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Abstract

A homogeneous symmetric structure on an associative superalgebra A is a non-degenerate,
supersymmetric, homogeneous (i.e. even or odd) and associative bilinear form on A. In this
paper, we show that any associative superalgebra with non null product can not admit simul-
taneously even-symmetric and odd-symmetric structure. We prove that all simple associative
superalgebras admit either even-symmetric or odd-symmetric structure and we give explicitly,
in every case, the homogeneous symmetric structures. We introduce some notions of gener-
alized double extensions in order to give inductive descriptions of even-symmetric associative
superalgebras and odd-symmetric associative superalgebras. We obtain also an other interest-
ing description of odd-symmetric associative superalgebras whose even parts are semi-simple
bimodules without using the notions of double extensions.
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1 Introduction

In this paper, we consider finite dimensional associative superalgebras over an algebraically closed
commutative field K of characteristic zero. A homogeneous symmetric associative superalgebra
is an associative superalgebra with non-degenerate, supersymmetric, homogeneous and associa-
tive bilinear form. Homogeneous symmetric associative superalgebras, more precisely with even-
symmetric structures, appeared in [3] in order to study symmetric Novikov superalgebras. In
particular, the notion of generalized double extension of even-symmetric associative superalge-
bras was introduced in [3]. This notion is a generalization in case of associative superalgebras of
the notion of double extension of symmetric associative algebras introduced in [2]. A different
construction, namely T*—extension, was given in [6] to describe nilpotent associative algebras.
By using the notion of double extension introduced in [2] and the notion of T*—extension, the
descriptions of symmetric associative commutative algebras was obtained in [5].

Finite dimensional simple associative superalgebras over a field K of characteristic # 2 was
classified in [I0]. In the case when K is an algebraically closed field, one can find the list of finite
dimensional simple associative superalgebras in [7]. Contrary to what happens in case of Lie su-
peralgebras, in the third section of this paper, we prove that all simple associative superalgebras
admit homogeneous symmetric structures. More precisely, we give the homogeneous symmetric


http://arxiv.org/abs/1011.3002v1

structure on every simple associative superalgebra. Next, we prove that if A is an associative
superalgebra with non null product, then it can not admit simultaneously even-symmetric and
odd-symmetric structure. The fourth section will be devoted to the descriptions of associative
superalgebras A = Ay ® A7 with homogeneous symmetric structures such that Ag is a semi-simple
Ag-bimodule. In particular, in the case of odd-symmetric associative superalgebras whose even
parts are semi-simple bimodules, we give an interesting description without using the notions of
double extensions. Finally, in the last section, we recall the notion of the generalized double
extension of even-symmetric associative superalgebras introduced in [3] and we introduce the gen-
eralized double extension of odd-symmetric associative superalgebras in order to give inductive
descriptions of these two types of associative superalgebras.

2 Definitions and preliminaries

A superalgebra A is a Zy-graded algebra A = A @ Ag over K (i.e Ay.Ag C Ao for a, f € Zs).
An element x in A}y, where | z |= 0,1, is said to be homogeneous of degree | z |. An associative
superalgebra is just a superalgebra that is associative as an ordinary algebra. Let Bil(A4,K) be
the set of all bilinear forms on A. Following [9], Bil(A,K) is a Zs-graded vector space such that:

Bil(A,K), = {B € Bil(A,K); B(Aa, Ag) C Kasptyi, B € Lo} ,Vy € Lo,

where the Zg graduation of the field K is given by: (K)g = K et (K); = {0}. An element
B in Bil(A,K),, where v = 0,1, is said to be homogeneous of degree v. More precisely, if
B € Bil(A,K); (resp. B € Bil(A,K);) then B is called even (resp. odd) bilinear form.

Definition 2.1. Let (A,.) be an associative superalgebra. A homogeneous bilinear form B on A
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(i) supersymmetric if: B(z,y) = (=1)*WB(y, z), Vo € Al ¥ € Apyjs
(i) associative if: B(x.y,z) = B(x,y.2), Va,y,z € A;
(iii) non-degenerate if: x € A satisfies B(x,y) =0, Vy € A, then x = 0.

Definition 2.2. An even-symmetric (resp. odd-symmetric) associative superalgebra A is an as-
sociative superalgebra provided with an even (resp. odd), supersymmetric, associative and non-
degenerate bilinear form B. A provided with B is denoted by (A, B) and B is called an even-
symmetric (resp. odd-symmetric) structure on A.

In this paper, we study associative superalgebras with homogeneous symmetric structures.
A natural question that arises is: Which condition(s) must an associative superalgebra satisfy so
that it does not admits simultaneously even-symmetric and odd-symmetric structure? The answer
of this question is in the following subsection which we begin by characterizing even-symmetric
associative superalgebras and odd-symmetric associative superalgebras.

2.1 Incompatibility of even-symmetric and odd-symmetric structures

In the following, we consider that A is an associative superalgebra and we recall that for an asso-
ciative superalgebra A = Ay ® A, we have:

e Ag and Az possess a structure of Ag-bimodules by meauns of (L, R) where Va € Ag, L(z) := L,
and R(z) := R, are respectively the left and right multiplications of A; by z, where i € {0, 1}.



e A5* and A7" possess a structure of Ag-bimodules by means of (L*, R*) such that for x € Ag,
L*(z)(f) := fo Ry and R*(z)(f):= foL,, Vfe& A;*whereic {0,1}.

Proposition 2.3. A is an even-symmetric associative superalgebra if and only if there exist two
isomorphisms of Ag—bimodules ¢g : Ag — Ag”™ and ¢7 : A7 — A7" such that:

bi(z)(y) = (—1)i¢i(y)($)a Vo,y € A, Vi e {0,1}
t1(zy)(z) = ¢o(@)(y.2), Vo € Ag, y, 2z € A1

Proof. Let B be an even-symmetric structure on A. It is clear that By := B |A6><A6 (resp. By :=
B | Arx AI) is symmetric (resp. antisymmetric), non-degenerate bilinear form over Ag (resp. Ag).
For i € {0,1}, we consider the following map ¢; : A; — A;" defined by ¢;(z) := B(x,.),
Vax € A;. We can easily check that Vi € {0,1}, ¢; is an isomorphism of vector spaces such that:

$1(2.9)(2) = ¢o(2)(y-2), V& € Ag, y, 2 € Af and ¢4(2)(y) = (—1)'¢i(y)(z), Va,y € A;. Finally to
prove that ¢; is a morphism of Ag—bimodules, let us consider y € Ay, z,z € A;,

¢i(Ry(2))(2) = ¢i(2.y)(2) = Bi(2.y,2) = (Bi(x,.) 0 Ly)(2) = R*(y)(¢i(2))(2),
$i(Ly(2))(2) = di(y-x)(2) = Bi(y.x, 2) = Bi(w, z.y) = (¢i(w) o Ry)(2) = L*(y)(¢4(x))(2)-

Consequently, Vi € {0,1}, ¢; is an isomorphism of Ag—bimodules. Conversely, suppose that for
i € {0,1}, there exist an isomorphism of Ag—bimodules ¢; : A; — A} such that ¢;(z)(y) =
(—=1)'¢i(y)(x), Vo,y € A; and ¢1(z.y)(2) = ¢o(x)(y.2), Vx € Ap, y,z € A;. We define the
following bilinear form on A by: B(x,y) := ¢:(z)(y),Vr,y € A; and B(Ag, A7) = {0}. By
definition, B is even, non-degenerate and supersymmetric such that for x,y, z € Ag,

B(z.y,z) = ¢o(Ry(2))(2) = (do(x) 0 Ly)(2) = B(x,y.2).
And for z,z € A7, y € Ag, we have
B(z.y,z) = ¢1(Ry(2))(2) = (¢1(x) 0 Ly)(2) = B(z,y.2).

Hence, we conclude that (A, B) is an even-symmetric associative superalgebra.
O

Proposition 2.4. A is an odd-symmetric associative superalgebra if and only if there exist an
isomorphism of Ag—bimodules ¢ : A7 — A" such that ¢(x)(y.2) = ¢(2)(z.y), Vx,y,2 € Aj.

Proof. Let B be an odd-symmetric structure on A. We consider the following linear map ¢ :
A7 — A? defined by ¢(z) := B(x,.), Vo € A;. As B is odd and non-degenerate bilinear form,
then ¢ is an isomorphism of vector spaces. In addition, by the associativity of B, it is clear
that ¢ satisfies ¢(z)(y.z) = &(z)(x.y), Va,y,z € Aj. Finally, to prove that ¢ is a morphism of
Ag-bimodules, let us consider y, z € A and = € Az, then

P(Ry(2))(2) = B(x.y, 2) = B(x,y.2) = Bz, Ly(2)) = (B(x,.) o Ly)(2) = R*(y)(¢(«))(2)

¢(Ly(2))(2) = By, 2) = B(x,2.y) = Bz, Ry(2)) = (B(x,.) o By)(2) = L (y)(¢(x))(2)-
Consequently, ¢ is an isomorphism of Ag—bimodules. Conversely, let ¢ : A; — Af be an
isomorphism of Ag—bimodules such that ¢(z)(y.z) = ¢(z)(x.y), Va,y,z € A;. We consider the
following bilinear form defined on A by: B(Ag, Ag) = B(Ai, A1) = {0} and B(z,y) = B(y,z) =
o(x)(y), Vo € A,y € Ag. By definition, B is odd and non-degenerate. In addition for z €
Ai,y,z € Ag we have:

B(z.y,2) = p(x.y)(2) = ¢(Ry(2))(2) = (¢(x) 0 Ly)(2) = ¢(x)(y-2) = B(x,y.2),
B(z,y.x) = Bly.x,z) = ¢(Ly(7))(2) = (¢(x) 0 Ry)(2) = B(x, 2.y) = B(z.y, z).

Then, we conclude that (A, B) is an odd-symmetric associative superalgebra.



By Proposition 23] and Proposition 2.4 we have the following proposition that we find which
condition(s) must an associative superalgebra satisfy so that it does not possess simultaneously
an even-symmetric and an odd-symmetric structure.

Proposition 2.5. Any associative superalgebra with non-null product does not admits simultane-
ously an even-symmetric and an odd-symmetric structure.

Proof. Supposing that A is endowed with an even-symmetric and an odd-symmetric structure
which are denoted respectively by B and B and proving that A is with null product. Following
Proposition 2.3 (resp. Proposition 2.4)), we have Ay and Ag" (resp. A; and Ag™ ) are isomorphic
as Ag-bimodules by means of ¢g (resp. ¢). Consequently, we have A and A; are isomorphic
as Ag-bimodules by means of ¢ = ¢~ o ¢, where ¢~ is the bijective map of ¢. So, we can
define the following bilinear form f on A as follows : f(z,y) = Bi(v¥(z),¥(y)), Vz,y € Ag, where
B; =B Arxa;- LThe fact that Bj is an antisymmetric non-degenerate bilinear form on A7 and v is
an isomorphism implies that f is an antisymmetric non-degenerate bilinear form on Ag. Moreover,
f is associative since for z,y, z € Ay, we have

fley,z) = Bi(w(w-y),w(@):Bi(w(Ry(z)) ¥(2)) = Bi(Ry (d(2)),¥(2))
Bi(¢(x), Ly(¢(2))) = Bi(¢(2), ¥ (Ly(2))) = B1(¢(x), ¢ (y-2)) = f(x,y.2)-

Using the antisymmetry and the associativity of f, we deduce that Az*> C Ker(f). In addition,
by the non-degeneracy of f we obtain Ag> = {0}. Finally, by a simple computatlon where we use
the associativity of B and B, we show easily that AgA; = {0} = A7;45 and A;® = {0}.

O

In the sequel, we consider associative superalgebras with non-null product unless otherwise
stated. Meaning that we don’t consider associative superalgebras with simultaneously even-
symmetric and odd-symmetric structures.

Remark 2.6. Recall that in [9], classical Lie superalgebras don’t have simultaneously quadratic
and odd-quadratic structure. Later, in [1, it has been proved that any perfect Lie superalgebra with
even part is a reductive Lie algebra does not possess simultaneously quadratic and odd-quadratic
structure. More generally, we can see in the same way of the previous proposition , that any non
abelian Lie superalgebra does not possess simultaneously a quadratic and an odd-quadratic struc-
tures.

2.2 Some definitions and results independent of the parity of symmetric
structure

Definition 2.7. Let (A, B) be an associative superalgebra with homogeneous symmetric structure
and I a graded two-sided ideal of A.

(i) I is called non-degenerate (resp. degenerate) if the restriction of B to I x I is a non-
degenerate (resp. degenerate) bilinear form;

(ii) (A, B) is called B-irreducible if A does not contains non-degenerate graded two-sided ideal
other than {0} and A;

(i) I is called B-irreducible if I is non-degenerate and it does not contains non-degenerate graded

two-sided ideal of A other than {0} and I;

(iv) I is called totally isotropic if B(I,I) = {0}.



Lemma 2.8. Let (A, B) be an associative superalgebra with homogeneous symmetric structure, I
a graded two-sided ideal of A and J its orthogonal with respect to B. Then,

(i) J is a graded two-sided ideal of A and I.J = J.I = {0},
(i) if I is non-degenerate, then A =1® J and J is also non-degenerate,
(i) if I is semi-simple, then I is non-degenerate.

Proof. The proof of assertion (i) is similar to the proof of Lemma IIL5 in [3] in case of even-
symmetric associative superalgebras. The assertion (i) is clear. (i7) By the associativity of B,
we have B((INJ).(INJ),A) = BInNJ,(INnJ).A) = {0} and which imply that I nJ = {0}
since [ is semi-simple. Consequently, we have A = I @ J and so by the non-degeneracy of B, we

conclude that I is non-degenerate.
O

The following proposition is an immediate consequence of Lemma 2.8

Proposition 2.9. Fvery associative superalgebra with homogeneous symmetric structure is an
orthogonal direct sums of B-irreducible graded two-sided ideals.

Following the proposition above, the description of even-symmetric or odd-symmetric asso-
ciative superalgebras amounts to the description of those that are B-irreducible. Among even-
symmetric or odd-symmetric B-irreducible associative superalgebras, we find those that are B-
irreducible non-simple. In [3], we introduced the notion of the generalized double extension of
even-symmetric B-irreducible non-simple associative superalgebras to describe symmetric Novikov
superalgebras. The minimal graded two-sided ideal played an important role for the introduction
of this notion. In the following, we will proceed similar to [3] to give an inductive description of
homogeneous-symmetric associative superalgebras. For this reason, we start by giving a characteri-
zation of minimal graded two-sided ideal of associative superalgebras with homogeneous structures.

Definition 2.10. Let A be an associative superalgebra and I a graded two-sided ideal of A. I is
called minimal if I ¢ {{0}, A} and if J is a graded two-sided ideal of A such that J C I then

J e {{0},I}.

Lemma 2.11. Let (A, B) be an associative superalgebra with homogeneous symmetric structure
and I a minimal graded two-sided ideal of A, then I is simple or I is with null product such that
Al =1 =1A or I =Kz where x is a homogeneous element of Ann(A).

Proof. Let I be a minimal graded two-sided ideal of A and J its orthogonal with respect to B.
As INJ is a graded two-sided ideal of A which is included in I, then we have I NJ = {0} or
INJ = 1. First, we suppose that I N J = {0}, then A = I @& J and it follows that any graded
two-sided ideal of I is a graded two-sided ideal of A. So, we deduce that [ is simple. Next, if
INnJ =1, then by Lemma 28 I is with null product. On the other hand, AI and I A are two
graded two-sided ideals of A which are included in I. Consequently, by the minimality of I, we
have AI € {{0},I} and TA € {{0},I}. We can deduce by a simple computation where we use
the associativity and the non-degeneracy of B, that we have uniquely Al = I = [ A. It follows
that I is a graded two-sided ideal with null product such that Al = I = IA or I = Kz, where x
is a homogeneous element of Ann(A).

O



Remark 2.12. If (A, B) is a non-simple associative superalgebra with B-irreducible homogeneous
symmetric structure such that dimA > 1, then any minimal graded two-sided ideal of A is totally
isotropic and so it is not simple.

Lemma 2.13. Let (A, B) be a non-simple associative superalgebra with B-irreducible homogeneous
symmetric structure such that dimA > 1. Let I be a minimal graded two-sided ideal of A and J
its orthogonal with respect to B. Then:

(i) A/J is a simple associative superalgebra or a one-dimensional superalgebra with null product,

(i) AJJ is a one-dimensional superalgebra with null product if and only if I = Kx, where x is a
homogeneous element of Ann(A).

Proof. (i) As I is a minimal graded two-sided ideal of A, then its orthogonal J is a maximal
two-sided ideal of A and consequently the set of all ideal of A/J is composed by {{0},A/J}.
So, we have A/J is a simple associative superalgebra or a one-dimensional superalgebra with null
product. (i) We suppose that A/J is the one-dimensional superalgebra with null product. Then,
dimlI = 1 and which implies by hypothesis that I is totally isotropic. So I = Kz where z is a
homogeneous element of J. As I C J and B is non-degenerate, there exist a homogeneous element
y in A such that A = J @ Ky with B(z,y) # 0 and y? € J since A/J is with null product.
Now, we prove that € Ann(A). It is clear, by Lemma 2§ that z.J = {0} = J.z. On the over
hand, B(z.y, A) = B(z.y,J ® Ky) = {0}. Hence z.y = y.x = 0 and consequently = € Ann(A).
Conversely, let us counsider that I = Kz, where € Ann(A), and J its orthogonal with respect to
B. According to Remark 2.12] we have [ is totally isotropic. So since B is non-degenerate, there
exist a homogeneous element y in A such that A = J® Ky and B(z,y) # 0. Proving that y* € J.
Supposing that y? = j + ky, where j € J et k € K. Then, 0 = B(z.y,y) = B(x,y?) = kB(z,y)
and consequently, we obtain that & = 0. So y* € J and we deduce that A/.J is a one-dimensional

superalgebra with null product.
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3 Simple associative superalgebras with homogeneous sym-
metric structures

Following Proposition 2.5 simple associative superalgebras don’t admit simultaneously even-
symmetric and odd-symmetric structures. In [7], We find the list of all simple associative su-
peralgebras over an algebraically closed field K up isomorphism. In this section, we will prove
that all simple associative superalgebras admit homogeneous symmetric structures. We give ex-
plicitly simple associatives superalgebras which admit even-symmetric structures and those that
admit odd-symmetric structures. The list of all simple associative superalgebras given in [7] is as
follows:

, The algebra of square matrix of order n over K such that:

{( 8 2 ) ra € M. (K),be MS(K)}, A = {( 2 (C) ) ¢ € Myys(K),d € MSXT(K)},
where r > 1, s > 0 and r + s = n. This superalgebra is denoted by M, 4(K).

(b) The sub-superalgebra A = A @ Az of M,,(K) such that:

Aoz{d::(g 2):aeMn(K)},A1:{b::(2 8):beMn(K)}.

We denote this superalgebra by @, (K).



In Proposition B.1] (resp. Proposition B.2) below, we prove that M, ¢(K), where » > 1 and
s > 0, are the only even-symmetric simple associative superalgebras (resp. @, (K), where n € N*
are the only odd-symmetric simple associative superalgebras).

Proposition 3.1. M, ;(K), where r > 1 and s > 0, are the unique even-symmetric simple as-
sociative superalgebras up isomorphism. In particular, the field K is the unique even-symmetric
sitmple associative super-commutative superalgebra up isomorphism.

Proof. Let A be a simple associative superalgebra, then by [7], A € {M, s(K), Q,(K)}.

First case: Let A = @, (K), where n € N*. If n = 1, since dim(Q1(K)) = 1, then @Q;(K)
doesn’t admits any even-symmetric structure. Suppose that n > 1 and consider the following basis

of Qn(K)

B = ( e(z')j e(i)j ) VFo= ( e(jj eéj ) , where (e;5) 1<i<n, is the usual basis of M, (K)
I<j<n

It is clear that EijElk = 5leik; Fijﬂk = 5leik7 Eijﬂk = 5jlﬂk7 EjElk = 5leik~ We suppose

that A admits an even-symmetric structure B. Then by the associativity of B we have:

B(E11,E11) = B(Eu, FiiFi1) = B(EvwFi1, Fi1) = B(Fi1, Fi1) =0,
because B|A1xA1 is skew symmetric. Now, let m € {2,--- ;n} and k € {1,--- ,n}, then
B(E11, E1m) = B(Ei1, E11Evm) = B(Ev1, EvmE1) = 0.
B(E11, Emk) = B(E1w, EmiEik) = B(E11Ema, E1k) = 0.

So, we obtain that, E7; is in the orthogonal of A with respect of B and which contradict the fact
that B is even and non-degenerate. We conclude that @, (K) does not admits even-symmetric
structure.

Second case: We suppose that A = M, 4(K), where » € N* and s € N. We consider the
following bilinear form B on A defined by:

- - - - /
B(M,M') = tr(aa’) — tr(bb), VM = ( g 2 ),M’ - ( ‘6 g, ) € Ag,

o , W (0 e (0 ¢
(N,N") = tr(ed)—tr(dd), VN = 40 N =1 0 € Ax,

B(Ap, A1) = {0}.

It is clear that B is even super-symmetric such that B | Agx Ag is non-degenerate. To show
that B is non-degenerate on A, it remains to verify that B | A;xA; is non-degenerate. Let
c = (cmn)1<m<r,1§n§s such that tr(cd) = 0, Vd € M,y (K). Let ig € {1,---,s} and jg €
{1,---,r} and consider d = e;,;,, where (e;;) is the canonical basis of My, (K). Then
Cisjo = (Opg)1<pericg<y SUCh that ap, = 0if p # jo and ajyj, = ¢joip- Hence, the fact that

15,130 >

ISP, 14>

tr(ce;qj,) = 0 implies that c;o;, =0, V1 < jo <r, 1 <ig < s. Consequently ¢ = 0 and we deduce
that B[, , 4, is a non-degenerate bilinear form. In addition, for all a € M,(K), b € My(K),
¢, € M, «s(K) and d,d" € M, (K), we have

B(<g 2)(2 g)(fl’ g))tr(acd’)tr(bdc’)3(<g 2)(2 g)(fl’ C)

So, we conclude that (A, B) is an even-symmetric simple associative superalgebra.

~—



Proposition 3.2. Q,(K), where n € N*, are the unique odd-symmetric simple associative su-
peralgebras up isomorphism. In particular, Q1(K) is the unique odd-symmetric simple associative
super-commutative superalgebra up isomorphism.

Proof. Let A be a simple associative superalgebra, then we have A € {M, ;(K), Q,(K)}.

First case: Let A = M, ((K), where » > 1 and s > 0. If we suppose that B is an odd-
symmetric structure on A, then dimAg = dimA; and so we have r = s. Set n = r = s and let

( 0 ¢ > € Az, where ¢,d € M,,(K), then by the associativity of B, we have:
)

(5 () ) (4

0 c 0

00 0

0 0 0 0 I, 0
+B((0 In)(d 0)’(0 0>)
_—

I, O

Consequently, B(( 0 0

),Al) = {0}. On the other hand, as B is odd, we obtain that

B(( Ig 8 ),AO) = {0}. So ( Ig 8 ) is in the orthogonal of M, ,(K) with respect of B.

Consequently, we conclude that M, ,,(K) are not odd-symmetric associative superalgebras.

Second case: In this case, we consider A = Qn(K), where n € N*, and B is a bilinear form on
A defined by: B(a,b) := tr(ab) and B is null elsewhere. It is clear that B is odd, super-symmetric
and non-degenerate bilinear form. In addition, for a,a’,b,b',b” € M, (K), we have:

B(aa',b) = B(ad',b) = tr((ad)b) = tr(a(a’b)) = B(a,a’b) = B(a,a'b),
BV, 5") = B(b', ") = tr((bb)0") = tr(b(t'b")) = B(b,b'b") = B(b, V'b").

Hence (@, (K), B) is odd-symmetric simple associative superalgebra.

O

Remark 3.3. Let (A, B) be an even-symmetric (resp. odd-symmetric) simple associative super-
algebra. If B’ is an other even-symmetric structure (resp. odd-symmetric structure) on A, then
there exist A € K such that B’ = AB. Indeed, as B and B’ are two bilinear forms non-degenerate
of same degree, then there exist an even automorphism ¢ of A such that B'(x,y) = B(¢(x),y),
Va,y € A. Using the associativity of B and those of B’, we obtain for all x,y,z € A

B(p(z)y,2) = B(p(r),y.2) = B'(z,y.2) = B'(z.y,2) = B(e(z.y), 2)
B(z.p(y),z) = (DB o) = (1) Bp(y), 2.2)
= (=) WHED By ) = (—)FEH D B (4 2 gy = B (3, 2) = Ble(2.y), 2).

Now using the non-degeneracy of B, we obtain that ¢ is a morphism of A-bimodules. Hence,
we can show easily that Ker(p — X\id) is a non-null graded two-sided ideal of A. So, we conclude
by the simplicity of A that A = Ker(¢ — Mid) and consequently p = \id.

4  Associative superalgebras with homogeneous symmetric
structures whose even parts are semi-simple bimodules

This section is composed essentially of two parts. The first one is dedicated to the study of odd-
symmetric associative superalgebras whose even parts are semi-simple bimodules and the second



one is reserved to the study of even-symmetric associative superalgebras whose even parts are
semi-simple bimodules.

4.1 Odd-symmetric associative superalgebras whose even parts are semi-
simple bimodules

We begin with the following two examples which will be useful in the sequel.

Example 1: Let (A4,.) be an associative algebra. We consider the Zs-graded vector space
P(A*) such that (P(A*)); = {0} and (P(A*)); = A*, where A* is the dual space of A. In the
Zs-graded vector space A @ P(A*), we define the product x and the bilinear form B respectively
by:

(z+ f)*(y+h)
B(f, )

x.y+ L*(x)(h) + R*(y)(f), Vz,y € A, f,h € P(AY), (1)
B(z, f) = f(z) and B(A,A) ={0} = B(P(4"), P(4")). (2)

(A ® P(A*),, B) is an odd-symmetric associative superalgebra that we call semi-direct product
of A by P(A*) by means of (L*, R*), where (L*, R*) is defined in subsection 211

Example 2: Let A = A7 be an associative superalgebra, P(A*) a Zs-graded vector space
such that (P(A*))s = A*, (P(A*)); = {0} and v : A x A — P(A*) a bilinear map which satisfies
v(x,y)(2) = v(y,2)(x), Va,y,z € A. In the Zs-graded vector space P(A*) @ A, we define the
following product x and the bilinear form B respectively by:

(f+a)x(g+y) = ~(x,y), Yo,y A, f,he(P(AY), (3)
B(f,z) = Bz, f)=f(zr) and B(A, A) = {0} = B(P(A"), P(A")). (4)

(P(A*)® A, x, B) is an odd-symmetric associative superalgebra that we call generalized semi-direct
product of P(A*) by A by means of ~.

In order to give an inductive description of odd-symmetric associative superalgebras whose
even parts are semi-simple bimodules, we begin by studying the particular case of these superal-
gebras. More precisely, we start by giving an inductive description of odd-symmetric associative
superalgebras whose even parts are semi-simple associative algebras.

Lemma 4.1. Let (A, B) be an odd-symmetric associative superalgebra such that Ag is a semi-
simple associative algebra, then Ann(A) = {0}.

Proof. Tt is clear that Ann(A) N Az C Ann(A4g). Consequently Ann(A) N Ag = {0} because Aj is
a semi-simple algebra. On the other hand, for x € Ann(A) N A; we have B(x, A) = B(x, Ag) =
B(xAg, Ag) = {0}. So we obtain, by the non-degeneracy of B, that = 0 and we conclude that
Ann(A) = {0}.

o

Proposition 4.2. Let (A4, B) be an odd-symmetric B-irreducible non-simple associative superalge-
bra such that Ag is a semi-simple associative algebra. Then I is a minimal graded two-sided ideal
of A if and only if I is a non-trivial irreducible Ag-sub-bimodule of A7 such that I.Ag =1 = Ag.1

Proof. Let I be a minimal graded two-sided ideal of A, then according Remark Z12] I is totally
isotropic. Consequently, by Lemma 2.8 I is with null product. As Aj is a semi-simple associative
algebra, it follows that Ig = {0}. So, we have I C Aj and I.A; = A;.] = {0}. Using the fact



that I.A; = A7.1 = {0}, we can see easily that I.Ag and Ag.I are two two-sided ideals of A which
are included in I. Hence, by the minimality of I, we have I.Ag € {{0},1} and Aj.I € {{0},1}.
By a simple computation where we use Lemma 1] and the associativity of B, we deduce that we
have Ag.I = I = I.Ag. Finally, to prove that I is irreducible, it is just sufficient to verify that all
Ag-sub-bimodule of I are graded ideals of A which are included in I and then we conclude by the
minimality of I. Conversely, we suppose that [ is a non-trivial irreducible Ag-sub-bimodule of Az
such that I.Ag = Ag.I = I. Let J be a graded two-sided ideal of A such that J C I. It is clear that
J is a Ag-sub-bimodule of Aj which is included in I. Since I is an irreducible Ag-sub-bimodule,
then we have J = {0} or J = I and so it follows that I is minimal.

O

Lemma 4.3. Let (A = A ® A1, B) be an odd-symmetric B-irreducible non-simple associative su-
peralgebra such that Ag is a semi-simple associative algebra and I a minimal graded two-sided ideal
of A. If we note S = AgNJ, where J is the orthogonal of I with respect to B, then Ag =S’ & S,
where S is a semi-simple two-sided ideal of Ag. In addition, we have:

(i) SI=15=1 (i) diml =dimS = dimS.A;z.

Proof. By a simple computation, we can see easily that S’ = AgNJ = {z € Ay, B(z,I) = {0}}
is a two-sided ideal of Ag. Consequently, there exist a two-sided ideal S of Ay such that Ag =
S @ S’. Since I is a minimal two-sided ideal of A, then by Proposition 2] we have B(S’'.I, A) =
B(S'.1,Aj) = B(S',1.A5) = B(S',I) = {0} and so S".I = {0}. Similar, we show that I.5" = {0}
and then we deduce that S.I = I.S = I, which prove the assertion (7). Now we prove (ii). As B
is odd and I C Az, then A; CJ. So A=S5Sd®5 ® A; =S & J and consequently dimS = dimlI.
It is clear by using () that, dimI < dimS.A;. Finally to finish, we prove that dimS.A; < dimS.
To be done, we consider the following linear map

v:S.A; — S* defined by v(z) = B(z,.), where z € S.Aj.

As B(S.A7,58" @ A;) = {0}, then for z € S.A7 we have, B(x,S) = {0} if and only if B(z, A) = {0}
and which implies, by the non degeneracy of B, that v is injective.
O

The following lemma is useful in the proposition below.

Lemma 4.4. Let A = Ay & Aj be an associative superalgebra such that Ay is a semi-simple Ag-
bimodule, then A1 = A1 & AgA; @ A Ap, where A;™0 = {x € A1, z.A5 = {0} = Ag.x}.

Proof. Clearly A; is a Ag—sub-bimodule of A; and consequently there exist a non-trivial
Ag—sub-bimodule M of Aj such that A; = A7 @ M. First, if M is irreducible, then M =
AgM ® M Ay because AgM @& M Aj is a non-null Ag-sub-bimodule of M. In addition, we have
AgA; = AgM and A; Ag = M Ag. So the result. If now M is non-irreducible, then M = @",_, M;,
such that Vi € {1,---,n}, M; is an irreducible Ag-sub-bimodule of M. Applying the first
step of this proof to M; Vi € {1,---,n}, we obtain that A; = A% @ AgM @ M Ap and so
A; = A1 @ AjA; @ A1 4.

O

Proposition 4.5. Let (A, B) be a B-irreducible odd-symmetric non-simple associative superal-
gebra such that Ag is a semi-simple associative algebra. Then A = S @ P(S*) is a semi-direct
product of a simple associative algebra S by P(S*) by means of (L*, R*).

Proof. As A is B-irreducible non-simple, then there exist a minimal graded two-sided ideal I of
A. By Proposition 2], I is a non-trivial irreducible Ag-sub-bimodule of A such that I.A7; =
A;. I = {0}. Let S’ = Ag N J, where J is the orthogonal of I with respect to B. By Lemma
A3l we have A = S @ S/, where S is a two-sided semi-simple ideal of Ag and I is a S-bimodule
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of A;. Consequently, there exist a S-sub-bimodule M of A; such that A; = I & M. We apply
Lemma L4 we obtain that A1 =1 & M*® S.M & M.S, where M* = {x € M, 2.5 = S.x = {0}}.
Since S.A; = S.I + S.M, then by Lemma 3] we obtain that dimS.M = dimS.A; — dimSI =
dimS.A7; — dimI = 0. Similar we prove that dimM.S = 0 and we deduce that

A=(SeI)® (S ® M?).

By a direct computation, we can see easily that S @ I is a graded two-sided ideal of A. Moreover,
since B(S® 1,5 @ M?®) = {0}, then S®I is non-degenerate. So we deduce that A = S& I because
A is B-irreducible. As I is a maximal graded ideal of A and according to Lemma 213 we deduce
that S is a simple associative algebra. Now, we consider the following map:

A Sl — Sa P(S%)
s+ir— s+ B(i,.),

where (S @ P(S*),*, B) is a semi-direct product of S by P(5*) defined as example 1. The fact
that B is odd, non-degenerate and associative, implies that A is an isomorphism of odd-symmetric

associative superalgebras. In addition, we have B(A(z), A(y)) = B(z,y).
O

The corollary below, give an inductive description of odd-symmetric associative superalgebras
whose even parts are semi-simple associative algebras.

Corollary 4.6. Let (A, B) be an odd-symmetric associative superalgebra such that Ag is a semi-
simple associative algebra, then A is an orthogonal direct sums of odd-symmetric associative su-
peralgebras A;, i € {1,--- ,n} such that A; is either the superalgebra Q,(K) for a suitable n € N*
or a semi-direct product of M, (K) (where n € N*) by P((M,(K))") by means of (L*, R*).

Now, we consider the general case where (A, B) is an odd-symmetric associative superalgebra
whose even part Ag is a semi-simple Ag-bimodule and we are going to give an inductive description
of these superalgebras. We will show that the particular case where Aj is a semi-simple associa-
tive algebra and the example 2 will be very useful in the determination of this inductive description.

Lemma 4.7. Let (A = Ag ® Az, B) be an odd-symmetric associative superalgebra, then:

Az is a semi-simple Ag-bimodule if and only if Ag is a semi-simple Ag-bimodule.

Proof. According to Proposition [Z4] we have A; & Ap* as Ag-bimodules. Using this argument,
proving the Lemma [£7] is equivalent to proving that Aj is a semi-simple Ag-bimodule if and only
if Ag™ is a semi-simple Ag-bimodule. We suppose that Ag* is a semi-simple Ag-bimodule and M
is a Ag-sub-bimodule of Aj. In the following we are going to seek for a Ag-sub-bimodule N of Ag
such that A5 = M & N. By a simple computation, we can see that M := {f € A", f |y =0} is
a Ag-sub-bimodule of Ag* such that Ag*/M = M* as vector spaces by means of the linear map
a: Ag" — M* defined by a(f) = f |,,;. Consequently, we have

dimAy = dimM + dimM. (5)

The fact that A*j is a semi-simple Ag-bimodule and M is a Ag-sub-bimodule of Ag*, implies the ex-
istence of a Ag-sub-bimodule T of Ag* such that Ag* = TOM. Let T := {x € A, f(z) =0, Vf € T},
then we can see easily that T is a Ag-sub-bimodule of Ag such that Ag/T = T* as vector spaces
by means of the linear map 8 : A5 — T* defined by (z) = &, where Z(g) := g(x), Vg € T*.
Then, we have:

dimAy = dimT + dimT (6)
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On the other hand, for z € T N M we have f(z) = 0 Vf € Ag* because f = ¢ + ¢ where
¢ €T and o € M. So z =0 and we deduce that TN M = {0}. Now, by (@), (@) and the fact
that 7N M = {0}, we infer that Ay = T @ M. Conversely, we suppose that Ag is a semi-simple
Ag-bimodule. Then A5 =51 ®---® S,, ® Ann(Ag), where S; is a simple two-sided ideal of Ay and
Ann(Agp) is the annihilator of Ag. It is well known that Ag is a symmetric associative algebra.
More precisely, if f;(z,y) = tr(RyRy), Vz,y € S; and g is an arbitrary symmetric non-degenerate
bilinear form of Ann(Ag), then the symmetric bilinear form ~ defined by:

{0} = 7|S¢><Sj:/7|S¢XAnn(A§)’ Vi, j € {1,---,n} such that i # j
ji =

and g=° |Ann(A(,)><Ann(A(,)’

is non-degenerate and associative bilinear form on Az. So (Ag,~y) is a symmetric associative
algebra. Consequently, by Proposition 2.3 we deduce that Ag = A*5 by means of ¢5 defined by
¢5(x) :=v(x,.), Vo € Ag and we conclude that A*j is a semi-simple Ag-bimodule.

O

Proposition 4.8. Let (A, B) be an odd-symmetric associative superalgebra such that Ag is a
semi-simple Ag—bimodule, then:

where S; (Tesp S;) is a simple two-sided ideal (resp. an irreducible Ag- bimodule) of Ay (resp. A1)
Vie{l,---,n}, N = Ann(Ag) and N is a trivial Ag-bimodule of A1 (i.e Ag.N = {0} = N.Aj).

Moreover, we have:

(i) 8iS; = {0} = S;S;, fori,je{1,---,n} such that i # j,

(ii) SiS; € {{0},8:}, Vie {1,---,n},

(iii) NS; = {0} = S;N, Vi e {1,--- ,n},

(iv) NN C N.
Proof. According to Lemma (L7, we have (45 =S1 @ - ® S, ® N,~) is a symmetric associative
algebra, where S;, for all i € {1,---,n}, is a simple two-sided ideal of A and N its annihilator.
Consider the two isomorphisms of Ag-bimodules ¢ : Ag — A7 and ¢ : A7 — A7 defined
respectively by ¢g(z) := y(z,.) and ¢(y) := B(y,.), Vo € Ag,y € A;. Consequently, the map 7
defined by 7 := ¢~ o¢y is an isomorphism of Ag-bimodule such that: Va € A, n(x) =, where I €
Ay and y(z,2") = B(Z,2'), Va' € Ap. So, we obtain that A =516 &S, &N®S1&--- &S, BN,

where S; := 1(S;) is an irreducible Ag-sub-bimodule of A1 and N := 5(N) is a trivial Ag-sub-
bimodule of Aj. In addition,

B(S;,8;) = {0}, B(S;,N)=B(N,S;) ={0}, Vi,j e {1,---,n}, such that i # j.

By a simple computation, where we use the associativity and the non-degeneracy of B and the
fact that S; is an irreducible Ag-bimodule of A1, we verify easily that:

N C Ann(A),
{0} = S.N=N.S;,Vie{l, - ,n},
{0} = 8;.8;=25;.5;, Vi,je{l,---,n} such that i # j,
S’i = Si-gi = S’IS“ Vi € {1, se e ,n}.
Now using these identity, we prove (i)-(iv) of Proposition &8 Indeed, let i,j € {1,--- ,n} such
that i # j, then S,5; = (S Si )S S;i(8:9;) = {0} and in the same way, we have S S; = {0}.
On the other hand, B(%:S5:,5;) = B(S5:8;,9;5;) = B(8:(%:5;),8;) = {0} and B(%:5;,N) =
B(Si(5:8:),N) = B(S;S;, SiN) = {0}, so 5;5; C S;. As 5,9, is an ideal of S; and S; is simple,
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we obtain that $;5; = S or S;5; = {0}. Now 7, N i = N(S;5;) = (N§ )S; = {0} and in the same
way, we show that S;N = {0}. Finally, BINN,S;) = B(N(NS;),S;) = {0} and which implies
that NN C N.

O

Following Proposition .8, we conclude that any odd-symmetric associative superalgebra A
whose even part Ag is a semi-simple Ag-bimodule is an orthogonal direct sums of graded non-
degenerate two-sided ideals. More precisely:

A=($35)® - (S, ®5,)® (NaN),
such that Vi € {1,--- ,n}, I, := S; & S; is B,-irreducible, where B; := B |7.x1,- In particular:

If S;9; = S, we can see easily that [; is simple and so it is isomorphic to @, (K) with a
suitable n € N*.

Otherwise (i.e $;9; = {0}), I; := S; ® P(S*;) is the semi-direct product of S; by P(S*;) b
means of (L*, R*) (for definition of (L*, R*), see example (1)).

On the other hand, the ideal N & N := L; ® --- @ Ly, where for all j € {1,---,m}, L; =
(Lj)s @ (Lj); are Bj-irreducible graded two-sided 1deals with B; := B | LyxL; n partmular

If (Lj);-(Lj); = {0}, then L; is the 2-dimensional odd-symmetric associative superalgebra
with null product.

Otherwise (i.e (Lj);.(Lj); # {0}), then L; P((Lj);") & (Lj); is the generalized semi-
direct product of P((L )I*) y (Lj); by means of vj  (Lj); % (Lj); — P((L;);") defined
by 7;(z,y) = Bj(z.y,.), Yz, (L)

In conclusion, any odd-symmetric associative superalgebra (A, B) whose even part Aj is a semi-
simple Ag-bimodule is an orthogonal direct sums of odd-symmetric associative superalgebras
A;, i € {1,---,n} such that A; € {{0},R, Qn(K), M, (K) ® P((M,(K))*), P(M*) @M} where
R is the 2-dimensional odd-symmetric associative superalgebra with null product, M, (K) &
P((M,(K))"), for a suitable n € N*, is the semi-direct product of M, (K) by P((M,(K))") by
means of (L*, R*) and P(M*) & M is the generalized semi-direct product of an associative super-
algebra M = M7 by P(M*) by means of 7 defined as example 2.

4.2 Even-symmetric associative superalgebras whose even parts are semi-
simple bimodules

We start by characterizing the minimal graded two-sided ideal of an even-symmetric associative
superalgebra whose even part is a semi-simple bimodule.

Proposition 4.9. Let (A, B) be an even-symmetric B-irreducible non simple associative superal-
gebra. If we suppose that A is different from the one-dimensional algebra with null product such
that Ag is a semi-simple Ag-bimodule then, I is a minimal graded two-sided ideal of A if and only
if I = Ko where © is a homogeneous element of Ann(A).

Proof. Let I be a minimal graded two-sided ideal of A and J its orthogonal with respect to B. The
fact that A is B-irreducible, non-simple and different from the one-dimensional algebra with null
product implies that I is totally isotropic. According to Lemma 2.8 I is with null product. As
I is minimal, then A/J is a one-dimensional super-algebra or a simple associative superalgebra.
In the first step, we suppose that A/J is a simple associative superalgebra. As the minimal
graded two-sided ideal I is with null product, then I3 = I N Ann(A4g) since the Ag-bimodule Ag
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is semi-simple i.e A5 = S @ Ann(Ag) where S is the greatest semi-simple two-sided ideal of Ag.
Using now the associativity (resp. the parity ) of B, we obtain that B(S, Ann(Ag)) = {0} (resp.
B(S, A1) = {0}). So, it follows that S C J and we deduce that (A/J); = Ann(Ap)/J N Ann(Ap)
as associative algebras. This contradicts the fact that ((4/J)g)* # {0} since A/J is a simple
associative superalgebra. In the second step, we consider A/J is a one-dimensional superalgebra
with null product. Then, by Lemme (7i), we have I = Ka where z is a homogeneous element
of Ann(A).

O

Proposition 4.10. Let (A, B) be an even-symmetric associative superalgebra such that Ag is a
semi-simple Ag-bimodule. If Ann(A) = {0}, then A is orthogonal direct sums of simple even-
symmetric associative superalgebras.

Proof. In order to prove this proposition, we consider the two following cases:

First case: We suppose that A is B-irreducible such that Ann(A) = {0}. If A; = {0}, then
A = A and consequently A is a simple associative algebra. In the following, we suppose that
A; # {0}. If in addition we suppose that A is not simple, then there exist a non-null minimal
graded two-sided ideal I of A. Following Proposition 9, I = Kz where z € Ann(A). But the
fact that Ann(A) = {0}, implies that I = {0} and which contradict the fact that I is minimal. So
we have A is simple.

Second case: We suppose now that A is not B-irreducible such that Ann(A) = {0}. By
Proposition [Z9] we have A = @®"—1 Ay, where Vk € {1,--- ,n}, Ay is an even-symmetric B-
irreducible associative superalgebra such that (Ay)g is a semi-simple (Ay,)g-bimodule and Ann(Ay) =
{0}. Using the first case of this proof, we obtain that Vk € {1,---,n}, Ay is a simple even-
symmetric associative superalgebra.

O

In the following, our next goal is to give an inductive description of even-symmetric associative
superalgebras whose even parts are semi-simple Ag-bimodules. By means of the proposition above,
we reduce the study of these superalgebras to those that are B-irreducible with non-null annihi-
lator. In [3], authors introduced the notion of generalized double extension of even-symmetric
associative superalgebra by a one-dimensional superalgebra with null product in order to give an
inductive description of even-symmetric Novikov superalgebras. We recall This notion, since it will
be very useful in the sequel. Let (A, *, B) be an even-symmetric associative superalgebra , Ke a
one-dimensional superalgebra with null product, k € K. (we recall that: K5 = K and Ky = {0}),
zo € Ag and D € (End(A)),,| such that:

D(xo) = G(x0), D*(z) =20%x, DoG=GoD, D(xxy)=D(x)*y, VoycA, (8)

where G € (End(A)),, which satisfies B(G(z),y) = B(z, D(y)), Vz,y € A. The Zs-graded vector
space A :=Ke* @ A @ Ke endowed with the following product:

e* € Ann(A), ee=uxg+ke*, zy=xzxy+ (71)|6‘B(D(z),y)e*,
ex=D(z)+ (—1)'6‘3(1‘,1'0)6*, x.e = G(x) + B(x,x9)e*, Vr,y € A. 9)

and the following bilinear form:
B laxa =B, B(e*,e) =1, B(e*,Ke* @ A) = {0} = B(e, A& Ke). (10)

is an even-symmetric associative superalgebra. According to [3], A (or (A, B)) is called the
even generalized double extension of A by Ke by means of (D, zg, k) (resp. the odd generalized
double extension of A by Ke by means of (D, zg)) if e is an even (resp. an odd) homogeneous
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element. In particular, we have G = D*, where D* is the adjoint of D with respect to B, in the
case of the even generalized double extension.

Remark 4.11. We remark that if zo = 0 and k = 0, the vector space Ke will be a sub-superalgebra
of A. Consequently A will be obtained by a central extension of A by Ke* and a semi-direct prod-
uct of Ke* @ A by Ke (for definition of central extension and semi-direct product we can see [3]).
In this case the even (resp. odd) generalized double extension will be called the even (resp. odd)
double extension.

Now we suppose that A is an even-symmetric associative superalgebra such that Ag is a semi-
simple Ag—bimodule. Following the product (@) above, we notice that the even part Ag of the odd
generalized double extension coincide with Ag and so it is a semi-simple Ag-bimodule. Whereas,
the even part AO of the even generalized double extension is not in general a semi-simple AO—
bimodule. In order to give an inductive description of even-symmetric associative superalgebras
whose even parts are semi-simple Ag-bimodules, we introduce a particular notion of the even
double extension which is named the elementary even double extension. Let (A4,x*, B) be an
even-symmetric associative superalgebra such that Ag is a semi-simple Ag—bimodule, Ke the
one-dimensional algebra with null product and D an even homomorphism of A such that:

Dl|,, = 0,D*=0, DoD*=D"oD,
D(A7)* A7 = {0}, D(Ag* A7) = {0}, D(A7* Ag) = D(Az) * Ay, . (11)

where D* is the adjoint of D with respect of B. The vector space A := Ke* @ A @ Ke endowed
with the following product:

e* € Ann(A), exe=0,
exx = D(x), xxe=D"(x), xxy=xzx*xy+ B(D(z),y)e*, (12)

and the following supersymmetric bilinear form:

B |A><A = B, E(e*’e) =1, B(e*’Ke* @A) = {0} :F(eaA@Ke)a (13)

is an even-symmetric superalgebra such that Ag is a semi-simple Ag-bimodule. A is called the
elementary even double extension of A by Ke by means of D.

We remark that any even homomorphism D of an even-symmetric associative superalgebra
(A, B) which satisfies the conditions (II]) it satisfies also the conditions () with G = D*, where
D* is the adjoint of D with respect to B, and x¢g = 0. So, we can deduce that the elementary even
double extension of (A, B) by the one-dimensional algebra Ke with null product by means of D is
the even double extension of (A4, B) by Ke by means of D.

Lemma 4.12. Let (A, B) be an even-symmetric B-irreducible associative superalgebra which is
different of the one-dimensional algebra with null product. We suppose that Ay is a semi-simple
Ag-bimodule such that Ann(A)N Ag # {0}, then Ann(A)N Ag is enclosed strictly in Ann(Ag) (i.e
Ann(A) N Ag € Ann(4p)).

Proof. It is clear that Ann(A) N Ay C Ann(Ag). If we suppose that Ann(A) N Ag = Ann(Ap),
then Ann(Ag) is non-null graded two-sided ideal of A. The fact that A is B-irreducible and
different of the one-dimensional algebra with null product, imply that Ann(Ag) is a degenerate
ideal of A, i.e there exist & € Ann(Ag) \ {0} such that B(x, Ann(45)) = {0}. Consequently,
B(z,A) = B(x, Ag) = B(z,S @ Ann(45)) = {0}. We deduce that x is in the orthogonal of A with
respect to B and which contradict the fact that B is non-degenerate.

O
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Proposition 4.13. Let (A,.,B) be an even-symmetric B-irreducible associative superalgebra
which is different of the one-dimensional algebra with null product and such that Ag is semi-
simple Ag-bimodule. If Ann(A) N Ay # {0} (resp. Ann(A) N A; # {0}), then A is an elementary
even double extension (resp. an odd generalized double extension) of an even-symmetric associative
superalgebra W with even part Wg is a semi-simple Wg-bimodule by the one-dimensional algebra
with null product (resp. by the one-dimensional superalgebra with null even part).

Proof. First step: We suppose that Ann(A)NAg # {0}, I := Ke*, where e* € Ann(A)N A\ {0}
and J its orthogonal with respect to B. It is clear by the associativity (resp. the parity) of B
that S C J (resp. A7 C J) where S is the greatest semi-simple ideal of Ag. Consequently by the
minimality of I and the non-degeneracy of B, there exist e € Ann(Ag) such that A = J ¢ Ke
and B(e*,e) # 0. As e € Ann(Ap), then V := Ke is the sub-superalgebra of A and we deduce by
Theorem V.2 of [3] and Remark 1Tl that A is an even double extension of the even-symmetric
associative superalgebra W := J/I by V = Ke with null product by means of the homomor-
phism D of W defined by D(z) := ez, YV € J. Using the associativity of A and the fact that
e € Ann(Ap), we can see easily that D satisfies conditions (IJ). So it comes that A an elementary
even double extension of W by Ke by means of D. In addition, it is clear that the even part W
of the even-symmetric associative superalgebra W is a semi-simple Wg-bimodule.

Second step: Supposing now that Ann(A)NA; # {0}, I := Ke*, where e* € Ann(A)NA:\{0}
and J its orthogonal with respect to B. Similar to the first step of this proof, there exist e € Ag
such that A = J @ Ke and B(e*,e) # 0. Applying Theorem V.2 of [3], we obtain that A is an
odd generalized double extension of the even-symmetric associative superalgebra W := J/I by
the superalgebra V' := Ke with null product by means of the homomorphism D of W defined by
D(z) :=ex, Vo € J and z := e.e € Wy. Moreover, it is trivially that the even-part Wp of the
even-symmetric associative superalgebra W is a semi-simple W5-bimodule since it coincide with
Ag.

O

Remark 4.14. Any two-dimensional even-symmetric associative superalgebra A = Ag ® Aj is an
even-symmetric associative algebra or the even-symmetric associative superalgebra (i.e Ag = {0}).
If we suppose in addition that Ag is a semi-simple Ag-bimodule, then:

If A is B-irreducible, we have A the elementary even double extension of {0} by the one-
dimensional algebra with null product or the odd generalized double extension of {0} by the
superalgebra of one-dimensional with null even part.

Otherwise A is orthogonal direct sum of two copy of K or an orthogonal direct sum of the K
with the one-dimensional algebra with null product.

Let O be the set consisting of {0}, the one-dimensional algebra with null product and M, s(K)
where » > 1 and s > 0.

Corollary 4.15. Let (A4,.,B) be an even-symmetric associative superalgebra such that Ag is a
semi-simple Ag-bimodule. If A ¢ O, then A is obtained from a finite number of element of O by
a finite sequence of elementary even double extensions and/or odd generalized double extensions
and/or orthogonal direct sums.

Proof. We proceed by induction on the dimension of A. If dim(A) = 1, then A is either the field
K or the one-dimensional Lie algebra with null product and in both cases A € O. If dim(A) = 2,
then by Remark T4 we have A is obtained as Corollary Suppose that Corollary [£TI5] is
true for dim(A) < n with n > 2. We consider dim(A) = n. We have to analyze two cases:
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First case: Suppose that A is B-irreducible. If Ann(A) = {0}, then by Proposition EI0]
A is simple. Whereas, if Ann(A) # {0}, by Proposition I3, A is an elementary even double
extension (resp. odd generalized double extension ) of an even-symmetric associative superalgebra
W such that its even part W is a semi-simple Wg-bimodule ( dim(W) = dim(A) — 2) by the one-
dimensional algebra with null product (resp. by the one-dimensional superalgebra ). Applying
the induction hypothesis to W, we infer the corollary for A.

Second case: Now we suppose that A is not B-irreducible. In view of Proposition 2.9
A= @m 1Ak where {A;, 1 <k <m} is a set of B-irreducible graded ideals of A such that
B(Ai, A)) = {0} VE # K'. It is clear that (Ay)p is a semi-simple (Ay)g-bimodule and dim(Ay) <

n, Vk € {1 - ,m}. Applying the induction hypothesis to Aj with k € {1,--- ,m}.
O

5 Inductive description of associative superalgebras with ho-
mogeneous symmetric structure

This section will detail how an associative superalgebra with homogeneous symmetric structure
can be obtained.

5.1 Inductive description of even-symmetric associative superalgebras

We give an inductive description of even-symmetric associative superalgebras by using the notion
of generalized double extension of even-symmetric associative superalgebras. This notion was
introduced in [3] in order to give an inductive description of symmetric Novikov superalgebras.
We begin by recalling some definitions and results established in [3]. Let (W, B) be an even-
symmetric associative superalgebra, V' an associative superalgebra, u : V' — End(W) a linear
map, A : V x V — W a bilinear map and v : V x V — V* a bilinear map. According to [3], the

set composed by {VV, B, Vi, A, 7} is called a context of generalized double extension of W by V

if the following conditions are satisfied:

) (exy) = xxp'(v)(y)
fW)ou(w) = pv)ou (@)
' (v*v')(x) (W' (V') o p (v)(x) — 2 % A(v,0")
(") (A(v,0")) (@) AW, ")) + A(v, 0" % 0") = Moo, 0")

(v, o) (") = ()P 0" ()

I
~—

and

1"

B(A(0, '), A", 0")) + (=)D BV, o), A" 0)
+ (v, ") (0" % 0" — (v, v * 0" (V")

_ ( )\ v|(Jv” |+\v”\+|v”’|)7 Vv N)(’UW*’U)

_ ’7(1)*’1}/ v (///

(
where i/ : V — End(W) such that B(u(v)(z),y) = (=)D Bz, 1/ (v)(y)), Vo e Vio|» T €
Wm,y e W.

Theorem 5.1. [3] Let {W, B,V, Ly A, 7} be a context of generalized double extension of the even-

symmetric associative superalgebra (W, B) by the associative superalgebra V. The Zs-graded vector
space A=V @ W & V* endowed with the following product:

wtz+f)l(wt+y+tg) = vrxw+Ao,w)+v(v,w)+z*xy+d(z,y)+ p(v)(y)
+ V(Uay)+(_1)|ley|goév+ﬂl(w)($)+VI($aw)+foLw
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and the following supersymmetric bilinear form B such that:
Bo+az+ frw+y+g) = Blay)+ (=) Wg() + f(w),

Vwtaz+f)e Ay, (w+y+g) € Ay is an even-symmetric associative superalgebra such that
V* is a totally isotropic graded two-sided ideal of A and W & V* its orthogonal with respect to B.
The even-symmetric associative superalgebra (A, B) is called the generalized double extension of
the even-symmetric associative superalgebra (W, B) by the associative superalgebra V' by means of

(15 X5 y)-

Remark 5.2. IfV := Ke is a one-dimensional superalgebra, then the context {VV, B.V, Ly A, ’y} of

the generalized double extension of W by V is defined by {VV, B,Ke, D, zo,’yo} where D = p(e) €
(End(W)),, zo = Ae,e) € W and o = (e, e)(e) € Ke|. In this case, the generalized double ex-
tension of W by V' by means of (u, \,7y) is called the even (resp. odd) generalized double extension
of W by the Ke by means of (D, xzg,k) (resp. (D,x0)) if e is an even (resp. odd) homogeneous
element.

The following theorem is the converse of the last theorem.

Theorem 5.3. [3] Let (A, ., B) be an even-symmetric B-irreducible non-simple associative super-
algebra with dimension strictly upper than 1, I a totally isotropic graded two-sided ideal of A and
J its orthogonal with respect to B. We define:

(1) The even-symmetric associative superalgebra (A1,Q) := (J/I,Q) such that Q is defined by
Qz,y) == B(z,y), Yo,y € J.

(2) the associative superalgebra As :== A/J.

Then A is isomorphic to the generalized double extension of (A1,Q) by Aa by means of (u, A,7),
where p : Ao — End(Ay) is an even linear map, X : As X Ay — Ay is an even bilinear map and
~v: A X Ag — A" is an even bilinear map.

Proposition 5.4. Let (A, B) be an even-symmetric B-irreducible non-simple associative superal-
gebra such that dimA > 1, then A is a generalized double extension of an even-symmetric asso-
ciative superalgebra by an element of {M, s(K), Qn(K)} or an even generalized double extension
of an even-symmetric associative superalgebra by the one-dimensional algebra with null product
or an odd generalized double extension of an even-symmetric associative superalgebra by the one-
dimenstonal superalgebra with null even part.

Proof. We consider the following two cases:

First case: We suppose that Ann(A) # {0}. Then A is an even generalized double exten-
sion or an odd generalized double extension of an even-symmetric associative superalgebra by
a one-dimensional associative superalgebra with null product. This case was established in [3]
Proposition V.3.

Second case: We suppose that Ann(A) = {0}. Since A is non-simple, then there exist a
minimal graded two-sided ideal I of A. The fact that A is B-irreducible such that dimA > 1,
implies that I is totally isotropic ideal. So, we have I C J. On the other hand, from the non-
degeneracy of B, there exist a Zo-graded vector space V' of A such that A =J @V and B |,
is non-degenerate. According to Lemma and since A/J =V as associative superalgebras, we
obtain that V is a simple associative superalgebras and so V' € {M, 5(K), @,(K)}. Now, applying
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Theorem 5.3, we deduce that A is isomorphic to the generalized double extension of (A41,Q) by
V, where V € {M, s(K), @,(K)}, by means of (i, A,~y) such that

p Vo EndJ/I) ; p)z+I)=va+]T
A VXV = J/I; MNo,w)=vaw+1
v o VXV =V y(u,v)(w) = Blu.v,w).

The following corollary is an immediate consequence of the previous proposition.

Corollary 5.5. Let (A, B) be an even-symmetric associative superalgebra. If A ¢ O, then A is
obtained from a finite number of element of O by a finite sequence of generalized double extensions
by element of {Qn(K), M, s(K)} and/or even generalized double extensions by the one-dimensional
algebra with null product and/or odd generalized double extension by the one-dimensional superal-
gebra with null even part and/or orthogonal direct sums.

5.2 Inductive description of odd-symmetric associative superalgebras

We give inductive description of odd-symmetric associative superalgebras by using the notion of
generalized double extension of odd-symmetric associative superalgebras. To be done, we start
by introducing the generalized double extension of odd-symmetric associative superalgebras. Let
(W, %, B) be an odd-symmetric associative superalgebra, (V,*) an associative superalgebra which
is not necessary odd-symmetric, u : V' — End(W) an even linear map and A : V. x V. — W an
even bilinear map such that:

(v)(x *y) = p(v)(z) * v,

I
pu(v) o p(v')" = p(v')" o p(v),
(

where p(v)” is the adjoint map of u(v) with respect to B. Next, let us consider the Zy-graded
vector space P(V*) such that (P(V*)); :=V*1 et (P(V*)); := V"5, where V* is the dual space
of V. By a simple computation, we can see that P(V*) have a structure of V-bimodule by means
of (I*,r*) such that:
I*:V — Hom(P(V*)) defined by I*(v)(f) := (=1)"Flfo R,
r*: V. — Hom(P(V™)) defined by r*(v)(f) := f o Ly,

where v € V], and f € P(V*)‘ #|- Moreover, we consider the two following even bilinear map:

v:VxW — P(V*) defined by v(v,z)(v"):= B(z,\(v',v));
VW xV — P(V*) defined by V'(z,v)() = B(z, \(v,)).

Besides, let us consider the following linear map ¢ : W x W — P(V*) defined by ¢ (z,y)(v) :=
B(u(v)(z),y). Finally, let v: V x V — P(V*) be an even bilinear map which satisfies:

(5) 7(v,0")(W") = (v, 0")(v),

(6) "y(,U *,U/, v//)(v///> Jr ,.Y(,U, v/)(,U// *,U///) _ /.Y(,U, ,U/ *’U”)(’U”/) _ /.Y(,U/7,U//>(,U/// *v>
= B(A(W",v), A(v',v")) — B(A(v,v"), A(v",v"")).
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We sum all this in the following definition.

Definition 5.6. The set composed by {W, B, V, u, \,v} where (W, B) is an odd-symmetric asso-
ciative superalgebra , V is an associative superalgebra, p, A and v are three even maps defined as
above and which satisfy (dl)-(@) is called a context of generalized double extension of W by V.

Theorem 5.7. Let {W,B,V, u, A\, v} be a context of generalized double extension of the odd-
symmetric associative superalgebra (W, B) by the associative superalgebra V. On the Zs-graded
vector space A := P(V*) @ W @V, we define the following product by:

Wtz + 0 +y+g) = vxv +Av,0") +y(v,0) + p@)(y) + v)(y) + ()"0 R,
+ w (W) (x) + V(W) (@) + fo Ly +xxy+ iz, y)

and the following symmetric bilinear form B by:

Bw+az+ f,v'+y+g):=B(x,y) + f(v') + g(v),

where (v+x+ f) € Ajy) and (V' +y+g) € Apy. (4, B) is an odd-symmetric associative super-
algebra which is called the generalized double extension of W by V' by means of (u, A, 7).

In the following, we prove the Theorem (.10 below and which is the converse of Theorem (.71

Lemma 5.8. Let (A, B) be an odd-symmetric B-irreducible non-simple associative superalgebra,
I a minimal graded two-sided ideal of A and J its orthogonal with respect to B. Then J/I is an
odd-symmetric associative superalgebra.

Proof. The fact that A is non-simple B-irreducible implies that the two-sided ideal I is totally
isotropic (i.e I C J). It is clear that J/I with product (x +I)(y+ 1) =z.y+ 1, Vz,y € Jis an
associative superalgebra. In addition, if we consider the following bilinear form @ on J/I defined
by

Qe+ 1Ly+1):=B(x,y), Vo,yeJ,

then, we can check easily that it is non-degenerate. So, we deduce that (J/I,Q) is an odd-
symmetric associative superalgebra.

O

Lemma 5.9. Let (A, B) be an odd-symmetric B-irreducible non-simple associative superalgebra,
I a minimal graded two-sided ideal A and J its orthogonal with respect to B. If we suppose that
A=J®V, where V is a Zy-graded vector space of A and W := I ®V . Then W, the orthogonal
of W with respect to B, admits a structure of an odd-symmetric associative superalgebra which is
isomorphic to the odd-symmetric associative superalgebra (J/I1,Q).

Proof. By a simple computation, we check that W is a non-degenerate Zy-graded sub-space vector
of A. Hence, A=W oWt =IaW+aV and By = By xw is non-degenerate. Let
z,y € Wt as Wt C J, then z.y = a(z,y) + B(z,y), where a(z,y) € W+ and B(x,y) € I. Using
the associativity of A, we show easily that (W, «) is an associative superalgebra and By 1 define
an odd-symmetric structure on W+. Consequently (W=, a, Byy 1) is an odd-symmetric associative
superalgebra and the restriction of the surjection s : J — J/I to W+ is an isomorphism of

associative superalgebras .
O
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Theorem 5.10. Let (A, B) be an odd-symmetric B-irreducible non-simple associative superalge-
bra, I a minimal graded two-sided ideal of A and J its orthogonal with respect to B. We suppose
that A= J @V, where V is a Za-graded vector space of A, then A is isomorphic to the general-
ized double extension of the odd-symmetric associative superalgebra J/I by V' by means of (1, A, 7).

Proof. Following Lemma[5.8and Lemma[5.9, we have A = I®&W L@V where W+ is the orthogonal
of W := 1@V such that W and J/I are isomorphic. So to prove the theorem it remains to define
a context of generalized double extension of J/I by V. For this reason, we consider the following
three even maps

w  VoEndJ/I) ; p)e+I)=va+T
A VXV = J/IT; ANo,w)=vaw+1
v o VxV =PV 5 v(u,v)(w) = B(uv,w).

By the associativity of A and the associativity of B, we check easily that {J/I,Q,Vu, A, v} form
a context of generalized double extension of the odd-symmetric associative superalgebra J/I by
V and consequently we can consider A = P(V*) @& J/I &V the generalized double extension of
(A, B) by V by means of (u, A\,7). Now, consider the following linear map

AA — A
itx+v — B(,.) +s(z)+o.

We can check easily that A is an isomorphism of odd-symmetric associative superalgebras such
that B(A(z), A(y)) = B(z,y).
O

Proposition 5.11. Let (A, B) be an odd-symmetric B-irreducible non-simple associative superal-
gebra, then A is either a generalized double extension of an odd-symmetric associative superalgebra
by an element of {M, s(K),Qn(K), r>1,5s > 0,n> 1} or a generalized double extension of an
odd-symmetric associative superalgebra by a one-dimensional superalgebra with null product.

Proof. We consider the following two cases:

First case: We suppose that Ann(A) # {0} and we consider I = Ke where e € Ann(A)\ {0}.
We denoted by J the orthogonal of I with respect to B. The fact that B is non-degenerate implies
that there exist a homogeneous element d € A such that A = J®Kd and B(e, d) # 0. According to
Lemma[ZT3] we have A/J is a one-dimensional superalgebra with null product. Hence, we deduce
that V' := Kd is a one-dimensional superalgebra with null product. Now, applying Theorem [5.10]
we obtain that A is a generalized double extension of the odd-symmetric associative superalgebra
(J/1,Q) by V := Kd, where V is with null product.

Second case: We suppose that Ann(A) = {0}. Since A is non-simple, then there exist a
minimal graded two-sided ideal I of A. The fact that A is B-irreducible, implies that I is totally
isotropic ideal. So, we have I C J. On the other hand, as B is non-degenerate, then there exist
V' a Zo-graded vector space of A such that A =J @V and B |;, , is non-degenerate. According
to Lemma and since A/J = V as associative superalgebras, we obtain that V is a simple
associative superalgebras and so V' € {M, ;(K), Q,(K)}. Now, applying Theorem .10, we deduce
that A is a generalized double extension of (J/I,Q) by V, where V € {M, s(K), Q,(K)}.

O

Theorem 5.12. Let (A, B) be an odd-symmetric associative superalgebra. If A ¢ {{0}, Q,(K),n >
then A is obtained from a finite number of element of {{0},Q,(K),n > 1} by a finite sequence
of generalized double extensions by element of {M, s(K), Q,(K)} and/or generalized double exten-
sions by a one-dimensional superalgebra with null product and/or orthogonal direct sums.
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