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HARMONIC MAPPINGS AND DISTANCE FUNCTION

DAVID KALAJ

Abstract. We prove the following theorem: every quasiconformal harmonic
mapping between two plane domains with C1,α (α < 1), respectively C1,1

compact boundary is bi-Lipschitz. The distance function with respect to the
boundary of the image domain is used. This in turn extends a similar result
of the author in [10] for Jordan domains, where stronger boundary conditions
for the image domain were needed.

1. Introduction and statement of the main result

We say that a real function u : D → R is ACL (absolutely continuous on lines) in
the region D, if for every closed rectangle R ⊂ D with sides parallel to the x and y-
axes, u is absolutely continuous on a.e. horizontal and a.e. vertical line in R. Such
a function has of course, partial derivatives ux, uy a.e. in D. A homeomorphism
f : D 7→ G, where D and G are subdomains of the complex plane C, is said to be
K-quasiconformal (K-q.c), K ≥ 1, if f is ACL and

|∇f(z)| ≤ Kl(∇f(z)) a.e. on D, (1.1)

where
|∇f(x)| := max

|h|=1
|∇f(x)h| = |fz|+ |fz̄|

and

l(∇f(z)) := min
|h|=1

|∇f(z)h| = |fz| − |fz̄|

(cf. [1, p.23–24] and [21]). Note that, the condition (1.1) can be written as

|fz̄| ≤ k|fz| a.e. on D where k =
K − 1

K + 1
i.e. K =

1 + k

1− k

or in its equivalent form

|∇f(z)|2 ≤ KJf(z), z ∈ U, (1.2)

where Jf is the jacobian of f .
A function w is called harmonic in a region D if it has form w = u+ iv where u

and v are real-valued harmonic functions in D. If D is simply-connected, then there
are two analytic functions g and h defined on D such that w has the representation

w = g + h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [22]), w
has a non-vanishing Jacobian and consequently, according to the inverse mapping
theorem, w is a diffeomorphism.
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Let

P (r, x) =
1− r2

2π(1− 2r cosx+ r2)

denote the Poisson kernel. Then every bounded harmonic function w defined on
the unit disc U := {z : |z| < 1} has the following representation

w(z) = P [F ](z) =

∫ 2π

0

P (r, x− ϕ)F (eix)dx, (1.3)

where z = reiϕ and F is a bounded integrable function defined on the unit circle
S1.

In this paper we continue to study q.c. harmonic mappings. See [24] for the
pioneering work on this topic and see [8] for related earlier results. In some re-
cent papers, a lot of work have been done on this class of mappings ([3], [10]-
[20], [28], [27], [23] and [25]). In these papers it is established the Lipschitz and
the co-Lipschitz character of q.c. harmonic mappings between plane domains with
certain boundary conditions. In [31] it is considered the same problem for hy-
perbolic harmonic quasiconformal selfmappings of the unit disk. Notice that, in
general, quasi-symmetric self-mappings of the unit circle do not provide quasicon-
formal harmonic extension to the unit disk. In [24] it is given an example of C1

diffeomorphism of the unit circle onto itself, whose Euclidean harmonic extension
is not Lipschitz. Alessandrini and Nessi proved in [2] the following proposition:

Proposition 1.1. Let F : S1 → γ ⊂ C be an orientation preserving diffeomorphism
of class C1 onto a simple closed curve. Let D be the bounded domain such that
∂D = γ. Let w = P [F ] ∈ C1(U;C). The mapping w is a diffeomorphism of U onto
D if and only if

Jw > 0 everywhere on S1. (1.4)

In view of the inequalities (1.2) and (1.4), we easily see that.

Corollary 1.2. Under the condition of Proposition 1.1, the harmonic mapping w
is a diffeomorphism if and only if it is K quasiconformal for some K ≥ 1.

In contrast to the Euclidean metric, in the case of hyperbolic metric, if f : S1 7→
S1 is C1 diffeomorphism, or more general if f : Sn−1 7→ Sm−1 is a mapping with
the non-vanishing energy, then its hyperbolic harmonic extension is C1 up to the
boundary ([4]) and ([5]).

To continue we need the definition of Ck,α Jordan curves (k ∈ N, 0 < α ≤ 1).
Let γ be a rectifiable curve in the complex plane. Let l be the length of γ. Let
g : [0, l] 7→ γ be an arc-length parametrization of γ. Then |ġ(s)| = 1 for all s ∈ [0, l].
We will write that the curve γ ∈ Ck,α, k ∈ N, 0 < α ≤ 1 if g ∈ Ck, and M(k, α) :=

supt6=s
|g(k)(t)−g(k)(s)|

|t−s|α < ∞. Notice this important fact, if γ ∈ C1,1 then γ has the

curvature κz for a.e. z ∈ γ and ess sup{|κz| : z ∈ γ} ≤ M(1, 1) < ∞.
This definition can be easily extended to arbitrary Ck,α compact 1− dimensional

manifold (not necessarily connected).
The starting point of this paper is the following proposition.

Proposition 1.3. Let w = f(z) be a K quasiconformal harmonic mapping between
a Jordan domain Ω1 with C1,α boundary and a Jordan domain Ω with C1,α (respec-
tively C2,α) boundary. Let in addition b ∈ Ω1 and a = f(b). Then w is Lipschitz
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(co-Lipschitz). Moreover there exists a positive constant c = c(K,Ω,Ω1, a, b) ≥ 1
such that

|f(z1)− f(z2)| ≤ c|z1 − z2|, z1, z2 ∈ Ω1 (1.5)

and

1

c
|z1 − z2| ≤ |f(z1)− f(z2)|, z1, z2 ∈ Ω1, (1.6)

respectively.

See [13] for the first part of Proposition 1.3 and [10] for its second part.
In [10], it was conjectured that the second part of Proposition 1.3 remains hold

if we assume that Ω has C1,α boundary only.
Notice that the proof of Proposition 1.3 relied on Kellogg-Warschawski theorem

([32], [33], [6]) from the theory of conformal mappings, which asserts that if w is
a conformal mapping of the unit disk onto a domain Ω ∈ Ck,α, then w(k) has a
continuous extension to the boundary (k ∈ N). It also depended on the Mori’s
theorem from the theory of q.c. mappings, which diels with Hölder character of
q.c. mappings between plane domains (see[1] and [30]). In addition, Lemma 3.2
were needed.

Using a different approach, we extend the second part of Proposition 1.3 to the
class of image domains with C1,1 boundary. Its extension is Theorem 1.4. The
proof of Theorem 1.4, given in the last section, is different form the proof of second
part of Proposition 1.3, and the use of Kellogg-Warschawski theorem for the second
derivative ([33]) is avoided. The distance function is used and thereby a “weaker”
smoothness of the boundary of image domain is needed.

Theorem 1.4 (The main theorem). Let w = f(z) be a K quasiconformal harmonic
mapping of the unit disk U and a Jordan domain Ω with C1,1 boundary. Let in
addition a = f(0). Then w is co-Lipschitz. More precisely there exists a positive
constant c = c(K,Ω, a) ≥ 1 such that

1

c
|z1 − z2| ≤ |f(z1)− f(z2)|, z1, z2 ∈ Ω. (1.7)

Since the composition of a q.c. harmonic and a conformal mapping is itself
q.c. harmonic, using Theorem 1.4 and Kellogg’s theorem for the first derivative we
obtain:

Corollary 1.5. Let w = f(z) be a K quasiconformal harmonic mapping between
a plane domain Ω1 with C1,α compact boundary and a plane domain Ω with C1,1

compact boundary. Let in addition a0 ∈ Ω1 and b0 = f(a0). Then w is bi-Lipschitz.
Moreover there exists a positive constant c = c(K,Ω,Ω1, a0, b0) ≥ 1 such that

1

c
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ c|z1 − z2|, z1, z2 ∈ Ω1. (1.8)

Proof of corollary 1.5. Let b = f(a) ∈ ∂Ω. As ∂Ω ∈ C1,1, it follows that there
exists a C1,1 Jordan curve γb ⊂ Ω, whose interior Db lies in Ω, and ∂Ω ∩ γb is a
neighborhood of b. See [13, Theorem 2.1] for an explicit construction of such Jordan
curve. Let Da = f−1(Db), and take a conformal mapping ga of the unit disk onto
Da. Then fa = f ◦ ga is a q.c. harmonic mapping of the unit disk onto the C1,1

domain Db. According to Theorem 1.4 it follows that fa is bi-Lipschitz. According
to Kellogg’s theorem, it follows that f = fa ◦ g−1

a and its inverse f−1 are Lipschitz
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in some small neighborhood of a and of b = f(a) respectively. This means that ∇f
is bounded in some neighborhood of a. Since ∂Ω1 is a compact, we obtain that
∇f is bounded in ∂Ω1. The same hold for ∇f−1 with respect to ∂Ω. This in turn
implies that f is bi-Lipschitz. �

2. Auxiliary results

Let Ω be a domain in R2 having non-empty boundary ∂Ω. The distance function
is defined by

d(x) = dist (x, ∂Ω). (2.1)

Let Ω be bounded and ∂Ω ∈ C1,1. The conditions on Ω imply that ∂Ω satisfies
the following condition: at a.e. point z ∈ ∂Ω there exists a disk D = D(wz , rz)
depending on z such that D∩(C\Ω) = {z}. Moreover µ := ess inf{rz, z ∈ ∂Ω} > 0.
It is easy to show that µ−1 bounds the curvature of ∂Ω, which means that 1

µ ≥ κz,

for z ∈ ∂Ω. Here κz denotes the curvature of ∂Ω at z ∈ ∂Ω. Under the above
conditions, we have d ∈ C1,1(Γµ), where Γµ = {z ∈ Ω : d(z) < µ} and for z ∈ Γµ

there exists ω(z) ∈ ∂Ω such that

∇d(z) = νω(z), (2.2)

where νω(z) denotes the inner normal vector to the boundary ∂Ω at the point ω(z).
See [7, Section 14.6] for details.

Lemma 2.1. Let w : Ω1 7→ Ω be a K q.c. and χ = −d(w(z)). Then

|∇χ| ≤ |∇w| ≤ K|∇χ| (2.3)

in w−1(Γµ) for µ > 0 such that 1/µ > κ0 = ess sup{|κz| : z ∈ ∂Ω}.
Proof. Observe first that ∇d is a unit vector. From ∇χ = −∇d ·∇w it follows that

|∇χ| ≤ |∇d||∇w| = |∇w|.
For a non-singular matrix A we have

inf
|x|=1

|Ax|2 = inf
|x|=1

〈Ax,Ax〉 = inf
|x|=1

〈

ATAx, x
〉

= inf{λ : ∃x 6= 0, ATAx = λx}
= inf{λ : ∃x 6= 0, AATAx = λAx}
= inf{λ : ∃y 6= 0, AAT y = λy} = inf

|x|=1
|ATx|2.

(2.4)

Next we have that (∇χ)T = −(∇w)T · (∇d)T and therefore for x ∈ w−1(Γµ), we
obtain

|∇χ| ≥ inf
|e|=1

|(∇w)T e| = inf
|e|=1

|∇w e| = l(w) ≥ K−1|∇w|.

The proof of (2.3) is completed.
�

Lemma 2.2. Let {e1, e2} be the natural basis in the space R2. Let w : Ω1 7→ Ω be
a twice differentiable mapping and let χ = −d(w(z)). Then

∆χ(z0) =
κw0

1− κw0d(w(z0))
|(Oz0∇w(z0))

T e1|2 − 〈(∇d)(w(z0)),∆w〉 , (2.5)

where z0 ∈ w−1(Γµ), ω0 ∈ ∂Ω with |w(z0)− ω0| = dist(w(z0), ∂Ω), µ > 0 such that
1/µ > κ0 = ess sup{|κz| : z ∈ ∂Ω} and Oz0 is an orthogonal transformation.
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Proof. Let νω0 be the inner unit normal vector of γ at the point ω0 ∈ γ. Let Oz0 be
an orthogonal transformation that takes the vector e2 to νω0 . In complex notations:

Oz0w = −iνω0w.

Take Ω̃ := Oz0Ω. Let d̃ be the distance function with respect to Ω̃. Then

d(w) = d̃(Oz0w) = dist (Oz0w, ∂Ω̃).

Therefore χ(z) = −d̃(Oz0(w(z))).
Furthermore

∆χ(z) = −
2
∑

i=1

(D2d̃)(Oz0(w(z)))(Oz0∇w(z)ei, Oz0∇w(z)ei)

− 〈∇d(w(z)),∆w(z)〉 .
(2.6)

To continue, we make use of the following proposition.

Proposition 2.3. [7, Lemma 14.17] Let Ω be bounded and ∂Ω ∈ C1,1. Then under
notation of Lemma 2.2 we have

(D2d̃)(Oz0w(z0)) = diag(
−κω0

1− κω0d
, 0) =

(

−κω0

1−κω0d
0

0 0

)

, (2.7)

where κω0 denotes the curvature of ∂Ω at ω0 ∈ ∂Ω.

Applying (2.7) we have

2
∑

i=1

(D2d̃)(Oz0(w(z0)))(Oz0 (∇w(z0))ei, Oz0(∇w(z0))ei)

=

2
∑

i=1

2
∑

j,k=1

Dj,kd̃(Oz0(w(z0)))Di(Oz0w)j(z0) ·Di(Oz0w)k(z0)

=

2
∑

j,k=1

Dj,kd̃(Oz0(w(z0)))
〈

(Oz0∇w(z0))
T ej , (Oz0∇w(z0))

T ek
〉

=
−κω0

1− κω0 d̃
|(Oz0∇w(z0))

T e1|2.

(2.8)

Finally we obtain

∆χ(z0) =
κω0

1− κω0 d̃
|(Oz0∇w(z0))

T e1|2 − 〈(∇d)(w(z0)),∆w〉 .

�

3. The proof of the main theorem

The main step in proving the main theorem is the following lemma.

Lemma 3.1. Let w = f(z) be a K quasiconformal mapping of the unit disk onto
a C1,1 Jordan domain Ω satisfying the differential inequality

|∆w| ≤ B|∇w|2, B ≥ 0 (3.1)
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for some B ≥ 0. Assume in addition that w(0) = a0 ∈ Ω. Then there exists a
constant C(K,Ω, B, a) > 0 such that

|∂w
∂r

(t)| ≥ C(K,Ω, B, a0) for almost every t ∈ S1. (3.2)

Proof. Let us find A > 0 so that the function ϕw(z) = − 1
A + 1

Ae−Ad(w(z)) is

subharmonic on {z : d(w(z)) < 1
2κ0

}, where
κ0 = ess sup{|κw| : w ∈ γ}.

Let χ = −d(w(z)). Combining (2.3), (2.5) and (3.1) we get

|∆χ| ≤ 2κ0|∇w|2 +B|∇w|2 ≤ (2κ0 +B)K2|∇χ|2. (3.3)

Take

g(t) = − 1

A
+

1

A
eAt.

Then ϕw(z) = g(χ(z)). Thus

∆ϕw = g′′(χ)|∇χ|2 + g′(χ)∆χ. (3.4)

Since
g′(χ) = e−Ad(w(z)) (3.5)

and
g′′(χ) = Ae−Ad(w(z)), (3.6)

it follows that
∆ϕw ≥ (A− (2κ0 + B)K2)|∇χ|2e−Ad(u(z)). (3.7)

In order to have ∆ϕw ≥ 0, it is enough to take

A = (2κ0 +B)K2. (3.8)

Choosing

̺ = max{|z| : dist(w(z), γ) = 1

2κ0
},

then ϕw satisfies the conditions of the following generalization of E. Hopf lemma
([9]):

Lemma 3.2. [10] Let ϕ satisfies ∆ϕ ≥ 0 in R̺ = {z : ̺ ≤ |z| < 1}, 0 < ̺ < 1,

ϕ be continuous on R̺, ϕ < 0 in R̺, ϕ(t) = 0 for t ∈ S1. Assume that the radial

derivative ∂ϕ
∂r exists almost everywhere at t ∈ S1. Let M(ϕ, ̺) = max|z|=̺ ϕ(z).

Then the inequality

∂ϕ(t)

∂r
>

2M(ϕ, ̺)

̺2(1 − e1/̺2−1)
, for a.e. t ∈ S1, (3.9)

holds.

We will make use of (3.9), but under some improvement for the class of q.c.
harmonic mappings. The idea is to make the right hand side of (3.9) independent
on the mapping w for ϕ = ϕw.

We will say that a q.c. mapping f : U 7→ Ω is normalized if f(1) = w0,
f(e2π/3i) = w1 and f(e−2π/3i) = w2, where w0w1, w1w2 and w2w0 are arcs of
γ = ∂Ω having the same length |γ|/3.

In what follows we will prove that, for the class H(Ω,K,B) of normalized K q.c.
mappings, satisfying (3.1) for some B ≥ 0, and mapping the unit disk onto the
domain Ω, the inequality (3.9) holds uniformly (see (3.10)).
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Let

̺ := sup{|z| : dist(w(z), γ) = 1

2κ0
, w ∈ H(Ω,K,B)}.

Therefore there exists a sequence {wn}, wn ∈ H(Ω,K,B) such that

̺n = max{|z| : dist(wn(z), γ) =
1

2κ0
},

and

̺ = lim
n→∞

̺n.

Notice now that, if wn is a sequence of normalized K-q.c. mappings of the
unit disk onto Ω, then, up to some subsequence, wn is a locally uniform convergent
sequence converging to some q.c. mapping w ∈ H(Ω,K,B). Under the condition on
the boundary of Ω, by [26, Theorem 4.4] this sequence is uniformly convergent on U.
Then there exists a sequence zn : dist(wn(zn), γ) =

1
2κ0

, such that, limn→∞ zn = z0
and ̺ = |z0|. Since wn converges uniformly to w, it follows that, limn→∞ wn(zn) =
w(z0), and dist(w(z0), γ) =

1
2κ0

. This infers ̺ < 1.
Let now

M(̺) := sup{M(ϕw, ̺), w ∈ H(Ω,K,B)}.
Using the similar argument as above, we obtain that there exists a uniformly con-
vergent sequence wn, converging to a mapping w0, such that

M(̺) = lim
n→∞

M(ϕwn
, ̺) = M(ϕw0 , ̺).

Thus

M(̺) < 0.

Setting M(̺) instead of M(̺, ϕ) and ϕw instead of ϕ in (3.9), we obtain

∂ϕw(t)

∂r
>

2M(̺)

̺2(1− e1/̺2−1)
:= C(K,Ω, B), for a.e. t ∈ S1. (3.10)

To continue observe that

∂ϕw(t)

∂r
= eAd(w(z))|∇d|

∣

∣

∣

∣

∂w

∂r
(t)

∣

∣

∣

∣

= eAd(w(z))

∣

∣

∣

∣

∂w

∂r
(t)

∣

∣

∣

∣

.

Combining (3.8) and (3.10) we obtain for a.e. t ∈ S1

∣

∣

∣

∣

∂w

∂r
(t)

∣

∣

∣

∣

= e−Ad(w(z))∂ϕw(t)

∂r
≥ e−K2 2M(̺)

̺2(1− e1/̺2−1)
.

The Lemma 3.1 is proved for normalized mapping w. If w is not normalized,
then we take the corresponding composition of w and the corresponding Möbius
transformation, in order to obtain the desired inequality. The proof of Lemma 3.1
is completed. �

The finish of proof of Theorem 1.4. In this setting w is harmonic and there-
fore B = 0.

Assume first that “w ∈ C1(U)”.
Let l(∇w)(t) = ||wz(t)| − |wz̄(t)||. As w is K q.c., according to (3.2) we have

l(∇w)(t) ≥ |∇w(t)|
K

≥ |∂w∂r (t)|
K

≥ C(K,Ω, 0, a0)

K
(3.11)
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for t ∈ S1. Therefore, having in mind Lewy’s theorem ([22]), which states that
|wz| > |wz̄ | for z ∈ U, we obtain for t ∈ S1 that |wz(t)| 6= 0 and hence:

1

|wz |
C(K,Ω, 0, a0)

K
+

|wz̄ |
|wz |

≤ 1, t ∈ S1.

As w ∈ C1(U), it follows that the functions

a(z) :=
wz̄

wz
, b(z) :=

1

wz

C(K,Ω, 0, a0)

K

are well-defined holomorphic functions in the unit disk having a continuous exten-
sion to the boundary. As |a|+ |b| is bounded on the unit circle by 1, it follows that
it is bounded on the whole unit disk by 1 because

|a(z)|+ |b(z)| ≤ P [|a|S1 ](z) + P [|b|S1 ](z) = P [|a|S1 + |b|S1 ](z), z ∈ U.

This in turn implies that for every z ∈ U

l(∇w)(z) ≥ C(K,Ω, 0, a0)

K
=: C(Ω,K, a0). (3.12)

This infers that

C(K,Ω, a0) ≤
|w(z1)− w(z2)|

|z1 − z2|
, z1, z2 ∈ U.

Assume now that ”w /∈ C1(U)”. We begin by this definition.

Definition 3.3. Let G be a domain in C and let a ∈ ∂G. We will say that Ga ⊂ G
is a neighborhood of a if there exists a disk D(a, r) := {z : |z − a| < r} such that
D(a, r) ∩G ⊂ Ga.

Let t = eiβ ∈ S1, then w(t) ∈ ∂Ω. Let γ be an arc-length parametrization of ∂Ω
with γ(s) = w(t). Since ∂Ω ∈ C1,1, there exists a neighborhood Ωt of w(t) with
C1,1 Jordan boundary such that,

Ωτ
t := Ωt + iγ′(s) · τ ⊂ Ω, and ∂Ωτ

t ⊂ Ω for 0 < τ ≤ τt (τt > 0) . (3.13)

An example of a family Ωτ
t such that ∂Ωτ

t ∈ C1,1 and with the property (3.13) has
been given in [13].

Let at ∈ Ωt be arbitrary. Then at+iγ′(s)·τ ∈ Ωτ
t . Take Uτ = f−1(Ωτ

t ). Let η
τ
t be

a conformal mapping of the unit disk onto Uτ such that ητt (0) = f−1(at+ iγ′(s) ·τ),
and arg

dητ
t

dz (0) = 0. Then the mapping

f τ
t (z) := f(ητt (z))− iγ′(s) · τ

is a harmonic K quasiconformal mapping of the unit disk onto Ωt satisfying the
condition f τ

t (0) = at. Moreover

f τ
t ∈ C1(U).

Using the case ”w ∈ C1(U)”, it follows that

|∇f τ
t (z)| ≥ C(K,Ωt, at).

On the other hand
lim

τ→0+
∇f τ

t (z) = ∇(f ◦ ηt)(z)
on the compact sets of U as well as

lim
τ→0+

dητt
dz

(z) =
dηt
dz

(z),
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where ηt is a conformal mapping of the unit disk onto U0 = f−1(Ωt) with ηt(0) =
f−1(at). It follows that

|∇ft(z)| ≥ C(K,Ωt, at).

By using the Schwarz’s reflexion principle to the mapping ηt, and using the
formula

∇(f ◦ ηt)(z) = ∇f · dηt
dz

(z)

it follows that in some neighborhood Ũt of t ∈ S1 with smooth boundary (D(t, rt)∩
U ⊂ Ũt for some rt > 0), the function f satisfies the inequality

|∇f(z)| ≥ C(K,Ωt, at)

max{|η′t(ζ)| : ζ ∈ Ũt}
=: C̃(K,Ωt, at) > 0. (3.14)

Since S1 is a compact set, it can be covered by a finite family ∂Ũtj ∩S1∩D(t, rt/2),
j = 1, . . . ,m. It follows that the inequality

|∇f(z)| ≥ min{C̃(K,Ωtj , atj ) : j = 1, . . . ,m} =: C̃(K,Ω, a0) > 0, (3.15)

there holds in the annulus

R̃ =

{

z : 1−
√
3

2
min

1≤j≤m
rtj < |z| < 1

}

⊂
m
⋃

j=1

Ũtj .

This implies that the subharmonic function S = |a(z)| + |b(z)| is bounded in U.
According to the maximum principle, it is bounded by 1 in the whole unit disk.
This in turn implies again (3.12) and consequently

C(K,Ω, a0)

K
|z1 − z2| ≤ |w(z1)− w(z2)|, z1, z2 ∈ U.

�
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[28] Pavlović, M. Boundary correspondence under harmonic quasiconformal homeomorfisms of

the unit disc, Ann. Acad. Sci. Fenn., Vol 27, (2002) 365-372.
[29] Pommerenke, C. Boundary behavour of conformal maps, Springer-Verlag, New York, 1991.
[30] Wang, C. A sharp form of Mori’s theorem on Q-mappings, Kexue Jilu, 4 (1960), 334-337. 1
[31] T. Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space,

J. Diff. Geom. 35 (1992) 643-657.
[32] Warschawski, S. E. On differentiability at the boundary in conformal mapping, Proc. Amer.

Math. Soc, 12 (1961), 614-620. 1
[33] On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math.

Soc, 38, No. 2 (1935), 310-340. 1

University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski

put b.b. 81000 Podgorica, Montenegro

E-mail address: davidk@t-com.me


	1. Introduction and statement of the main result
	2. Auxiliary results
	3. The proof of the main theorem
	Acknowledgment

	References

