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HARMONIC MAPPINGS AND DISTANCE FUNCTION

DAVID KALAJ

ABSTRACT. We prove the following theorem: every quasiconformal harmonic
mapping between two plane domains with C1:® (a < 1), respectively C'1!
compact boundary is bi-Lipschitz. The distance function with respect to the
boundary of the image domain is used. This in turn extends a similar result
of the author in for Jordan domains, where stronger boundary conditions
for the image domain were needed.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

We say that a real function v : D — R is ACL (absolutely continuous on lines) in
the region D, if for every closed rectangle R C D with sides parallel to the = and y-
axes, u is absolutely continuous on a.e. horizontal and a.e. vertical line in R. Such
a function has of course, partial derivatives uz, uy a.e. in D. A homeomorphism
f: D~ G, where D and G are subdomains of the complex plane C, is said to be
K-quasiconformal (K-q.c), K > 1, if f is ACL and

IVf(2)| < KI(Vf(z)) ae. on D, (1.1)

where
IV f(z)|:= max IV f(@)h| = |f:] +|fz]

and

UVF(z) = min [VF(2)h] = [f:] = |
(cf. [I, p.23-24] and [21]). Note that, the condition (LI can be written as

K-1 1+k
|f§| S k'|fz| a.e. on D where k = K——|—1 ie. K = 1_1——]{
or in its equivalent form
IVF(2)|? < KJs(2), z€ U, (1.2)

where J; is the jacobian of f.

A function w is called harmonic in a region D if it has form w = u + iv where u
and v are real-valued harmonic functions in D. If D is simply-connected, then there
are two analytic functions g and h defined on D such that w has the representation

w:g—i—ﬁ.

If w is a harmonic univalent function, then by Lewy’s theorem (see [22]), w
has a non-vanishing Jacobian and consequently, according to the inverse mapping
theorem, w is a diffeomorphism.
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Let
2

1—r
P =
(r,) 27(1 — 2rcosx + 1r2)
denote the Poisson kernel. Then every bounded harmonic function w defined on
the unit disc U := {z : |z] < 1} has the following representation

w(z) = P[F|(z) = /0 i P(r,x — ¢)F(e")dx, (1.3)

where z = re’® and F is a bounded integrable function defined on the unit circle
St

In this paper we continue to study q.c. harmonic mappings. See [24] for the
pioneering work on this topic and see [§] for related earlier results. In some re-
cent papers, a lot of work have been done on this class of mappings ([3], [10]-
[20], [28], [27], [23] and [25]). In these papers it is established the Lipschitz and
the co-Lipschitz character of q.c. harmonic mappings between plane domains with
certain boundary conditions. In [31I] it is considered the same problem for hy-
perbolic harmonic quasiconformal selfmappings of the unit disk. Notice that, in
general, quasi-symmetric self-mappings of the unit circle do not provide quasicon-
formal harmonic extension to the unit disk. In [24] it is given an example of C!
diffeomorphism of the unit circle onto itself, whose Euclidean harmonic extension
is not Lipschitz. Alessandrini and Nessi proved in [2] the following proposition:

Proposition 1.1. Let F : S* — v C C be an orientation preserving diffeomorphism
of class C' onto a simple closed curve. Let D be the bounded domain such that
OD = ~. Let w = P[F] € CY(U;C). The mapping w is a diffeomorphism of U onto
D if and only if

Jw > 0 everywhere on S*. (1.4)

In view of the inequalities (I.2)) and (L4)), we easily see that.

Corollary 1.2. Under the condition of Proposition [T, the harmonic mapping w
is a diffeomorphism if and only if it is K quasiconformal for some K > 1.

In contrast to the Euclidean metric, in the case of hyperbolic metric, if f : S' —
S!is C! diffeomorphism, or more general if f : S"~1 — S™~! is a mapping with
the non-vanishing energy, then its hyperbolic harmonic extension is C' up to the
boundary ([4]) and ([5]).

To continue we need the definition of C*® Jordan curves (k € N, 0 < a < 1).
Let v be a rectifiable curve in the complex plane. Let [ be the length of . Let
g : [0,1] = « be an arc-length parametrization of v. Then |g(s)| =1 for all s € [0,].
We will write that the curve y € C** k€ N, 0 < a < 1if g € C%, and M (k,a) :=

®) (4)— g (k)
SUP;zg % < o0. Notice this important fact, if v € C*! then v has the

curvature k, for a.e. z € v and esssup{|x.|: z € v} < M(1,1) < oc.

This definition can be easily extended to arbitrary C*® compact 1— dimensional
manifold (not necessarily connected).

The starting point of this paper is the following proposition.

Proposition 1.3. Let w = f(z) be a K quasiconformal harmonic mapping between
a Jordan domain Q1 with C1® boundary and a Jordan domain Q with CH* (respec-
tively C%*) boundary. Let in addition b € Qy and a = f(b). Then w is Lipschitz
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(co-Lipschitz). Moreover there exists a positive constant ¢ = ¢(K,Q,Q1,a,b) > 1
such that

If(21) = f(22)| S clz1 — 22|, 21,22 € (1.5)
and

1
E|21—Z2| <|f(z1) = f(z2)l, 21,22 € Q, (1.6)
respectively.

See [I3] for the first part of Proposition [[.3 and [I0] for its second part.

In [I0], it was conjectured that the second part of Proposition [[33 remains hold
if we assume that 2 has C1* boundary only.

Notice that the proof of Proposition [[3 relied on Kelloge-Warschawski theorem
(2], [33], [6]) from the theory of conformal mappings, which asserts that if w is
a conformal mapping of the unit disk onto a domain € C*®, then w®) has a
continuous extension to the boundary (k € N). It also depended on the Mori’s
theorem from the theory of q.c. mappings, which diels with Holder character of
g.c. mappings between plane domains (see[l] and [30]). In addition, Lemma
were needed.

Using a different approach, we extend the second part of Proposition to the
class of image domains with C%! boundary. Its extension is Theorem [[L4l The
proof of Theorem [[.4] given in the last section, is different form the proof of second
part of Proposition[[.3] and the use of Kellogg-Warschawski theorem for the second
derivative ([33]) is avoided. The distance function is used and thereby a “weaker”
smoothness of the boundary of image domain is needed.

Theorem 1.4 (The main theorem). Let w = f(z) be a K quasiconformal harmonic
mapping of the unit disk U and a Jordan domain Q with C*' boundary. Let in
addition a = f(0). Then w is co-Lipschitz. More precisely there exists a positive
constant ¢ = ¢(K,Q,a) > 1 such that

Yo nl <)~ S mme (7)

Since the composition of a q.c. harmonic and a conformal mapping is itself
q.c. harmonic, using Theorem [[.4 and Kellogg’s theorem for the first derivative we
obtain:

Corollary 1.5. Let w = f(z) be a K quasiconformal harmonic mapping between
a plane domain Qy with CY* compact boundary and a plane domain Q with C*+1
compact boundary. Let in addition ag € Q1 and by = f(ag). Then w is bi-Lipschitz.
Moreover there exists a positive constant ¢ = ¢(K,,Qq,a0,bo) > 1 such that

1
E|Zl — Zgl < |f(2’1) — f(Zg)l < ClZl — Zgl, 21,29 € Ql. (18)

Proof of corollary[L5l. Let b = f(a) € 9Q. As 9Q € CU1, it follows that there
exists a C1! Jordan curve v, C Q, whose interior Dy, lies in 2, and QN7 is a
neighborhood of b. See [I3] Theorem 2.1] for an explicit construction of such Jordan
curve. Let D, = f~1(D;), and take a conformal mapping g, of the unit disk onto
D,. Then f, = f o g, is a q.c. harmonic mapping of the unit disk onto the C*!
domain Dj. According to Theorem [[4]it follows that f, is bi-Lipschitz. According
to Kellogg’s theorem, it follows that f = f, 0 g, ! and its inverse f~! are Lipschitz
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in some small neighborhood of a and of b = f(a) respectively. This means that V f
is bounded in some neighborhood of a. Since 0y is a compact, we obtain that
Vf is bounded in 9Q;. The same hold for Vf~! with respect to Q. This in turn
implies that f is bi-Lipschitz. O

2. AUXILIARY RESULTS

Let Q be a domain in R? having non-empty boundary 9. The distance function
is defined by
d(x) = dist (z, 09Q). (2.1)
Let Q be bounded and 9Q € C'!. The conditions on  imply that 9 satisfies
the following condition: at a.e. point z € 92 there exists a disk D = D(w,, ;)
depending on z such that DN (C\ Q) = {z}. Moreover i := essinf{r,,z € 9Q} > 0.
It is easy to show that u~! bounds the curvature of 92, which means that % > Ky,
for z € 9. Here k. denotes the curvature of 9 at z € 9. Under the above
conditions, we have d € C!(T',), where I'), = {z € Q : d(z) < p} and for z € T,
there exists w(z) € 9 such that

Vd(z) = Vw(z)v (22)

where v,,(,) denotes the inner normal vector to the boundary 92 at the point w(z).
See [7l Section 14.6] for details.

Lemma 2.1. Let w: Qy — Q be a K g.c. and x = —d(w(z)). Then
Vx| < |Vw| < K|Vx] (2.3)
in w=t(T,) for u >0 such that 1/p > ko = ess sup{|.|: z € OQ}.
Proof. Observe first that Vd is a unit vector. From Vx = —Vd - Vw it follows that
Vx| < [Vd[|[Vuw| = [Vuw.
For a non-singular matrix A we have

|i?f1 |Az|? = |i?f1 (Azx, Azx) = \h\lfl <ATA3:,3:>

=inf{\: 3z # 0, AT Az = \z}
=inf{\: 3z # 0, AAT Az = N Az}
=inf{\: 3y #0,44Ty = \y} = \h\l—fl |AT z)?.

(2.4)

Next we have that (Vx)? = —(Vw)T - (Vd)T and therefore for z € w=(T,), we
obtain
Vx| > ‘i|r£f1 [(Vw)T e| = ‘i|r£f1 [Vwe| = l(w) > K~ !Vuw|.

The proof of ([23]) is completed.
(]

Lemma 2.2. Let {e1,e2} be the natural basis in the space R2. Let w:Q; — Q be
a twice differentiable mapping and let x = —d(w(z)). Then

Ax(z0) = it 0w Vulzo) el = (V) (w(z0), Aw), - (25)

where zg € wH(T},), wo € Q with |w(z0) — wo| = dist(w(z0), ), p > 0 such that
1/ > ko = esssup{|k;| : z € IN} and O, is an orthogonal transformation.
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Proof. Let v, be the inner unit normal vector of v at the point wy € v. Let O, be
an orthogonal transformation that takes the vector es to v,,. In complex notations:

O,y w = —iV,,w.
Take Q := 0.,Q. Let d be the distance function with respect to Q. Then
d(w) = d(O,w) = dist (O,,w, ).
Therefore x(z) = —d(O., (w(2))).
Furthermore

Ax(z) = - Z(D%(Ozﬂ (w(2)))(Oz Vw(2)ei, Oz Vw(2)e:)

— (Vd(w(2)), Aw(2)) .

To continue, we make use of the following proposition.

(2.6)

Proposition 2.3. [7 Lemma 14.17] Let Q be bounded and 92 € CY1. Then under

notation of Lemma we have

27 — ~Fuwo — 1:Zi°d 0
(D d)(ozow(ZO)) dla'g(l — ’{wod7 0) ( 0 0 0) ;

where Ky, denotes the curvature of 02 at wy € ON.

Applying (Z1) we have

(D?d)(0= (w(20))) (O (Vaw(20)) i, Oz (Vew(z0))es)

)
gl
i

= Z > D;xd(0z (w(20))) Di(Ozyw);(20) - Di(Oz,w)i(20)

2
= Y D;xd(0=(w(2))) (02, Vw(20)) e}, (0=, V() "ex)

Jik=1
_ T hwo T 2
= ———=|(0=,Vw(20))" ea]”.
1 — Ky,

Finally we obtain

Ax(z0) = %I(OZOVUJ(%))T@IQ — ((Vd)(w(20)), Aw) .

— Kuwp

3. THE PROOF OF THE MAIN THEOREM

The main step in proving the main theorem is the following lemma.

(2.7)

(2.8)

Lemma 3.1. Let w = f(2) be a K quasiconformal mapping of the unit disk onto

a CYY Jordan domain Q satisfying the differential inequality
|Aw| < B|Vw|?, B>0

(3.1)
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for some B > 0. Assume in addition that w(0) = ag € Q. Then there exists a
constant C'(K,Q, B,;a) > 0 such that
0
8—w(t)| > C(K,Q, B,ag) for almost every t € S*. (3.2)
r
Proof. Let us find A > 0 so that the function ¢, (z) = —4 + Fe 44wk ig
subharmonic on {z : d(w(z)) < ﬁ}, where

Ko = esssup{|kqy| 1 w € v}

Let x = —d(w(z)). Combining 23), 2.3) and B.I) we get

|Ax| < 20| Vw|? + B|Vw|? < (2ko + B)K?|Vx/|?. (3.3)
Take 1 1
_ 11
g(t) = 1 + 1€
Then ¢, (2) = g(x(z)). Thus
Apw = g"()IVX + ' () Ax. (34)
Since
g'(x) = e A=) (3.5)
and
g"(x) = Ae” A, (3.6)
it follows that
Ay > (A — (260 + B)K?)|Vx|2e A4, (3.7)
In order to have Ay, > 0, it is enough to take
A= (2ko + B)K?. (3.8)
Choosing
1

0 = max{|z| : dist(w(z),v) = 2—%}7

then ¢, satisfies the conditions of the following generalization of E. Hopf lemma
(E):

Lemma 3.2. [10] Let ¢ satisfies Ap > 0in R, ={z:0<|z| <1}, 0< p < 1,
¢ be continuous on R,, ¢ < 0 in R,, ¢(t) =0 for t € S'. Assume that the radial
derivative g—f exists almost everywhere at t € S*. Let M(p,0) = max,—, ¢(2).
Then the inequality

dp(t) N 2M (p, 0)

1
5 F— /1)’ for a.e. t € ST, (3.9)

holds.

We will make use of [B3), but under some improvement for the class of q.c.
harmonic mappings. The idea is to make the right hand side of (8:9) independent
on the mapping w for p = @,,.

We will say that a q.c. mapping f : U — Q is normalized if f(1) = wo,
f(e?™/3) = wy and f(e=?™/3") = wy, where wow;, wiws and wowg are arcs of
~v = 09 having the same length |y|/3.

In what follows we will prove that, for the class H(Q2, K, B) of normalized K q.c.
mappings, satisfying (3.1 for some B > 0, and mapping the unit disk onto the
domain €, the inequality (9) holds uniformly (see (BI0)).
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Let

1
0 :=sup{|z| : dist(w(z),v) = 2—m,w e H(Q, K, B)}.

Therefore there exists a sequence {w, }, w, € H(Q, K, B) such that

Ly

on = max{|z| : dist(w,(2),7) = T

and
o= lim p,.
n—oo

Notice now that, if w, is a sequence of normalized K-q.c. mappings of the
unit disk onto 2, then, up to some subsequence, w, is a locally uniform convergent
sequence converging to some q.c. mapping w € H (2, K, B). Under the condition on
the boundary of Q, by [26] Theorem 4.4] this sequence is uniformly convergent on U.
Then there exists a sequence z, : dist(wy, (z,,),7) = ﬁ, such that, lim, ..o 2, = 20
and g = |zg|. Since w,, converges uniformly to w, it follows that, lim,—,cc wy(2,) =
w(zp), and dist(w(zp),7) = ﬁ This infers ¢ < 1.
Let now

M(Q) = sup{M(ww, Q)v w € H(Qa K, B)}

Using the similar argument as above, we obtain that there exists a uniformly con-
vergent sequence w,, converging to a mapping wy, such that

M(e) = lim M(pu,,0) = M(Pu; 0)-
Thus
M(p) < 0.
Setting M (p) instead of M (p, ) and ¢,, instead of ¢ in (B9), we obtain
Fpu(t) 2M (o)
> 2
or 0%(1 — el/e*-1)

To continue observe that

= O(K,Q, B), for a.e. t € S'. (3.10)

Iouw(t) _ ad(w(=)) Ow | adw(e)) | OW
ik |Vd| o ) =e ).

Combining (3.8) and (3.I0) we obtain for a.e. t € S*
ow —Ad(w(z) 9Pw(t)  _k2  2M(e)
— ()| = > _
ar()‘ ‘ )

The Lemma [B1] is proved for normalized mapping w. If w is not normalized,
then we take the corresponding composition of w and the corresponding Mobius
transformation, in order to obtain the desired inequality. The proof of Lemma [3.1]
is completed. (I

The finish of proof of Theorem [I.4l In this setting w is harmonic and there-
fore B = 0. .
Assume first that “w € C1(U)”.
Let [(Vw)(t) = ||wx(t)] — |wz(t)]|. As wis K q.c., according to (8:2) we have
ow

U(Vw)(t) > = > = (3.11)
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for t € S'. Therefore, having in mind Lewy’s theorem ([22]), which states that
|w,| > |wz| for z € U, we obtain for t € S1 that |w,(t)| # 0 and hence:

1 C(K,Q,0,a0) | |ws]

<1, teSh
|w:| K |w:|
As w € CH(U), it follows that the functions
wx 1 C(K,9,0,a9)
=—, bz)i=——2T"1—
alz) = 2y b(e) = o

are well-defined holomorphic functions in the unit disk having a continuous exten-
sion to the boundary. As |a| + |b| is bounded on the unit circle by 1, it follows that
it is bounded on the whole unit disk by 1 because

la(z)| + [b(2)] < Pllals:1](z) + P[bls1](2) = Pllals: + [b]s:](2), =z € U.
This in turn implies that for every z € U

(Vw)(z) > W — C(Q, K, ay). (3.12)
This infers that
C(K, Qa0) < WE) =Wy,

|21 — 22
Assume now that "w ¢ C1(U)”. We begin by this definition.

Definition 3.3. Let G be a domain in C and let a € 0G. We will say that G, C G
is a neighborhood of a if there exists a disk D(a,r) := {z : |z — a| < r} such that
D(a,r) NG C G,.

Let t = ¢’# € S1, then w(t) € 9. Let v be an arc-length parametrization of 99
with v(s) = w(t). Since 9Q € C11, there exists a neighborhood Q; of w(t) with
CU! Jordan boundary such that,

Q =+ (s) 7CQ, and 9] CQfor 0 <7 <7 (70 >0) . (3.13)
An example of a family Q7 such that 9Q] € C'! and with the property (3.I3) has
been given in [13].

Let a; € Q be arbitrary. Then a;+i7/(s)-7 € Qf. Take U, = f~1(Q7). Let n] be

a conformal mapping of the unit disk onto U, such that 57 (0) = f~1(a; +iy'(s)-7),

dn;

and arg

(0) = 0. Then the mapping
@)= ff(2)) —iv/(s) - 7

is a harmonic K quasiconformal mapping of the unit disk onto €2 satisfying the
condition f7(0) = a;. Moreover

ff € CH(U).
Using the case "w € C'(U)”, it follows that
VI (2)] = C(K, Q, az).
On the other hand
lim Vf7(z) = V(fon)(z)

T—04
on the compact sets of U as well as

. dn{ dny
1 _— = —
im = () = =2(2),
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where 7; is a conformal mapping of the unit disk onto Uy = f~1(£2;) with n;(0) =
f~Y(a). Tt follows that
|Vft(2)| Z C(K, Qt, at).

By using the Schwarz’s reflexion principle to the mapping 7;, and using the
formula

V(om)(z) = Vf - Thez)

it follows that in some neighborhood Uy of t € S' with smooth boundary (D(t,7:)N
U c U, for some r; > 0), the function f satisfies the inequality

C(Ku Qtu at)
max{|n}(C)| : ¢ € Uy}

Since S is a compact set, it can be covered by a finite family 8Utj NS'ND(t,r/2),
7 =1,...,m. It follows that the inequality

IVf(2)] > min{C(K,Q,,as,) : j=1,...,m} = C(K,Q,a0) >0, (3.15)

there holds in the annulus

IVf(z)] > =: C(K,Q,a;) > 0. (3.14)

. 3 mo
R= z:1—£ min ry, < |z| <1 CUUt..
2 1<j<m ~ 7
J:

This implies that the subharmonic function S = |a(z)| + |b(z)| is bounded in U.
According to the maximum principle, it is bounded by 1 in the whole unit disk.

This in turn implies again [B.12]) and consequently
C(K,Q,a
%kl —2’2| < |w(21)—w(22)|, 21,22 € U.

O
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