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Summary. A central problem of Quantitative Finance is that of formulating a
probabilistic model of the time evolution of asset prices allowing reliable predictions
on their future volatility. As in several natural phenomena, the predictions of such
a model must be compared with the data of a single process realization in our
records. In order to give statistical significance to such a comparison, assumptions
of stationarity for some quantities extracted from the single historical time series,
like the distribution of the returns over a given time interval, cannot be avoided.
Such assumptions entail the risk of masking or misrepresenting non-stationarities
of the underlying process, and of giving an incorrect account of its correlations.
Here we overcome this difficulty by showing that five years of daily Euro/US-Dollar
trading records in the about three hours following the New York market opening,
provide a rich enough ensemble of histories. The statistics of this ensemble allows to
propose and test an adequate model of the stochastic process driving the exchange
rate. This turns out to be a non-Markovian, self-similar process with non-stationary
returns. The empirical ensemble correlators are in agreement with the predictions of
this model, which is constructed on the basis of the time-inhomogeneous, anomalous
scaling obeyed by the return distribution.

1 Introduction

The analysis of many natural and social phenomena is hindered by the fact
that one cannot replicate the dynamical evolution of the system under study.
This may happen, for instance, for earthquakes [1], solar flares [2], large eco-
systems [3], and financial markets [4]. If with a single time series available
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we try to accommodate the historical data within a stochastic process de-
scription, we must assume a priori the existence of some statistical quantities
which remain stable over time [4]. This entitles us to sample their values at
different stages of the historical evolution, rather than at different instances
of the process. For example, in the analysis of historical series in Finance it is
usual to assume the stationarity of the distribution of return fluctuations and
hence to detect their statistical features through sliding time interval empirical
sampling. However, the plausible [5, 6, 7, 8, 9] nonstationarity of these fluctu-
ations at intervals ranging from minutes to months would drastically alter the
relation between some of the stylized empirical facts detected in this way, and
the underlying stochastic process. In order to identify the correct model, one
has to overcome this difficulty. The breaking of time-translation invariance
possibly signalled by increments non-stationarity would represent a challenge
in itself, being a genuine manifestation of dynamics out of equilibrium, like
the aging properties observed in glassy systems [10].

In order to detect the possible presence of nonstationarity at certain time-
scales for the distribution of the increments, one would need to have access
to many independent realizations of the same process, repeated under simi-
lar conditions. Quite remarkably, high-frequency financial time-series offer an
opportunity of this kind, in which it is possible to directly sample an en-
semble of histories. In Ref. [7] it has been proposed that when considering
high-frequency EUR/USD exchange rate data as recorded during the first
three hours of the New York market activity, independent process realiza-
tions can tentatively be identified in the daily repetitions of the trading. This
gives the interesting possibility of estimating quantities related to ensemble-,
rather than time-averages. Here we profit of this opportunity by showing that
a proper analysis of the statistical properties of this ensemble of histories nat-
urally leads to the identification and validation of an original stochatic model
of market evolution. The main idea at the basis of this model is that the
scaling properties of the return distribution are sufficient to fully character-
ize the process in the time range within which they hold. The same type of
model has been recently proposed by some of the present authors to underlie
more generally the evolution of financial indices also in cases when only single
realizations are available [5]. In those cases the application of the model is
less direct, and rests on suitable assumptions about the relation between the
stationarized empirical information obtainable from the historical series and
the underlying driving process.

An interesting feature of the model discussed here and in Refs. [5, 6], is that
the anomalous scaling of the return PDF enters in its construction on the basis
of a property of correlated stability which generalizes the stability of Gaussian
PDF’s under independent random variables summation. This correlated sta-
bility was shown recently to allow the derivation of novel, constructive limit
theorems for the PDF of sums of many strongly dependent random variables
obeying anomalous scaling [11]. In this perspective, the model we present offers
a valid alternative to more standard models of Finance based on Gaussianity
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and independence. At the same time, the probabilistic framework provided
by our modelization presents clear formal analogies and parallels with those
standard models.

2 An ensemble of histories based on the returns of the
EUR/USD exchange rate

To address the above points, given the EUR/USD exchange rate at time t
(t measured in tens of minutes) after 9.00 am New York time, S(t), let us
define the return in the interval [t − T, t] as R(t, T ) ≡ lnS(t) − lnS(t − T ),
where t = 1, 2, . . ., t ≥ T . By storing the daily repetitions of the returns from
March 2000 to March 2005, we obtain an ensemble of M = 1, 282 realiza-
tions

{

rl(t, T )
}

l=1,2,...,M
of the discrete-time stochastic process R(t, T ), with

t ranging in almost three hours after 9.00 am NY time, i.e., 1 ≤ t ≤ 17. Below,
the superscript “e” labels quantities empirically determined on the basis of
this ensemble. The first key observation is that the empirical second moment
me

2(t, 1) ≡ ∑M
l=1[r

l(t, 1)]2/M systematically decreases as a function of t in
the interval considered (see Fig. 1a). This is a clear indication of return non-
stationarity of the underlying process at this time scale. In addition, an analy-
sis of the nonlinear moments me

α of the total return R(t, t) = lnS(t)− lnS(0)
for t ≥ 1,

me
α(t, t) ≡

1

M

M
∑

l=1

∣

∣rl(t, t)
∣

∣

α
, α ∈ R+, (1)

shows that such a nonstationarity is accompanied by an anomalous scaling
symmetry. Indeed, to a good approximation one finds mα(t, t) ∼ tαD in this
range of t, where D ≃ 0.364 . . . is essentially independent of α (Fig. 1b).
Accordingly, the ensemble histograms for the PDF’s of aggregated returns in
the intervals [0, t], pR(t,t), are consistent with the scaling collapse

tD pR(t,t)

(

tD r
)

= g(r) (2)

reported in Fig. 2. The scaling function g identified by such collapse plot
is manifestly non-Gaussian. It may also be assumed to be even to a good
approximation6.

To further simplify our formulas below, wherever appropriate we will
switch to the notations: Ri ≡ R(i, 1) and ri ≡ r(i, 1). Similarly rli ≡ rl(i, 1)
will indicate the i-th return on a 10 min-scale in the l-th history realization
of our ensemble.

An important empirical fact (Fig. 1c) is that the linear correlation between
returns for non-overlapping intervals

6 We have detrended the data by subtracting from rl(t, T ) the average value
∑M

l=1 r
l(t, T )/M . Data skewness can be shown to introduce deviations much

smaller than the statistical error-bars in the analysis of the correlators.
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Fig. 1. Empirical ensemble analysis of the returns. (a) The line is given by
〈σ2〉ρ

[

t2D − (t− 1)2D
]

, with 〈σ2〉ρ = 〈r21〉p = 2.3 · 10−7 and the best-fitted
D = 0.358. (b) Analysis according to the ansatz in Eq. (2). The straight line
characterizes a simple-scaling behavior with a best-fitted D = 0.364. (c) The lin-
ear correlation vanishes for non-overlapping returns.

celin(1, n) ≡
1
M

∑M
l=1

[

rl1 rln
]

√

m2(1, 1) m2(n, 1)
, (3)

with n = 2, . . ., is negligible in comparison with the correlation of the absolute
values of the same returns. At this time scale also correlators of odd powers of
a return with odd or even powers of another return are negligible. Only even
powers of the returns are strongly correlated.
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Fig. 2. Non-Gaussian scaling function g. Empty [full] symbols are obtained by
rescaling pR(t,t) [pR(t,1)] according to Eq. (2) [Eq. (8)] for t = 1, 5, 10, 17.

3 Self-similar model process

The empirical facts listed above already enable us to suggest a very plausi-
ble model for the stochastic process expected to generate the data. Both in
physics and in Finance, a well established trend in modeling anomalous scaling
is that of expressing the scaling functions, like our g, as convex combinations
of Gaussian PDF’s with varying widths. This has clear mathematical advan-
tages, since it is possible to express very general scaling functions with such
convex combinations. In physics the representation in terms of mixtures of
Gaussians often reflects the presence of some heterogeneity or polydispersity
in the problem [12]. In Finance, the use of convex combinations of Gaussians
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to represent return PDF’s is naturally suggested by the fact that return time
series show a variety of more or less long intervals characterized by peculiar
values of the volatility (volatility clustering). The idea that pR(t,t) can be
represented as a mixture of Gaussians of varying widths is suggested by the
same basic motivations which lead to the introduction of stochastic volatility
models in Finance [13, 14, 15, 16]. In the light of the empirical facts, such
a representation of the scaling function in the PDF of the aggregated return
naturally suggests an adequate full modelization of the process generating
the successive partial returns. Let us indicate by ρ(σ) a normalized, positive
measure in ]0,+∞[ such that we can represent g as:

g(x) =

∫ +∞

0

dσρ(σ)
e−

x
2

2σ2

√
2πσ2

. (4)

A suitable form of ρ can be easily identified, e.g. by matching its moments
with those of g, and by relating the large σ behavior of ρ(σ) with the large |r|
behavior of g(r). For instance, ρ may decay as a power law at large σ’s if the
moments of g are expected to be infinite above a given order. These conditions
enable us to fix a number of parameters in ρ such that the scaling function in
Eq. (4) fits the data in the empirical collapse in Fig. 2. As discussed below,
in our case the set of data on which we can count to construct histograms of
g is relatively poor. So, our determinations of ρ will be rather qualitative.

Once identified ρ, more ambitiously we may try to use it for a weighted
representation of the joint PDF’s of the successive elementary returns Ri,
i = 1, 2, . . . generated in the process. Indeed, we may tentatively write the
joint PDF of these returns in the following form:

pn(r1, r2, . . . , rn) =

∫ +∞

0

dσρ(σ)

n
∏

i=1

exp
(

− r2
i

2 a2

i
σ2

)

√

2π a2i σ
2,

(5)

with n = 1, 2, . . . , 17. The coefficients ai in the last equation have to be chosen
consistent with the non-stationarity of the elementary returns reported in Fig.
1a and with the other statistical properties of the elementary and aggregated
returns discussed in the previous section. It is straightforward to realize that
〈r2i 〉p = 〈σ2〉ρ a2i , while 〈ri〉p = 0 and 〈rirj〉p = 0 for i 6= j, where 〈·〉p denotes
averages with respect to the joint PDF in Eq.(5), whereas 〈·〉ρ those with
respect to the PDF ρ. Likewise, we immediately realize that odd-odd or odd-
even correlators of the Ri’s are strictly zero. Assuming validity of Eq. (5)
means in first place that the i-dependence of ai must be chosen such to fit the
values reported in Fig. 1a. The choice of the i dependence of ai must be also
consistent with the simple scaling of the PDF of aggregated returns. Indeed,
taking into account that R(t, t) = R1 + R2 + · · · + Rt, for t = 1, 2, . . . , 17,
Eq.(5) implies that for the same t values

pR(t,t)(r) =
g
(

r/
√

a21 + a22 + · · ·+ a2t

)

√

a21 + a22 + · · ·+ a2t
. (6)
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Comparing this result with Eq. (2), we see that it is necessary to choose the
ai’s such that a21 + a22 + · · · + a2t = t2D in order to be consistent with the
empirical scaling in Eq. (2). This last requirement is satisfied if we put

ai =
√

i2D − (i− 1)2D, i = 1, 2, . . . . (7)

A first problem is then to see whether this form of the ai coefficients is com-
patible with the i-dependence already implied by the non-stationarity. Eq. (7)
appears to be reasonably well compatible with the trend of the empirical mean
square elementary returns m2(i, 1). Indeed, given 〈σ2〉ρ = 〈r21〉p = 2.3 · 10−7,
the best fit in Fig. 1a is obtained with D = 0.358 . . . in the expression for
〈r2i 〉p. The expectation value of σ2 is with respect to the ρ entering the in-
tegral representation (3) already chosen for g. Remarkably, the value of D is
very close to the estimate of D obtained above through the analysis of the
moments of pR(t,t).

Summarizing, Eq.(5) and the above conditions on the ai’s define a non-
Markovian stochastic process with linearly uncorrelated increments and a
PDF of returns satifying a time inhomogeneous scaling of the form:

pR(t,T )(r) =
1

√

t2D − (t− T )2D
g

(

r
√

t2D − (t− T )2D

)

, (8)

where both t and T are understood to be integer multiples of the 10 minutes
unit. In Fig. 2 it is shown that the data collapse of both pR(t,t) and pR(t,1) are
indeed compatible with the same non-gaussian PDF g.

From the point of view of probability theory, the structure of our process
in Eq.(5) rests on a stability property for PDF’s of sums of dependent random
variables [11]. Indeed, if we indicate by p̃n(k1, k2, ...kn) the Fourier transform
(characteristic function) of the joint PDF of the first n returns (1 ≤ n ≤ 17),
a direct calculation yields

p̃n(k, k, ..., k) = p̃1
(

nDK
)

(9)

and
p̃n(0, .., ki, .., 0) = p̃1(aiki), i = 1, . . . , n. (10)

ForD = 1/2 these relations have the the same form as those holding in the case
of independent variables, when p̃n(k1, . . . , kn) = p̃1(k1) p̃

1(k2) . . . p̃
1(kn), and

p̃1 is a Gaussian characteristic function. However, even for D = 1/2 a general
ρ(σ) implies dependence of the Ri’s. To recover the independent case one needs
further to choose ρ(σ) = δ(σ − σ0). Thus, the superposition of independent
Gaussian processes with different σ’s in Eq.(5) implies an extension of the
basic stability properties of the independent Gaussian variables case to the
dependent case. This extension also allows to derive limit theorems for the
anomalous scaling of sums of many dependent random variables [11].
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4 Correlations structure

As discussed above, the identification of ρ may be used to reconstruct the joint
PDF of the returns Ri’s as in Eq. (5). In this section we elaborate further on
this point, by performing a detailed comparison between model predictions
(based on an explicit expression for ρ) and empirical determinations of various
two-point correlators.

Considering the data collapse of both pR(t,t) and pR(t,1) in Fig. 2, we
propose the following functional form for ρ (see also [11]):

ρ(σ) = A
σγ

d+ σδ
, σ ∈ [σmin,+∞[, 0 < γ < δ, (11)

where A is a normalization factor, and d > 0 is a parameter influencing the
width of the distribution g. Notice that ρ(σ) ∼ σ−(δ−γ) for σ ≫ 1. The rational
behind this choice for ρ is that one can use the exponents γ, δ to reproduce
the large |x| behavior of g(x), and then play with the other parameters to
obtain a suitable fit of the scaling function, for instance the one reported in
Fig. 2.

The first two-point correlator we consider in our analysis is

κα,β(1, n) ≡
〈|R(1, 1)|α |R(n, 1)|β〉

〈|R(1, 1)|α〉p 〈|R(n, 1)|β〉p
=

〈|r1|α |rn|β〉p
〈|r1|α〉p 〈|rn|β〉p

, (12)

with n > 1, and α, β ∈ R+. A value κα,β 6= 1 means that returns on non-
overlapping intervals are dependent. Using Eq. (5) it is possible to express a
general many-return correlator in terms of the moments of ρ. For example,
from Eq. (5) we have

〈|r1|α |rn|β〉p = Bα Bβ aα1 aβn 〈σα+β〉ρ, (13)

with

Bα ≡
∫ +∞

−∞

dr |r|α e−r2/2

√
2π

. (14)

We thus obtain

κα,β(1, n) =
〈σα+β〉ρ

〈σα〉ρ 〈σβ〉ρ
=

BαBβ

Bα+β

〈|r1|α+β〉p
〈|r1|α〉p 〈|r1|β〉p

. (15)

Two model-predictions in Eq. (15) are: (i) Despite the non-stationarity of
the increments Ri’s, κα,β(1, n) is independent of n; (ii) The correlators are
symmetric, i.e., κα,β − κβ,α = 0.

We can now compare the theoretical prediction of the model for κα,β(1, n),
Eq. (15), with the empirical counterpart

κe
α,β(1, n) ≡

∑M
l=1

[

∣

∣rl1
∣

∣

α ∣
∣rln
∣

∣

β
]

1
M

∑M
l=1

∣

∣rl1
∣

∣

α ∑M
l=1 |rln|

β
, (16)
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n [×10 min]

1

1.1

1.2

β=2

β=1
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Fig. 3. Constancy of κe
α,β. Dashed lines are model-predictions.

which we can calculate from the EUR/USD dataset. Notice that once ρ is fixed
to fit the one-time statistics in Fig. 2, in this comparison we do not have any
free parameter to adjust. Also, since our ensemble is restricted to M = 1, 282
realizations only, large fluctuations, especially in two-time statistics, are to be
expected.

Fig. 3 shows that indeed non-overlapping returns are strongly correlated in
the about three hours following the opening of the trading session, since κe

α,β 6=
1. In addition, the constancy of κe

α,β is clearly suggested by the empirical data.
In view of this constancy, we can assume as error-bars for κe

α,β the standard

deviations of the sets
{

κe
α,β(1, n)

}

n=2,3,...,17
. The empirical values for κe

α,β
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-0.05
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κe

α,β− κe

β,α
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Fig. 4. Symmetry of κe
α,β . Error-bars are determined as in Fig. 3.

are also in agreement with the theoretical predictions for κα,β based on our
choice for ρ. In this and in the following comparisons it should be kept in
mind that, although not explicitly reported in the plots, the uncertainty in the
identification of ρ of course introduces an uncertainty in the model-predictions
for the correlators.

In Fig. 4 we report that also the symmetry κα,β = κβ,α is emiprically
verified for the EUR/USD dataset. The validity of this symmetry for a process
with non-stationary increments like the present one is quite remarkable.

A classical indicator of strong correlations in financial data is the volatility
autocorrelation, defined as
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Fig. 5. Volatility autocorrelation. Dashed line is the model-prediction.

c(1, n) ≡ 〈|r1| |rn|〉p − 〈|r1|〉p 〈|rn|〉p
〈|r1|2〉p − 〈|r1|〉2p

. (17)

In terms of the moments of ρ, through Eq. (13) we have the following expres-
sion for c :

c(1, n) =
B2

1 a1 an
[

〈σ2〉ρ − 〈σ〉2ρ
]

a21
[

B2 〈σ2〉ρ −B2
1〈σ〉2ρ

] . (18)

Unlike κα,β , c is not constant in n. The comparison with the empirical volatil-
ity autocorrelation,

ce(1, n) ≡
∑M

l=1

[∣

∣rl1
∣

∣

∣

∣rln
∣

∣

]

− 1
M

∑M
l=1

∣

∣rl1
∣

∣

∑M
l′=1

∣

∣

∣
rl

′

n

∣

∣

∣

∑M
l=1

∣

∣rl1
∣

∣

2 − 1
M

∑M
l=1

∣

∣rl1
∣

∣

∑M
l′=1

∣

∣rl
′

1

∣

∣

, (19)
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Fig. 6. Correlators Ke
α,β. Dashed lines are model-predictions.

yields a substantial agreement (See Fig. 5). The error-bars in Fig. 5 are ob-
tained by dynamically generating many ensembles of M = 1, 282 realizations
each, according to Eq. (5) with our choice for ρ, and taking the standard
deviations of the results. Again, the uncertainty associated to the theoretical
prediction for c is not reported in the plots Problems concerning the numerical
simulation of processes like the one in Eq. (5) are discussed in Ref. [11].

A further test of our model can be made by analyzing, in place of those
of the increments, the non-linear correlators of R(t, t), with varying t. To this
purpose, let us define

Kα,β(t1, t2) ≡
〈|R(t1, t1)|α |R(t2, t2)|β〉
〈|R(t1, t1)|α〉 〈|R(t2, t2)|β〉

, (20)
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with t2 ≥ t1. Model calculations similar to the previous ones give, from Eq.
(5),

Kα,β(t1, t2) =
B

(2)
α,β(t1, t2)

tαD1 tβD2 Bα+β

〈|r1|α+β〉p
〈|r1|α〉p 〈|r1|β〉p

, (21)

where

B
(2)
α,β(t1, t2) ≡

∫ +∞

−∞
dr1 |r1|α

exp(−r2
1
/(2t2D1 ))√

2πt2D
1

∫ +∞

−∞
dr2 |r2|β

exp[−(r1−r2)
2/(2t2D2 −2t2D

1 )]
√

2π(t2D2 −t2D
1 )

. (22)

According to Eq. (21), Kα,β is now identified by both ρ and D. Moreover,
it explicitly depends on t1 and t2. The comparison between Eq. (21) and the
empirical quantity

Ke
α,β(t1, t2) ≡

∑M
l=1

[

∣

∣rl(t1, t1)
∣

∣

α ∣
∣rl(t2, t2)

∣

∣

β
]

1
M

∑M
l=1

[

|rl(t1, t1)|α
]
∑M

l=1

[

|rl(t2, t2)|β
] , (23)

reported in Fig. 6 (the error-bars are determined as in Fig. 5) supplies thus
an additional validation of our model.

5 Conclusions

In the present work we addressed the problem of describing the time evolution
of financial assets in a case in which one can try to compare the predictions
of the proposed model with a relatively rich ensemble of history realizations.
Besides the fact that considering the histories at disposal for the EUR/USD
exchange rate as a proper ensemble amounts to a main working assumption,
a clear limitation of such an approach is the relative poorness of the ensemble
itself. Indeed, the simulations of our model suggest that in order to reduce
substantially the statistical fluctuations one should dispose of ensembles larger
by at least one order of magnitude.

In spite of these limitations, we believe that the non-Markovian model we
propose [5, 6, 11] is validated to a reasonable extent by the analysis of the
data, especially those pertaining to the various correlators we considered. In
this respect it is important to recall that the first proposal of the time in-
homogeneous evolution model discussed here has been made in a study of a
single, long time series of the DJI index in Ref. [5]. In that context, the re-
turns time inhomogeneity, Eq. (8), was supposed to underlie the stationarized
information provided by the empirical PDF of the returns. This assumption
allowed there to give a justification of several stylized facts, like the scaling
and multiscaling of the empirical return PDF and the power law behavior in
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time of the return autocorrelation function. We believe that the results ob-
tained in the present report, even if pertaining to a different time-scale (tens
of minutes in place of days), constitute an interesting further argument in
favor of a general validity of the model.

The peculiar feature of this model is that of focussing on scaling and
correlations as basic, closely connected properties of assets evolution. This was
strongly inspired by what has been learnt in the physics of complex systems
in the last decades [17, 18, 19], where methods like the renormalization group
allowed for the first time systematic treatments of these properties [6]. At the
same time, through the original probabilistic parallel mentioned in Section 3,
our model maintains an interesting direct contact with the mathematics of
standard formulations based on Brownian motion, of wide use in Finance.
This last feature is very interesting in the perspective of applying our model
to problems of derivative pricing [13, 14, 15, 16, 20].
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