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Abstract

The goal of this paper is to solve backward doubly stochasticdifferential equation
(BDSDE, in short) under weak assumptions on the data. The first part is devoted to the
development of some new technical aspects of stochastic calculus related to BDSDEs.
Then we derive a priori estimates and prove existence and uniqueness of solutions in
Lp, p∈ (1,2), extending the work of pardoux and Peng (see Probab. Theory Related
Fields 98 (1994), no. 2).
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1 Introduction

In this paper, we are concerned with backward doubly stochastic differential equations
(BDSDEs, in short):

Yt = ξ+
∫ T

t
f (r,Yr ,Zr)dr+

∫ T

t
g(r,Yr ,Zr)

←−
dBr −

∫ T

t
ZrdWr , 0≤ t ≤ T, (1.1)

which involves both a standard (forward) stochastic Itô integral driven bydWt and a back-
ward stochastic itô integral driven by

←−
dBt . The random variableξ and functionsf andg are

data, while the pair of processes(Yt ,Zt)t∈[0,T ] is the unknowns.
The theory of nonlinear backward doubly SDE have been firstlyintroduced in [8] by

Pardoux and Peng . Among other they proved existence and uniqueness result under Lips-
chitz continuous and square integrable assumptions on the data. They also showed that in
the markovian framework, BDSDEs give the representation toquasi-linear stochastic partial
differential equations (SPDEs). Indeed, under stonger conditions (f , g areC3) they proved
that u(t,x) = Yt,x

t is classical solution of the SPDE( f ,g). This generalize the well-know
Feymann-Kac formula to SPDEs. Since this first existence anduniqueness result, many
other works have been devoted to existence and/or uniqueness results for BDSDEs under
weaker assumptions. For scalar BDSDEs case, N’zi and Owo [5]deal with discontinuous
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coefficients by using the comparison theorem establish in [10]. There is no comparison
theorem for multidimensional BDSDEs. To overcome this difficulty, a monotonicity as-
sumption on the generatorf with respecty uniformly onz is used. This condition appear in
the paper by Peng and Shi [9] and N’zi and Owo [6].

However, in all the above works the data are supposed to be at least square integrable.
This condition is too restrictive to be assumed in many applications. For example, the
pricing problem of an American claim is equivalent to solving the linear BDSDE

−dYt = (rtYt +θtZt)dt+ctYt
←−
dBt −ZtdWt , YT = ξ, (1.2)

where rt is the interest rate,θt is the risk premium vector andct is the market exterior
volatility factor. In general all of this coefficients are unbounded and the terminal condition
ξ is only integrable. Consequently the result of Pardoux and Peng in [8] and all above paper
may be invalid.

The aim of this present paper is to correct this gap and prove existence and uniqueness
result for BDSDEs inRk whenξ, f (t,0,0) andg(t,0,0) arep-integrable,p∈ (1,2), with f
only monotone. To our knowledge, this result do not exists inliterature, therefore it is new.

The paper is organized as follows. In Section 2, we give all notations and basic identities
of this paper. The Section 3 contains essential a priori estimates. In Section 4, we prove
existence and uniqueness result.

2 Preliminaries

2.1 Assumptions and basic notations

Let Rk×d be identified to the space of real matrices withk rows andd columns; hence for
eachz∈ R

k×d, |z|2 = trace(zz∗).
In throughout this paper, we consider the probability space(Ω,F ,P) and a real positive

constantT. We define on(Ω,F ,P) two mutually independent standard Brownian motion
processes{Wt ,0≤ t ≤ T} and{Bt ,0≤ t ≤ T} taking values inRd andRℓ respectively. Let
N denote the class ofP-null sets ofF and set

F t = F
B

t ⊗F
W

t,T ∨N , 0≤ t ≤ T

defined byF η
s,t = σ{ηr −ηs,s≤ r ≤ t} for anyηt , andF η

t = F
η

0,t .
We emphasize that the collection{F t , t ∈ [0,T]} is not filtration. Indeed, it is neither

increasing nor decreasing. For any realp> 0, we also denote byS p(Rn) the set of jointly
measurable processes{Xt}t∈[0,T ] taking values inRn such that

(i)

‖X‖S p = E

(
sup

0≤t≤T
|Xt |

p
)1∧ 1

p

<+∞;

(ii)Xt is F t-measurable, for anyt ∈ [0,T].

andM p(Rn)) the set of (classes ofdP× dt a.e. equal)n-dimensional jointly measurable
processes such that
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(i)

‖X‖M p = E

[(∫ T

0
|Xt |

2dt

) p
2

]1∧ 1
p

<+∞.

(ii)Xt is F t-measurable, for a.e.t ∈ [0,T].

If p≥ 1, (S p(Rn), ‖X‖S p) and(M p(Rn), ‖X‖M p) are Banach spaces.
Let

f : Ω× [0,T]×R
k×R

k×d→ R
k; g : Ω× [0,T]×R

k×R
k×d→ R

k×ℓ

be jointly measurable such that for any(y,z) ∈ R
k×R

k×d. We have

(H1) f (.,y,z) ∈M p(0,T,Rk), g(.,y,z) ∈M p(0,T,Rk×ℓ)

(H2) There exist constantsµ∈R, λ> 0 and 0<α< 1 such that for anyt ∈ [0,T]; (y1,z1),(y2,z2)∈
R

k×R
k×d,




(i) | f (t,y1,z1)− f (t,y1,z2)| ≤ λ|z1−z2|,

(ii) 〈y1−y2, f (t,y1,z1)− f (t,y2,z1)〉 ≤ µ|y1−y2|
2,

(iii ) |g(t,y1,z1)−g(t,y2,z2)|
2≤ λ|y1−y2|

2+α|z1−z2|
2.

Given aRk-valuedFT -measurable random vectorξ, we consider the backward doubly
stochastic differential equation:

Yt = ξ+
∫ T

t
f (s,Ys,Zs)ds+

∫ T

t
g(s,Ys,Zs)

←−
dBs−

∫ T

t
ZsdWs, 0≤ t ≤ T. (2.1)

Now we recall what we mean by a solution to the BDSDE (2.1).

Definition 2.1. A solution of BDSDE(2.1) is a pair(Yt ,Zt)0≤t≤T of jointly measurable pro-
cesses taking values inRk×R

k×d and satisfying(2.1) such that:P a.s.,t 7→ (Zt ,g(t,Yt ,Zt))
belongs inL2(0,T), t 7→ f (t,Yt ,Zt) belongs inL1(0,T).

2.2 Generalized Tanaka formula

As explained in the introduction, we want to deal with BDSDEswith data inLp, p∈ (1,2)
like the works of Pardoux et al. (see [3]) which treat BSDEs case i.eg≡ 0. We start by
Tanaka formula relative to BDSDEs, which is the critical tool in this paper. For this, we
notex̂= |x|−1x1{x6=0}.

Lemma 2.2. Let {Kt}t∈[0,T ], {Ht}t∈[0,T ] and {Gt}t∈[0,T ] be jointly measurable such that
K ∈M p(0,T,Rk), H ∈M p(0,T,Rk×d), G∈M p(0,T,Rk×ℓ). We consider theRk-valued
semi martingale{Xt}t∈[0,T ] defined by

Xt = X0+
∫ t

0
Ks ds+

∫ t

0
Gs
←−
dBs+

∫ t

0
Hs dWs, 0≤ t ≤ T. (2.2)
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Then, for any p≥ 1, we have

|Xt |
p−1{p=1}Lt = |X0|

p+ p
∫ t

0
|Xs|

p−1〈X̂s,Ks〉ds

+p
∫ t

0
|Xs|

p−1〈X̂s,Gs
←−
dBs〉+ p

∫ t

0
|Xs|

p−1〈X̂s,HsdWs〉

−
p
2

∫ t

0
|Xs|

p−21{Xs6=0}{(2− p)(|Gs|
2−〈X̂s,GsG

∗
sX̂s〉)+ (p−1)|Gs|

2}ds

+
p
2

∫ t

0
|Xs|

p−21{Xs6=0}{(2− p)(|Hs|
2−〈X̂s,HsH

∗
s X̂s〉)+ (p−1)|Hs|

2}ds,

where{Lt}t∈[0,T ] is a continuous process with L0 = 0, which varies only on the boundary of
the random set{t ∈ [0,T], Xt = 0}.

Proof. Since the functionx 7→ |x|p is not smooth enough, forp∈ (1,2), we approximate it
by the function uε(x) = (|x|2+ ε2)1/2, ∀ ε > 0. The functionuε is actually smooth and
setting byI the identity matrix ofRk, we have

∇up
ε (x) = pup−2

ε (x)x; D2up
ε (x) = pup−2

ε (x)I + p(p−2)up−4
ε (x)(x⊗x).

Therefore we get by Itô’s formula the equality

up
ε (Xt) = up

ε (X0)+ p
∫ t

0
up−2

ε (Xs)〈Xs,Ks〉ds

+p
∫ t

0
up−2

ε (Xs)〈Xs,Gs
←−
dBs〉+ p

∫ t

0
up−2

ε (Xs)〈Xs,HsdWs〉

−
1
2

∫ t

0
trace(D2up

ε (Xs)GsG
∗
s)ds+

1
2

∫ t

0
trace(D2up

ε (Xs)HsH
∗
s )ds. (2.3)

The rest of this proof is essentially to pass to the limit whenε→ 0 in (2.3). To do this, we
remark first that

∫ t

0
up−2

ε (Xs)〈Xs,Ks〉ds→
∫ t

0
|Xs|

p−1〈X̂s,Ks〉ds, P-a.s.

We also have
∫ t

0
up−2

ε (Xs)〈Xs,Gs
←−
dBs〉 →

∫ t

0
|Xs|

p−1〈X̂s,Gs
←−
dBs〉

and
∫ t

0
up−2

ε (Xs)〈Xs,HsdWs〉 →

∫ t

0
|Xs|

p−1〈X̂s,HsdWs〉;

in P-probability uniformly on[0,T]. The convergence of the stochastic integrals follows
from the following convergence:

∫ T

0
|Xs|

21{Xs6=0}|Gs|
2(|Xs|

p−2−up−2
ε (Xs))

2ds→ 0

4



and
∫ T

0
|Xs|

21{Xs6=0}|Hs|
2(|Xs|

p−2−up−2
ε (Xs))

2ds→ 0,

which is provided by the dominated convergence theorem.
It remains to study the convergence of the term including thesecond derivative ofuε. It

is shown in [3] that

trace(D2up
ε (Xs)GsG

∗
s) = p(2− p)(|Xs|u

−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}(|Gs|

2−〈X̂s,GsG
∗
sX̂s〉)

+p(p−1)(|Xs|u
−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}|Gs|

2+ pε2|Gs|
2up−4

ε (Xs)

and

trace(D2up
ε (Xs)HsH

∗
s ) = p(2− p)(|Xs|u

−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}(|Hs|

2−〈X̂s,HsH
∗
s X̂s〉)

+p(p−1)(|Xs|u
−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}|Hs|

2+ pε2|Hs|
2up−4

ε (Xs).

One has also

|Gs|
2 ≥ 〈X̂s,GsG

∗
sX̂s〉

|Hs|
2 ≥ 〈X̂s,HsH

∗
s X̂s〉 (2.4)

and
|Xs|

uε(Xs)
ր 1{Xs6=0}

asε→ 0. Hence by monotone convergence, asε→ 0,

∫ t

0
(|Xs|u

−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}{(2− p)(|Gs|

2−〈X̂s,GsG
∗
sX̂s〉)+ (p−1)|Gs|

2}ds

converge to

∫ t

0
|Xs|

p−21{Xs6=0}{(2− p)(|Gs|
2−〈X̂s,GsG

∗
sX̂s〉)+ (p−1)|Gs|

2}ds

and
∫ t

0
(|Xs|u

−1
ε (Xs))

4−p|Xs|
p−21{Xs6=0}{(2− p)(|Hs|

2−〈X̂s,HsH
∗
s X̂s〉)+ (p−1)|Hs|

2}ds

converge to

∫ t

0
|Xs|

p−21{Xs6=0}{(2− p)(|Hs|
2−〈X̂s,HsH

∗
s X̂s〉)+ (p−1)|Hs|

2}ds,

P-a.s., for all 0≤ t ≤ T.
Let denote

Lε
t (p) =

∫ t

0
Cε

s(p)ds,
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whereCε
s(p) =

p
2ε2up−4

ε (Xs)(|Hs|
2−|Gs|

2). Then it follows from (2.3) thatLε(p) converges
to a continuous processL(p) asε→ 0; moreover,L(p) ≡ 0 for p > 1. Indeed, forp≥
4, L(p) ≡ 0 sinceCε

s(p) converges to 0 inL1(0,T). Next, if p ∈ (1,4), by settingθ =
(4− p)/3∈ (0,1) we get

Lε
t =

p
2

∫ t

0

(
ε2(|Hs|

2−|Gs|
2)u−3

ε (Xs)
)θ (ε2(|Hs|

2−|Gs|
2)
)1−θ

ds.

Hence Hölder’s inequality provide that

Lε
t (p)≤ p(Lε

t (1))
θ
(∫ T

0
ε2(|Hs|

2−|Gs|
2)ds

)1−θ

which tends to 0 asε→ 0 for eacht ∈ [0,T]. For p= 1, let setL(1) = L and remark thatLt

can be decomposed in two continuous and increasing functions L1
t andL2

t , which are limit
of processes12

∫ t
0 ε2|Hs|

2u−3
ε (Xs) and 1

2

∫ t
0 ε2|Gs|

2u−3
ε (Xs) respectively. As it is shown in [3],

L1
t andL2

t increase only on the boundary of the random set{t ∈ [0,T], Xt = 0}. Therefore
Lt varies only in this case.

Remark2.3. Since the processLt is neither increasing nor decreasing, we can not apply the
similarly argument used in [3]. Therefore the following corollary works only in the case
p∈ (1,2), which correspond to our framework.

Corollary 2.4. Let p∈ (1,2) and denote c(p) = p(p− 1)/2 and c̄(p) = p(3− p)/2 . If
(Y,Z) is a solution of the BDSDE(2.1), then for0≤ t ≤ T

|Yt |
p+c(p)

∫ T

t
|Ys|

p−21{Ys6=0}|Zs|
2ds

≤ |YT |
p+ p

∫ T

t
|Ys|

p−1〈Ŷs, f (s,Ys,Zs)〉ds

+c̄(p)
∫ T

t
|Ys|

p−21{Ys6=0}|g(s,Ys,Zs)|
2ds

+p
∫ T

t
|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ t

0
|Ys|

p−1〈Ŷs,ZsdWs〉.

Proof. The proof follows from Lemma 2.2. Indeed, recall that(Y,Z) is solution of BDSDE
(2.1) and replace(X,K,H,G) by (Y, f (.,Y,Z),Z,g(.,Y,Z)), it follows that

|Yt |
p+

p
2

∫ T

t
|Ys|

p−21{Ys6=0}{(2− p)(|Zs|
2−〈Ŷs,ZsZ

∗
sŶs〉)+ (p−1)|Zs|

2}ds

= |YT |
p+ p

∫ T

t
|Ys|

p−1〈Ŷs, f (s,Ys,Zs)〉ds+ p
∫ T

t
|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ T

t
|Ys|

p−1〈Ŷs,ZsdWs〉

+
p
2

∫ T

t
|Ys|

p−21{Ys6=0}{(2− p)(|g(s,Ys,Zs)|
2−〈Ŷs,g(s,Ys,Zs)g

∗(s,Ys,Zs)Ŷs〉)+ (p−1)|g(s,Ys,Zs)|
2}ds.

(2.5)

Sincep∈ (1,2), it follows from (2.4) that

(p−1)
∫ T

t
|Ys|

p−21{Ys6=0}|Zs|
2ds

≤

∫ T

t
|Ys|

p−21{Ys6=0}{(2− p)(|Zs|
2−〈Ŷs,ZsZ

∗
sŶs〉)+ (p−1)|Zs|

2}ds. (2.6)
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and
∫ T

t
|Ys|

p−21{Ys6=0}{(2− p)(|g(s,Ys,Zs)|
2−〈Ŷs,g(s,Ys,Zs)g

∗(s,Ys,Zs)Ŷs〉)+ (p−1)|g(s,Ys,Zs)|
2}ds

≤ (3− p)
∫ T

t
|Ys|

p−21{Ys6=0}|g(s,Ys,Zs)|
2ds. (2.7)

Therefore putting (2.6) and (2.7) to (2.5) we obtain

|Yt |
p+c(p)

∫ T

t
|Ys|

p−21{Ys6=0}|Zs|
2ds

≤ |YT |
p+ p

∫ T

t
|Ys|

p−1〈Ŷs, f (s,Ys,Zs)〉ds+ p
∫ T

t
|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ T

t
|Ys|

p−1〈Ŷs,ZsdWs〉

+c̄(p)
∫ T

t
|Ys|

p−21{Ys6=0}|g(s,Ys,Zs)|
2ds.

which proved the result.

3 A priori estimates

In this section, we state some estimation concerning solution to BDSDE (2.1). These es-
timates are very useful for the study of existence and uniqueness of solutions. In what
follows, we are two difficulty. The functionf is not Lipschitz continuous and we desire
estimate inLp-sense,p∈ (1,2).

We begin by derive the following result which permit us to control the processZ by the
data and the processY.

Lemma 3.1. Let assumptions(H1)-(H2) hold and(Y,Z) be a solution of BDSDE(2.1). If
Y ∈ S p then Z belong toM p and there exists a real constant Cp,λ depending only on p, T
andλ such that

E

[(∫ T

0
|Zr |

2dr

)p/2
]
≤ CpE

{
sup

0≤t≤T
|Yt |

p+

(∫ T

0
| f 0

r |dr

)p

+

(∫ T

0
|g0

r |
2dr

)p/2
}
.

Proof. For each integern, let us define

τn = inf

{
t ∈ [0,T],

∫ t

0
|Zr |

2dr ≥ n

}
∧T.

The sequence(τn)n≥0 is stationary since the processZ belongs toL2(0,T) and then∫ T
0 |Zs|

2ds< ∞, P- a.s.
For arbitrary reala, using Itô’s formula, we have

|Y0|
2+

∫ τn

0
ear|Zr |

2dr

= eaτn|Yτn|
2+2

∫ τn

0
ear〈Yr , f (r,Yr ,Zr)−aYr〉dr+

∫ τn

0
ear|g(r,Yr ,Zr)|

2dr

+2
∫ τn

0
ear〈Yr ,g(r,Yr ,Zr)

←−
dBr〉−2

∫ τn

0
ear〈Yr ,ZrdWr 〉. (3.1)

7



But, it follows from assumptions(H1)-(H2) and inequality 2bd≤ 1
ε b2+ εd2 that, for any

arbitrary positive real constantε andε′,

2〈Yr , f (r,Yr ,Zr)−aYr〉 ≤ 2|Yr || f
0
r |+2µ|Yr |

2+2λ|Yr ||Zr |−a|Yr |
2

≤ 2|Yr || f
0
r |+(2µ+2λ+ ε−1λ2−a)|Yr |

2+ ε|Zr |
2,

‖g(r,Yr ,Yr )‖
2 ≤ (1+ ε′)λ|Yr |

2+(1+ ε′)α|Zr |
2+(1+

1
ε′
)|g0

r |
2.

Thus, sinceτn≤ T, takingε, ε′ such thatε+(1+ ε′)α < 1 and
2µ+(3+ ε′)λ+ ε−1λ2−a≤ 0, we deduce
(∫ τn

0
|Zr |

2dr

)p/2

≤ Cp,λ

{
sup

0≤t≤τn

|Yt |
p+

(∫ τn

0
| f 0

r |dr

)p

+

(∫ τn

0
|g0

r |
2dr

)p/2

+

∣∣∣∣
∫ τn

0
ear〈Yr ,g(s,Yr ,Zr)

←−
dBr〉

∣∣∣∣
p/2

+

∣∣∣∣
∫ τn

0
ear〈Yr ,ZrdWr〉

∣∣∣∣
p/2
}
.

(3.2)

But thanks to BDG’s inequality, we have

E

(∣∣∣∣
∫ τn

0
ear〈Yr ,ZrdWr〉

∣∣∣∣
p/2
)
≤ dpE

[(∫ τn

0
|Yr |

2|Zr |
2dr

)p/4
]

≤ C̄pE

[
sup

0≤t≤τn

|Yt |
p/2
(∫ τn

0
|Zr |

2dr

)p/4
]

≤
C̄2

p

η1
E

(
sup

0≤t≤τn

|Yt |
p

)
+η1E

(∫ τn

0
|Zr |

2dr

)p/2

.

and

E

(∣∣∣∣
∫ τn

0
ear〈Yr ,g(s,Yr ,Zr)

←−
dBr〉

∣∣∣∣
p/2
)
≤ dpE

[(∫ τn

0
|Yr |

2|g(r,Yr ,Zr)|
2dr

)p/4
]

≤ C̄pE

[
sup

0≤t≤τn

|Yt |
p/2
(∫ τn

0
|g(r,Yr ,Zr)|

2dr

)p/4
]

≤
C̄2

p

η2
E

(
sup

0≤t≤τn

|Yt |
p

)
+η2E

(∫ τn

0
|g(r,Yr ,Zr)|

2dr

)p/2

≤ CpE

(
sup

0≤t≤τn

|Yt |
p+

(∫ τn

0
|g0

r |
2
)p/2

)

+(1+η3)η2αE
(∫ τn

0
|Zr |

2dr

)p/2

.

Let us takeη1,η2 andη3 small enough such that coming back to (3.2), we obtain, for each
n∈N,

E

[(∫ τn

0
|Zr |

2dr

)p/2
]
≤ CpE

{
sup

0≤t≤T
|Yt |

p+

(∫ T

0
| f 0

r |dr

)p

+

(∫ T

0
|g0

r |
2dr

)p/2
}
,
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which by Fatou’s lemma implies

E

[(∫ T

0
|Zr |

2dr

)p/2
]
≤ CpE

{
sup

0≤t≤T
|Yt |

p+

(∫ T

0
| f 0

r |dr

)p

+

(∫ T

0
|g0

r |
2dr

)p/2
}
,

the desired result.

We keep on this study by stating the estimate which is the maintool to derive existence
and uniqueness result in our context. The difficulty comes from the fact thatf is non-
Lipschitz iny and the functiony 7→ |y|p is notC 2 since we work withp∈ (1,2).

Lemma 3.2. Assume(H1)-(H2). Let (Y,Z) be a solution of the backward doubly SDE
associated to the data(ξ, f ,g) where Y belong toS p. Then there exists a constant Cp,λ
depending only on p andλ such that

E

{
sup

0≤t≤T
|Yt |

p+

(∫ T

0
|Zs|

2ds

)p/2
}
≤ Cp,λE

{
|ξ|p+

(∫ T

0
| f 0

s |ds

)p

+

(∫ T

0
|g0

s|
2ds

)p/2

+

∫ T

0
|Ys|

p−21{Ys6=0}|g
0
s|

2ds

}
.

Proof. Applying Corollary 2.1 we have, for anya> 0 and any 0≤ t ≤ u≤ T:

eapt|Yt |
p+c(p)

∫ u

t
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds

≤ eapu|Yu|
p−ap

∫ u

t
eaps|Ys|

pds+ p
∫ u

t
eaps|Ys|

p−1〈Ŷs, f (s,Ys,Zs)〉ds

+c̄(p)
∫ u

t
eaps|Ys|

p−21{Ys6= 0}|g(s,Ys,Zs)|
2ds+ p

∫ u

t
eaps|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉

−p
∫ u

t
eaps|Ys|

p−1〈Ŷs,ZsdWs〉.

The assumption onf andg yields

〈ŷ, f (s,y,z)〉 ≤ | f 0
s |+µ|y|+λ|z|

|g(s,y,z)|2 ≤ (1+ ε)λ|y|2+(1+ ε)α|z|2+(1+
1
ε
)|g0

s|
2,

for any arbitraryε > 0. Therefore for allt ∈ [0,u], we get with probability one:

eapt|Yt |
p+c(p)

∫ u

t
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds

≤ eapu|Yu|
p+[p(µ−a)+ c̄(p)(1+ ε)λ]

∫ u

t
eaps|Ys|

pds

+p
∫ u

t
eaps|Ys|

p−1| f 0
s |ds+ c̄(p)(1+ ε−1)

∫ u

t
eaps|Ys|

p−21{Ys6= 0}|g
0
s|

2ds

+c̄(p)(1+ ε)α
∫ u

t
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds+ pλ

∫ u

t
eaps|Ys|

p−1|Zs|ds

+p
∫ u

t
eaps|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ u

t
epαs|Ys|

p−1〈Ŷs,ZsdWs〉. (3.3)
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We deduce from the previous inequality that,P-a.s.,

∫ T

0
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds< ∞.

Moreover, we have

pλ|Ys|
p−1|Zs| ≤ γ−1 pλ2

2(p−1)
|Ys|

p+ γc(p)|Ys|
p−11{Ys6=0}|Zs|

2,

for any arbitraryγ > 0.
Next for γ andε small enough anda large enough such thatα′ = [(1− γ)c(p)− (1+

ε)αc̄(p)]> 0 andc(a,ε,γ) = p[µ+ (3−p)(1+ε)
2 λ+ γ−1

2(p−1)λ
2−a]≤ 0, we have

|Yt |
p+α′

∫ T

t
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds

≤ eapT|ξ|p+ p
∫ T

t
eaps|Ys|

p−1| f 0
s |ds+ c̄(p)(1+ ε−1)

∫ T

t
eaps|Ys|

p−21{Ys6= 0}|g
0
s|

2ds

+p
∫ T

t
eaps|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ T

t
eaps|Ys|

p−1〈Ŷs,ZsdWs〉

≤ X+ p
∫ T

t
eaps|Ys|

p−1〈Ŷs,g(s,Ys,Zs)
←−
dBs〉− p

∫ T

t
eaps|Ys|

p−1〈Ŷs,ZsdWs〉, (3.4)

where

X = eapT|ξ|p+ p
∫ T

0
eaps|Ys|

p−1| f 0
s |ds+c(p)(1+ ε−1)

∫ T

0
eaps|Ys|

p−21{Ys6= 0}|g
0
s|

2ds.

On can show thatMt =
∫ T

t eaps|Ys|
p−1〈Ŷs,g(s,Ys,Zs)

←−
dBs〉 andNt =

∫ T
t epαs|Ys|

p−1〈Ŷs,ZsdWs〉
are uniformly integrable martingale. Indeed, Using BDG inequality and then Young’s in-
equality we have,

E〈M,M〉1/2
T ≤ E

[
sup

0≤t≤T
|Yt |

p−1
(∫ T

0
|Zr |

2dr

)1/2
]

≤
p−1

p
E

(
sup

0≤t≤T
|Yt |

p
)
+

1
p
E

[(∫ T

0
|Zr |

2dr

)p/2
]

(3.5)

and

E〈N,N〉1/2
T ≤ E

[
sup

0≤t≤T
|Yt |

p−1
(∫ T

0
|g(r,Yr ,Zr)|

2dr

)1/2
]

≤
p−1

p
E

(
sup

0≤t≤T
|Yt |

p
)
+

1
p
E

[(∫ T

0
|g(r,Yr ,Zr)|

2dr

)p/2
]
. (3.6)

The last term of (3.5) and (3.6) being finite sinceY andg(.,Y,Z) belong toS p andM p

respectively, and thenZ belongs toM p by Lemma 3.1.
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Return to (3.4), we get both

E
(
eapt|Yt |

p) ≤ E(X),

α′E
∫ T

0
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds ≤ CpE(X), (3.7)

E

(
sup

0≤t≤T
eapt|Yt |

p
)
≤ E(X)+kpE〈N,N〉1/2

T +hpE〈M,M〉1/2
T .

On the other hand, we also have

kpE〈M,M〉1/2
T ≤

1
4
E

(
sup

0≤t≤T
eapt|Yt |

p
)
+4h2

pE

∫ T

0
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds

and

hpE〈N,N〉1/2
T ≤

1
4
E

(
sup

0≤t≤T
eapt|Yt |

p
)
+4k2

pE

∫ T

0
eaps|Ys|

p−21{Ys6= 0}|Zs|
2ds

+dpE

(∫ T

0
eaps|Ys|

pds+
∫ T

0
eaps|Ys|

p−21{Ys6= 0}|g
0
s|

2ds

)
.

Therefore from (3.7), we obtain

E

(
sup

0≤t≤T
eapt|Yt |

p
)
≤CpE(X).

Applying once again Young’s inequality, we get

pCp

∫ T

0
eaps|Ys|

p−1| f 0
s |ds ≤

1
2

sup
0≤s≤T

|Ys|
p+C′p

(∫ T

0
eaps| f 0

s |ds

)p

from which we deduce, in view ofX, that

E

(
sup

0≤t≤T
eapt|Yt |

p
)
≤CpE

[
|ξ|p+

(∫ T

0
eaps| f 0

s |ds

)p

+
∫ T

0
eaps|Ys|

p−21{Ys6= 0}|g
0
s|

2ds

]
.

The result follows from Lemma 3.1.

4 Existence and uniqueness of a solution

This section is devoted to derive existence and uniqueness result to BDSDE(ξ, f ,g) in Lp-
sense, (p∈ (1,2)). We use above a priori estimates andL∞-approximation. We work under
(H1)-(H2) and the additional assumptions.

(H3) For p∈ (1,2),



(i) E [|ξ|p]< ∞,

(ii) Pa.s. ∀(t,z) ∈ [0,T]×R
k×d, y 7→ f (t,y,z) is continuous,

(iii ) g(.,0,0) ≡ 0,

(iv) ∀ r > 0, ψr(t) = sup|y|<r | f (t,y,0)− f 0
t | ∈ L1([0,T ],m⊗P).
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Firstly, we generalize the result of Pardoux and Peng (see Theorem 1.1, [8]) to mono-
tone case. To do this, let assume this assumption which appear in [7].

(H4) P− a.s. ∀(t,y) ∈ [0,T]×R
k, | f (t,y,0)| ≤ | f (t,0,0)|+ϕ(|y|).

Theorem 4.1. Under assumptions(H1)-(H4), BDSDE(2.1) has a unique solution in
S 2(Rk)×M 2(Rk×d).

Proof. It follows by combining argument of Pardoux (see Theorem 2.2[7]) with one used
in Pardoux and Peng (see Theorem 1.1, [8]). Therefore, we will give the main line.
Uniqueness
Let (Y,Z) and (Y′,Z′) be two solutions of BDSDE(ξ, f ,g) verify above assumptions. It
follows from Itô formula that

E(|Yt −Y′t |
2)+E

(∫ T

t
|Zs−Z′s|

2ds

)

= 2E

(∫ T

t
〈Ys−Y′s, f (s,Y,Zs)− f (s,Y′s,Z

′
s)〉ds

)
+E

(∫ T

t
|g(s,Ys,Zs)−g(s,Y′s,Z

′
s)|

2ds

)

≤ E

(∫ T

t
[(2µ+λ)|Ys−Y′s|

2+2λ|Ys−Y′s||Zs−Z′s|+α|Zs−Z′s|
2]ds

)

≤ (2µ+λ+ γ−1λ2)E

(∫ T

t
|Ys−Y′s|

2ds

)
+(α+ γ)E

(∫ T

t
|Zs−Z′s|

2ds

)
.

Hence, takingγ small enough such that 1−α− γ > 0, we have

E(|Yt −Y′t |
2) ≤ CE

(∫ T

t
|Ys−Y′s|

2ds

)
,

which provide with Gronwall’s lemma thatE(|Yt −Y′t |
2) = 0, for all t ∈ [0,T], and then

E

(∫ T

t
|Zs−Z′s|

2ds

)
= 0.

Existence
Firstly, let state this result which is proved similarly as Proposition 2.4 (see [7]) with addi-
tional computations due to backward stochastic integral with respect Brownian motionB,
so we omit it.

Proposition 4.2. Given V∈M 2(0,T,Rk×d) and assume(H1)-(H4), there exists a unique
measurable processes(Yt ,Zt){0≤t≤T} with values inRk×R

k×d satisfies

Yt = ξ+
∫ T

t
f (s,Ys,Vs)ds+

∫ T

t
g(s,Ys,Zs)

←−
dBs−

∫ T

t
ZsdWs, 0≤ t ≤ T.

Using Proposition (4.2), we considerΦ : S 2(Rk)×M 2(0,T,Rk×d)→ S 2(Rk)×M 2(0,T,Rk×d)
defined by(Y,Z) = Φ(U,V) is the unique solution of the BDSDE

Yt = ξ+
∫ T

t
f (s,Ys,Vs)ds+

∫ T

t
g(s,Ys,Zs)

←−
dBs−

∫ T

t
ZsdWs, 0≤ t ≤ T.
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Let (U,V), (U ′,V ′) belong inS 2(Rk)×M 2(0,T,Rk×d), (Y,Z) = Φ(U,V) and(Y′,Z′) =
Φ(U ′,V ′). Setting(U ,V) = (U −U ′,V−V ′) and(Y,Z) = (Y−Y′,Z−Z′), it follows from
Itô formula that forγ ∈R,

eγt
E|Yt |

2+E

∫ T

t
eγs(γ

∣∣Ys
∣∣2+ |Zs|

2)ds

= 2E
∫ T

t
〈Ys, f (s,Ys,Vs)− f (s,Y′,V ′)〉ds+E

∫ T

t
|g(s,Ys,Zs)−g(s,Y′,Z′)|2ds

≤ E

∫ T

t
(2µ+

λ2

ε
+λ)|Ys|

2+ ε|Vs|
2+α|Zs|

2)ds.

Hence, if we chooseγ = λ2

ε +λ+1−α, we have

E

∫ T

t
eγs(
∣∣Ys

∣∣2+ |Zs|
2)ds ≤

ε
1−α

(
E

∫ T

t
eγs(
∣∣Us

∣∣2+
∣∣Vs

∣∣2)ds

)

Takenε < 1−α, Φ is a strict contraction onS 2(Rk)×M 2((0,T);Rk×d) equipped with the
norm

‖(Y,Z)‖2 = E

∫ T

t
eγs
(
|Ys|

2+ |Zs|
2
)

ds.

Its unique fixed point solves BDSDE(ξ, f ,g) in S 2(Rk)×M 2(Rk×d).

We are now ready to state existence and uniqueness result of BDSDEs inLp-sense.

Theorem 4.3. Under assumptions(H1)-(H3), BDSDE(2.1) has a unique solution in
S p(Rk)×M p(Rk×d), p∈ (1,2).

Proof. Uniqueness
Let us consider(Y,Z) and(Y′,Z′) two solutions of BDSDE(ξ, f ,g). SettingY = Y−Y′

andZ = Z−Z′, then the process(Y,Z) solves BDSDE

Yt =

∫ T

t
ϕ(s,Ys,Zs)ds+

∫ T

t
ψ(s,Ys,Zs)

←−
dBs−

∫ T

t
ZsdWs, 0≤ t ≤ T,

where

ϕ(s,y,z) = f (s,y+Y′s,z+Z′s)− f (s,Y′s,Z
′
s) and ψ(s,y,z) = g(s,y+Y′s,z+Z′s)−g(s,Y′s,Z

′
s).

Thanks to(H2), the process(Y,Z) satisfies Lemma 3.2 withϕ0 = ψ0 = 0. Thus,(Y,Z) =
(0,0) immediately.

Existence
It split in two steps.
Step 1.For positive realr, we supposeξ, sup| f 0

t | are bounded random variables such that

e(1+λ2)T(|ξ|+T‖ f 0‖∞) < r.
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For suchr, we defineθr a smooth function such that 0≤ θr ≤ 1 and

θr(y) =





1 for |y| ≤ r

0 for |y| ≥ r +1.

For eachn∈N
∗, we denote

hn(t,y,z) = θr(y)( f (t,y,qn(z))− f 0
t )

n
πr+1(t)∨n

+ f 0
t ,

whereqn(z) = z n
|z|∨n.

As it is shown in [3], for eachn∈ N, (ξ,hn,g) satisfies assumptions(H1)-(H4) with µ
positive and, hence, there exist a unique process(Yn,Zn) solution of BDSDE(ξ,hn,g) in
S 2(Rk)×M 2(Rk×d).

Moreover, we show combining argument of Briand and Carmona (see Lemma 2.2, [2])
and remark 2.2 in [1] that‖Yn‖∞ ≤ r which together with Lemma 3.1 provide

‖Zn‖M 2 ≤ r ′, (4.1)

wherer ′ is another constant depending onr.
As a byproduct if we denote

fn(t,y,z) = ( f (t,y,qn(z))− f 0
t )

n
πr+1(t)∨n

+ f 0
t ,

then(Yn,Zn) still solution to BDSDE(ξ, fn,g).
For i ∈ N, setting Ȳn,i =Yn+i−Yn, Z̄n,i = Zn+i−Zn, we have

eat|Ȳn,i
t |

2+(1− ε−α)
∫ T

t
eas|Z̄n,i

s |
2ds

≤ 2
∫ T

t
eas〈Ȳn,i

s , fn+i(s,Y
n
s ,Z

n
s)− fn(s,Y

n
s ,Z

n
s)〉ds

+(2µ+
1
ε

λ2+λ−a)
∫ T

t
eas|Ȳn,i

s |
2ds

+2
∫ T

t
eas〈Ȳn,i

s ,(g(s,Yn+i
s ,Zn+i

s )−g(s,Yn
s ,Z

n
s))dBs〉

−2
∫ T

t
eas〈Ȳn,i

s , Z̄n,i
s dWs〉,

for anya> 0 andε > 0.
Next, since‖Ȳn,i‖∞ ≤ 2r and settingγ = 1− ε−α > 0 and(2µ+ 1

ε λ2+λ−a)≤ 0, we
obtain

eat|Ȳn,i
t |

2+ γ
∫ T

t
eas|Z̄n,i

s |
2ds

≤ 4r
∫ T

t
eas| fn+i(s,Y

n
s ,Z

n
s)− fn(s,Y

n
s ,Z

n
s)|ds

+2
∫ T

t
eas〈Ȳn,i

s ,(g(s,Yn+i
s ,Zn+i

s )−g(s,Yn
s ,Z

n
s))dBs〉

−2
∫ T

t
eas〈Ȳn,i

s , Z̄n,i
s dWs〉.
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Therefore, combining rigorously Gronwall’s and BDG inequality, there exist a constantC
depending only onλ, α andT such that

E

[
sup

0≤t≤T
|Ȳn,i

t |
2+

∫ T

0
|Z̄n,i

s |
2ds

]
≤CrE

[∫ T

0
| fn+i(s,Y

n
s ,Z

n
s)− fn(s,Y

n
s ,Z

n
s)|ds

]
.

But ‖Yn‖∞ ≤ r so that

| fn+i(s,Y
n
s ,Z

n
s)− fn(s,Y

n
s ,Z

n
s)| ≤ 2λ|Zn

s |1{|Zn
s | >n}+2λ|Zn

s |1{πr+1(s)>n}+2πr+1(s)1{πr+1(s)>n},

from which, (Yn,Zn) is a cauchy sequence in Banach spaceS 2(Rk)×M 2(Rk×d). Hence,
(Yn,Zn) admit a limit(Y,Z) ∈ S 2(Rk)×M 2(Rk×d), which solves BDSDE (2.1).

Step 2.In the general case, let us define for eachn∈N
∗,

ξn = qn(ξ), fn(t,y,z) = f (t,y,z)− f 0
t +qn( f 0

t ).

Thank to the Step 1, BDSDE(ξn, fn,g) has a unique solution(Yn,Zn) ∈ L2, but also inLp

far all p∈ (1,2) according to Lemma 3.1. Moreover, from Lemma 3.2, for(i,n) ∈ N×N
∗,

there existC(T,α,λ) such that

E

{
sup

0≤t≤T
|Yn+i

t −Yn
t |

p+

(∫ T

0
|Zn+i

s −Zn
s |

2ds

)p/2
}

≤ CE

{
|ξn+i−ξn|

p+

(∫ T

0
|qn+i( f 0

s )−qn( f 0
s )|ds

)p}
. (4.2)

The right-hand side of (4.2) tends to 0, asn→ ∞, uniformly in i; thus (Yn,Zn) is a
Cauchy sequence inS p(Rk)×M p(Rk×d) and its limit(Y,Z) solves BDSDE(2.1).
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