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The mechanism for transitions from phase to defect chaos in the one-dimensional complex
Ginzburg-Landau equation (CGLE) is presented. We introduce and describe periodic coherent
structures of the CGLE, called Modulated Amplitude Waves (MAWs). MAWs of various period P
occur naturally in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently
large period, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this
bifurcation, incoherent near-MAW structures occur which evolve toward defects. This leads to our
main result: the transition from phase to defect chaos takes place when the periods of MAWs in
phase chaos are driven beyond their saddle-node bifurcation.

PACS numbers: 47.52.+j, 03.40.Kf, 05.45.+b, 47.54.+r

Spatially extended systems can exhibit, when driven
away from equilibrium, irregular behavior in space and
time: this phenomenon is commonly referred to as
spatio-temporal chaos [1]. The one-dimensional complex
Ginzburg-Landau equation (CGLE):

∂tA = A+ (1 + ic1)∂
2
xA− (1 − ic3)|A|

2A , (1)

describes pattern formation near a Hopf bifurcation and
has become a popular model to study spatiotemporal
chaos [1–13]. As a function of c1 and c3, the CGLE ex-
hibits two qualitatively different spatiotemporal chaotic
states known as phase chaos (when A is bounded away
from zero) and defect chaos (when the phase ofA displays
singularities where A=0). The transition from phase to
defect chaos can either be hysteretic or continuous; in
the former case, it is referred to as L3, in the latter as
L1 (Fig. 1). Despite intensive studies [5–13], the phe-
nomenology of the CGLE and in particular its “phase”-
diagram [5,7] are far from being understood. Moreover,
it is under dispute whether the L1 transition is sharp,
and whether a pure phase-chaotic (i.e. defect-free) state
can exist in the thermodynamic limit [9].

It is the purpose of this paper to elucidate these is-
sues by presenting the mechanism which creates defects
in transient phase chaotic states. Our analysis consists of
four parts: (i) We describe a family of Modulated Ampli-
tude Waves (MAWs), i.e., pulse-like coherent structures
with a characteristic spatial period P . (ii) A bifurcation
analysis of these MAWs reveals that their range of exis-
tence is limited by a saddle-node (SN) bifurcation. For
all c1, c3 within a certain range, we define PSN as the pe-
riod of the MAW for which this bifurcation occurs. (iii)
We show that for P >PSN , i.e., beyond the SN bifurca-
tion, near-MAW structures display a nonlinear evolution
to defects. It is found that, in phase chaos, near-MAWs
with various P ’s are created and annihilated perpetually.
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FIG. 1. Phase diagram of the CGLE showing the BFN,
L1, L2 and L3 transitions (after [7]). Between the L2 and L3

curves, there is the hysteretic regime where either phase or
defect chaos can occur; in the latter case, defects persist up
to the L2 transition. Notice how the L1 and L3 transitions
to defect chaos lie above our lower (P → ∞) bounds. Also
shown are the SN locations for P =20, 50.

The transition to defect chaos takes place when near-
MAWs with P > PSN occur in a phase chaotic state.
(iv) Finally, instabilities to splitting of resp. interaction
between MAWs are identified as the relevant processes
which locally decrease resp. increase P in phase chaos.
We will argue that the SN curve for P → ∞ is a lower
bound (see Fig. 1) for the transition from phase chaos to
defect chaos.

From a general viewpoint, our analysis shows that
there is no collective behavior that drives the transition.
Instead, strictly local fluctuations drive local structures
beyond their SN bifurcation and create defects.
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FIG. 2. (a) Example of the bifurcation diagram of MAWs
for c3 = 2.0, P = 50 (see text). The inset illustrates the drift
pitchfork bifurcation (v=0 branch not shown beyond bifurca-
tion). (b) MAW profiles at lower (full circle) and upper (open
circle) branch, and at the SN (triangle).

(i) MAWs as coherent structures - By coherent struc-
tures we mean uniformly propagating structures of the
form [11–13]

A(x, t) = a(x− vt)eiφ(x−vt)e−iωt , (2)

where a and φ are real-valued functions of z := x − vt.
Such structures play an important role in various dy-
namical regimes of the CGLE [10–13]. The substitution
of Ansatz (2) into the CGLE leads to a set of three
coupled ODEs for a, b = da/dz and ψ = dφ/dz [14].
The MAWs correspond to limit-cycles of these ODEs,
or equivalently, spatially periodic solutions of the CGLE.
The MAWs occur in a two parameter family which we
choose to parametrize by their spatial period P and their

average phase gradient ν :=1/P
∫ P

0
dzψ. Some examples

of MAWs are shown in Fig. 2b and Fig. 3. Only so-
lutions for which ν = 0 are considered here; the reason
for this will be discussed in (iii). To compute the MAWs
and their bifurcations, we have used the software package
AUTO94 [15] to solve the ODEs for fixed P and ν.

(ii) MAW range of existence - MAWs with ν 6= 0 bi-
furcate from unstable plane waves in the CGLE. We fo-
cus on the ν = 0 case, i.e., on the homogeneous oscilla-
tion A(x, t)=eic3t. This solution becomes Benjamin-Feir
(BF) unstable at c1c3 =1, beyond which all plane waves
are unstable (Benjamin-Feir-Newell (BFN) criterion) [1].
In the ODEs, the fixed point (a, b, ψ)=(1, 0, 0) that cor-
responds to the homogeneous solution undergoes a Hopf
bifurcation (HB) upon increasing c1 and c3. For infi-
nite P the Hopf bifurcation occurs for c1c3 =1, while for
smaller P the Hopf bifurcation occurs for larger c1 and c3.
The sequence of bifurcations for fixed P =50 is illustrated
in Fig. 2a. The square symbol denotes the Hopf bifur-
cation, and the resulting solutions have drifting velocity
v = 0. Via a secondary drift pitchfork (DP) bifurcation
[16] (diamond) the MAWs acquire v 6=0. For the relevant
parameters, i.e., sufficiently small ν and large P , both
bifurcations are supercritical [2]; the amplitude modula-
tions grow away from these bifurcations. The MAWs
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FIG. 3. (a) Grey-scale plot of |A| (black: |A| → 0) show-
ing the nonlinear evolution of a near-MAW to defects when
L = 29 > PSN = 26.8 (c1 = 0.7, c3 = 2). (b) MAWs
and defect generation in a transient phase chaotic state
(c1 = 0.66, c3 = 2.0); a transient of t≈ 104 is not shown. (c)
Comparison of a MAW (black) with a snapshot from a phase
chaotic state (grey) (c1 =0.66, c3 =2.0).

undergo a saddle-node (SN) bifurcation (triangle) when
c1 or c3 are sufficiently increased. The upper branch re-
turns far back into the BF stable region of the CGLE; the
recently discovered “homoclinic holes” [13] are MAWs of
this upper branch in the limit P → ∞. The spatial pro-
files of MAWs on the upper (II) and lower (I) branches
and SN are shown in Fig. 2b.

The SN curves in the c1−c3 parameter plane have been
computed for various spatial periods P . For given param-
eters c1 and c3, we define PSN as the period for which
a saddle-node bifurcation occurs. We find, roughly, that
for larger P this SN occurs for smaller values of c1, c3
(see Fig. 1).

To summarize: a family of coherent, periodic MAW
solutions of the CGLE has been obtained. The range of
existence of these solutions is limited by a SN bifurcation
for large c1, c3.

(iii) Beyond the Saddle Node - In Fig. 3 the relevance of
the SN for defect generation is illustrated. In Fig. 3a we
show the time evolution of a MAW-like initial condition
in a periodic system of size L > PSN . While for L < PSN

we obtain coherent MAWs, for L > PSN incoherent dy-
namics occurs: the amplitude modulation and drifting
velocity grow until defects are formed. Extensive tests
show that defects are always generated for MAW-like ini-
tial conditions when L > PSN . In Fig. 3b,c the relevance
of this defect generating mechanism for chaotic states is
illustrated in a large system of size L = 512 with coef-
ficients close to the L3 transition. The transient phase
chaotic state (Fig. 3b) contains local structures which
can come arbitrarily close to one-period MAWs. Fig. 3c
shows a snapshot of a spatial profile of |A| in a phase
chaotic state; parts of this profile can be approximated
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FIG. 4. Location of bifurcations and instabilities of MAWs
as function of c1 and P for c3 =2.0. Regions unstable to split-
ting modes are shaded. For large P , Hopf and drift pitch-
fork bifurcation approach the BFN line and the SN curve
approaches c1 ≈ 0.61 (dot-dashed line). The two stars mark
parameters corresponding to stability spectra shown in Fig. 5.
Black squares show the numerically measured maximum peak
to peak distance pmax; once these squares cross the SN curve,
defects occur. This is consistent with the numerically found
location of L3 (dotted line).

by a MAW with appropriate P . The phase gradient ν av-
eraged between peaks of the amplitude is always close to
zero; this is the reason why we focused on ν=0 MAWs.
Defects appear when one of these MAWs acquires a pe-
riod larger than PSN (Fig. 3b). This illustrates the main
result: the transition to defect chaos occurs when a phase
chaotic state contains pulses with peak to peak distances
larger than PSN .

To test the generality of this picture, we have carried
out extensive numerical simulations of Eq. (1) near the
transition lines L1 resp. L3, adopting an integration al-
gorithm developed in [11], in systems with sizes ranging
from L = 100 to L = 5000 and integration times up to
5 × 106. The distribution of peak-to-peak distances p of
the phase gradients has been determined. Even though
the phase chaotic state is not everywhere MAW-like, we
found that occurrences of large values of this “local” p
were approximated well by MAW profiles. Defects oc-
curred in systems with L ≥ 512 if and only if p > PSN .
Since large p’s are most “dangerous”, the maximum value
of p, pmax, is the relevant quantity here. An example
of pmax as a function of c1 near L3 is shown in Fig. 4
(squares); as soon as pmax crosses the SN curve, defects
occur.

One may worry whether pmax is a well-defined quan-
tity, especially in the thermodynamic limit. For larger
system sizes and integration times pmax increases, how-
ever the apparent transition where defects occur shifts
accordingly. For example, we found in our simulations
that for c3 = 2.0, the critical value of c1 approximates
0.65, while Ref. [7] finds, for shorter integration times, a
critical value ≈0.68. The fact that pmax (slowly)
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FIG. 5. (a-b) Two typical stability spectra for c3 = 2.0,
ν = 0, P = 25 and (a) c1 = 0.63 resp. (b) c1 = 0.70. Filled
symbols correspond to eigenvalues obtained for L=P , while
open symbols denote additional eigenvalues for L=2P (sym-
metry modes: full square, splitting: circles, SN: triangle, in-
teraction: open square); the curves show the spectrum for
L→ ∞. (c-d) Illustration of the splitting instability that de-
creases p and prevents defects to occur (c1 =0.63). For small
L (c) the splitting leads to a stationary pre-drift pitchfork
MAW, but for larger L (d) disordered dynamics sets in. (e)
Pulse interaction increases p beyond PSN and leads to defects
(c1 =0.7).

increases for larger systems/longer times is in agreement
with earlier assertions that there is no sharp transition to
defect chaos [9]. We have not been able to establish an
upper bound for the p’s occurring in phase chaos; there-
fore we conjecture that the SN line for P →∞ provides
a lower boundary for the transition from phase to defect
chaos.

(iv) MAW stability - Of course, the laminar patches
that occur in MAWs of large period are linearly unsta-
ble, and large P-MAWs have only a small probability to
occur. To get some further insight in the behavior of
MAWs, we have calculated the linear stability properties
of the MAWs. We start with a system of size L = P
and periodic boundary conditions. Both MAW branches
have neutral modes corresponding to translational and
phase symmetries. The eigenvalue associated with the
SN is positive for solutions on branch II and negative for

3



MAWs on branch I. Apart from these 3 purely real eigen-
values, the stability spectrum consists of pairs of complex
conjugate eigenvalues.

In what follows the lower branch I is considered exclu-
sively. For small enough P , all eigenvalues λi < 0, but
when we increase P , MAWs become unstable to finite
wavenumber perturbations. By using a Bloch Ansatz, we
extended the stability analysis to systems with n iden-
tical pulses (L= nP ). For n > 1, new instabilities may
appear. The shape of these eigenmodes suggests that
the instabilities lead to splitting of resp. interaction be-
tween adjacent MAWs; a nonlinear analysis confirms this.
These instabilities are the relevant processes which lo-
cally decrease resp. increase p, thus inhibiting or enhanc-
ing the generation of defects. The splitting and interac-
tion mechanism is very similar to the cell splitting and
instabilities one encounters in the Kuramoto-Sivashinsky
equation [4].

The results of the stability analysis are summarized in
Fig. 4 and 5. It is important to stress here that there is
no qualitative difference between the behavior of MAWs
near the L3 and the L1 transition.

The eigenvalues with largest real part on the connected
curve in Fig. 5a,b correspond to “splitting” modes;
Fig. 5c,d displays the nonlinear evolution that occurs
when this mode is unstable. Clearly, this instability tends
to reduce the spatial periods p and prevents MAWs to
cross the SN boundary. Above a critical value for c1 (c3)
the splitting modes are stable for all P (Fig. 4). In this
case the period of the MAWs can grow until P >PSN is
reached and defects are created.

The eigenvalues labeled by open squares in Fig. 5a,b
describe interaction between subsequent peaks that oc-
cur for n > 1 [17]. These interaction modes are mainly
active for small P (typically P < 20). They cause in-
stability of periodic MAWs and lead to local increase of
the peak to peak distance p; Fig. 5e shows the nonlinear
evolution in such a case.

Conclusion - We have presented a systematic study
of modulated amplitude waves (MAWs) in the complex
Ginzburg-Landau equation (CGLE). These periodic co-
herent structures originate in supercritical bifurcations
due to the BF instability of the CGLE. MAW existence is
bounded by saddle-node bifurcations towards large c1, c3.
Approaching the transition from phase to defect chaos,
near-MAWs with large P occur in phase chaos. Defects
are generated if the period of these MAWs becomes larger
than PSN . This scenario is valid for both the L1 and L3

transition. Indications have been given in favor of the ex-
istence of the phase turbulent regime even in the thermo-
dynamic limit. Altogether, our study leaves little space
for doubt that the transition from phase chaos to defect
chaos in the CGLE is governed by coherent structures
and their bifurcations.
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