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HYBRID ATLAS MODELS

TOMOYUKI ICHIBA, VASSILIOS PAPATHANAKOS, ADRIAN BANNER,
IOANNIS KARATZAS, AND ROBERT FERNHOLZ

Abstract. We study Atlas-type models of equity markets with local
characteristics that depend on both name and rank, and in ways that
induce a stability of the capital distribution. Ergodic properties and
rankings of processes are examined with reference to the theory of re-
flected Brownian motions in polyhedral domains. In the context of such
models, we discuss properties of various investment strategies, including
the so-called growth-optimal and universal portfolios.

Dedicated to Professor J. Michael Harrison on the occasion of his
65th Birthday.

1. Introduction

In modeling equity market behavior, the goal is to construct models that
are simple enough to be amenable to mathematical analysis, yet complicated
enough to capture the salient characteristics of real equity markets. A par-
ticularly salient characteristic of an equity market is its capital distribution
curve:

(1.1) log k 7→ log µ(k)(t) , k = 1, · · · , n ,

i.e., the logarithms of the individual companies’ relative capitalizations (mar-
ket weights) µ(·)(t) at time t , arranged in descending order, versus the
logarithms of their respective ranks from the largest company down to the
smallest.

The capital distribution curve for the U.S. equity market has shown re-
markable stability over the last century (see, e.g., Figure 5.1 of Fernholz
[12]), and this stability has been captured in the Atlas and first-order mod-
els introduced in [12] and studied by Banner, Fernholz & Karatzas [3] and

2000 Mathematics Subject Classification. 60H10, 91B70, 60J55.
Key words and phrases. financial markets; portfolios; order statistics; reflected Brow-

nian motions; stochastic stability; capital distribution curves.
We are thankful to Professors Toshio Yamada, Peter Bank, Constantinos Kardaras,

Erhan Bayraktar and also the participants for their helpful comments and discussions
at the 8th Ritsumeikan-Columbia-JAFEE International Symposium on Stochastic Pro-
cesses/Mathematical Finances, in the seminars at Quantitative Products Laboratory in
Berlin, at Boston University, at Columbia University and at the University of Michigan.
The fourth author is on leave from the Department of Mathematics at Columbia Uni-
versity, where his research was supported by National Science Foundation DMS Grants
06-01774 and 09-05754.

1

http://arxiv.org/abs/0909.0065v1


2 T. ICHIBA, V. PAPATHANAKOS , A. BANNER , I. KARATZAS, AND R. FERNHOLZ

others. While Atlas and first-order models are able to reproduce the shape
and stability of the capital distribution curve, they still fail to provide an
accurate representation of market behavior. It was shown in [3] that these
models are ergodic, i.e., each stock spends about the same proportion of
time in each rank over the long term. While ergodicity may be a nice math-
ematical property, it does not seem to hold for real markets: in real markets
the largest stocks seem to retain their status for long periods of time, while
most stocks never reach the upper echelons of capitalization. Hence, a more
elaborate model is needed.

In this paper we generalize the first-order models by introducing name-
based effects of companies in addition to the rank-based effects that are
present in the simpler models. The resulting hybrid model has more flexibil-
ity to describe faithfully the complexity of the whole market; in particular,
the model has both stability properties and occupation time properties that
are realistic.

Relation to Extant Literature: From a different point of view, the Atlas
model can be seen as a physical particle system, with each company rep-
resented by a particle diffusing on the positive real line. These individual
diffusive motions have drift and volatility coefficients that depend on the
entire configuration of particles at any given moment. Recently Pal & Pit-
man [20] and Chaterjee & Pal [6], [7] studied such systems, specifically when
the drift coefficient is a function of the particle’s rank and all volatility co-
efficients are equal to a given constant. Under appropriate conditions on
the drift coefficients, the system has a unique invariant measure in a lower-
dimensional space; to wit, the system of the n particles is itself not ergodic,
but the projected system in a lower-dimensional hyperplane turns out to be
ergodic, with invariant measure that has an explicit exponential-product-
form probability density function. Moreover, when the number of particles
increases to infinity, the system converges weakly to one described by a
Poisson-Dirichlet distribution on the real line. These considerations are use-
ful in studying the Atlas model for an equity market, when the volatility
coefficients are all equal.

The model is still tractable when its volatility coefficients depend on the
rankings. Questions of existence and uniqueness for such systems in this
generality are settled through the theory of martingale problem studied by
Stroock & Varadhan [23] and Bass & Pardoux [5]. A salient feature is that
three or more particles may collide with each other at the same time with
positive probability, or even with probability one, under a suitably “uneven”
volatility structure. This is a very significant departure from the constant-
volatility case. Some sufficient conditions on the volatility coefficients for
the occurrence and for the avoidance of triple (or higher-order) collisions,
are derived in [16], by comparison with Bessel processes and with help from
properties of reflected Brownian motion.
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The ranked particle system has a deep relation with the theory of multi-
dimensional reflected Brownian motion studied intensively in the context
of stochastic network systems by Harrison, Reiman and Williams [13] [14]
[15] and their collaborators. Recently Dieker & Moriarty [10] provided nec-
essary and sufficient conditions for the invariant density of semimartingale
reflected Brownian motions in a two-dimensional wedge to be written as a
finite sum of terms of product-of-exponential form, by extending the geo-
metric considerations on the so-called “skew-symmetry” condition. In the
present paper we use this skew-symmetry condition for the n-dimensional
reflected Brownian motions to solve the basic adjoint relation introduced in
a piece-wise constant drift coefficient structure, and find an invariant den-
sity for the ranked process of the hybrid Atlas model in the form of sum of
products of exponentials. With this explicit formula we compute the invari-
ant distribution of the capital distribution curve, as well as the long-term
average occupation times.

Another interesting system of ranked particles is Dyson’s process of non-
colliding Brownian motions, which are the ordered eigenvalues of a Brownian
motion on the space of Hermitian matrices. Recent work by Warren [24] con-
structs Dyson’s process using Doob’s h−transform and Brownian motion in
the Gelfand-Tsetlin cone, as an extension of Dubédat’s work [11] on the rela-
tion between reflected Brownian motions on the wedge and a Bessel process
of dimension three. The (infinite) ranked particle systems also appear in
mean-field spin glass theory of Mathematical Physics. In a further recent
development, Arguin & Aizenman [1] analyze robust quasi-stationary com-
peting particle systems with overlapped hierarchical structures where the
Poisson-Dirichlet distribution emerges as in [20]. Instead of taking Dyson’s
process or the spin glass theory as our model for rankings in equity markets,
we obtain the ranked particle system through a general formula of Banner
& Ghomrasni [4] for continuous semimartingales in the hybrid Atlas model.

Preview: This paper follows the following structure. We describe our model
in Section 2, its lower-dimensional ergodic properties in Section 3, the dy-
namics of its rankings in Section 4, its invariant measure and occupation
times in Section 5, and some portfolio analysis in its context in Section 6.
In Section 7 we prove some auxiliary results stated in the main sections.

Notation: The following notions and notation are useful to describe rankings

as in [3]. We consider a collection {Q(i)
k }1≤i,k≤n of polyhedral domains in

Rn , where y = (y1, . . . , yn) ∈ Q
(i)
k means that the coordinate yi is ranked

kth among y1, . . . , yn , with ties resolved in favor of the lowest index (or
“name”). Note that for every index i = 1, . . . , n and rank k = 1, . . . , n , we

have the partition properties ∪n
ℓ=1Q

(i)
ℓ = Rn = ∪n

j=1Q
(j)
k .

We shall denote by Σn the symmetric group of permutations of {1, . . . , n} .

For each permutation p ∈ Σn we consider Rp := ∩n
k=1Q

(p(k))
k , the poly-

hedral chamber consisting of all points y ∈ Rn such that yp(k) is ranked
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kth among y1, . . . , yn , for every k = 1, . . . , n . The collection of polyhedral
chambers {Rp}p∈Σn is a partition of all of Rn .

Since for each y ∈ Rn there exists a unique p ∈ Σn such that y ∈ Rp

(because of the way ties are resolved), we shall find it useful to define an
indicator map Rn ∋ (x1, · · · , xn)′ = x 7→ px ∈ Σn such that xpx(1) ≥ · · · ≥
xpx(n) . In other words, px(k) is the index of the coordinate in the vector x

that occupies the kth rank among x1, · · · , xn .

When using matrices and vectors, the vector norm ‖x‖ :=
(∑n

i=1 x2
i

)1/2

and the inner product 〈x , y〉 :=
∑

i=1 xiyi = x′y for x , y ∈ Rn , where ′
stands for transposition, are defined in the usual manner. The gradient ∇
and the Laplacian ∆ operators on the space C2 of twice continuously differ-
entiable functions are used in Section 5, as well as the notations C2

c (·) and
C2

b (·) for the spaces of twice continuously differentiable functions with com-
pact support, and of twice continuously differentiable bounded functions,
respectively.

2. Model

We shall study an equity market that consists of n assets (stocks) with
capitalizations X(t) = (X1(t) , . . . ,Xn(t))′ which are positive for all times
0 ≤ t < ∞ . The random variable Xi(t) represents the capitalization at
time t of the asset with index (name) i .

We shall assume that the log-capitalizations Yi(t) := log Xi(t) , i =
1, . . . , n satisfy the system of stochastic differential equations

dYi(t) =
( n∑

k=1

gk1Q
(i)
k

(Y (t)) + γi + γ
)

d t +
n∑

j=1

ρi,j dWj(t)

+

n∑

k=1

σk1Q
(i)
k

(
Y (t)

)
dWi(t) , Yi(0) = ȳi ; 0 ≤ t < ∞

(2.1)

with given initial condition ȳ = (ȳ1 , . . . , ȳn)′ . The process W (·) := (W1(·) ,
. . . ,Wn(·))′ is an n dimensional Brownian motion. As long as the n di-
mensional process Y (·) := (Y1(·) , . . . , Yn(·) )′ of log-capitalizations is in the

polyhedron Q
(i)
k , the ith−coordinate Yi(·) is ranked kth among Y1(·) , . . . , Yn(·)

and behaves like a Brownian motion with drift gk + γi + γ and variance
(σk + ρi,i)

2 +
∑

j 6=i ρ
2
i,j . The constants γ , γi and gk represent a common,

a name-based, and a rank-based drift (growth rate), respectively; whereas
the constants σk and ρi,j represent rank-based volatilities and name-based
correlations, respectively.

Assumption: Throughout this paper we assume that the drift constants
satisfy the stability condition

(2.2)
n∑

k=1

gk +
n∑

i=1

γi = 0 ,
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and that the (n × n) matrices

(2.3) sp := diag
(
σp−1(1) , . . . , σp−1(n)

)
+
(
ρi,j

)
1≤i,j≤n

are positive-definite for every p ∈ Σn , with σk > 0 for every k = 1, . . . , n .

Equation (2.1) can be cast in vector form as

(2.4) dY (t) = G(Y (t)) d t + S(Y (t)) dW (t) , Y (0) = ȳ ∈ Rn

for 0 ≤ t < ∞ , where the functions G : Rn → Rn and S : Rn 7→ Rn×n are

G(y) :=
∑

p∈Σn

1Rp
(y) ·

(
gp−1(1) + γ1 + γ , . . . , gp−1(n) + γn + γ

)′

S(y) :=
∑

p∈Σn

1Rp
(y) · sp ; y ∈ Rn .

Thus (2.1) is a system of stochastic differential equations with coefficients
that are piecewise constant, the same in each polyhedral chamber Rp ,
p ∈ Σn . Under the assumption of positive-definiteness in (2.3), the sys-
tem (2.1) admits a weak solution (Y,W ) on a filtered probability space
(Ω,F , {Ft} , P) satisfying the usual conditions. By the martingale-problem
theory of Stroock & Varadhan [23] and the results in Bass & Pardoux [5],
this weak solution is unique in the sense of the probability distribution.

3. Ergodicity

Thanks to the assumption (2.2) on the drifts, and taking the average of
both sides of (2.1), we obtain the average log-capitalization process Y (·) :=∑n

i=1 Yi(·) /n in the form

Y (t) =
1

n

n∑

i=1

yi + γ t +
1

n

n∑

k=1

σkBk(t) +
1

n

n∑

i,j=1

ρi,j dWj(t) ,

where Bk(t) :=
n∑

i=1

∫ t

0
1

Q
(i)
k

(Y (s))Wi(s) ; k = 1, . . . , n

for 0 ≤ t < ∞ , because of ∪n
i=1Q

(i)
k = Rn . Here B1(·) , . . . , Bn(·) are con-

tinuous local martingales with quadratic (cross-)variations given as 〈Bk , Bℓ〉
(t) = t δk,ℓ , and hence are independent standard Brownian motions by

the F.B. Knight theorem. It follows that the average Y (·) of the log-
capitalizations Y1(·) , . . . , Yn(·) grows at a rate determined by the common
drift γ , i.e.,

(3.1) lim
T→∞

Y (T )

T
= γ

holds a.s., by the strong law of large numbers for Brownian motion. Let us
introduce the column vector 1 := (1, . . . , 1)′ and the subspace

Π := {y ∈ Rn | 1′y = 0 }.
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Proposition 1. In addition to (2.2)-(2.3), let us impose for every p ∈ Σn

the following stability condition:

(3.2)

ℓ∑

k=1

(
gk + γp(k)

)
< 0 ; ℓ = 1, . . . , n − 1 .

Then the deviations Ỹ (·) :=
(
Y1(·) − Y (·), . . . , Yn(·) −Y (·)

)
of the log-

capitalizations Y1(·) , . . . , Yn(·) from their average are stable in distribu-
tion: there exists a unique invariant probability measure µ for the Π−valued

Markov process Ỹ (·) , and for any bounded, measurable function f : Π → R

we have the Strong Law of Large Numbers

(3.3) lim
T→∞

1

T

∫ T

0
f
(
Ỹ (t)

)
dt =

∫

Π
f(y)µ(dy) , a.s.

Proof. From (2.1) and (2.4), we have

(3.4) d Ỹ (t) = G̃(Ỹ (t)) d t + S̃(Ỹ (t)) dW (t) ; Ỹ (0) = ỹ ,

where ỹ := ȳ − 1′ȳ · 1 /n , G̃(y) := G(y) − γ · 1 and S̃(y) := S(y) −
11′S(y) /n for y ∈ Rn . By (2.3) the covariance matrix in (3.4) is uniformly
nondegenerate: for all x, y ∈ Π we have

x′S̃(y)x = x′S(y)x − x′11′S(y)x /n = x′S(y)x =
∑

p∈Σn

1Rp
(y) · x′spx

and

(3.5) λ0‖x‖2 ≤ x′S̃(y)x ≤ λ1‖x‖2 ,

where λ0 (λ1) are the minimum (maximum) of the smallest (largest) eigen-
values of the positive definite matrices sp over p ∈ Σn .

Summation-by-parts, along with (2.2) and (3.2), lead now to

y′G̃(y) =
n∑

i=1

yi

(
g(py)−1(i) + γi

)
=

n∑

k=1

ypy(k)

(
gk + γpy(k)

)

= ypy(n)

n∑

k=1

(
gk + γpy(k)

)
+

n−1∑

k=1

(
ypy(k) − ypy(k+1)

) k∑

ℓ=1

(
gℓ + γpy(ℓ)

)

≤ c
√

n

n∑

k=1

(
ypy(k) − ypy(k+1)

)
≤ c‖y‖ < 0 ; y ∈ Π ∩Rp

(3.6)

where c := n−1/2 max1≤ℓ≤n−1 ,p∈Σn

∑ℓ
k=1(gk + γp(k)) < 0 . In the last

inequality we have used for p ∈ Σn and y ∈ Π ∩ Rp the properties
yp(1) ≥ yp(2) ≥ · · · ≥ yp(n) , thus also yp(1) ≥ 0 ≥ yp(n) and

‖y‖2 ≤ n max
(
y2
p(1), y

2
p(n)

)
≤ n

(
yp(1) − yp(n)

)2
.
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Now we consider the one-dimensional process N(t) := f(Ỹ (t)) with

f(y) = (‖y‖2 + 1)1/2 > ‖y‖ for y ∈ Π . An application of Itô’s rule gives

dN(t) = f̃(Ỹ (t)) d t +
[
f(y)

]−1
y′S̃(y)

∣∣
y=eY (t)

dW (t) ; 0 ≤ t < ∞ ,

f̃(y) : =
(
f(y)

)−1
(
y′G̃(y) +

1

2
trace

(
S̃(y)S̃(y)′

))
−
(
f(y)

)−3
y′S̃S̃(y)′y

for y ∈ Π . It follows from (3.5), (3.6) and the boundedness of S̃(·) that

there exists a constant κ > 0 such that f̃(y) ≤ c / 2 < 0 for ‖y‖ > κ . The

diffusion coefficient [f(y)]−1y′S̃(y) of N(·) is a matrix whose entries are
uniformly bounded by some constants from (3.5).

Thus N(·) is recurrent with respect to the interval (0, κ) , and hence

so is Ỹ (·) with respect to B ∩ Π for some ball B ⊂ Rn centered at the
origin. Combining this with (3.5) and with the theory of Khas’minskii [18]
(Theorem 5.1 on page 121), we obtain the existence of a unique invariant

probability measure for the Π−valued process Ỹ (·) . �

The condition (3.2) ensures that, if y1 < y2 < · · · < yn and one subdivides
at time t = 0 the “cloud” of n particles diffusing on the real line according
to the dynamics of (2.1), into two “subclouds” – one consisting of the ℓ
leftmost, and the other of the n−ℓ rightmost, particles – the two subclouds
will eventually merge. They will not continue to evolve like separate galaxies,
that never again make contact with each other; cf. the Remark following
Theorem 4 in Pal & Pitman [20] for an elaboration of this point in the case
of the purely rank-based hybrid model with equal variances.

Corollary 1. Under the assumptions of Proposition 1, the long-term aver-
age occupation time that company i spends in the kth rank, i.e.,

(3.7) θk,i := lim
T→∞

1

T

∫ T

0
1

Q
(i)
k

(X(t)) d t , i, k = 1, . . . , n ,

exists almost surely in [0, 1] .
The resulting array of numbers θk,i ∈ [0, 1] satisfy

∑n
j=1 θk,j =

∑n
ℓ=1 θℓ,i =

1 for each “name” i = 1, . . . , n and “rank” k = 1, . . . , n , i.e., ϑ :=
(θk,i)1≤k,i≤n is a doubly stochastic matrix. Similarly, the average occupa-
tion time θp of the market in the polyhedral chamber Rp , namely,

(3.8) θp := lim
T→∞

1

T

∫ T

0
1Rp

(X(t)) d t

exists a.s. in [0, 1] for every p ∈ Σn , and we have θk,i =
∑

θp , where the
summation is over the set {p ∈ Σn |p(k) = i} , 1 ≤ i, k ≤ n .

By Proposition 1 and in particular (3.3), the quantity of (3.7) satisfies

θk,i = lim
T→∞

1

T

∫ T

0
1

Q
(i)
k

(X(t)) d t = lim
T→∞

1

T

∫ T

0
1

Q
(i)
k

(Ỹ (t)) d t = µ(Q
(i)
k ) ,
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where µ is the unique invariant measure for the process Ỹ (·) of (3.4). Since

∪n
ℓ=1Q

(i)
ℓ = Rn = ∪n

j=1Q
(j)
k , it is obvious that

∑n
ℓ=1 θℓ,i =

∑n
j=1 θk,j = 1

for 1 ≤ i, k ≤ n . Equation (3.8) is obtained similarly.

4. Rankings

Let us now look at the log-capitalizations of the various companies listed
according to rank, namely

(4.1) Zk(t) :=
n∑

i=1

1
Q

(i)
k

(Y (t)) · Yi(t) ; k = 1, . . . , n , 0 ≤ t < ∞ .

These are the order statistics Z1(·) ≥ · · · ≥ Zn(·) for the log-capitalizations
Y1(·), · · · , Yn(·) , listed from largest down to smallest. We recall the indicator
map px introduced at the end of Section 1, and define the Σn−valued index
process

Pt := pX(t) = pY (t) , 0 ≤ t < ∞ ,

so that XPt(1)(t) ≥ · · · ≥ XPt(n)(t) . We may thus write Zk(·) = YP·(k)(·)
from (4.1).

We shall also introduce the total market capitalization X(·) :=
∑n

i=1 Xi(·) ,
as well as the market weights (relative capitalizations) for the individual
companies and their ranked counterparts, respectively:
(4.2)

µi(t) :=
Xi(t)

X(t)
, i = 1, · · · , n and µ(k)(t) :=

eZk(t)

X(t)
, k = 1, · · · , n .

Corollary 2. Under (2.2)-(2.3) and (3.2), the process of ranked devia-

tions Z̃(·) :=
(
Z1(·) − Y 1(·) , . . . , Zn(·) − Y (·)

)′
of the log-capitalizations

Y1(·), · · · , Yn(·) from their average, is stable in distribution by Proposi-
tion 1, and so is the

(
(R+)n−1 × Σn

)
−valued process (Ξ(·) ,P· ) , where

Ξ(·) := (Z1(·)−Z2(·), . . . , Zn−1(·)−Zn(·))′ is the rank-gap process of Y (·) .

In fact, since Z̃(·) is obtained by permuting the components of Ỹ (·) ,

the stability in distribution of Ỹ (·) implies stability in distribution for Z̃(·)
from Proposition 1. Moreover, the components of the rank-gap process Ξ(·)
can be written as linear combinations of those of Z̃(·) , and the index process

P· can be seen as P· = p
eZ(·) , where the range Σn of the mapping p is a

finite set. Thus, the process (Ξ(·) ,P· ) is stable in distribution.
We shall denote by Λk,j(t) := ΛZk−Zj

(t) the local time accumulated at
the origin by the nonnegative semimartingale Zk(·)−Zj(·) up to time t for
1 ≤ k < j ≤ n , and set Λ0,1(·) ≡ 0 ≡ Λn,n+1(·) . Then from Theorem 2.5
of Banner & Ghomrasni [4] it can be shown that we have for k = 1, . . . , n ,



HYBRID ATLAS MODELS 9

0 ≤ t < ∞ the dynamics

dZk(t) =

n∑

i=1

1
Q

(i)
k

(
Y (t)

)
dYi(t)

+
(
Nk(t)

)−1
[ n∑

ℓ=k+1

dΛk,ℓ(t) −
k−1∑

ℓ=1

dΛℓ,k(t)
]
.

(4.3)

Here Nk(t) is the cardinality of the set of indices of those random variables
among Y1(t), · · · , Yn(t) which have the same value as Zk(t) , i.e., Nk(t) :=
|{i : Yi(t) = Zk(t) }| . Note that under the assumptions on the coefficients, it
can be shown that the finite variation part of the continuous semimartingale
Y (·) in (2.1) is absolutely continuous with respect to Lebesgue measure a.s.,
and it follows from an application of Fubini’s theorem and an estimate of
Krylov [19] that the Lebesgue measure of the set {t : Yi(t) = Yj(t)} is zero
a.s. for 1 ≤ i, j ≤ n . Thus we can verify the sufficient conditions (2.11-12)
of Theorem 2.5 in [4].

Each local time Λk,ℓ(·) is flat away from the set {0 ≤ t < ∞|Zk(t) =
· · · = Zℓ(t)} ; it grows only when the corresponding coordinate processes
collide with each other. Examples in [5], [16] study such multiple collisions
of order three or higher, and use comparisons with one-dimensional Bessel
processes in a crucial manner. Here again, the nonnegative semimartingale
Zk(·) − Zℓ(·) is compared to an appropriate Bessel process. Since a Bessel
process with dimension δ > 1 does not accumulate any local time at the
origin (a consequence of Proposition XI.1.5 of [21]), appropriate comparison
arguments yield the following result; its proof is in Appendix 7.1.

Lemma 1. Under (2.3), the local times Λk,ℓ(·) generated by triple or higher-
order collisions are identically equal to zero, i.e., Λk,ℓ(·) ≡ 0 for 1 ≤ k, ℓ ≤
n and |k − ℓ| ≥ 2 , and (4.3) takes for k = 1, . . . , n , 0 ≤ t < ∞ the form

(4.4) dZk(t) =

n∑

i=1

1
Q

(i)
k

(Y (t)) dYi(t) +
1

2

(
dΛk,k+1(t) − dΛk−1,k(t)

)
.

Proposition 2. Under the assumptions (2.2), (2.3) and (3.2), we obtain
the following long-term growth relations, in addition to those of (3.1) : all
log-capitalizations grow at the same rate

(4.5) lim
T→∞

Yi(T )

T
=

log Xi(T )

T
= γ ; i = 1, . . . , n

almost surely. This holds also for the total market capitalization

(4.6) lim
T→∞

1

T
log X(T ) = lim

T→∞
1

T
log
( n∑

i=1

Xi(T )
)

= γ , a.s. ,

thus the model is coherent: in the notation of (4.2) we have

(4.7) lim
T→∞

1

T
log µi(T ) = 0 , a.s. ; i = 1, . . . , n .
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Proof. It follows from Corollary 2 that

lim
T→∞

1

T

(
Zk(T ) − Zk+1(T )

)
= 0 , a.s. ; k = 1, . . . , n − 1 .

Combining this with (2.1), (3.7) and (4.4), we observe

lim
T→∞

1

2T

(
Λk−1,k(T ) + Λk+1,k+2(T ) − 2Λk,k+1(T )

)

= gk +
n∑

i=1

γiθk,i −
(
gk+1 +

n∑

i=1

γiθk+1,i

)
= gk − gk+1 , a.s.

where gk := gk+
∑n

i=1 γiθk,i for k = 1, . . . , n−1 . Adding up these equations
over k = ℓ , . . . , n − 1 yields

(4.8) lim
T→∞

1

2T

(
Λℓ−1,ℓ(T ) − Λℓ,ℓ+1(T ) − Λn−1,n(T )

)
= gℓ − gn , a.s.

for each ℓ = 1, . . . , n ; and adding up over all these values of ℓ , we obtain

(4.9) lim
T→∞

1

2T
Λn−1,n(T ) = gn , a.s.

In conjunction with (4.8), we obtain from (4.9) that for k = 1, . . . , n :

lim
T→∞

1

2T

(
Λk−1,k(T ) − Λk,k+1(T )

)
= gk = gk +

n∑

i=1

γiθk,i , a.s.

From this, (4.4), and the strong law of large numbers for Brownian motion,
we get the long-term average growth rate of ranked log-capitalizations:

lim
T→∞

Zk(T )

T
= γ , a.s. ; k = 1, . . . , n .

This yields (4.5), the elementary inequality exp{ypy(1)} ≤ ∑n
i=1 exp{yi} ≤

n exp{ypy(1)} for y ∈ Rn implies (4.6), and equation (4.7) is a direct con-
sequence of (4.5) and (4.6). �

Corollary 3. Under (2.2), (2.3) and (3.2), the long-term average occupation
times θk,i of (3.7) satisfy the equilibrium identity

(4.10)

n∑

k=1

θk,i gk + γi = 0 ; i = 1, . . . , n .

Indeed, by substituting (4.5) into (2.1) we obtain the a.s. identities

lim
T→∞

1

T

n∑

k=1

gk

∫ T

0
1

Q
(i)
k

(Y (t)) d t = −γi a.s.; i = 1, . . . , n

and so in conjunction with (3.7) we deduce (4.10).

Example 1. Suppose that the rank-based growth parameters are given as
gn = (n − 1)g , g1 = · · · = gn−1 = −g < 0 for some g > 0 . This is the
“Atlas configuration”, in which the company at the lowest capitalization
rank provides all the growth (or support, as with the Titan of mythical lore)
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for the entire structure. Suppose also that the name-based growth rates
γ1, · · · , γn satisfy

∑n
i=1 γi = 0 and max1≤i≤n γi < g .

It is then easily checked that (2.2) and (3.2) are satisfied. By Corollary 1,
the average occupation times {θk,i} exist a.s. We shall provide an explicit
expression for the θk,i under an additional condition (5.7) on the correlation
structure, in Section 5.2. For the time being, let us just remark that in this
case we get directly from (4.10) the long-term proportions of time

θn,i =
1

n

(
1 − γi

g

)
; i = 1, . . . , n

with which the various companies occupy the lowest (“Atlas”) rank. �

5. Invariant Measure

5.1. Reflected Brownian Motions. Observe now from (4.4) the repre-
sentation for the vector Ξ(·) = (Ξ1(·), . . . ,Ξn−1(·))′ of gaps in the ranked
log-capitalizations Ξk(·) := Zk(·) − Zk+1(·) , k = 1, · · · , n − 1 :

(5.1) Ξ(t) = Ξ(0) + ζ(t) + RΛ(t) ; 0 ≤ t < ∞ .

Here we have set ζ(·) := (ζ1(·), . . . , ζn−1(·))′ with

ζk(·) =

n∑

i=1

∫ ·

0
1

Q
(i)
k

(Y (s)) dY (s) −
n∑

i=1

∫ ·

0
1

Q
(i)
k+1

(Y (s)) dY (s) ;

and we have introduced the vector Λ(·) := (Λ1,2(·), . . . ,Λn−1,n(·))′ = (ΛΞ1(·),
. . . , ΛΞn−1(·))′ of local times, as well as the ((n − 1) × (n − 1)) matrix

(5.2) R :=




1 −1/2
−1/2 1 −1/2

. . .
. . .

. . .

−1/2 1 −1/2
−1/2 1




.

This rank-gap process Ξ(·) in (5.1) belongs to a class of processes which
Harrison & Williams [14], [15] and Williams [25] call “reflected (or regulated)
Brownian motions” (RBM) in polyhedral domains.

The process Ξ(·) has state-space (R+)n−1 and behaves like the (n −
1)−dimensional continuous semimartingale ζ(·) on the interior of (R+)n−1 .
When the face Fk := {(z1, . . . , zn−1)

′ ∈ (R+)n−1 | zk = 0 } , k = 1, . . . , n− 1
of the boundary is hit, the kth component of Λ(·) increases, which causes
an instantaneous displacement (reflection) in a continuous fashion. The
directions of this reflection are given by the entries in rk , the kth column

of the matrix R . For every principal submatrix R̃ of R , there exists

a non-zero vector y such that R̃ y > 0 , and so the reflection matrix R

satisfies the so-called completely−S (or “strictly semi-monotone”, see Dai
& Williams [9] for details) condition for S = (R+)n−1 .
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Let us define the differential operators A and Dk , acting on C2((R+)n−1)
functions:

[
A f
]
(z,p) :=

1

2

n−1∑

k,ℓ=1

ak,ℓ(p)
∂2f(z)

∂zk∂zℓ
+

n−1∑

k=1

bk(p)
∂f

∂zk
(z) ,

[
Dkf

]
(z) := 〈rk ,∇f(z)〉 ; k = 1, . . . , n − 1 , z ∈ (R+)n−1 .

(5.3)

Here (ak,ℓ(·))1≤k,ℓ≤n−1 is the corresponding covariance matrix with entries

ak,ℓ(p) :=
(
σ2

k + σ2
k+1

)
· 1{k=ℓ} − σ2

k · 1{k=ℓ+1} − σ2
k+1 · 1{k=ℓ−1}

+

n∑

m=1

(ρp(k),m − ρp(k+1),m)(ρp(ℓ),m − ρp(ℓ+1),m)

+
∑

(α,β)∈{(k,ℓ),(ℓ,k)}

{
σα(ρp(β),α − ρp(β+1),α) + σα+1(ρp(β+1),α+1 − ρp(β),α+1)

}
(5.4)

for k, ℓ = 1, . . . , n−1 ,p ∈ Σn ; whereas the ((n−1)×1) vector rk is the kth

column of the reflection matrix R . We also define the ((n − 1) × 1) drift
coefficient vector b(·) := (b1(·), . . . , bn−1(·))′ for the semimartingale ζ(·) ,
with components

(5.5) bk(p) := gk+γp−1(k)−gk+1−γp−1(k+1) ; k = 1, . . . , n−1 , p ∈ Σn .

From Corollary 2 we know that there exists an invariant measure ν(· , ·)
for the

(
(R+)n−1 × Σn

)
−valued process (Ξ(·),P·) . Let us denote by ν0(·)

the marginal invariant distribution of Ξ(·) . As a consequence of Itô’s for-
mula and the formulation of the submartingale problem studied by Stroock
& Varadhan [22] and Harrison & Williams [14], we obtain a characterization
of the invariant distribution ν(·, ·) for (Ξ(·),P·) .

Lemma 2. Assume (2.2), (2.3) and (3.2). For each k = 1, . . . , n−1 there is
a finite measure ν0k(·) , absolutely continuous with respect to Lebesgue mea-
sure on the kth face Fk , such that the so-called Basic Adjoint Relationship
(BAR) holds for any C2

b−function f : (R+)n−1 → R , namely

(5.6)

∫

(R+)n−1×Σn

[
Af
]
(z,p)d ν(z,p) +

1

2

n−1∑

k=1

∫

Fk

[
Dkf

]
(z) d ν0k(z) = 0 .

This condition is necessary for the stationarity of ν(·, ·) . A proof of
Lemma 2 is given in Appendix 7.2. It is not easy to solve (5.6) in gen-
eral; however, following Harrison & Williams [15], we may obtain an ex-
plicit formula for the invariant joint distribution ν(·, ·) under the so-called
skew symmetry condition between the covariance and reflection matrices;
see Proposition 3 and Corollaries 4 & 5.

Lemma 3. Assume that the rank-based variances {σ2
k} grow linearly, and

that there are no name-based correlations in (2.3), i.e.,

(5.7) σ2
2 − σ2

1 = σ2
3 − σ2

2 = · · · = σ2
n−1 − σ2

n , ρi,j = 0 ; 1 ≤ i, j ≤ n .
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Then the components of covariance matrix A ≡
(
ak,ℓ

)
1≤k,ℓ≤n−1

from (5.4)

become

ak,ℓ =
(
σ2

k + σ2
k+1

)
· 1{k=ℓ} − σ2

k · 1{k=ℓ+1} − σ2
k+1 · 1{k=ℓ−1}

and does not depend on the permutation p ∈ Σn . Moreover, it satisfies the
so-called skew symmetry condition

(5.8)
(
2D − HD − DH − 2A

)
k,ℓ

= 0 ; 1 ≤ k, ℓ ≤ n − 1 .

Here we have introduced the diagonal matrix D := diag(A) , and the ((n −
1) × (n − 1)) matrix H := I − R from the reflection matrix R in (5.2).

Lemma 3 is proved by straightforward computation; details are in section
5.5 of [16]. Note that under (5.7) the operator (5.3) still depends on the
permutation p through the drift component b(p) for p ∈ Σn in (5.5).

Proposition 3. Under (2.2), (2.3), (3.2) and (5.7), the invariant joint
distribution ν(·) of the

(
(R+)n−1 × Σn

)
−valued process (Ξ(·),P·) is

(5.9) ν(A × B) :=


∑

q∈Σn

n−1∏

k=1

λ−1
q,k




−1
∑

p∈B

∫

A
exp

(
− 〈λp , z〉

)
d z ,

for any p ∈ Σn where λp := (λp,1, . . . , λp,n−1)
′ is the vector with compo-

nents

(5.10) λp,k :=
−4
(∑k

ℓ=1 gℓ + γp(ℓ)

)

σ2
k + σ2

k+1

; p ∈ Σn , 1 ≤ k ≤ n − 1 ,

for any measurable sets A ⊂ (R+)n−1 and B ⊂ Σn . In particular, the
density ℘(·) of the marginal invariant distribution ν0(·) of Ξ(·) has the
sum-of-products-of-exponenentials form

(5.11) ℘(z) :=
( ∑

q∈Σn

n−1∏

k=1

λ−1
q,k

)−1 ∑

p∈Σn

exp
(
− 〈λp , z〉

)
; z ∈ (R+)n−1 .

Proof. First, we carry out a linear transformation of the state space to re-
move the correlation between the components of Ξ(·) ; this is possible, since
the covariance matrix A does not depend on the index process P· , un-
der (5.7) from Lemma 3. Let U be the unitary matrix whose columns are
the orthogonal eigenvectors of the covariance A , and let L be the cor-
responding diagonal matrix of eigenvalues such that L = U′AU . Define

Ξ̃(·) := L−1/2 U Ξ(·) . By this deterministic rotation and scaling, we obtain

(5.12) Ξ̃(t) = Ξ̃(0) + ζ̃(t) + R̃Λ(t) ; 0 ≤ t < ∞
from (5.1) where ζ̃(·) = L−1/2Uζ(·) is a Brownian motion with drift coeffi-

cient b̃(·) := L−1/2 Ub(·) where b(·) is defined in (5.5). We may regard Ξ̃(·)
as a reflected Brownian motion in a new state space S := L−1/2U (R+)n−1

with faces F̃k := L−1/2U Fk , k = 1, . . . , n − 1 . The transformed reflection
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matrix R̃ := L−1/2U R can be written R̃ = (Ñ + Q̃)C = (̃r1, . . . , r̃n−1) ,

where C̃ := D−1/2 , D = diag(A) , Ñ = L1/2UC = (ñ1, . . . , ñn−1) , Q̃ :=

L−1/2 U R C̃−1 − Ñ = (q̃1, . . . , q̃n−1) . The constant vectors r̃k, q̃k, ñk , k =
1, . . . , n − 1 are ((n − 1) × 1) column vectors.

The corresponding differential operators Ã , D̃k and their adjoints Ã∗ , D̃∗
k

are defined by

[
Ã f
]
(z,p) :=

1

2
∆f(z) + 〈̃b(p) ,∇f(z)〉 ,

[
D̃kf

]
(z) := 〈̃rk ,∇f(z)〉 ,

[
Ã∗ f

]
(z,p) :=

1

2
∆f(z) − 〈̃b(p) ,∇f(z)〉 ,

[
D̃∗

kf
]
(z) := 〈̃r∗k ,∇f(z)〉 ,

(5.13)

where r̃∗k := ñk− q̃k +〈ñk, q̃k〉ñk for k = 1, . . . , n−1 , z ∈ (R+)n−1 , p ∈ Σn .
With these differential operators as in Lemma 2, we obtain the (BAR) for

the process (Ξ̃(·),P· ) and its invariant distribution ν̃(·, ·) ; i.e., for every
k = 1, . . . , n − 1 , there exist a finite measure {ν̃0k(·)} which is absolutely
continuous with respect to the (n − 2)−dimensional Lebesgue measure on

F̃k and such that for any C2
b−function f : S 7→ R we have

(5.14)

∫

S×Σn

[
Ãf
]
(z,p) d ν̃(z,p) +

1

2

n−1∑

k=1

∫

eFk

[
D̃kf

]
(z) d ν̃0k(z) = 0 .

Our argument, especially from here onward, relies heavily on the elaborate
analysis given by Harrison & Williams [14], [15]. The main distinction be-
tween their setting and ours, is in the drift coefficient b(·) , which here varies
from chamber to chamber as well as within each chamber, and is evaluated
along the path of the index process P· . Here, however, we can use the
following.

Lemma 4. The following two conditions are equivalent :

(i) For each collection of constants {gk, γi ; 1 ≤ i, k ≤ n } , there are

(n − 1)−dimensional vectors λ̃p := (λ̃p,1, . . . , λ̃p,n−1)
′ for p ∈ Σn ,

such that a probability measure in the form of sum of products of
exponentials

(5.15) ν̃(A × B) := c
∑

p∈B

∫

A
exp

(
〈λ̃p, z〉

)
d z =:

∑

p∈B

∫

A
℘̃p(z) d z

for measurable sets A ⊂ S and B ⊂ Σn , satisfies (5.14) for f(·) ∈
C2

c (S) , where c in (5.15) is a normalizing constant.
(ii) The covariance and the direction of reflection satisfy the skew sym-

metry condition (5.8).
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Indeed, substituting (5.15) into (5.14) and combining the summation over
p ∈ Σn , we observe that

∑

p∈Σn

∫

S

[
Ãf
]
(z,p) · ℘̃p(z) d z +

1

2

n−1∑

k=1

∫

eFk

[
D̃kf

]
(z)

∑

p∈Σn

℘̃p(z) d z

=
∑

p∈Σn

{∫

S

[
Ãf
]
(z,p) · ℘̃p(z) d z +

1

2

n−1∑

k=1

∫

eFk

[
D̃kf

]
(z) · ℘̃p(z) d z

}

holds for f ∈ C2
c (S) , where the expression in the curly bracket corresponds

exactly to the BAR condition studied in [15] with some differences in nota-
tion. This way, we may reduce our problem to the case of [15]. Following
the proof of Lemma 7.1 in [15], we observe that the condition (i) in Lemma
4 above is equivalent to the following conditions (iii)-(iv), where:

(iii)
[
Ã∗℘̃·

]
(·, ·) = 0 in S × Σn , and

(iv)
[
D̃∗

k℘̃·
]
(·, ·) = 2bk(·)℘̃·(·, ·) on F̃k × Σn for k = 1, . . . , n − 1 .

Here the adjoint operators Ã∗ , D̃∗
k are defined in (5.13).

Then the same reasoning as in the proof of Theorem 2.1 in [15] yields

our Lemma 4, and we obtain λ̃p = 2(I − ÑQ̃)−1b(p) for p ∈ Σn along

the way. This gives the invariant distribution ν̃(·) of Ξ̃(·) in (5.12). Now
transforming back to Ξ(·) , we obtain (5.10), (5.9) and then (5.11). �

Example 2. With γi = 0 , ρi,j = 0 , 1 ≤ i, j ≤ n and σ2
1 = · · · = σ2

n , we
recover the case studied by Banner, Fernholz & Karatzas [3] and Pitman &
Pal [20]. Our Proposition 3 is an extension of their results. �

5.2. Average Occupation Times. The long-term average occupation time
θp of the vector process X(·) in the polyhedral chamber Rp of (3.8) is the
probability mass ν1(p) := ν

(
(R+)n−1, p

)
assigned to such a particular

chamber by the marginal invariant distribution of the index process P· ,
which we can compute directly from (5.9) for p ∈ Σn .

Corollary 4. Under the assumptions of Proposition 3, the long-term aver-
age occupation time θp of X(·) in the chamber Rp for p ∈ Σn , and the

long-term proportion θk,i of time spent by company i in the kth rank as in
(3.7), are explicitly given by the respective formulae

(5.16) θp =
( ∑

q∈Σn

n−1∏

j=1

λ−1
q,j

)−1
n−1∏

j=1

λ−1
p,j and θk,i =

∑
θp .

Here λp is in (5.10), and the summation for θk,i is taken over the set
{p ∈ Σn |p(k) = i } for 1 ≤ i, k ≤ n .

From Corollary 3, the average occupation times (θk,i) satisfy the equilib-
rium identity (4.10). As a sanity check, we verify this for the special case
(5.16) through some algebraic computations in Appendix 7.3.
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Example 3. It should be noted that in the presence of name-based vari-
ances, (5.16) can fail significantly. Consider the case where n = 3, with
γi = 0, for i = 1, 2, 3; σk = σ > 0, for k = 1, 2, 3; g3 = g > 0, g2 = 0, and
g1 = −g; all ρi,j is zero for i, j = 1, 2, 3 except ρ3,3 = ρ ≫ σ. In this case,
Y1(·) and Y2(·) will vibrate quietly in the middle with variance rate σ2,
while Y3(·) , with much greater variance rate (σ + ρ)2 , will be wandering
far and wide. From Corollary 1 and (4.10) we obtain

(5.17) ϑ =
(
θk,i

)
1≤i,k≤3

=




1−α
2

1−α
2 α

α α 1 − 2α
1−α

2
1−α

2 α


 ,

where the parameter α is in the interval (1 / 3, 1 / 2) for ρ > 0 . The upper
bound 1 / 2 is obtained as limρ→∞ θ1,3 . Without name-based variances,
i.e., if the ρi,j were all zero, the Yi(·) would each spend the same proportion
of time in every rank. This gives the lower bound 1 / 3 . �

Example 4. Let us consider a numerical computation of (θk,i) for descend-
ing name-based drifts γi and ascending rank-based drifts gk , e.g. n = 10
and σ2

k = 1 + k , as well as gk = −1 for k = 1, . . . , 9 , g10 = 9 , γi =
1 − ( 2i ) / (n + 1) for i = 1, . . . , n . This is a rather extreme case of Exam-
ple 1, with g = 1. The overall maximum is θ1,1 = 0.5184 , and the overall
minimum is θ1,10 = 0.00485 . The company “ i = 1” stays at the first rank
longer than any other companies, because of its relatively strong name-based
drift; whereas the company “ i = 10” stays at the first rank only for a tiny
amount of time, because of its relatively poor name-based drift.

Figure 1 shows a gray scale heat map for the different values of {θk,i} ; of
course we know from Example 1 that θ10,i = i /55 , i = 1, · · · , 10 . �

For a larger number of companies, say n ∼ 5000 , it seems rather hopeless
for the current computational environment to perform direct computations
of θk,i via the sum of (5.16) over (n − 1)! permutations in general.

5.3. Capital Distribution Curve. The capital distribution curve is the
log-log plot of market weights in descending order, as in (1.1). The em-
pirical capital distribution curves, for the U.S. stock market 1929-1999, are
shown in [12] (Figure 5.1 on page 95). Our next result computes the capital
distribution curves directly from Proposition 3, using change of variables.

Corollary 5. Under the assumptions of Proposition 3, the ranked market
weights µ(1)(·), . . . , µ(n)(·) in (1.1), (4.2) have invariant distribution with

(5.18) ℘(m1, . . . ,mn−1) =
∑

p∈Σn

[
θp ·

n−1∏

k=1

λp,k ·
( n∏

j=1

m
λp,j−λp,j−1+1
j

)−1 ]

as its density, for 0 < mn ≤ mn−1 ≤ · · · ≤ m1 < 1 and mn = 1 − m1 −
· · ·−mn−1 . Here we set λp,0 = 0 = λp,n , p ∈ Σn for notational simplicity.
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Moreover, the log-ranked market weights ck(·) := log µ(k)(·) have invari-
ant distribution with density

(5.19) ℘(c1, . . . , cn−1) =
∑

p∈Σn

[
θp ·

n−1∏

j=1

(
λp,j · e−(λp,j−λp,j+1)cj

)
· eλp,n−1cn

]

for −∞ < cn ≤ · · · ≤ c2 ≤ c1 < 0 , cn = log
(
1 −

∑n−1
j=1 ecj

)
.

From the invariant density functions given by (5.11), (5.18) and (5.19),
the piecewise linear capital distribution curve (1.1) has the expected slope

(5.20) Eν
[ log µ(k+1) − log µ(k)

log(k + 1) − log k

]
= − Eν

(
Ξk

)

log(1 + k−1)
= −

∑
p∈Σn

θpλ−1
p,k

log(1 + k−1)

between the kth and the (k + 1)st ranked stocks for k = 1, . . . , n − 1 , and
the initial value

Eν(log µ(1)) = Eν(c1) = Eν
[
−log

(
1+e−Ξ1+e−(Ξ1+Ξ2)+· · ·+e−(Ξ1+···+Ξn−1)

)]

for the first rank. From (5.9) this expected initial value may be obtained
through a Monte Carlo simulation of generating (n− 1) independent expo-
nential random variables with intensities λp,j for j = 1, . . . , n−1 , p ∈ Σn .
From (5.20) we obtain the following simple criterion for convexity (or con-
cavity) of the expected capital distribution curves.

Corollary 6. Under the assumptions of Proposition 3, a sufficient condition
for the expected capital distribution curve log k 7→ Eν(log µ(k)) under the
invariant distribution ν to be convex (respectively, concave), is that

(5.21) λp,k+1 log
(
1 +

1

k + 1

)
− λp,k log

(
1 +

1

k

)
≥ 0 ; ∀ p ∈ Σn

(resp., ≤ ) hold on each interval [log k, log(k + 2)] for each k = 1, . . . n− 2 ,
where λp,k is given in (5.10).

Example 5. Let us consider the first-order Atlas model which is a combina-
tion of the “Atlas configuration” in Examples 1 with the further restrictions
of Example 2; to wit, gn = (n − 1)g , g1 = · · · = gn−1 = −g < 0 for some
g > 0 , as well as γi = 0 , ρi,j = 0 , 1 ≤ i, j ≤ n and σ2

1 = · · · = σ2
n =

σ2 > 0 for some σ2 > 0 . From Corollary 6, the expected capital distri-
bution curve is convex but almost linear for larger k . Indeed, the quantity
λp,k log(1 + k−1) = 2(gk /σ2) · log(1 + k−1) increases in k ≥ 1 , and con-
verges to one, as k ↑ ∞ , for all p ∈ Σn , and so the difference in (5.21) is
positive for each k = 1, . . . , n− 2 but decreases to zero quite rapidly in the
order of O(k−2) , as k ↑ ∞ . Another explanation of such linearity (“Pareto
line”) of the capital distribution curves from an application of Poisson point
processes can be found in Example 5.1.1 on page 94 of [12]. �

Example 6. Suppose now that we change only the rank-based variances in
Example 5; namely, we take linearly growing variances σ2

k = kσ2 for some
σ2 > 0 , k = 1, . . . , n . Then λp,k log(1+k−1) = (4kg / [(2k +1)σ2]) · log(1+
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k−1) is decreasing in k ≥ 1 for every p ∈ Σn , and so the difference in
(5.21) is negative for each k = 1, . . . , n − 2 . Thus, from Corollary 6, the
expected capital distribution curve becomes concave. �

Example 7. Consider a “pure” hybrid market defined by

dYi(t) =

{
−γi dt + ρi dWi(t) if Yi(t) 6= Y(n)(t),

(g − γi) dt + ρi dWi(t) if Yi(t) = Y(n)(t),

for i = 1, . . . , n and t ≥ 0, where γi > 0, ρi > 0, and g =
∑n

i=1 γi. We claim
that for large n and g ≫ γi the capital distribution curve for this market is
convex.

For large n and g ≫ γi, the process
(
Yi(t) − Y(n)

)
(t) is approximately

exponentially distributed for t outside the set where Yi(t) = Y(n)(t), with

P{Yi(t) − Y(n)(t) > x} ∼= e−αix,

where αi = ρ2
i /2γi. It would seem that for large enough n, the Atlas stock

would perform a role similar to a local time process, reflecting the stocks
away from the Atlas position.

Now, if we let Y represent a generic member of the market, the distribu-
tion of Y (t) − Y(n)(t) will be mixed exponential, with

P{Y (t) − Y(n)(t) > x} ∼= 1

n

n∑

i=1

e−αix.

In particular, for 1 ≤ k < n,

k

n
∼= P{

(
Y (t)−Y(n)(t)

)
>
(
Y(k)(t)−Y(n)(t)

)
} ∼= 1

n

n∑

i=1

exp
(
−αi

(
Y(k)(t)−Y(n)(t)

))
,

and we can use this equation to determine the shape of the capital distribu-
tion curve.

We wish to determine the shape of the graph of log k = log
∑n

i=1 e−αix ,
where log k is considered to be a function of x. For ϕ(x) :=

∑n
i=1 e−αix , we

have
d2

dx2
log k =

d2

dx2
log ϕ(x) =

ϕ′′(x)ϕ(x) − (ϕ′(x))2

(ϕ(x))2
.

For this derivative to be nonnegative, it suffices that the numerator be non-
negative, and we have

ϕ′′(x)ϕ(x) − (ϕ′(x))2 =
n∑

i=1

α2
i e

−αix
n∑

j=1

e−αjx −
n∑

i,j=1

αiαje
−(αi+αj)x

=

n∑

i,j=1

(α2
i − αiαj)e

−(αi+αj)x

=
1

2

n∑

i,j=1

(α2
i − 2αiαj + α2

j )e
−(αi+αj)x ≥ 0,
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so the graph is convex. It follows that the capital distribution curve of the
pure hybrid market is likely to be convex. �

Example 8. To see different shapes of the expected capital distribution
curve under different parameters apart from Examples 5 & 6, let us consider
a pure hybrid market whose drift and volatility coefficients do not depend on
ranks, except for the smallest (Atlas) stock. For example, take n = 5000 ,
gk = 0 , 1 ≤ k ≤ n− 1 , gn = c∗(2n− 1) , γ1 = −c∗ , γi = −2c∗ , 2 ≤ i ≤ n ,
σ2

k = 0.075 , 1 ≤ k ≤ n , and ρi,j = 0 for 1 ≤ i, j ≤ n with a parameter
c∗ = 0.02. These parameters satisfy the assumptions of Proposition 3. We
cannot apply Corollary 6, because the difference in (5.21) is positive on {p ∈
Σn : p(k +1) 6= 1 } but negative on its (smaller) complement. The resulting
expected capital distribution curve is convex; it is depicted in Figure 2. �

Example 9. Let us consider now a variant of this pure hybrid model, with
a variance structure that is observed in practice. The parameters are the
same as in Example 8, except for the different choices of the parameter c∗
and for the rank-based variances σ2

k := 0.075+6k×10−5 which are obtained
from the smoothed annualized values for 1990-1999 data as in Section 5.4,
page 109 of [12] (see page 2319 of [3]). The criterion from Corollary 6 cannot
apply directly to this case, because the inequalities (5.21) do not hold for all
p ∈ Σn . The expected capital distribution curves under these parameters
with (i) c∗ = 0.02 , (ii) c∗ = 0.03 , (iii) c∗ = 0.04 are shown in Figure 3.
The curve (i) is convex from the top rank to about the 25th rank, then turns
concave until the lowest rank. The other curves (ii) & (iii) behave similarly.
�

Example 10. Adopting the same parameter specifications in Example 9
(i) c∗ = 0.02 , except the rank-based drift, i.e., (iv) the upwind first ranked
stock g1 = −0.016 , gk = 0 , 2 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.016
and (v) the windward top 50 stocks g1 = g2 = · · · = g50 = −0.016 , gk =
0 , 51 ≤ k ≤ n−1 , gn = (0.02)(2n−1)+0.8 , we obtain concave curves as in
Figure 4. The observed average curve and the estimated curve of the first-
order Atlas model for 1990-1999 (Figure 3 of [3], page 2320) are concave.
The statistical inference for the capital distribution curves is an interesting
problem that we do not discuss here. �

6. Portfolio Analysis

Let us consider investing in the market of (2.1) according to a portfolio
rule Π(·) = (Π1(·), . . . ,Πn(·))′ . This is an {Ft}−adapted, locally square-
integrable process with

∑n
i=1 Πi(·) = 1 . Each Πi(t) represents the propor-

tion of the portfolio’s wealth V Π(t) invested in stock i at time t, so

(6.1)
dV Π(t)

V Π(t)
=

n∑

i=1

Πi(t) ·
dXi(t)

Xi(t)
, V Π(0) = 1 .
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For example, we may choose for every t ∈ [0,∞) the vector of market
weights µi(t) , i = 1, . . . , n as in (4.2). We shall call the resulting Π(·) ≡
µ(·) the market portfolio.

For a constant-proportion portfolio Π(·) ≡ π ∈ Γn := {(π1, . . . , πn)′ ∈
Rn | ∑n

i=1 πi = 1 } (which of course the market portfolio is not), the solution
of (6.1) is given by

(6.2) d log V π(t) = γ∗
π(t) d t +

n∑

i=1

πi d log Xi(t) ; 0 ≤ t < ∞ .

Here we denote by
(
aij(t)

)
1≤i,j≤n

= S(Y (t))S(Y (t))′ the covariance process

from (2.4), and introduce

(6.3) γ∗
π(t) :=

1

2

( n∑

i=1

πi aii(t) −
n∑

i,j=1

πi aij(t)πj

)
; 0 ≤ t < ∞ ,

the excess growth rate of the constant-proportion Π(·) ≡ π ∈ Γn. Thus, for
a constant-proportion portfolio we can write the solution of (6.1), namely
(6.4)

V π(t) = w · exp

[
n∑

i=1

πi

{Aii(t)

2
+ log

(Xi(t)

Xi(0)

)}
− 1

2

n∑

i,j=1

πiAij(t)πj

}]
,

as in (2.4) of [17], where Aij(·) =
∫ ·
0 aij(t) dt ; we set A(·) := (Aij(·))1≤i,j≤n .

6.1. Target Portfolio. Let us assume that, for every (t, ω) ∈ [0,∞) ×
Ω , there exists a vector Π∗(t, ω) := (Π∗

1(t, ω), . . . ,Π∗
n(t, ω))′ ∈ Γn that

attains the maximum of the wealth V π(t, ω) over vectors π ∈ Γn ; and
that the resulting process Π∗(·) defines a portfolio. Along with Cover [8] &
Jamshidian [17], we shall call this Π∗(·) Target Portfolio, and

(6.5) V∗(t) := max
π∈Γn

V π(t) , 0 ≤ t < ∞

the Target Performance for the model. (The quantity of (6.5) is not nec-
essarily equal to, and will typically be very different from, the performance
V Π∗

(·) of the portfolio Π∗.)
The Target Performance V∗(·) exceeds the performance of the leading

stock, of the value-line index (the geometric mean), and of any arithmetic
average (such as the DJIA): to wit, taking X1(0) = · · · = Xn(0) = 1 , we
have for every vector (α1, . . . , αn)′ ∈ Γn

+ := {(π1, . . . , πn)′ ∈ Γn|πi ≥ 0 , i =
1, . . . , n} the almost sure comparisons

(6.6) V∗(·) ≥ max
[

max
1≤i≤n

Xi(·) ,
( n∏

j=1

Xj(·)
)1 / n

,

n∑

j=1

αjXj(·)
]
.

Under the assumptions of Proposition 1, the limits θp of the average
occupation times in (3.8) exist almost surely, and so do the limits of the
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average covariance rate a∞ij := limT→∞ Aij(T ) /T , i.e., a∞ :=
(
a∞ij
)
1≤i,j≤n

is

a∞ = lim
T→∞

1

T

∫ T

0

(
aij(t)

)
1≤i,j≤n

d t

= lim
T→∞

1

T

∫ T

0

∑

p∈Σn

1Rp
(Y (s)) · sps′

p
d t =

∑

p∈Σn

θp sp s′
p

,

with sp defined in (2.3). It follows from (6.4) that the asymptotic long-
term-average growth rate of a constant-proportion portfolio π ∈ Γn is

(6.7) lim
T→∞

1

T
log V π(T ) = γ +

1

2

( n∑

i=1

πia
∞
ii −

n∑

i,j=1

πia
∞
ij πj

)
=: γ + γ∞

π .

Maximizing this expression over π ∈ Γn amounts to maximizing over constant-
proportion portfolios γ∞

π = (1/2)
(∑n

i=1 πia
∞
ii −

∑n
i,j=1 πia

∞
ij πj

)
, the excess

growth rate that corresponds to the asymptotic covariance structure.

We shall call Asymptotic Target Portfolio a vector π̄ = (π̄1, . . . , π̄n)′ ∈ Γn

that attains maxπ∈Γn γ∞
π . We can regard this as an asymptotic growth-

optimal portfolio over all constant-proportion portfolios, in the sense that
limT→∞ (1/T ) log(V π(T )/V π̄(T )) ≤ 0 holds a.s. for every π ∈ Γn .

Example 11. When there is no covariance structure by name, i.e., ρi,j ≡ 0
for every 1 ≤ i, j ≤ n , we have Aij(·) ≡ 0 for i 6= j . In this case, we
compute a target portfolio Π∗(·) as

Π∗
i (t) =

(
2Aii(t)

n∑

j=1

1

Ajj(t)

)−1[
2 − n − 2

n∑

j=1

1

Ajj(t)
log
(Xj(t)

Xj(0)

)]

+
1

2
+

1

Aii(t)
log
(Xi(t)

Xi(0)

)
; i = 1, . . . , n ,

(6.8)

and an asymptotic target portfolio by

(6.9) π̄i =
1

2

[
1 − n − 2

a∞ii

( n∑

j=1

1

a∞jj

)−1 ]
= lim

t→∞
Π∗

i (t) ; i = 1, . . . , n , a.s.

The portfolio π̄ has exactly the same long-term growth rate as the target
performance in (6.5), namely

(6.10) lim
T→∞

1

T
log
(V π̄(T )

V∗(T )

)
= 0 , a.s.;
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on the other hand, it outperforms the overall market rather significantly
over long time horizons, namely

lim
T→∞

1

T
log
(V π̄(T )

V µ(T )

)
=

1

2

n∑

i=1

π̄i(1 − π̄i)a
∞
ii

=
1

8

[ n∑

i=1

a∞ii − (n − 2)2
( n∑

j=1

1

a∞jj

)−1]
≥ n − 1

2

( n∑

i=1

1

a∞ii

)−1
(6.11)

a.s., from the arithmetic mean - harmonic mean inequality. �

With Cover [8] and Jamshidian [17], we shall say that stock i is asymp-
totically active, if for the expression of (6.9) we have π̄i > 0 ; and that the
entire market is asymptotically active, if all its stocks are asymptotically
active, that is, if π̄ ∈ Γn

++ := {(π1, . . . , πn)′ ∈ Γn |πi > 0 , i = 1, . . . , n } .

Example 12. A sufficient condition for asymptotic activity of the model
with n ≥ 3 under the condition of Proposition 3, is obtained from (6.9) as

(6.12)
1

a∞ii
<

1

n − 2

( n∑

ℓ=1

1

a∞ℓℓ

)
, or equivalently

(6.13)
( ∑

p∈Σn

σ2
p−1(i)

n−1∏

j=1

λ−1
p,j

)−1
<

1

n − 2

[ n∑

ℓ=1

( ∑

p∈Σn

σ2
p−1(ℓ)

n−1∏

j=1

λ−1
p,j

)−1]
,

for every i = 1, · · · , n , with λp,j defined in (5.10). This is the case in the
constant variance model σ2

1 = · · · = σ2
n . In general, it seems that the drift

and volatility coefficients have non-trivial effects on the condition (6.13). �

6.2. Universal Portfolio. The Universal Portfolio of Cover [8] and Jamshid-
ian [17] is defined as

Π̂i(t) :=

∫
Γn

+
π V π(t) dπ

∫
Γn

+
V π(t) dπ

; 0 ≤ t < ∞ , 1 ≤ i ≤ n .

The wealth process of this portfolio is given by the “performance-weighting”

V
bΠ(t) =

∫
Γn

+
V π(t) dπ
∫
Γn

+
dπ

; 0 ≤ t < ∞ ,

as can be checked easily. It follows from Theorem 2.4 of Jamshidian [17] that
the Universal Portfolio does not lag significantly behind the Target Portfolio:
its performance lag is only polynomial in time under an asymptotically active
model. To wit, there exists then a positive constant C , such that

V
bΠ(T )

V∗(T )
∼ CT −(n−1)/2 as T → ∞
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holds almost surely, thus also

lim
T→∞

1

T
log
(V

bΠ(T )

V π̄(T )

)
= lim

T→∞
1

T
log
(V

bΠ(T )

V∗(T )

)
= 0 .

In the context of the hybrid model, under the assumptions of Proposition
3 and of Example 12, the Universal Portfolio attains the long-term growth
rate of the asymptotic target portfolio π̄ (that is, the maximal long-term
growth rate achievable through constant-proportion portfolios), as if the
structure of the market were known.

6.3. Growth-Optimal Portfolio. We shall call growth-optimal a portfolio
̟(·) that satisfies the inequality limT→∞ (1/T ) log(V Π(T )/V ̟(T )) ≤ 0
almost surely, for any portfolio Π(·) .

In order to find such a growth-optimal portfolio under no-name based
correlation ρi,j ≡ 0 for 1 ≤ i, j ≤ n , we need to maximize over π ∈ Γn the
quantity

n∑

i=1

(
γ̃i(t) +

1

2
aii(t)

)
πi −

1

2

n∑

i=1

aii(t)
2π2

i ,

where γ̃i(t) =
∑

p∈Σn
1Rp

(Y (t)) gp−1(i) + γi + γ is the ith element of

G(Y (t)) of (2.4). By the Lagrange multiplier method, we obtain

̟i(t) =
1

2
+

γ̃i(t) + γ(t)

aii(t)
; i = 1, . . . , n , 0 ≤ t < ∞

where the constraint
∑n

i=1 ̟i(t) = 1 is enforced by the multiplier

γ(t) =
( n∑

i=1

1

aii(t)

)−1 (
1 − n

2
−

n∑

j=1

γ̃j(t)

ajj(t)

)
.

The growth rate of this portfolio’s performance V ̟(·) is

nγ

2
+

1

2

n∑

i=1

γ̃2
i (t)

aii(t)
− γ2(t)

2

n∑

i=1

1

aii(t)
+

1

8

n∑

i=1

aii(t) .

• In order to make some comparisons, let us specialize to the equal-variance
case, i.e., σ2

1 = · · · = σ2
n = σ2 with no name-based correlations ρi,j ≡ 0 ; we

obtain

(6.14) lim
T→∞

1

T
log V ̟(T ) = γ +

σ2

2

(
1 − 1

n

)
+

1

2σ2

( n∑

k=1

g2
k −

n∑

i=1

γ2
i

)
.

On the other hand, the Universal Portfolio and the Asymptotic Target Port-
folio have the same long-term growth rate, namely

(6.15) lim
T→∞

1

T
log V π̄(T ) = lim

T→∞
1

T
log V

bΠ(T ) = γ +
σ2

2

(
1 − 1

n

)
.
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Under the conditions of (2.2) and (3.2), we can verify

(6.16)

n∑

k=1

g2
k >

n∑

i=1

γ2
i .

To show (6.16), we may assume without loss of generality γ1 ≥ · · · ≥ γn

and hence that there exists (δ1, . . . , δn−1)
′ ∈ (R+)n−1 \ {0} such that gk =

−(γk + δk) for k = 1, . . . , n− 1 , and gn = −γn + (δ1 + · · ·+ δn−1) for (2.2)
and (3.2). Then we obtain

n∑

k=1

g2
k =

n−1∑

i=1

(γi + δi)
2 +

(
− γn + (δ1 + · · · + δn−1)

)2

=

n∑

i=1

γ2
i +

n−1∑

i=1

(
δ2
i + 2δi(γi − γn)

)
+
( n−1∑

i=1

δi

)2
>

n∑

i=1

γ2
i .

Thus we observe from (6.14), (6.15), (6.16) that the growth-optimal port-

folio ̟(·) dominates in the long run both the universal portfolio Π̂(·) and
the asymptotic target portfolio π̄ , a.s. The advantage of the universal port-
folio is that it can be constructed with total oblivion as to what the actual
values of the parameters of the model might be; some of these may be quite
hard to estimate in practice. By contrast, constructing the growth-optimal
portfolio ̟(·) requires knowledge of all the model parameters, and keeping
track of the positions of all stocks in all ranks at all times.

7. Appendix

7.1. Proof of Lemma 1. The stochastic exponential

ζ(t) = exp
[
−
∫ t

0
〈ξ(u) , dW (u)〉 − 1

2

∫ t

0
‖ξ(u)‖2 du

]
; 0 ≤ t < ∞

is a continuous martingale, where ξ(t) := S−1(Y (t))G(Y (t)) for 0 ≤ t < ∞
and ‖x‖2 :=

∑n
j=1 x2

j , x ∈ Rn and 〈x, y〉 =
∑n

j=1 xjyj , x, y ∈ Rn . Recall

that S(·) , S−1(·) and G(·) in (2.4) are bounded. By Girsanov’s theorem

W̃ (t) := W (t) +

∫ t

0
σ−1(Y (u))µ (Y (u)) du , 0 ≤ t < ∞

is an n−dimensional Brownian motion under the new probability measure
Q , locally equivalent to P , that satisfies

(7.1) Q(C) = EP(ζ(T )1C) ; C ∈ FT , 0 ≤ T < ∞ .

Thus, equation (2.4) under P is reduced to

(7.2) dY (t) = S(Y (t)) d W̃ (t) ; 0 ≤ t < T , under Q .
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7.1.1. Local time of Bessel Process. Let us denote by Z(·) the square of the
δ−dimensional Bessel process with 0 < δ < 2 . This process reaches the
origin with probability one, but is subject to instantaneous reflection there,
i.e., the local time ΛZ(·) of Z(·) at the origin is zero:

ΛZ(t) = δ

∫ t

0
1{Z(s)=0} d s = 0 and so Leb({t : Z(t) = 0 }) = 0

holds for all t ∈ [0,∞) almost surely. (Proposition XI.1.5. of [21]) The

same is true for the δ−dimensional Bessel process rδ(·) =
√

|Z(·)| with

1 < δ < 2 , i.e., Leb({t : rδ(t) = 0 }) = 0 almost surely, and hence

(7.3) Λrδ (t) =
δ − 1

2

∫ t

0
1{rδ(s)=0}

ds

rδ(s)
= 0 ; 0 ≤ t < ∞ , 1 < δ < 2 .

On the other hand, for δ ≥ 2 the origin is never reached at all. We conclude
that the local time of δ−dimensional Bessel process rδ(·) is identically equal
to zero, i.e., Λrδ (·) ≡ 0 , for any δ ∈ (1,∞) .

7.1.2. Comparisons with Bessel Processes. Now let us fix integers 1 < i <
j < k ≤ n . Under Q in (7.1) we shall compare the rank gap process

η(t) := max
ℓ=i,j,k

Yℓ(t) − min
m=i,j,k

Ym(t)

with a Bessel process of dimension δ > 1 , using Lemmata 5 and 6 below.

We introduce the function g(y) := [(yi − yj)
2 + (yj − yk)

2 + (yk − yi)
2]1/2

for y ∈ Rn , and note the comparison
√

3 η(·) ≥ g(Y (·)) . An appli-
cation of Itô’s rule to g(Y (·)) yields the semimartingale decomposition
d g(Y (t)) = h(Y (t)) d t + dΘ(t) , where we introduce the (n × 3) matrix
Dijk := ( di , dj , dk ) with (n × 1) vectors di := ei − ej , dj := ej − ek ,

dk := ek − ei , we denote by ei , i = 1, . . . , n the ith unit vector in Rn , and

h(y) :=
(R(y) − 1)Q(y)

2 g(y)
, R(y) :=

Tr(D′
ijkS(y)S′(y)Dijk)

Q(y)
,

Q(y) :=
y′DijkD

′
ijkS(y)S(y)′DijkD

′
ijky

y′DijkD
′
ijky

; y ∈ Rn \ Z ,

Z := {y ∈ Rn | g(y) =
(
y′DijkD

′
ijky

)
= 0 } ,

Θ(t) :=

∫ t

0

( ∑

ℓ=i,j,k

S′(y)dℓd
′
ℓy

g(y)

∣∣∣
y=Y (s)

)
d W̃ (s) ,

〈Θ〉(t) =

∫ t

0
Q(Y (s)) d s ; 0 ≤ t < ∞ .

(7.4)

Here note that under the assumption on (2.3), and because 3DijkD
′
ijk =

DijkD
′
ijkDijkD

′
ijk , we have

(7.5) Q(·) =
3 y′DijkD

′
ijkS(·)S(·)′DijkD

′
ijky

y′DijkD
′
ijkDijkD

′
ijky

≥ 3 min
p∈Σn

min
ℓ=1,...,n

λ̃ℓ,p > 0
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in Rn \ Z , where λ̃ℓ,p , ℓ = 1, . . . , n are the eigenvalues of the positive-
definite matrices sps′

p
for p ∈ Σn , and so 〈Θ〉(·) is strictly increasing when

Y (·) ∈ Rn \ Z . Now define the stopping time τu := inf{t ≥ 0 | 〈Θ〉(t) ≥ u} ,
and note

G(u) := g(Y (τu)) = g(Y (0)) +

∫ τu

0
h(Y (t)) d t + B̃(u) ; 0 ≤ u < ∞ ,

where B̃(u) := Θ(τu) , 0 ≤ u < ∞ is a standard Brownian motion, by the
Dambis-Dubins-Schwartz theorem of time-change for martingales. Thus,
with d(u) := R(Y (τu)) we can write

dG(u) =
d(u) − 1

2G(u)
du + d B̃(u) ; 0 ≤ u < ∞ , G(0) = g(Y (0)) .

The dynamics of the process G(·) are comparable to those of a Bessel

process rδ(·) with dimension δ, generated by the same B̃(·) and started
at the same initial point g(Y (0)) . Since S(·)S(·)′ is positive definite un-
der (2.3) and rank (Dijk) = 2 , the (3 × 3) matrix D′

ijkS(·)S(·)′Dijk is
non-negative definite and the number of its non-zero eigenvalues is equal
to rank(D′

ijkS(·)S(·)′Dijk) = 2 . Let us denote by λ̄ℓ,p , ℓ = 1, 2, 3 the

eigenvalues of D′
ijkspsp′Dijk for p ∈ Σn . Then for R(·) in (7.4) we obtain

(7.6) R(·) ≥ δ0 := min
p∈Σn

( ∑3
ℓ=1 λ̄ℓ,p

max1≤ℓ≤3 λ̄ℓ,p

)
> 1 in Rn \ Z

and so d(·) ≥ δ0 > 1 when Y (τ·) ∈ Rn \ Z . By a comparison argument
similar to that in the proof of Lemma 2.1 of [16], we may show that G(t) ≥
rδ0(t) for 0 ≤ t < ∞ a.s. Thus

√
3η(t) ≥ g(Y (t)) = G(〈Θ〉(t)) implies√

3η(t) ≥ rδ0(〈Θ〉(t)) for 0 ≤ t < ∞ , a.s., and so we obtain the following
result.

Lemma 5. For the process Y (·) of (7.2) with (2.3), the multiple
√

3η(·) of
the rank-gap process dominates, a.s. under Q , a time-changed Bessel process
r̃(·) := rδ0(〈Θ〉(·)) with dimension δ0 as in (7.6):

Q
(√

3η(t) ≥ r̃(t) ; 0 ≤ t < ∞
)

= 1 .

Lemma 6. Under Q , the rank-gap process η(·) satisfies 〈η〉(t) ≤ c1 t ,
0 ≤ t < ∞ a.s. for some constant c1 > 0 and the local time Λη(·) of η(·)
at the origin is identically equal to zero.

In fact, since the diffusion coefficient matrix S(·) of Y (·) in (7.2) is
bounded and positive definite under (2.3), there exist such constant c1 that
〈η〉(t) ≤ c1 t for 0 ≤ t < ∞ a.s. Moreover, from (7.5) and Lemma 5, there

exists a constant c2 := minp∈Σn,ℓ=1,...,n λ̃ℓ,p > 0 , such that 〈Θ〉(t) ≥ c2 t for
0 ≤ t < ∞ a.s. It follows from the representation of local times (Theorem
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VI. 1.7 of [21]) and (7.3) with Lemma 5 that

Λη(t) = lim
ε↓0

1

2ε

∫ t

0
1{0≤η(s)<ε} d 〈η〉(s) ≤ lim

ε↓0

√
3c1

2 ε

∫ t

0
1{0≤

√
3η(s)<ε} d s

≤ lim
ε↓0

√
3c1

2 ε

∫ t

0
1{0≤r̃(s)<ε} d s ≤ lim

ε↓0

√
3 c1

2 c2 ε

∫ 〈Θ〉(t)

0
1{0≤rδ(u)<ε} du

≤
√

3 c1 c−1
2 Λrδ(〈Θ〉(t)) ≡ 0 ; 0 ≤ t < ∞ .

(7.7)

Define an increasing family of events CT := {Λη(t) > 0 for some t ∈
[0, T ] } , T ≥ 0 . By Lemma 6 we obtain Q(C∞) = 0 and 0 = Q(Cℓ) =
P(Cℓ) for ℓ ≥ 1 . Then P(Λη(t) > 0 for some t ≥ 0) = P(∪∞

ℓ=1Cℓ) =
limℓ=∞ P(Cℓ) = 0 . Thus the local time Λη(t) of rank gap process η(·) for
(Yi(·) , Yj(·) , Yk(·) ) is zero for 0 ≤ t < ∞ a.s. under P .

Since the choice of i, j, k is arbitrary, there is no local time generated by
the rank gap process of any three coordinates. The rank gap process of more
than three coordinates (e.g. maxℓ=h,i,j,k Yℓ(·)−minm=h,i,j,k Ym(·)) dominates
that of any three sub-coordinates. Therefore, by a similar argument as (7.7)
and its consequence, any local time of rank gap process of more than three
coordinates is zero for 0 ≤ t < ∞ a.s. under P .

To establish (4.4) from this and (4.3), and thus complete the proof of
Lemma 1, consider any integers (ranks) 1 ≤ a ≤ ℓ < m ≤ b ≤ n with
b − a ≥ 2 , and observe that we have almost surely:

0 ≡ Λa,b(t) =

∫ t

0
1{Za(s)=Zb(s)} d

(
Za(s) − Zb(s)

)

=

∫ t

0
1{Za(s)=Zb(s)} d

(
Za(s) − Zℓ(s)

)
+

∫ t

0
1{Za(s)=Zb(s)} d

(
Zℓ(s) − Zm(s)

)

+

∫ t

0
1{Za(s)=Zb(s)} d

(
Zm(s) − Zb(s)

)

=

∫ t

0
1{Za(s)=Zb(s)} d

(
Λa,ℓ(s)+Λℓ,m(s)+Λm,b(s)

)
≥
∫ t

0
1{Za(s)=Zb(s)} dΛℓ,m(s) ≥ 0 .

The a.s. equality
∫ t
0 1{Za(s)=Zb(s)} dΛℓ,m(s) = 0 follows readily from this, as

does
∫ t

0
1{Nk(t)≥3}

( n∑

ℓ=k+1

dΛk,ℓ(s) −
k−1∑

ℓ=1

dΛℓ,k(s)
)

= 0

and thus (4.4) as well. �

7.2. Proof of Lemma 2. For each k = 1, . . . , n−1 the local time Λk,k+1(·)
is a continuous additive functional of (Ξ(·),P·) with support in Fk , and the
expectation of Λk,k+1(t) with respect to the invariant distribution ν(·, ·) is
finite for t ≥ 0 .
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It follows from the theory of additive functionals [2] that there is a finite
measure νk(·, ·) on Fk × Σn such that

(7.8)
1

T
Eν

[ ∫ T

0
g(Ξ(s),Ps) dΛk,k+1(s)

]
=

1

2

∫

Fk×Σn

g(z,p) d νk(z,p)

for every bounded measurable function g : Fk × Σn 7→ R . Let us denote by
ν0k(·) = νk(·,Σn) the marginal distribution on Fk . The absolute continuity
of ν0k(·) with respect to (n−1)−dimensional Lebesgue measure is argued by
localization and the properties of Reflected Brownian motion as in Theorem
7.1, Lemmata 7.7 and 7.9 of [14].

Now, by an application of Itô’s rule, for f ∈ C2
b ((R+)n−1) we obtain

f(Ξ(T )) = f(Ξ(0)) +

∫ T

0
〈∇f(Ξ(s)), d ζmart(s)〉

+

n−1∑

k=1

∫ T

0

[
Dkf

]
(Ξ(s)) dΛk,k+1(s) +

∫ T

0

[
Af
]
(Ξ(s),Ps) d s ; T ≥ 0 ,

where ζmart(·) is the martingale part of ζ(·) and Dk and A are differential
operators defined in (5.3). Taking expectations with respect to P and then
integrating for the initial values with respect to the stationary distribution
ν(·, ·) with Fubini’s theorem and (7.8), we obtain

0 =
T

2

n−1∑

k=1

∫

Fk

[
Dkf

]
(z) d ν0k(z) + T

∫

(R+)n−1×Σn

[
Af
]
(z,p)d ν(z,p) .

Dividing by T > 0 , we obtain the basic adjoint relationship (5.6).

7.3. A Sanity Check of Corollary 4. In this section we verify that
(θk,i)1≤i,k≤n in (5.16) satisfy (4.10). Since θk,i is homogeneous in the prod-

uct
∏n−1

j=1 [−4(σj +σ2
j+1)

−1] , it suffices to show
∑n

k=1 θ̃k,i

(
gk+γi

)
= 0 where

we use the modifications θ̃k,i :=
∑

{p(k)=i} θ̃p ,

θ̃p :=
( ∑

q∈Σn

n−1∏

j=1

λ̃q,j

)−1
n−1∏

j=1

λ̃−1
p,j , λ̃p,j :=

j∑

ℓ=1

(
gℓ + γp(ℓ)

)

of (θk,i , θp, λp,j) , 1 ≤ i, j, k ≤ n , p ∈ Σn for notational simplicity. Note

that λ̃p,n = 0 from (2.2) for p ∈ Σn .
First, observe for ℓ = 2, . . . , n and i = 1, . . . , n ,

(7.9)
∑

{p:p(ℓ−1)=i}
λ̃p,ℓ−1θ̃p +

∑

{p:p(ℓ)=i}
(gℓ + γi)θ̃p =

∑

{p:p(ℓ)=i}
λ̃p,ℓθ̃p .

In fact, for every i, ℓ define another permutation p̃ from a (fixed) permu-
tation p ∈ {q ∈ Σn : q(ℓ − 1) = i} by

p̃(k) := p̃(k ;p) =





p(k) , k = 1, . . . , ℓ − 2, ℓ + 1, . . . , n ,
p(ℓ) , k = ℓ − 1 ,
i , k = ℓ ,
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which is obtained by exchanging (ℓ − 1) st and ℓ th elements of p ∈ {q ∈
Σn : q(ℓ−1) = i } , and also define M := (

∑
q∈Σn

∏n−1
j=1 λ̃q,j)

−1 here. Then

λ̃p,j = λ̃ep,j for j 6= ℓ − 1 and hence the left-hand of (7.9) is

∑

{p:p(ℓ−1)=i}
λ̃p,ℓ−1 · M

n−1∏

j=1

λ̃−1
p,j +

∑

{p:p(ℓ)=i}
(gℓ + γi)M

n−1∏

j=1

λ̃−1
p,j

=
∑

{ep: ep(ℓ)=i}
M

n−1∏

j 6=ℓ−1

λ̃−1
ep,j +

∑

{ep: ep(ℓ)=i}
(gℓ + γep(ℓ))M

n−1∏

j=1

λ̃−1
ep,j

=
∑

{ep: ep(ℓ)=i}
[λ̃ep,ℓ−1 + gℓ + γep(ℓ)] · M

n−1∏

j=1

λ̃−1
ep,j =

∑

{p:p(ℓ)=i}
λ̃p,ℓθ̃p ,

which is the right-hand of (7.9). Now applying (7.9) for ℓ = 2, . . . , n , we
obtain

n∑

k=1

(gk + γi)θ̃k,i = (g1 + γi)θ̃1,i + (g2 + γi)θ̃2,i +

n∑

k=3

(gk + γi)θ̃k,i

=
∑

{p:p(2)=i}
λ̃p,2θ̃p +

n∑

k=3

(gk + γi)θ̃k,i = · · · =
∑

{p:p(n)=i}
λ̃p,nθ̃p = 0 ,

for i = 1, . . . , n , because λ̃p,n = 0 for p ∈ Σn . Therefore, (4.10) is satisfied.
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Figure 1. Different values of
{θk,i} for (k, i) , when the pa-
rameters are specified for an
extreme case in Example 4.
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Figure 2. Expected capital
distribution curve for the pure
hybrid model in Example 8.
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Figure 3. Expected capital
distribution curves for the hy-
brid model in Example 9.
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distribution curves for the hy-
brid model in Example 10.
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