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Abstract

The goal of this paper is to solve backward doubly stochalffierential equation
(BDSDE, in short) under weak assumptions on the data. Thig#rsis devoted to the
development of some new technical aspects of stochastialoalrelated to BDSDEs.
Then we derive a priori estimates and prove existence armglianess of solutions in
LP, p € (1,2), extending the work of pardoux and Peng (see Probab. Theslatd?l
Fields 98 (1994), no. 2).
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1 Introduction

In this paper, we are concerned with backward doubly staichdgferential equations
(BDSDEs, in short):

T T — T
Y = a+/ f(r,Yr,zr)dr+/ g(r,Yr,zr)dBr—/ ZdW,0<t<T, (L1)
t t t

which involves both a standard (forward) stochastic Itégnal driven bydW and a back-
ward stochastic it6 integral driven lo\B;. The random variabl& and functionsf andg are
data, while the pair of process§,Z )ic(o.1) is the unknowns.

The theory of nonlinear backward doubly SDE have been fiistlpduced in[[8] by
Pardoux and Peng . Among other they proved existence andemegs result under Lips-
chitz continuous and square integrable assumptions ondtae @hey also showed that in
the markovian framework, BDSDESs give the representatiaqquési-linear stochastic partial
differential equations (SPDESs). Indeed, under stongeditions (f, g areC?®) they proved
thatu(t,x) = Y;"* is classical solution of the SPDE,g). This generalize the well-know
Feymann-Kac formula to SPDEs. Since this first existenceumigueness result, many
other works have been devoted to existence and/or unigsieasslts for BDSDEs under
weaker assumptions. For scalar BDSDESs case, N’'zi and Owddal] with discontinuous
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coefficients by using the comparison theorem establish Of [There is no comparison
theorem for multidimensional BDSDEs. To overcome this cliffy, a monotonicity as-
sumption on the generatdrwith respecty uniformly onzis used. This condition appear in
the paper by Peng and Shi [9] and N’zi and Owbo [6].

However, in all the above works the data are supposed to leastt $quare integrable.
This condition is too restrictive to be assumed in many apgibns. For example, the
pricing problem of an American claim is equivalent to sotythe linear BDSDE

—dY = (1Y + BZ)dt + B — ZAW, Yy =&, (1.2)

wherer; is the interest rate; is the risk premium vector and is the market exterior
volatility factor. In general all of this coefficients arehgunded and the terminal condition
¢ is only integrable. Consequently the result of Pardoux amdyfn [8] and all above paper
may be invalid.

The aim of this present paper is to correct this gap and proigteace and uniqueness
result for BDSDEs iR wheng, f(t,0,0) andg(t,0,0) arep-integrable,p € (1,2), with f
only monotone. To our knowledge, this result do not exisigénature, therefore it is new.

The paper is organized as follows. In Section 2, we give ddtins and basic identities
of this paper. The Section 3 contains essential a prionmegés. In Section 4, we prove
existence and uniqueness result.

2 Preliminaries

2.1 Assumptions and basic notations

Let Rk<d pe identified to the space of real matrices wittows andd columns; hence for
eachz c R*<9 |72 = trace(zz).

In throughout this paper, we consider the probability sg&zer ,P) and a real positive
constantT. We define on(Q, # ,P) two mutually independent standard Brownian motion
processe$W,0 <t < T} and{B,0 <t < T} taking values irR? andR’ respectively. Let
A’ denote the class d@-null sets off and set

Fi=FCORIVA, 0<t<T

defined byss} = o{n; —ns,s<r <t} for anyn;, and#" = 7).

We emphasize that the collectidrr;,t € [0,T]} is not filtration. Indeed, it is neither
increasing nor decreasing. For any rpat 0, we also denote byP(R") the set of jointly
measurable processeX; }ic (o) taking values irR" such that

(i)
1/\%
IX]ls0 :E( sup wp) < 4o
o<t<T

(i) X is #i-measurable, for anye [0, T].

and a P(R")) the set of (classes @fP x dt a.e. equaln-dimensional jointly measurable
processes such that



”X”MP =K

T 51
</0 ymzdt)] < oo,

(i) X is #7i-measurable, for a.¢.€ [0,T].

If p>1,(sP(R"), ||X]|se) and(am P(R"), ||X||4 ») are Banach spaces.
Let

f:Qx[0,T] x REx R4 5 RK: g: Q x [0,T] x RK x R®*d — Rkx¢
be jointly measurable such that for afyz) € R* x R*<9, We have
(H1) f(.y,2) € & P(0,T,RY), g(.y,2) € 2 P(0,T,R“)

(H2) There exist constantsc R, A > 0 and O< a < 1 such that for anye [0,T]; (y1,21), (Y2, 22) €
Rk % kad,
) [ftynz) -ty 2)| <ANMa -z,

(it) (yp—yo, f(t,y1,22) — f(t,y2,21)) < Hly1 —y2[%,
(iii) 19(t,y1,21) — 9(t,Y2,22)[* < Ay — yo|* + a|z1 — 2.
Given aRX-valued #r-measurable random vectgr we consider the backward doubly

stochastic differential equation:

T T — T
Yt = E +/ f(saY57ZS)dS+/ g(S7Y57ZS)dBS_/ ZSdV\éa O St S T (21)
t t t

Now we recall what we mean by a solution to the BDSDEI(2.1).

Definition 2.1. A solution of BDSDE(2.])) is a pair(Y;, Z;)o<t<T Of jointly measurable pro-
cesses taking values R¥ x R*<9 and satisfying2.]) such thatP a.s.t — (Z,9(t,%,Z))
belongs inL?(0,T), t — f(t,Y;,Z) belongs inL1(0,T).

2.2 Generalized Tanaka formula

As explained in the introduction, we want to deal with BDSD##h data inLP, p € (1,2)
like the works of Pardoux et al. (s€€ [3]) which treat BSDEsecaeg = 0. We start by
Tanaka formula relative to BDSDEs, which is the criticalltoothis paper. For this, we
noteX'= x|~ *xLix.0p.

Lemma 2.2. Let {K:}icjo.r], {Ht }tejor) @nd {Gt }iepo1) b€ jointly measurable such that
K e o P(0,T,R), HearP0,T,R*Y), GeaPO,T,R). We consider thi¥-valued
semi martingale[ X }1c (0,7} defined by
t t t
><t=><o+/ sts+/GSst+/ HedW, 0<t<T. 2.2)
0 0 0
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Then, for any p> 1, we have
t ~
XIP=Lipyle = Dol p [ X" (% Kods
t e = t e
[ 1X6lP (R, GliBY) + p [ [XelP (e, HiV)
t ~ ~
-2 /0 IXs|P~2Lx 0y {(2— P)(IG? — (Rs, GsGLRS)) + (p— 1)| G2} dis
t ~ ~
+2 /0 IXs|P~ 2120y {(2— P)([Hs|? — (R, HeHIRS)) + (p— 1)|Hg 2} ds

where{Lt }io.1] is @ continuous process with = 0, which varies only on the boundary of
the random seft € [0, T], X = O}.

Proof. Since the functiox— |x|P is not smooth enough, fgr € (1,2), we approximate it
by the function ug(x) = (|x|>+€?)%/2, ¥ £ > 0. The functionu® is actually smooth and
setting byl the identity matrix ofR¥, we have
OUE() = pU ()% DPUE(X) = pu=>(x)1 + p(p— 2)uf~*(X)(x©X).
Therefore we get by 1t6’s formula the equality
uf(X) = Xo) + p/ Xs ) (Xs,Ks)ds
+p / 2(Xe) (s, GsIB) + / 2(X6) (X, HscWG)
_5/ trace(D2ul (Xs)GsG;)ds+ = / trace(D?uf (Xs)HsHI)ds (2.3)

The rest of this proof is essentially to pass to the limit ween 0 in (2.3). To do this, we
remark first that

/O U2 (X) (X, Ko ds— /0 'IXP (R Kods P-as
We also have
[ o200 0%, G5B [ 1XIP (%, 6By
and
/0 CUE2(X) (Xe, HWL) — /0 X6l P (R, Hed W)

in P-probability uniformly on[0,T]. The convergence of the stochastic integrals follows
from the following convergence:

.
/0 ’XS‘zl{Xs#O}‘GS‘Z(‘Xs,pfz - Ugiz(XS))zdS% 0
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and
T 2 2 2 p—2 2
|| XL [Ho2( X6l 2= 0B 2(%0) s O

which is provided by the dominated convergence theorem.
It remains to study the convergence of the term includingsde®nd derivative afe. It
is shown in|[[3] that

trace(D?Uf (Xs)GsGs) = P(2— P)(IXsus M (X)) *PIX| p_zl{xs;éO}(’GS‘z — (X5, GsGEXs))
+p(p— 1)(|XS|Us_1(XS))4_p|XS|p_zl{xs;éO} |Gs|? + pe?|Gs|2ub*(Xs)

and

traceD2UE (X)HsHg) = p(2— p)(1Xslug H(Xs))*PIXs| P~ Lo, 403 (Hs|® — (X, HsHa Xs))
+p(p— 1)(|XS|U§1(XS))47P|XS|ple{xsyéO} Hs|*+ p€2|HS|2U§74(XS)'

One has also

Gsl?
[Hsl?

> (X5, GsGiXs)
> (X, HsHIXs) (2.4)

and X
S
1
Ug (Xs) /" Lixs0)

ase — 0. Hence by monotone convergencegas 0,
t ~ ~
/0 (‘Xs,us_l(XS))4_p’Xs,p_zl{xsyéO}{(Z— p)(’Gs,z — (X5, GsGsXs)) + (P— 1)‘65‘2}d5
converge to
t —~ ~
/0 X6 P21 1x 201 {(2 = P)(IGs|* — (X5, GsGsXs)) + (P— 1)|Gs|*}ds
and
t A~ A~
/0 (1Xslug (X)) *PIX6IP 2Ly 0y {(2— P) ([Hs|? = (X, HHeXs)) + (p— 1)[Hs[*}dis
converge to
t A~ AN
/O IXe[P~?1 (x40, {(2 = P)(IHs|? — (X5, HsH3Xs)) + (p— 1)|He|*}ds

P-a.s.,forall0<t <T.
Let denote

Li(p) :/OtCé(p)ds
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whereCg(p) = 2e2uP™*(Xs) (|Hs|2— |Gs|?). Then it follows from [Z2B) thak®(p) converges
to a continuous proceds(p) ase — 0; moreover,L(p) =0 for p > 1. Indeed, forp >
4,1 (p) = 0 sinceCE(p) converges to 0 in1(0,T). Next, if p € (1,4), by settingd =
(4—p)/3€(0,1) we get

p t B 0 1-6
Le= 2 [ (22~ 1) 20 (¢2( 2~ [Gsf2)) s

Hence Hdlder's inequality provide that

T 1-6
LE(P) < PLE(D)P ([ 622~ Gy

which tends to 0 as — 0 for eacht € [0,T]. Forp=1, let set.(1) = L and remark thal;
can be decomposed in two continuous and increasing fursdtppandL?, which are limit
of processes [ €2|Hs|?u; 3(Xs) and [5 €2|Gs|2u; 3(Xs) respectively. As it is shown i [3],
L{ andL? increase only on the boundary of the random{set [0, T], X, = 0}. Therefore
L; varies only in this case. O

Remark2.3. Since the proceds is neither increasing nor decreasing, we can not apply the
similarly argument used in_[3]. Therefore the following albery works only in the case
p € (1,2), which correspond to our framework.

Corollary 2.4. Let pe (1,2) and denote (p) = p(p—1)/2 andc(p) = p(3—p)/2. If
(Y,Z) is a solution of the BDSDE2.T), then for0<t <T

.
P +e(p) [ Yl 2Ly Zo2ds
T ~
S ‘YT‘p+ p‘/tv ’Ys‘p_l<Ys7 f(s,Ys,Zs)>ds
T
+20p) [ VP 2Ly 0 l0(s: Y. Ze) s

T R — t R
+p /t VelP~2(¥s, 9(s, Yo, Zs)dBs) — p /0 Ye| P2 (Y, ZsAWE)

Proof. The proof follows from Lemma 2.2. Indeed, recall tétZ) is solution of BDSDE
(2.1) and replacéX,K,H,G) by (Y, f(.,Y,2),Z,9(.,Y,Z)), it follows that

T ~ ~
NP+ 5 [ VP 2o (2 PIZSP — (%.2:23%) + (p— DIZd}ds
T ~ T ~ — T ~
= VelPp [P (s Ve Ze)ds+ P [ Yl YV gl Yo, Zo) B — p [ lP (Y ZeWY

T ~ ~
5 [ NP P10 {(2— P)(9(8. Yo Z0) 2~ (Y 0(8. Yo, Z0)G (5 Y6, Z5)¥e)) + (P D) lg(s. Ve Z0) P s
(2.5)
Sincep € (1,2), it follows from (2.4) that

¥
(P=1) [ Ml 210y 2o

T ~ ~
< /t Ys[P 210y { (2= P) (12 = (Y6, Z6ZEYs)) + (P— 1)[Zd*}ds  (2.6)
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and
T ~ ~
/t Y| p_zl{YsyéO}{(z —p)(lg(s,Ys, Zs) ’2 —(Y5,0(8,Ys,Z5)97 (S, Y5, Zs)Ys)) + (P — 1)‘9(57YS7ZS)‘2}d5

)
< 3-p) /t IYelP~ 2Ly, 0y l0(S, Ve, Zs) Pdls 2.7)

Therefore putting[(216) an@_ (2.7) to (2.5) we obtain
T
NP+ o(p) [ Vel 2Ly Zi2ds
< V[P4p / ¥elP (%, (5, Yo, Ze))ds+ p / I¥e[P (%5, (S, Yo, Z5)IBY) — p / Y6 P (%, Zs0W)

+&p) /t YelP~21 120y l0(s, Ve, Z5)[2dis

which proved the result. O

3 A priori estimates

In this section, we state some estimation concerning solub BDSDE[(2.11). These es-
timates are very useful for the study of existence and umigse® of solutions. In what
follows, we are two difficulty. The functiorf is not Lipschitz continuous and we desire
estimate irLP-sensep € (1,2).

We begin by derive the following result which permit us to wohthe procesZ by the
data and the proce¥s

Lemma 3.1. Let assumptiongH1)-(H2) hold and(Y,Z) be a solution of BDSDE2.J). If
Y € sPthen Z belong tav P and there exists a real constang Cdepending only on pT
andA such that

T p/2 T p T p/2
(frzbar) | < comd sup e ([ 1e0ar) o ([ igelar) .
0 o<t<T 0 0

Proof. For each integen, let us define

t
_— inf{t e [O,T],/ 1Z,2dr > n}/\T.
0

The sequencér,)n>o is stationary since the proceZselongs td_%(0,T) and then
o 1Z42ds < o, P-as.
For arbitrary reah, using It6’s formula, we have

Tn
yvoyz+/ & (Z,[2dr
0
Tn Tn
_ e""T“]YTn\2+2/ & (Y, (1Y, Z,) — a¥) dr+/ &' g(r,Y;, Z,)[2dr

+2/ & (Y, g(r, Y, Z,)dB,) 2/ & (Y;, Z,dW). (3.1)
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But, it follows from assumptiongH1)-(H2) and inequality Bd < 1b?+ ed? that, for any
arbitrary positive real constaatande’,

20%, f(rYze) —a%) < 2|+ 20 Y > + AV ||Ze| - alYe 2
< 2%+ (2ut A re A2 - a) Y P relz 2,

1
g Ye YOI < (1+ €AY [*+ (1+€)alZe|® + (1+ 5)Igp .

Thus, sinca, < T, takinge, € such thag + (1+¢€)a < 1 and
2u+ (3+€)A +e ]2 —a< 0, we deduce

Tn p/2 Tn p Tn p/2
([ zar) ™ < ot sup e ([ 160%r) -+ ([ o8ar)
0 0<t<Tn 0 0

. |P/2

+‘/ (Y, 9(s Y, Z,)dB,)
0

+‘/0 & (Y, Z,dW)

p/Z}
(3.2)
But thanks to BDG's inequality, we have

Tn ; p/2 Tn 2 2 p/4
E('/o & (Y;, Z,dW) ) < dpE[</o Y 2(Z] dr> ]

_ . p/4
G | sup Wi ([ zfar)
0<t<Tn 0

IN

62 Tn p/2
< “PE| sup [%|P +nlE</ |Zr|2dr> :
N1 \o<t<m, 0
and
Tn <= b/2 ™2 2 P4
B(|["etnaswzoim)| ) < d| ([ gz k)
_ ™ p/4
< CpE| sup |Yt|p/2</ |9(r,Yr,Zr)|2dr>
0<t<1h 0
2 T p/2
< PE( sup Y|P —H]zE(/ |g(r>Yr>Zr)|2dr>
N2 \o<t<t, 0
<

T p/2
oo sup IviP+ ([ 168?)
0<t<Tn 0

i p/2
+(1+r]3)r]20(E</0 |Zr|2dr> .

Let us taken1,n2 andns small enough such that coming back[to [3.2), we obtain, fohea
neN,

T p/2 T p T p/2
([ zar) | < cord sup e ([ 1800r) 4 ([ la0Par)
0 0<t<T 0 0

E




which by Fatou'’s lemma implies

T p/2 T p T p/2
(frzPar) | < comd sup e ([ 1e0ar) ([ igelar) .
0 o<t<T 0 0

the desired result. O

E

We keep on this study by stating the estimate which is the moairto derive existence
and uniqueness result in our context. The difficulty comemfthe fact thatf is non-
Lipschitz iny and the functiory — |y|P is not 2 since we work withp € (1,2).

Lemma 3.2. AssumegH1)-(H2). Let(Y,Z) be a solution of the backward doubly SDE
associated to the daté, f,g) where Y belong taP. Then there exists a constang £
depending only on p anil such that

T p/2 T p
E{ sup yvtyp+</ yzsyzds> < CME{\E\F’Jr(/ \fs"yds)
o<t<T 0 0

T 02 P2 T 2 0,2
+ () 1eds) 4 [ P 210 ey

Proof. Applying Corollary 2.1 we have, forargg>0andany Xt <u<T:

u
PP +o(p) | EPIVIP 2Ly 0|2

IN

ePUY,|P — ap/tueapS]Ys\pdSJr p/tueaps\Ys]pl(\?s, f(s,Ys, Zs))ds
+¢(p) /t ueapS!Ys!ple{v# 0}l9(s.Ys, Zs) [Pds+ p /t PP (Ya, ol Yo, Zo)GBY)
p /t P P (Y, ZydW).
The assumption of andg yields
(7. f(sy.2)) < [f]+uyl+AZ
0 y2 < (L+OAYP+(1+e)ald?+ (14 3) P

for any arbitrarye > 0. Therefore for alt € [0,u], we get with probability one:
NP +(p) [ PGP 2Ly 025
< @PINIP+ [pH—a) + )L+ [ PP
+p [ PP (0)ds+Slp) (L8 ) [ PGP 2Ly g2
+alp)(L+e)a [ PP 2Ly g Zidst ph [T Yzds

u ~ — u ~
+p/t eap5|YS|p—1<Ys’ a(s,Ys,Zs)dBs) — p/t epqs|Ys|p71<YSa ZdW). (3.3)
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We deduce from the previous inequality theda.s.,

T
/ PIY[P2L,y, . g |Zs[2ds < .
0
Moreover, we have

pA?

Ys|P + ye(p) Y| pill{Ys;AO} |Zs|2>

for any arbitraryy > O.
Next for y ande small enough and large enough such that = [(1—y)c(p) — (1+

g)ac(p)] > 0 andc(a,e,y) = plu+ E-BEE) | 2(T A2 —a] <0, we have

;
Y|P +a /t Caa VAL FVIRYARGE

< PP+ D/T eapS!Ys\pl\foldSJrCTp)(lJrE1)/TeapS!Ys\p21{vs¢ olgsl’ds
+p / EPY[P1(Ys, g (SYS,stBS> p / PV, P (Y, ZsdWL)
< X+ p/t PV PL(Y, Q(SaYS>Zs)a_Bs> - p/t PP (s, ZsdWE), (3.4)
where

T T
X = ePTEPy p/o eaps!Ys\p‘l\fsold8+0(p)(1+€_1)/o PIYsP 2Ly oy R Pds

On can show thaldl, = f[T €P5Ys|P~1(Ys, g(S. Ys, Zs)dBs) andh, = f;T €™5|Ye|P~1(Ys, ZsdV\L)
are uniformly integrable martingale. Indeed, Using BDGgimality and then Young'’s in-
equality we have,

T 1/2
B < £| sup P ([ 2 ar) ]
o<t<T 0
_ T p/2
< p_lE<Sup |Yt|p>+1m: (/ |zr|2dr> (35)
p 0<t<T p 0
and
T 1/2
IE:(N,N)#/2 < E| sup |Yt|p_1</ |g(r,Yr,Zr)|2dr> ]
o<t<T 0
p—l p/2
< —E(sup wP) e | ([Morvzopar) | @
p 0<t<T

The last term of[(3)5) and (3.6) being finite sin¢eandg(.,Y,Z) belong tosP and a P
respectively, and thed belongs tav P by Lemma 3.1.
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Return to[(3.4), we get both

E(E"M?) < E(X),
;
od'E / Y|P 21y, 2 0)|Zs)%ds < CpE(X), (3.7)
0
E( sup eap‘|vt|p> < B(X) -+ kgE(N,N)Y2 4 hE (M, M) Y2,
0<t<T

On the other hand, we also have
1/2 1 ptiv |P 2 T pSiv/ | p—2 2
GEM,M)F? < 2B ( sup ey +4hpE/ PV P21, )[Z5[2ds
o<t<T 0
and

1 T
heE(N,N)Y? < ZE<o§f‘<pT eapt|Yt|p>—|—4kf)E | P21y, o izds

T T
+dpE < | @ maPst [ ey, 0}|92|2ds) .
0 0
Therefore from[(3]7), we obtain
E < sup eapt\\(t\F’) < CpE(X).
o<t<T
Applying once again Young’s inequality, we get
T 1 T P
pcp/ P[P fJlds < = sup [Ys|P+C, (/ e f_Syds)
0 20<s<T 0
from which we deduce, in view of, that
T p T
i sup @#iP) <o 6P+ ([ @Ptllds) + [ PP 210 ol
o<t<T 0 0

The result follows from Lemma 3.1. O

4 Existence and uniqueness of a solution

This section is devoted to derive existence and uniquemssttto BDSDEE, f,g) in LP-
sense, f € (1,2)). We use above a priori estimates drftdapproximation. We work under
(H1)-(H2) and the additional assumptions.

(H3) Forpe (1,2),
() E[[E[P] < o,

(i) Pas Y (t,2) € [0,T] x R4y f(t,y,2)is continuous

(iii) g(.,0,0) = 0,

( (V) V1 >0, Yr(t) = supy | f(t,y,0) — ] € LY([0, T}, m& P).
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Firstly, we generalize the result of Pardoux and Peng (se®rEim 1.1,[[8]) to mono-
tone case. To do this, let assume this assumption which appfd.

(H4) P—as. V(t,y) € [0, T] xRX, |f(t,y,0)] <|f(t,0,0)| +d(]y)).

Theorem 4.1. Under assumptiongH1)-(H4), BDSDE (2.1) has a unigue solution in
S2(RK) x ar 2(Rkxd),

Proof. It follows by combining argument of Pardoux (see Theorem[2}Rwith one used
in Pardoux and Peng (see Theorem 1.1, [8]). Therefore, weyiwd the main line.
Uniqueness

Let (Y,Z) and (Y’,Z’) be two solutions of BDSDEE, f,g) verify above assumptions. It
follows from It6 formula that

)
B% Y2+ 8 (12~ 2gds)
t

T T
— 2 ( [ (e fe Y2 - (¥ Z)ds) + B ( [ la(sYee) - a(s Y29 ls)
t t

IN

J
(1@ MY+ AN 2 24 +alze— Z)Plds)

IN

T T
(U A+y NE (/t ]YS—Ys’]zds>+(0(+y)E </t \zs—zg\2d3>.

Hence, taking/ small enough such that1a —y > 0, we have
T
E(%-YP) < CE ( / |vs—v_4|2ds> ,
t

which provide with Gronwall’s lemma tha(|Y; — Y/|?) = 0, for all t € [0,T], and then

]
E </ yzs—zgyzds> _o.
t

Existence
Firstly, let state this result which is proved similarly asposition 2.4 (see [7]) with addi-
tional computations due to backward stochastic integrét wéspect Brownian motioB,
SO we omit it.

Proposition 4.2. Given Ve o 2(0, T,RK*4) and assuméH1)-(H4), there exists a unique
measurable process€¥, Z;) o<t<1} With values inR* x R®¢ satisfies

T T — T
Vo=E+ / (s Ye,Vo)ds+ / oS Ve, Zs)dBs — / ZdW, 0<t<T.
t t t

Using Proposition{412), we considér: s2(RX) x a1 2(0, T,R**d) — 52(RX) x ar 2(0, T, R**d)
defined by(Y,Z) = ®(U,V) is the unique solution of the BDSDE

T T — T
Y=g+ [ fs%Vo)dst [ o(s¥Zo)dB— [ ZWe, 0<t<T.
t t t
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Let (U,V), (U’,V') belong ins2(RX) x ar 2(0, T,R*) (Y,Z) = ®d(U,V) and(Y',Z') =
®U’,V'). Setting(U,V) = (U-U"V-V')and(Y,Z) = (Y -Y',Z—Z'), it follows from
[t6 formula that fory € R,

J— T J— —
BV +E [ &(y|Vsf*+ [Z)ds
T T
e / Vs, (5 Ys, Vo) — F(5 Y, V/)dS+E / 19(s,Ys, Z5) — g(s,Y',Z) [2ds
t t
T )\2 v |12 \7 |12 = |2
< E/ (2u-+ = + NIV + £lVs + alZsf?)ds
t
Hence, if we choosg= ¥ +A+1—a, we have
T wiv 2,152 € T s 12 L [ 12
E/t ([Ys["+[Zo)ds < — E/t e®(|Us|"+ [Vs|)ds

Takene < 1—a, ® is a strict contraction og?(RX) x ar 2((0, T); R¥*%) equipped with the
norm

.
1022 =E [ & (%P +[242) ds

Its unique fixed point solves BDSDE, f,g) in s2(RX) x ar 2(R**d), O
We are now ready to state existence and uniqueness resuli®bBEs inLP-sense.

Theorem 4.3. Under assumptiongH1)-(H3), BDSDE (2.1) has a unique solution in
SP(R¥) x ar P(R**Y) pe (1,2).

Proof. Uniqueness
Let us consideY,Z) and (Y’,Z") two solutions of BDSDEE, f,g). SettingY =Y —Y’
andZ = Z—Z', then the proces&’,Z) solves BDSDE

_ T T T
Yt — / q)(S,Ys, Zs)ds+/ lIJ(S,Ys, Zs)dBS—/ stV\é, O St S T,
t t t

where

0(s,y,2) = F(sy+Ye,2+Zg) — (s Y¢, Zg) and @(s,y,2) =g(s.y+Ys,2+Z9) —9(s Ve, Zo)-
Thanks to(H2), the processY,Z) satisfies Lemma 3.2 with® = ° = 0. Thus,(Y,Z) =
(0,0) immediately.

Existence

It split in two steps.
Step 1.For positive reat, we supposé, sup| f0| are bounded random variables such that

eI (g +T)f%w) < T

13



For suchr, we defineB; a smooth function such that06, < 1 and

1forly| <r
0 (y) =

Oforly| >r+1.

For eachn € N*, we denote
n 0

Mt%.2) = B)(F(ty.n() = )+ 1

wheregn(z) = z‘z‘%.

As it is shown in[[8], for eaclm € N, (&, h,,g) satisfies assumptiori$il)-(H4) with p
positive and, hence, there exist a unique pro¢¥8sZ") solution of BDSDE(E, hy,g) in
SZ(RK) % MZ(kad)_

Moreover, we show combining argument of Briand and Carmeaa Lemma 2.2 [2])
and remark 2.2 ir_[1] thafY"||. <r which together with Lemma 3.1 provide

122 <V, (4.1)

wherer’ is another constant depending ion
As a byproduct if we denote
n 0

fa(t,y,2) = (F(t,y,0n(2)) - fto)m + fr,

then(Y", Z") still solution to BDSDE(E, f,,9).
Fori € N, setting Y™ =Y _yn znl — zn _ 7" we have

. T — .
eat|Yt”"|2+(1—s—0()/ eaS|Zg"|2dS
t

IA

T — .
2 [ R o (8 Y0, 22) — fa(8 Y0 ZD))dls
1 2 T SivN,i |2
(2 A +>\—a)/t SV 2ds
T . . .
2 [ & (g(s Y20 — (s V0. Z0))dBy)
t
T .
2 /t ES(YM ZMgwyg),
for anya > 0 ande > 0.

Next, sincel|Y™||,, < 2r and settingy=1—¢&—a > 0 and(2u+ A2+ X —a) <0, we
obtain

SN vy [ @z s

< 4 /tT 5o (8, Y, Z0) — fa(s, YD, Z0)(ds
s2 [ T (gls N0 22 — o(s Y0 20)dBy
_Z/tT &Sy Zhigng).
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Therefore, combining rigorously Gronwall's and BDG inelifyathere exist a constar@@
depending only oA, a andT such that

. T _ . T
E[ sup |Yt”"|2+/ |ZQ~'|2ds] <CrIE [/ Fi(S, YD, Z0) — (s, Y, Z0)(ds] .
o<t<T 0 0

But [[Y"||» <r so that
‘fn-s-i(sast?Zg) - fn(S,YSn,ZQ)\ < ZA’Zg’l{\ZS”\ >n} +2)\’ZS‘1{TG+1(S)>I1} + 2T[r+1(5)1{rrr+1(s)>n}7

from which, (Y",Z") is a cauchy sequence in Banach spagR¥) x ar 2(R*<9). Hence,
(Y, Z") admit a limit(Y,Z) € $2(R¥) x ar 2(R**9), which solves BDSDE(2]1).
Step 2.In the general case, let us define for eachN*,

E.I’l = CIn(E); fn(t,y,Z) =f (t7y7z) - ft0+qn(ft0)'

Thank to the Step 1, BDSDE,,, f,,g) has a unique solutiofY",Z") € L2, but also inLP
far all p € (1,2) according to Lemma 3.1. Moreover, from Lemma 3.2,(ion) € N x N¥,
there exisC(T,a,A) such that

. T _ p/2
B sup 1P (1201~ 23
0<t<T 0

T P

< Bl &lP+ ([ lana (19— t0las) |- 4.2

The right-hand side of(41.2) tends to 0, ms~ o, uniformly ini; thus (Y",Z") is a

Cauchy sequence isP(R¥) x ar P(R¥4) and its limit(Y,Z) solves BDSDHZ.J). O
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