+.
Given a manifold with corners M , C∞(M ) denotes functions on M that are smooth in

the interior and smooth up to all boundary hypersurfaces. The space Ċ∞(M) will denote
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smooth functions vanishing to all orders at the boundary hypersurfaces. If F denotes a list
of boundary hypersurfaces then Ċ∞

F (M) denotes smooth functions vanishing to all orders at
all boundary hypersurfaces except those in F ; at the other hypersurfaces we demand the
functions are smooth up to the boundary.

We will also need to define sets of functions that have asymptotic expansions at the bound-
ary hypersurfaces. Let M be a manifold with corners with boundary defining functions xi. A
distribution u is polyhomogeneous conormal1 if:

u ∼
∑

Resj→∞

pj∑

p=0

aj,p(x, y)x
sj (log x)p,

where aj,p ∈ C∞(M). We’ll denote the set of such distributions A∗
phg. We can also restrict the

set of exponents that may occur above. Define an index set to be a discrete subset E ⊂ C×N0

such that

(1) if (sj, pj) ∈ E and |(sj , pj)| −→ ∞, then Re(sj) −→ ∞.

(2) if (s, p) ∈ E then (s+ k, p − l) ∈ E for any k, l ∈ N, l ≤ p.

Given a set of index sets E for each boundary hypersurface, we denote by AE
phg the set of

polyhomogeneous conormal functions with exponents ranging in E . Note that we will use a
few special notations for index sets. The empty set will denote the index set for a function
vanishing to all orders along a hypersurface. A single number n ∈ N0 will denote the index
set {(j, 0) : j ∈ N, j ≥ n} of functions vanishing to order n. Note that the index set {0}
represents functions smooth up to the hypersurface. For more details about operations on
these sets, see the concise review in [19, Appendix A].

A.1. The heat kernel of a uniformly degenerate elliptic operator. Let L be a second
order uniformly degenerate elliptic operator. We consider a heat type equation

{
(∂t − L)u(ζ, t) = 0

u(ζ, 0) = f(ζ),

where f ∈ Γ(M ; E) is a smooth section of a vector bundle E .
The heat kernel of L is a distribution on M2×R

+ so that the solution to the above problem
is given by:

u(ζ, t) =

∫

M
h(ζ, ζ ′, t)f(ζ ′) dvolg(ζ

′).

Here h formally satisfies:

(A.2)

{
(∂t − Lζ)h(ζ, ζ

′, t) = 0
h(ζ, ζ ′, 0) = δ(ζ − ζ ′),

We will see that h = β∗H, where H is a polyhomogeneous distribution on HM2
e .

The actual construction of this distribution is done for half-densities, so that it makes sense
to compose operators. We briefly review Albin’s construction of the heat calculus. We define

a weighted bundle of half-densities D := ρ
−n

2
+2

00,2 ρ
−n+1

2
11,0 Ω1/2(HM2

e ). Kernels of operators in the
heat calculus are elements of

Kk,l(M,D) := ρk00,2ρ
l
11,0Ċ

∞
B00,2,B11,0

(HM2
e ;D).

1See [10] for a discussion and to make the meaning of ∼ precise.
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The action of a kernel KA in Kk,l on smooth half-densities is given by

A(f)(ζ, t) =

∫

M
β∗KA(ζ, ζ

′, t)f(ζ ′).

We’ll denote the operator A acting in this manner by A ∈ Ψk,l
e,Heat.

Albin proves:

Theorem A.1. If L is the scalar Laplacian of a exact edge metric, then A ∈ Ψ2,0
e,Heat, where

A is the heat operator of ∂t − L.

We note that Albin’s construction is closely modeled on the work of Melrose [22], and
generalizes in a straightforward manner to general second order uniformly degenerate elliptic
operators. Furthermore, Melrose also considers the case of elliptic operators between bundles
[22, Theorem 7.29] with diagonal principal symbol. Thus we have

Theorem A.2. If L is a uniformly degenerate elliptic operator with diagonal principal symbol
then, then A ∈ Ψ2,0

e,Heat, where A is the heat operator of ∂t − L.

We now give a brief indication of the proof of theorem and refer the reader to [1, 22]
for further detail. We work in HM2

e with the ansatz that the solution already vanishes to
infinite order at B10,0, B01,0, and B00,1. To deal with the rest of the equation and boundary
hypersurfaces involves three main steps. First, an initial parametrix is constructed by pulling
the heat equation back to HM2

e in coordinates near the blown up diagonal. As B00,2 fibres
over the diagonal, we find that the equation restricts to a Euclidean type heat equation on each
fibre with smooth coefficients in the variables along the fibre. Thus we may progressively solve
way the Taylor series at B00,2 with control of the asymptotics down to B11,0. This handles
the initial condition. The second step is to progressively solve away the Taylor series at B11,0

using the heat kernel of hyperbolic space (recall 0-metrics are asymptotically hyperbolic).
The result of these two steps is a parametrix solving the heat equation to infinite order at all
boundary hypersurfaces. To improve the parametrix to an actual inverse requires an argument
involving Volterra operators and is given in [22, Proposition 7.17].

A.2. Mapping properties. In this section we study the action of the heat kernels in Ψ2,0
e,Heat

above on functions, using Melrose’s pushforward theorem. Figure 2 introduces some important
notation.

We identify functions and half-densities on M2 × R
+ and the factors M × R

+ and M by2

f(x, y, x′, y′, t) ↔ f(x, y, x′, y′, t)x−
(n+1)

2 (x′)−
(n+1)

2 |dxdydx′dy′dt|1/2,

f(x, y, t) ↔ f(x, y, t)x−
(n+1)

2 |dxdydt|1/2,
f(x, y) ↔ f(x)x−

(n+1)
2 |dxdy|1/2.

From [1, page 11] an element of A ∈ Ψ2,0
e,Heat has an integral kernel that may be written as

ρ
−n

2
00,2ρ

−n+1
2

11,0 k · ν, where k is a function that vanishes to infinite order at B10,0, B01,0, and B00,1,

and is smooth up to the boundary at B00,2 and B11,0, and ν is a smooth section of Ω1/2(HM2
e ).

An operator A ∈ Ψ2,0
e,Heat acts on half-densities by

(A.3)

(Af)(x, y, t)x−
n+1
2 |dxdydt|1/2 = (βL)∗

(
ρ
−n

2
00,2ρ

−n+1
2

11,0 kν · (βR)∗(f(x′, y′)(x′)−
n+1
2 |dx′dy′|1/2)

)
.

2Here we omit the smooth factor
√
det g in the densities that follow.
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HMe
2

M2
e

x R β
L R

π πL R

M x R+ M

M2 x R+

+

β β

Figure 2. Definition of various maps

To relate these half-densities, let us work in coordinates near B11,0 and B00,2. We may take

ν = |dSdUdx′dy′dτ |1/2. Pulling our standard half-density on M2 × R
+ back we find

β∗(x−
n+1
2 (x′)−

n+1
2 |dxdydx′dy′dt|1/2)

= (1 + Sτ)−
n+1
2 (x′)−

n+1
2 (x′)−

n+1
2 (2(x′)n+1τn+2)1/2|dSdUdx′dy′dτ |1/2

=
√
2(1 + Sτ)−

n+1
2 (x′)−

n+1
2 τ

n+2
2 ν.

The factor
√
2(1 + Sτ)−(n+1)/2 is smooth and uniformly bounded, so we omit it hereafter.

In order to apply Melrose’s push-forward theorem, we must work with smooth b-densities.

Here is how to arrange this. We multiply both sides by the half density x−
n+1
2 |dxdydt|1/2,

and noting

β∗
L(x

−n+1
2 |dxdydt|1/2)β∗

R((x
′)−

n+1
2 |dx′dy′|1/2) = β∗(x−

n+1
2 (x′)−

n+1
2 |dxdydx′dy′dt|1/2),

we find the action on smooth densities is given by

(Af)(x, y, t)x−(n+1)|dxdydt| = (βL)∗

(
ρ100,2ρ

−n−1
11,0 k · β∗

Rf ν2
)
.

Finally we introduce a total defining function on both sides of this equation to obtain
b-densities, denoted here by the floating b-preindex:

(Af)(x, y, t)xtx−(n+1) b|dxdydt|

= (βL)∗

(
ρ10,0ρ

−n
11,0ρ01,1ρ00,1ρ

2
00,2k · (βR)∗(f(x′, y′)) bν2

)

We now apply this to the following

Proposition A.3. Let A ∈ Ψ2,0
e,Heat. If f ∈ AF

phg(M) then Af ∈ A(F ,0)
phg (M × R

+).

Proof. First, let us consider the b-map βR. As no boundary hypersurface is mapped to a
corner of M , βR is a b-fibration. It is easy to check that the exponent matrix for this map is

B10,0 B11,0 B01,0 B00,1 B00,2

∂X 1 1 0 0 0
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As a consequence, if f ∈ AF
phg(M) with index set F , β∗

Rf ∈ A{F ,F ,0,0,0}
phg (HM2

e ), by the

pull-back theorem [19, Proposition A.13].
The function k is polyhomogeneous with respect to the index set {∅, 0, ∅, ∅, 0}. Accounting

for the powers of the defining functions we obtain the index set {∅,−n, ∅, ∅, 2}. The index set
for the product of this expression with the pull-back of f is then G = {∅,−n + F, ∅, ∅, 2.}.

The map βL is a b-fibration. The exponent matrix for this map is

B10,0 B11,0 B01,0 B00,1 B00,2

H1 0 1 1 0 0
H2 0 0 0 1 1

In the above table we have the labeled hypersurfaces of M×R
+ in the following manner: H1

represents t = 0 and H2 represents x = 0. We now apply Melrose’s pushfoward theorem [19,
Proposition A.18]. Note that the integrability condition is met at B10,0 as Re(G(B10,0)) > 0.
Now the index set for H1 = G(B11,0)∪G(B01,0) = −n + F and H2 = G(B00,1)∪G(B00,2) = 2.
Note that H2 = 2 is not surprising since τ2 = t, from the parabolic blow up.

The calculation here provides the index sets needed to for computing the asymptotics of

(Af)(x, y, t)xtx−(n+1) b|dxdydt|.
Canceling the powers of the defining functions, and returning to the identification of densities

with functions now shows that Af ∈ A(F ,0)
phg (M × R

+). �

We use the above proposition primarily in the form

Corollary A.4. If f ∈ xµC∞(M) then Af ∈ xµC∞(MT ).

Proof. The only point that we have to be careful about is that the previous theorem only
guarantees an expansion in powers of τ =

√
t. However we can obtain full smoothness in

t by using the fact that Af solves the heat equation and is already smooth in the spatial
derivatives. �

Corollary A.5. If f ∈ xµC∞(MT ) and H denotes the time convolution of the heat operator
of A, then Hf ∈ xµC∞(MT ).

We conclude this section with a proposition that we will need in the finer regularity analysis
of the Ricci flow. This shows that the commutator of a b-vector field with an element of the
heat calculus remains in the calculus, and thus has the same mapping properties.

Proposition A.6. If A ∈ Ψ2,0
e;Heat(X) and Vb is any b-vector field, then [A,Vb] ∈ Ψ2,0

e;Heat(X).

Proof. The proof is similar to [19, Proposition 3.30], adapted to the heat calculus setting. We
sketch the proof here. Return to the action on half-densities, equation (A.3), and suppose
that f is a smooth half-density vanishing to all orders at the boundary hypersurfaces. Now
suppose for simplicity that Vb = ∂y is a b-vector field. After an integration by parts, we may
write

(∂yAf)(x, y, t)− (A∂yf)(x, y, t)

= (βL)∗

((
β∗
L(∂y) + β∗

R(∂
T
y′)

)
ρ
−n

2
00,2ρ

−n+1
2

11,0 kν · (βR)∗(f(x′, y′)(x′)−
n+1
2 |dx′dy′|1/2)

)
,

where ∂T
y′ is the adjoint of ∂y′ under the measure. The key now is that while each of ∂y and ∂y′

lifts to a vector field singular near B00,2, their sum cancels this behaviour. Indeed, computing



20 ERIC BAHUAUD

in the coordinates defined in equation (A.1), we find that

β∗
L(∂y) =

1

x′τ
∂U

β∗
R(∂

T
y′) = − 1

x′τ
∂U + ∂y′ + smooth function.

Consequently, β∗
L(∂y) + β∗

R(∂
T
y′) does not affect the asymptotics of the kernel, and [A,Vb] ∈

Ψ2,0
e;Heat(X). �

We conclude with a discussion of the main existence theorem for the inhomogeneous Cauchy
problem:

(A.4)

{
(∂t − L)u(ζ, t) = f(ζ, t)

u(ζ, 0) = 0,

where f ∈ xµC
a, a

2
e (MT ) and L is a second order uniformly degenerate elliptic operator with

coefficients in Ca
e .

Theorem A.7. Suppose L is a second order uniformly degenerate elliptic operator with

time-independent coefficients. For every f ∈ xµC
a, a

2
e (MT ) there is a solution u to (A.4)

in xµC
2+a, 2+a

2
e (M). Moreover, u satisfies the Schauder-type estimate

(A.5) ||u||
xµC

2+a,
2+a
2

e (MT )
≤ K||f ||

xµC
a, a2
e (MT )

.

Proof. By Duhamel’s principle, a solution to (A.4) is given by

(A.6) u(ζ, t) =

∫ t

0

∫

M
h(ζ, ζ ′, t− t′)f(ζ ′, t′) dvolg(ζ

′)dt′,

where h is the heat kernel of the heat operator etL, where etL ∈ Ψ2,0
e,Heat.

We now discuss the estimates. The case for nonzero weight µ follows from the unweighted

estimate, as to solve the inhomogeneous problem with u ∈ xµC
2+a, 2+a

2
e (M) amounts to solving

(∂t − x−µLxµ)u′(ζ, t)) = f ′(ζ, t)

for with u′ and f ′ in appropriate unweighted spaces. The kernel of the conjugated operator
x−µLxµ has precisely the same asymptotics as the kernel of L, as may be seen by working in
coordinates near the left hand corner. So the mapping properties follow from the µ = 0 case.

The strategy is now to cut up the space HM2
e . Consider a function φ equal to one in a

tubular neighbourhood of B00,2 and vanishing outside a slightly larger tubular neighbourhood.
We may write the heat kernel as

h = h1 + h2 := φh+ (1− φ)h.

To prove (3.2), it will suffice to estimate both

u1(ζ, t) =

∫ t

0

∫

M
h1(ζ, ζ

′, t− t′)f(ζ ′, t′) dvolg(ζ
′)dt′

and

u2(ζ, t) =

∫ t

0

∫

M
h2(ζ, ζ

′, t− t′)f(ζ ′, t′) dvolg(ζ
′)dt′

Regarding the estimate for u2, we view h2 as a polyhomogeneous distribution vanishing
to infinite order at B10,0, B01,0, B00,1, B00,2 and smooth up to B11,0. The estimates are then
straightforward when working in coordinates near the left hand corner.
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Regarding the estimate for u1, we now use the Whitney decomposition from Section 3 to
pull back the integral near B00,2 to a fixed bounded subset of Rn+1 × R

+. As h1 shares the
asymptotics of the euclidean heat kernel, this reduces the estimate to the classical parabolic
case, for example done in [16]. We forgo the lengthy argument. �

References

1. Pierre Albin, A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-
Bonnet theorem, Adv. Math. 213 (2007), no. 1, 1–52. MR MR2331237 (2008h:58043)

2. Pierre Albin, Clara L. Aldana, and Frédéric Rochon, Ricci flow and the determinant of the Laplacian on
non-compact surfaces, (2009).

3. Eric Bahuaud and Romain Gicquaud, Conformal compactification of asymptotically locally hyperbolic met-
rics, Journal of Geometric Analysis (2010).

4. Eric Bahuaud and Dylan Helliwell, Short-time existence for some higher-order geometric flows, 2010.
5. Richard Bamler, Stability of hyperbolic manifolds with cusps under Ricci flow, (2010).
6. Olivier Biquard (ed.), AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA

Lectures in Mathematics and Theoretical Physics, vol. 8, European Mathematical Society (EMS), Zürich,
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