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Abstract

We present a general scheme to derive higher-order members of the Painlevé VI (PVI)

hierarchy of ODE’s as well as their difference analogues. The derivation is based on a

discrete structure that sits on the background of the PVI equation and that consists of a

system of partial difference equations on a multidimensional lattice. The connection with

the isomonodromic Garnier systems is discussed.
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1 Introduction

In recent years there has been a growing interest in discrete analogues of the famous

Painlevé equations, i.e. nonlinear nonautonomous ordinary difference equations tending

to the continuous Painlevé equations in a well-defined limit and which are integrable in

their own right, cf. [1]. Even though the qualitative features of the solutions of these

systems are not yet fully understood, nonetheless in most of the known examples the

main ingredients of their integrability have been exhibited. Recently, a classification of

continuous as well as discrete Painlevé equations in terms of the root systems associated

with affine Weyl groups, has been proposed on the basis of the singularities of the rational

surfaces of their initial conditions and their blowings-up, cf. [2].

In a recent paper, [3], we established a connection between the continuous Painlevé

VI (PVI) equation and a non-autonomous ordinary difference equation depending on four

arbitrary parameters. This novel example of a discrete Painlevé equation arises on the

one hand as the nonlinear addition formula for the PVI transcendents, in fact what is

effectively a superposition formula for its Bäcklund-Schlesinger transforms, on the other

hand from the similarity reduction on the lattice (cf. [4, 5]), of a system of partial difference

equations associated with the lattice KdV family. In subsequent papers, [6, 7], some more

results on these systems were established, namely the existence of the Miura chain and the

discovery of a novel Schwarzian PDE generating the entire (Schwarzian) KdV hierarchy of

nonlinear evolution equations and whose similarity reduction is exactly the PVI equation,

this being the first example of an integrable scalar PDE that reduces to full PVI with

arbitrary parameters.

In the present note we extend these results to multi-dimensional systems associated

with higher-order generalisations of the PVI equation. Already in [3] we noted that the

similarity reduction of the lattice KdV system could be generalised in a natural way to

higher-order differential and difference equations, without, however, clarifying in detail the

nature of such equations. What we will argue here is that, in fact, such equations constitute

what one could call the Painlevé VI hierarchy and its discrete counterpart. Whilst the idea

of constructing hierarchies of Painlevé equations by exploiting the similarity reductions of
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hierarchies of nonlinear evolution equations of KdV type is at least two decades old, cf.

[8], the issue has gained renewed interest in recent years, cf. e.g. [9]–[13], because of the

hypothetical possibility that these hierarchies of higher-order Painlevé equations yield new

transcendents. Evidence to that effect might be given by the asymptotic analysis of the

higher-order equations, since they seem to be governed by hyper-elliptic functions rather

than elliptic ones as is the case for the original Painlevé equations, [14].

Most of the existing results on hierarchies of discrete and continuous Painlevé equations

are restricted to the examples of PI and PII hierarchies, since only in these cases it is clear

what hierarchies of nonlinear evolution equations should be taken as the starting point for

their construction. In the case of the other Painlevé equations, notably PVI, it has been

less clear what to take as a starting point for the construction of its hierarchy. With the

results of [3, 6, 7] we are now well-equipped to tackle this problem, and in the present paper

we outline the basic construction of the equations in the discrete as well as continuous

PVI hierarchy. In fact, we shall demonstrate that the lattice KdV system can be naturally

embedded in a multidimensional lattice system achieving the higher-order reductions by

including more terms in the relevant similarity constraint which provokes the coupling

between the various lattice directions.

It should be noted that in a sense higher-order PVI systems already were constructed

by R. Garnier in his celebrated paper of 1912, [15], extending the original approach of R.

Fuchs who was the first in [16] to find PVI arising from the isomonodromic deformation of

a second-order linear differential equation. We will conclude our paper with a discussion

of these Garnier systems, which in view of the recent interest in algebraic solutions of PVI,

cf. e.g. [17]-[20], deserve in our opinion some renewed attention.

2 The Discrete PVI Hierarchy

In [3], following earlier work e.g. [4, 5], cf. also [1], a coherent framework was developed in

which the similarity reduction of both discrete as well as continuous equations associated

with the lattice KdV family were treated. Surprisingly, from these reductions the full

PVI equation for arbitrary parameters emerged together with a four-parameter discrete
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equation, i.e. a discrete Painlevé equation. From the treatment of [3] it was evident how to

to extend the lattice system of partial difference equations and their similarity constraints

leading to the reductions to PVI. Here we describe explicitely this higher-dimensional

lattice system and discuss their explicit reductions.

The lattice KdV family of equations contains many related equations such as the

lattice Schwarzian KdV, the lattice modified KdV (mKdV) and the actual lattice KdV

equations. We concentrate here on one member of this family only, namely the lattice

mKdV equation:

p vn,mvn,m+1 + q vn,m+1vn+1,m+1 = q vn,mvn+1,m + p vn+1,mvn+1,m+1 (2.1)

cf. e.g. [21], with discrete independent variables n,m and depending on additional pa-

rameters of the equation p, q, i.e. the lattice parameters. As was pointed out earlier, cf.

[21], the lattice equation (2.1) actually represents a compatible parameter-family of partial

difference equations: namely, we can embed the equation (2.1) into a multidimensional

lattice by imposing a copy of (2.1) with different parameters on any two-dimensional sub-

lattice, identifying each lattice direction with a corresponding lattice parameter pi ∈ C in

which direction the sites are labelled by discrete variables ni (noting that these are not

necessarily integers, but shift by units, i.e. ni ∈ θi + Z, θi ∈ C). Thus, combining two

different lattice directions, labelled by (i, j) we can write the lattice equation (2.1) on the

corresponding sublattice as

pivv
j + pjv

jvij = pjvv
i + piv

ivij (2.2)

in which we use the right superscripts i, j to denote the shifts in the corresponding di-

rections, whereas we will use left subscripts i, j denote shifts in the reverse direction,

i.e.

v = v(n;p) , vj = Tjv(n;p) = v(n + ej;p) , jv = T−1
j v(n;p) = v(n − ej;p) ,

where n denotes the vector of the discrete variables ni, for all lattice directsion labelled

by i, each corresponding to the component pi of the vector p of lattice parameters. We

use the vector ej to denote the vector with single nonzero entry equal to unity in its jth

component.
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The consistency of the lattice equation (2.2) along the multi-dimensional lattice follows

from the diagram of Figure 1: considering the three-dimensional sublattice with elementary

directions {e1,e2,e3} then on each elementary cube in this lattice the iteration of initial

data proceeds along the six faces of this cube, on each of which we have an equation of the

form (2.2). Thus, starting from initial data v, v1, v2, v3 we can then uniquely calculate

the values of v12, v13 and v23 by using the equation. However, proceeding further there are

in principle three different ways to calculate the value of v123, unless the equation satisfies

(as is the case for the equation (2.2)) the special property that these three different ways

of calculating this point actually lead to one and the same value. It is indeed at this point

that the consistency of the embedding of the lattice MKdV into the multidimensional

lattice is tested. In fact, by a straightforward calculation we find that this value is given

by

vijk =
(p2

i − p2
k)pjv

ivk + (p2
j − p2

i )pkv
jvi + (p2

k − p2
j)piv

jvk

(p2
i − p2

k)pjvj + (p2
j − p2

i )pkvk + (p2
k − p2

j)pivi
, i, j, k = 1, 2, 3

(which is clearly invariant for any permutation of the labels ijk), independent of the way

in which we calculate this value! Thus, the equation (2.2) can be simultaneously imposed

on functions v(n1, n2, n3, . . . ) of the lattice sites. This is precisely the discrete analogue of

the hierarchy of commuting higher-order flows of the (modified) KdV equation!

23

V

V
2

V
1

V
12

V
3

V

V
23

V
123

Figure 1: Consistency of the lattice equation.

As a consequence of this compatibility we will call the system (2.2) a holonomic system

of partial difference equations.
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Now, we turn to the issue of the symmetry reduction of the multidimensional lattice in

the sense of [5]. It follows from the general framework of [3] that the similarity constraint

for the multidimensional lattice MKdV system is as follows:

∑

i

niai = µ− ν , ν = λ(−1)
∑

i
ni , (2.3)

µ and λ being constants, and in which the variables ai are given by

ai ≡
vi − iv

vi + iv
. (2.4)

The sum in (2.3) is over all the i labelling the lattice directions, the choice of which decides

the order of the reduction. To analyse the reduction we need a number of relations for the

objects ai which follow from (2.2), namely

1 + ai
j =

(piXij − pj)(aj + 1) + 2pj

pixij + pj

, i 6= j (2.5)

ai =
pj iXij Xij + pi( iXij −Xij) − pj

pj iXij Xij − pi( iXij +Xij) + pj

=
−pj ixij xij − pi( ixij − xij) + pj

pj ixij xij + pi( ixij + xij) + pj
, i 6= j (2.6)

in terms of the following variables:

xij ≡
v

vij
, ixij ≡ T−1

i xij =
iv

vj
, (2.7)

Xij ≡
vi

vj
, iXij ≡ T−1

i Xij =
v

ivj
. (2.8)

The variables xij = xji and Xij = 1/Xji are not independent, but related via:

Xij =
pixij + pj

pjxij + pi
⇔ xij =

−piXij + pj

pjXij − pi
, (2.9)

as well as

T−1
i xij

Xij
=

1 − ai

1 + ai
. (2.10)

We note that since the left-hand side of (2.6) depends only on the label i but not on j,

for fixed i this represents a set of N − 2 coupled first-order ordinary difference equations

with respect to the shift in the discrete variable ni between the N −1 variables Xij , j 6= i.

Furthermore, the relations (2.5), for the same fixed label i, provide us with a set of N − 1
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first-order relations between the variables aj, j 6= i, and thus together with the similarity

constraint (2.3) where ai is substituted by (2.6) we obtain a set of 2(N − 1) first-order

nonlinear ordinary difference equations for the 2(N − 1) variables Xij , aj , j 6= i, which

together form our higher-order discrete system. In the next section we will explicitely

disentangle this coupled system in the cases N = 2 and N = 3.

The continuous equation for the PVI hierarchy derive from the differential equations

with respect to the lattice parameters pi, which read:

−pi
∂

∂pi
log v = niai . (2.11)

It can be shown that the differential relations (2.11) are actually compatible not only

amongst themselves, but also with the the discrete equations on the lattice (2.2), i.e. the

discrete and continuous flows are commuting:

∂

∂pi

(
∂v

∂pj

)
=

∂

∂pj

(
∂v

∂pi

)
,
∂vi

∂pj
= Ti

(
∂v

∂pj

)
.

This can actually be demonstrated by explicit calculation exploiting the discrete relations

(2.5), but we will not give the details here (which follow closely the pattern of calculations

of [3]). Thus, we have a coherent framework of a large multidimensional system of equa-

tions with discrete (in terms of the variables ni) as well as continuous (in terms of the

parameters pi) commuting flows, in terms of which compatible equations of three different

types (partial difference, differential-difference and partial differential) figure in one and

the same framework: the partial difference equations are precisely the lattice equations

(2.2), the differential-difference equations are the relations (2.11), whilst for the partial

differential equations in the scheme we refer to our recent paper [7]. Here we will focus

now on the reductions under the symmetry constraint (2.3) in order to derive closed-from

ODE’s in terms of the lattice parameter pi. To make this reduction explicit we use (2.11)

in combination with (2.5)-(2.10) to obtain differential relations for the ai, namely

∂aj

∂pi

=
nipj

p2
j − p2

i

[(1 + ai)(1 − aj)Xji − (1 + aj)(1 − ai)Xij ] , (2.12)

as well as the following relations for the reduced variables Xij

µ+ ν + pi
∂

∂pi
log Xij = niXjiai +

∑

k 6=i

nkXikak (2.13)

+ni
pipj

p2
i − p2

j

(Xji −Xij) +
∑

k 6=i

nk
pkpi

p2
k − p2

i

(Xik −Xki)
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in which we have abbreviated

Xij ≡
(piXij − pj)(pj − piXji)

p2
j − p2

i

= −Xji . (2.14)

Using (2.12) in conjunction with (2.13) and using the similarity constraint (2.3) to elim-

inate the ai, we obtain a coupled first-order system of differential equations w.r.t. the

independent variable ti = p2
i in terms of the 2N − 2 variables ak, Xik , (k 6= i). Solving

the variables ak from the linear system given by the equations (2.13) and inserting them

into (2.12) we obtain a coupled set of second-order nonlinear differential equations for the

variables Xik.

3 Special Cases: N=2, N=3

We will now analyse the basic relations of the general framework presented in the previous

section in the cases N = 2, 3 only in order to arrive at slightly more explicit equations,

demonstrating that the reduction leads to ordinary difference equations (in the discrete

case) or to ordinary differential equations (in the continuous case).

N=2:

We will be very brief about the two-dimensional case N = 2 which was the main subject

of study in the earlier paper [3]. There the compatibility of the similarity constraint and

the lattice equation was stated, and the various relations resulting from (2.5) were already

written down. Using in this case the slightly simpler notation:

a1 = a , a2 = b , x12 = x , X12 = X

and using the discrete independent variables n1 = n, n2 = m, as well as the lattice param-

eters p1 = p, p2 = q, we derived the second order nonlinear non-autonomous difference

equation:

2(n+ 1)

1 − yn+1yn

+
2n

1 − ynyn−1
= µ+ λ(−1)n + 2n+ 1 +

+
(µ− λ(−1)n)(r2 − 1)yn + r(1 − y2

n)
[
(n+ 1

2) − (m+ 1
2)(−1)n

]

(r + yn)(1 + ryn)
, (3.1)
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(using a slightly different notation from the one of [3]), where r = p/q and where the

variables yn are related to the X and x by the prescription: y2n = x(2n) for the even

sites, whilst y2n+1 = −1/X(2n+1) for the odd lattice sites (the latter choice being mainly

motivated by the wish to cast the equation into a convenient shape). It was pointed out

in [3] that whilst a continuum limit of (3.1) yields the PV equation, its general solution

can be expressed in terms of PVI transcendents (noting its dependence on four arbitrary

parameters, µ, λ, r and m).

The continuous equation for the variable X in terms of the lattice parameter p as

independent variable in this case reads:

p(p2 − q2)2X(qX − p)(pX − q)
∂2X

∂p2
=

=
1

2
p(p2 − q2)2

[
pq(3X2 + 1) − 2(p2 + q2)X

] (∂X
∂p

)2

+

+ (q2 − p2)
[
2p2X(pX − q)(qX − p) + (q2 − p2)2X2

] ∂X
∂p

+
1

2
q
[
(αX2 − β)(pX − q)2(qX − p)2 + (p2 − q2)X2

(
(γ − 1)(qX − p)2 − (δ − 1)(pX − q)2

)]
,

(3.2)

and it is not difficult to show that this is actually the PVI equation through the identifi-

cation w(t) = pX(p), where t = p2, and setting q = 1, leading to

d2w

dt2
=

1

2

(
1

w
+

1

w − 1
+

1

w − t

)(
dw

dt

)2

−

(
1

t
+

1

t− 1
+

1

w − t

)
dw

dt

+
w(w − 1)(w − t)

8t2(t− 1)2

(
α− β

t

w2
+ γ

t− 1

(w − 1)2
− (δ − 4)

t(t− 1)

(w − t)2

)
, (3.3a)

with the identification of the parameters α,β,γ,δ as follows:

α = (µ− ν +m− n)2 , β = (µ− ν −m+ n)2 ,

γ = (µ+ ν −m− n− 1)2 , δ = (µ+ ν +m+ n+ 1)2 . (3.3b)

Eq. (3.2) is interesting in its own right since it provides us with a covariant way of writing

PVI, noting its invariance under the transformations:

n ↔ m , p ↔ q , X ↔ 1/X .
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N=3:

This first higher-order case deals with the first genuinely multidimensional situation of

three two-dimensional sublattices, on each of which a copy of the lattice MKdV equation

(2.2) is defined. In addition there is also the similarity constraint (2.3) which couples the

three lattice directions. Thus, for the three-dimensional case we have a coupled system of

equations whose symbolical representation is shown in figure 2.

In the previous section we have already demonstrated the consistency of the three copies

Figure 2: symbolic representation of lattice equation and similarity constraint.

of the lattice equation (2.2) amongst themselves. What remains is to investigate the

compatability of the lattice equation and the similarity constraint, demonstrating that the

determination of the values of the dependent variable v by using the lattice equation in

all three directions plus the similarity constraint is unique (assuring the single-valuedness

of the solution around localised configurations).

In Figure 3 we have indicated how the iteration of the system proceeds starting from

a given configuration of initial data (located at the vertices indicated by •) and moving

through the lattice by calculating each point by means of either the lattice equation (points

indicated by ◦) or the similarity constraint (points indicated by ×). The first point where

a possible conflict arises, due to the fact that the corresponding values of the dependent

variable can be calculated in more than one way, is indicated by ⊗. It is at such points that

the consistency of the similarity reduction needs to be verified by explicit computation.

This has been carried out for this three-dimensional case using MAPLE. Obviously, the
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iteration involves too many steps and the expressions soon become too large to reproduce

here.
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Figure 3: Consistency of the constrained lattice system.

In order to analyse the explicit reduction in this case, we redefine the following objects

a1 = a , a2 = b , a3 = c

X12 = X , X13 = Y , X12 = X , X13 = Y

using also n1 = n, n2 = m, n3 = h, as well as p1 = p, p2 = q and p3 = r to simplify the

notation. To start with the continuous equations, fixing the independent variable to be p

we obtain the following linear system for the quantities b and c from eq. (2.13)

 2X X + Y

X + Y 2Y




 mb

hc


 =


 µ+ ν + p ∂

∂p
log X

µ+ ν + p ∂
∂p

log Y


+


 (µ− ν)X + (n+m) pq

p2−q2 ( 1
X

−X) + h pr
p2−r2 ( 1

Y
− Y )

(µ− ν)Y + (n + h) pr
p2−r2 ( 1

Y
− Y ) +m pq

p2−q2 ( 1
X

−X)


 (3.4)

where we have used the similarity constraint to elininate the quantity a. Furthermore,

from (2.12) we obtain the differential relations

∂(mb)

∂p
=

mq

q2 − p2
[(n+ µ− ν −mb− hc)(1 − b)

1

X

−(1 + b)(n − µ+ ν +mb+ hc)X] (3.5a)

∂(hc)

∂p
=

hr

r2 − p2
[(n+ µ− ν −mb− hc)(1 − c)

1

Y

−(1 + c)(n − µ+ ν +mb+ hc)Y ] . (3.5b)
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Solving b and c from the linear system (3.4), and substituting the results in the differ-

ential relations (3.5a) and (3.5b), we obtain two coupled second-order nonlinear ODE’s

depending effectively on six free parameters, namely µ, ν, n, m, h and q/r.

Alternatively, we can derive a system of second-order ordinary difference equations by

fixing one of the discrete variables, say n = n1, and using the relations (2.5) to obtain the

equations

(pX − q)b+ pX + q =
(q2 − p2)X

qX − p
(b̃+ 1) (3.6a)

(pY − r)c+ pY + r =
(r2 − p2)Y

rY − p
(c̃+ 1) , (3.6b)

where the tilde denotes the shift in the lattice direction associated with the variable n.

Using the similarity constraint

na+mb+ hc = µ− ν , ν = λ(−1)n+m+h (3.7)

to eliminate the variables c, we obtain the following linear system in terms of b̃ and b


 (q2 − p2)X −(pX − q)(qX − p)

−m(r2 − p2)Y m(pY − r)(rY − p)




 b̃

b


 = (3.8)


 (pX + q)(qX − p) − (q2 − p2)X

(rY − p)((pY − r)(µ− ν − na) + h(pY + r)) − (r2 − p2)Y (h+ µ+ ν − (n+ 1)ã)




where the a and ã can be expressed in terms of X and Y by

a =

qX X
˜

+p(X
˜

−X) − q

qX X
˜

−p(X
˜

+X) + q
=

rY Y
˜

+p(Y
˜
−Y ) − r

rY Y
˜
−p(Y

˜
+Y ) + q

, (3.9)

(where the undertilde denotes the backward shift with respect to the discrete variable).

The system of equations (3.6), (3.7) and (3.9) – or, equivalently, (3.8) together with (3.9)

leads in principle to a fourth order ordinary difference equation in one variable. In fact,

solving b and b̃ from (3.8) and then eliminating b altogether by a shift in the independent

variable n we get a coupled system containing one equation in terms of X, X̃, ˜̃X, X
˜

and

Y , and the equation (3.9) which is first order in the both X and Y with respect to the

shift in the variable n. This system of equations depends effectively on six free parameters,

namely µ, ν, m, h, q/p and r/p.
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4 Isomonodromic Deformation Problem

The isomonodromic deformation problem for the multidimensional lattice system is of

Schlesinger type, [22]. In the two-dimensional case it was already presented in [4] for

special values of the parameters µ, ν, cf. also [3] for the general parameter case. The

extension from the two-dimensional to the multidimensional lattice is immediate: one only

needs to introduce additional terms of similar form for each additional lattice direction.

Thus, the Lax representation consists on the one hand of the linear shifts on the lattice of

the form

ψi(κ) = Tiψ(κ) = Li(κ)ψ(κ) , (4.1)

in which κ is a spectral parameter, and where the Lax matrices Li are given by

Li(κ) =


 pi vi

κ
v

pi
vi

v


 , (4.2)

leading to the Lax equations

Lj
iLj = Li

jLi (4.3)

which lead to a copy of the lattice MKdV equation on each two-dimensional sublattice

labelled by the indices (i, j). On the other hand we have the linear differential equation

for ψ(κ) with respect to its dependence on the spectral variable κ

κ
d

dκ
ψ(κ) =

1

2


 −(1 + µ) 0

0 λ(−1)
∑

i
ni +

∑
i ni


ψ(κ)

+
∑

i

ni v

vi + iv


 0 vi

0 −pi


T−1

i ψ(κ) , (4.4)

the compatibility of which with (4.1) leads to the similarity constraint (2.3). In addition,

we have differential equations for ψ in terms of its dependence on the lattice parameters

pi which are of the form

∂ψ

∂pi

=
ni

pi


 1 0

0 0


ψ +

2niv

vi + iv


 0 − 1

pi
vi

0 1


T−1

i ψ , (4.5)
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for each of the variable pi. It is the variables ti = p2
i that play the role as independent

variables in the continuous PVI hierarchy.

The elimination of the back-shifted vectors T−1
i ψ by using the inverse of the Lax

relations (4.1) lead to the following linear differential equation for ψ

∂ψ

∂κ
=

(
A0

κ
+
∑

i

Ai

κ− ti

)
ψ (4.6)

thus leading to the problem in the Schlesinger form, with regular singularities at 0,∞, {ti}.

The matrices A0 and Ai are given by

A0 =
1

2


 −(µ+ 1)

∑
i

ni

pi
(1 − ai)v

i

0 λ
∑

i
ni +

∑
i niai


 ,

Ai = ni




1
2 (1 + ai) − 1

2pi
vi(1 − ai)

− pi

2vi (1 + ai)
1
2(1 − ai)


 .

The continuous isomonodromic deformation is provided by the linear differential equations

in terms of the lattice parameters, namely

∂ψ

∂ti
=

(
Pi −

Ai

κ− ti

)
ψ (4.7)

where

Pi =
ni

2pi


 − 1

pi
ai 0

1
vi (1 + ai) 0


 .

Eq. (4.7) is not quite in standard form, and we need to apply a gauge transformation of

the form

ψ ≡ V ψ , V =


 1/v 0

U/v 1


 , (4.8)

to remove the term with Pi, where the auxiliary variable U obeys an interesting set of

equations by itself (in fact this is the object obeying the lattice KdV system of equa-

tions) , cf. [3], but we will not give any details here. With this gauge, the continuous

isomonodromic deformation (4.7) adopts the standard form

∂ψ

∂ti
= −

Ai

κ− ti
ψ , Ai = V AiV

−1 , (4.9)

whilst the discrete isomonodromic is readily obtained from the Lax representation of (4.1).
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5 Connection with Garnier Systems

Interestingly, already M.R. Garnier in his seminal paper of 1912, [15], embarked on the

question of finding higher-order analogues of the PVI equation, adopting the method

that was proposed somewhat earlier by R. Fuchs, in [16], which can be identified with the

isomonodromic deformation approach, cf. also [22]. Garnier gave a general construction of

such higher-order equations constituting coupled systems of partial differential equations,

which are the isomonodromic Garnier systems. As a particular example, he wrote down

explicitely in [15] the first higher-order PVI equation in terms of the following coupled

system, consisting of the second order ODE in terms of two dependent variables w = w(t, s)

and z = z(t, s)

∂2w

∂t2
=

1

2

(
1

w
+

1

w − 1
+

1

w − t
+

1

w − s
−

1

w − z

)(
∂w

∂t

)2

−

(
1

t
+

1

t− 1
+

1

t− s
−

1

t− w
−

1

t− z

)
∂w

∂t

+
1

2

w(w − 1)(w − s)(z − t)

z(z − 1)(z − s)(w − t)(z − w)

(
∂z

∂t

)2

−
w − t

(z − t)(z − w)

(
∂w

∂t

)(
∂z

∂t

)

+
2w(w − 1)(w − t)(w − s)(z − t)2

t2(t− 1)2(t− s)2(w − z)
×

×

[
α+ β + γ + δ + κ+

7

4
−
ts

z

α+ 1
4

w2
+

(t− 1)(s − 1)

(z − 1)

β + 1
4

(w − 1)2

+
t(t− 1)(t− s)

(z − t)

γ

(w − t)2
+
s(s− 1)(s − t)

(z − s)

δ

(w − s)2

]

(5.1a)

together with coupled first order PDE’s

t(t− 1)

t− z

∂w

∂t
+
s(s− 1)

s− z

∂w

∂s
=
w(w − 1)

w − z
, (5.1b)

t(t− 1)

t− w

∂z

∂t
+
s(s− 1)

s− w

∂z

∂s
=
z(z − 1)

z − w
. (5.1c)

It should be pointed out that the system consisting of (5.1a), (5.1b) and (5.1c) amounts

actually to a fourth order ODE in terms of w = w(t) only, and as such can be rightly

considered to be the first higher-order member of the Painlevé VI hierarchy. In fact,

Garnier gave in his paper a number of important assertions: i) that his system of equations
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is completely integrable1, and that it degenerates (under the autonomous limit) to a system

living on the Jacobian of a hypereliptic curve, ii) that the symmetric combinations of the

dependent variables of the system, as functions of each one of the essential singularities

(i.e. singling out one of the independent variables) are meromorphic in terms this variable

except for the fixed critical points which are at 0,1, ∞, or at the location of the values

of the other independent variables2, iii) that for the parameters of the system in general

position the symmetric functions of the dependent variables are essentially transcendental

functions of the constants of integration (i.e. of the initial data).

Subsequent work on the Garnier systems was done mostly by K. Okamoto and his

school, cf. e.g. [23, 24]. However, it seems that in most of these works these systems were

treated rather as an underdetermined system of PDE’s rather than (as Garnier himself

clearly had in mind) as a consist system of ODE’s. Although it is not easy to find the

explicit transformation of the lattice system exposed in sections 2 and 3 to the systems

that Garnier wrote down, in particular to find the explicit relation between the above

system (5.1) and the system consisting of (3.4) and (3.5), it is to be expected that such a

mapping exist. The identification is probably easiest to obtain via the transformation of

the corresponding Schlesinger type of system as given in section 4 and the linear system

that Garnier exploited in [15]. However, the search for such an identification will be left

to a future study.

Let us finish with some remarks on the relevance of these results for work that is been

done in recent years. One of the most exciting developments is the way in which the issue

of algebraic solutions of PVI have arisen in recent years, e.g. in connection with WDVV

equations, Frobenius manifolds and quantum cohomology, cf. e.g. the review [25]. Such

algebraic solutions were already known to Picard, Painlevé and Chazy. In fact, in his early

paper [16] R. Fuchs obtained a realisation of PVI in terms of an elliptic integral, and this

realisation was subsequently used by Painlevé in [26], to derive an elliptic form for the

1Obviously, Garnier’s use of the term integrability was meant here in the precise sense of that of a

compatible system, very much in the same sense as the compatibility of the continuous and discrete

systems that we have encountered in sections 2 and 3.
2This assertion amounts to the well-known Painlevé property.
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PVI equation, a form of the equation that was recently recovered by Manin in [18] 3. The

assertions of Garnier in [15] on his generalisation of the Fuchs’ approach might form a

starting point for extending this elliptic connection to the Garnier systems, in which case

we would expect to be able to find a realisation of those systems in terms of hyperelliptic

integrals rather than elliptic ones. This might eventually lead to the construction of

algebraic solutions of those systems, possibly in the spirit of the recent papers [27, 28]. It

would be of interest to further investigate the role of the discrete systems in connection

with the Garnier systems: we expect them to constitute the superposition formulae for the

underlying higher root systems of the corresponding affine Weyl groups. Thus, eventually,

a geometric interpretation of the Garnier systems and their discrete analogues in the sense

of the blowings-up of the corresponding rational surfaces of their initial conditions, along

the lines of the recent paper [2], might be anticipated.
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relations between them, Phys. Lett. A224:353–360 (1997).

[10] C. Creswell and N. Joshi, The Discrete Painlevé I Hierarchy, in: Symmetries and In-
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[18] Yu. I. Manin, Sixth Painlevé Equation, Universal Elliptic Curve and Mirror of P
2,

alg-geom/9605010.

[19] A. M. Levin and M. A. Olshanetsky, Painlevé–Calogero correspondence, Preprint
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