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Exact Simulation of Bessel Diffusions

Roman N. Makarov and Devin Glew

Abstract. We consider the exact path sampling of the squared Bessstgg@nd some other
continuous-time Markov processes, such as the CIR modastant elasticity of variance dif-
fusion model, and hypergeometric diffusions, which carealbbtained from a squared Bessel
process by using a change of variable, time and scale tnanafimn, and/or change of mea-
sure. All these diffusions are broadly used in mathematiocahce for modelling asset prices,
market indices, and interest rates. We show how the prdbadiktributions of a squared
Bessel bridge and a squared Bessel process with or withgotption at zero are reduced to
randomized gamma distributions. Moreover, for absorbtogtestic processes, we develop a
new bridge sampling technique based on conditioning on tighitting time at zero. Such an
approach allows us to simplify simulation schemes. New washare illustrated with pricing
path-dependent options.
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1. Introduction

In this paper we study the exact path simulation of solvablginuous-time stochastic
processes with transition probability density functioeglg obtainable in analytically
closed-form. Despite the popularity of various approxioraschemes for stochastic
differential equations (SDES), th@ecisepath sampling of continuous-time Markov
processes has certain advantages. Sampling from the exbetdility distribution al-
lows us to avoid introducing a bias and also to integrategaopath over an arbitrarily
long time horizon.

Our main motivation is the Monte Carlo pricing of path-degemnt financial deriva-
tives. The no-arbitrage price of a European-style optikedahe form of a multi-
dimensional integral along a path of an underlying asseepprocess. The usual
procedure to the evaluation of such an integral is to emgieyMonte Carlo method.
Pricing of an American-style option reduces to solving aadyit-programming prob-
lem. Therefore, to apply the Monte Carlo method we have toptaipaths from the
exact distribution of the asset price process (e.g.[s€g [11

More specifically, we study continuous-time Markov proessthat arise from a
squared Bessel (SQB) diffusion such as the squared radmest€dn-Uhlenbeck pro-
cess (known also as the Cox-Ross-Ingersoll model), thea@oislasticity of diffusion
model (with a power volatility function), and so-called leygeometric diffusions ob-
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tained from the squared Bessel process by means of a specibir@ation of a change
of measure and changes of variables (5eel[4, 5, 6]). All teeszhastic processes are
broadly used in mathematical finance. Although for theseeatsohany fundamental
quantities such as probability distributions of the firitihg time at a barrier, maxi-
mum and minimum values, and pricing formulas for barrier otback options can
be obtained in closed-form, the Monte-Carlo method remamisnportant tool for the
verification of analytical formulas and also for pricing Asiand American derivatives.

As is shown in[[12], the transition probability distributi® of a squared Bessel pro-
cess (without absorption at zero) and a squared Besselebralgte to the so-called
randomized gamma distributions, which are mixture gamraeatidutions with a ran-
dom rate parameter. The simulation of an SQB process witbrptisn at the origin
is less studied in the literature. As is shownl[ih [4], the nalined transition density
function of the SQB process is a gamma density which is ramkrby a discrete
probability distribution generated by a power series exjmnof the lower incomplete
gamma function. Therefore, to sample an increment of thdaanprocess we first
simulate the absorption event and then sample from the diaedalensity function in
case of surviving. Since we are able to derive the firstdgttime distribution of the
SQB process with absorption at zero, it is possible to impleira completely different
approach. First, we sample the first-hitting timg, at the origin. After that, we sam-
ple the Bessel bridge with its value at timgtied at zero. We show that the simplest
realization of such an approach allows us to sample a patiled®QB process by only
employing the gamma and Poisson probability distributions

The paper is organized as follows. Section 2 gives some besidts about the
squared Bessel process and the squared Bessel bridgeonSegirovides different
sampling algorithms. In Section 4, we introduce other diffn processes arising from
the SQB process and provide simulation algorithms for th®ettion 5 contains some
numerical results.

2. The Squared Bessel Process and Bessel Bridge
2.1. The Squared Bessel Process

Let us consider ao-dimensional squared Bessel (SQB) prodess);>o obeying the
stochastic differential equation (SDE)

dX; = Xodt + v/ X dWy, Xy € 7 = (0,00), (2.1)
with constant parametepdg andr > 0. The scale and speed densities are respectively
s(r) =z Landm(z) = %x“, wherey = % —1is called the index of the process.

The left-hand boundary = 0 is entrance if. > O, regular if—1 < p < 0, or exit if
u < —1. The right-hand boundany = oo is natural. For the regular diffusion ¢h
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the transition probability density function (PDF) is giviey

w:(y)%ez(m)/VZt (4”3’). (2.2)

T

t: = ~
p( 1xay) dy yzt/2 1 Vzt

wherey’= p if [ = Ois entrance or a regular reflecting boundary, ard [u| if [ =0
is exit or a regular killing boundary.
For simplicity of presentation, we assume here that 2. A simple scale transfor-

/ I / 2 11 " ! 2
mation x"0% = (%) X090 A=\ (%) , allows us to modifyv without
0 0
changingu (i.e. i/ = u).

2.2. The First Hitting Time Distribution

In the case wheh= 0 is an absorbing boundary « 0, /i = |u|), the density in[(2]2)
does not satisfy probability conservationnThe first hitting time (FHT)7o, at zero
for the SQB procesEX;) starting atrg is defined byrp = inf{t : X; =0] Xp =
xo}. The PDRg(xo; 7) for the FHT distribution is given by

q(xo;7) = —837_ /000 p(7; o, x)dz. (2.3)

By using that the transition PDF satisfies Kolmogorov equations, we simplify the
expression in(2]3) to obtain

1 0 (p(r;xo,x) 2=0+
eon) = i (M) | @9
As a result, we derive a closed-form expression for the FHF:PD
. . 1 o |l To
alwoiT) = 7 (|p]) (27) eXp( 27)' (2.5)

A simple change of variable reduces the PDFnl(2.5) to thtt@fjamma distribution
G(a, 8) with shape parameter = |¢| and rate parametgr = 1. Therefore, the FHT,

70, Can be sampled by using the formua= 5%, whereY ~ G(|u/, 1).

2.3. The Squared Bessel Bridge

Let0 < t1 < t < tp. Consider a stochastic bridge generated by a continuowes-ti
Markov process X;);>o € Z with X;, and.X,, tied atz, andzy, respectively. The
bridge PDFb defined byb(t1, to, t; z1, z2, x)dr = P{X; € dz|xy, = x1, Xy, = x2}



4 Roman N. Makarov and Devin Glew

can be expressed in terms of the transition RO (X,) as follows:

p(t — tag, 2)pte — tw, x2) (2.6)
p(t2 — t1; x1,22)

b(ty, t2, t; 21,22, ) =

Clearly, the bridge PDFin (2.8) integrates to unity thanks to the Chapman-Kolmogor
equationp(tz — t1; x1,22) = [;p(t — t1; 21, 2)p(t2 — t; 2, 22)dz. Notice that for the
bridge density of a Gaussian process may also be derived$edlform by using a
conditional multivariate normal distribution.

The PDF of the squared Bessel bridgé )o<:<7 conditional onXo = z and X =
z is given by

x4y ozt
. I - 5 Li(Vey /) (Vyz /(T — 1))
b(0,T,t;z,2,y) = 2T —0)° 2t 2 (Va2 T) , (2.7)
x (T—t)

wherer = 257U = 2L andz = 2+, 0< t < T.

Suppose thak’; is sampled conditionalfy on the FHT, = 7o. If t > 79, then set
X; = 0. Otherwise, it < 79, we use the Bessel bridge wity and Xr—,, tied atx
andz = 0, respectively. In the limiting case as— 0+ in (Z.4), we obtain

T /2 T+ i
b(0, T, t; 2,0,y) = =T 0 (%:) exp(— 2tg> I (Vty ). (8

Notice that the PDF i (218) has the same form as thatin (2.2).

3. Simulation Algorithms

In this section we present several algorithms for the peepath generation of the
SQB proces$X;). That is, for every time partition & tg < t1 < -+ < tny, N >

1, we sample a path-skeletdd = (Xo, X1,...,Xn), X, = X, from the exact
multivariate probability distribution. The algorithmsgmosed below are all based on
sampling from a randomized gamma distribution of the fort G Y, 3), wherea +

Y > 0 andg > 0 are scale and rate parameters, respectivelyyaigda nonnegative
integer-valued random variable. As is mentioned above,ssarae thar = 2, so all
algorithms presented below deal with this case. In the g¢sduation whens #£ 2,
we proceed as follows. For givew, v, Xo, sample a path of the SQB process with
1 = 2\o/v?—1 that starts a@%)z Xy by using one of algorithms in Figurek[1-4. After

that, rescale the path obtained by multiplying its value@))/z.



Exact Simulation of Bessel Diffusions 5

3.1. Randomized Gamma Distributions

Suppose that a discrete random varidblbas discrete probabilitie®{Y = n} = p,,,
n=0,1,2,.... The PDFf of the mixture probability distribution Gv+ Y, 3) admits

a+n

the form of a series expansiofi(z) = > > pn%x"‘*”*e*m.

Let us consider three choices for the randomiZaf the gamma distribution G+
Y, 3). The resulting distributions are called the randomizedmardistribution of the
first, second, and third types, respectively.

LetY: ~ P()) be a Poisson random variable with mean- 0. The randomized

gamma distribution of thérst typeis G(Y1 + 60+ 1,3), 6 > —1, 3 > 0, with the PDF

6/2
A =0 (5) 2 (AT, 50 @)

A discrete random variabl&, is said to have a Bessel probability distribution
Beg#, b) with parameterg > —1 andb > O if

]P{Yz _ n} _ ; (b/2)2n+9

A OETSCErt n=012,.... (3.2)

This distribution is related to many other distribution$exe the Bessel functiohis
involved in the density, including the squared Bessel leidiptribution (se€ [12] for
details). The randomized gamma distribution of #ezond types a mixture distri-
bution GY1 +2Y> + 60+ 1,5), 6 > 0,0 > —1, whereY, ~ P((a + b)/(45)) and

Y, ~ Beg#,vab/(23)) are independent Poisson and Bessel variates, respectively
For any positive numbers, a, b, andd > —1, the PDF is

_ p o (atb)/48—Byp (/=
fz(y)—le( 7t/ 8] Ip(vay)lp(\/by), y>0. (3.3)

A discrete random variat¥; is said to follow anincomplete Gammarobability

distribution, which we simply denote b¥ (0, A) with parameters > 0 andf > O, if
Ao (6)

FTn+6+1)y(6,\)’

P{Yz=n}=e¢" n=0,12,.... (3.4)
Notice that if6 = 0,1, 2,..., then the distribution ol3 is a truncated and shifted
Poisson distribution thanks to the property

m—1

ﬁ)ez, m:0,172,....
m — '

v (m, a)
r(m)

—1—<1—|—x+...+

We call a mixture Gamma distribution(® + 1, 3), Y3 ~ I (6, ), the randomized
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input Xo>0,0=tg <ty < - <ty,u>-1
for n from 1 toN do

Y, ~P _ Xna
2(tn — tn—l)

1
X, ~Gl(Y, 1, —
T 2(tn—tn_1)>
end for

return (Xo, X1,...,XnN)

Figure 1. The sequential sampling method for modeling an SQB procéhsut absorption.

gamma distribution of théhird type The PDF is

—6/2
R =000 (3) v WA, g0 39

3.2. Simulation of Processes without Absorption

The randomized distribution of the first type is closely cected with the transition
distribution of a squared Bessel proc€3s ) without absorption (i.ex > 0, orpu €
(—1,0) andz = 0 is a reflecting boundary). The conditional distribution’gf ¢ > O,
given Xo = xo > 0, is then a randomized gamma distribution of the first typee T
transition PDF in[(Z12) withy = 2 has the form of the PDF; in (3.1) with6 = p,

B =1/2t, and\ = xo/2t. Therefore, we have the following sampling scheme:

X, ~G(u+Y +1,1/2t), whereY ~ P(zo/2t), t > 0. (3.6)

The sampling algorithm is presented in Figule 1.

A path of the standard squared Bessel bridge can be genesaterthe second type
randomized gamma distribution. The bridge PDHIn](2.7) ceduo that in[(313) by
settinga = z/t>, b = z/(T — t)?, 3 = % and@ = u. Then, X, conditional
on Xo =z andXr = z, 0 < t < T, can be obtained by generating two independent

random variabley” ~ P(% [%x + ﬁzD andZ ~ Bes(u, Vf) and then

XtNG(Y+ZZ+u+l,ﬁ).

3.3. Sequential Simulation of Processes with Absorption

Assume that a stochastic procdss;);>o € R, admits absorption at the origin.
For example, for an SQB process we have fhat 0 andz = 0 is a killing boundary
or exit. Clearly, the transition PDF given by [2.2) withy” = |u|, p < 0, does not
integrate to one. Let us define the probabilRy of surviving before timeg and the



Exact Simulation of Bessel Diffusions 7

input Xo>0,0=tg<t1 < - <tny,u<0
To «— 00
for n from 1toN do
if 7o = oo then
Xn—l
o= (I g2 ) /)
U, ~ U(0,1)
if U, < pqthenty < ¢,
end if
if t,, < 7o then
Xn—l
¥ (Il )
1

X, ~G(V,+1,——
( T )

else
X, <0
end if
end for
return (Xo, X1,...,Xy) andr

Figure 2. The sequential sampling method for an SQB process with pbisorat the origin.

probability P, of absorption before timefor the proces$.X,) started atXy = x:
Py(x;t) = / p(t;z,y)dy > 0and P,(z;t) = 1 — Ps(x;t) > 0.
0

Observe that the actual transition probability distribatis then a mixture of continu-
ous and discrete probability distributions with the follogy generalized PDF:

p(t; Xo, Xt)

p(Xo — Xt) = PS(XO; t) . < Ps(Xo; t)

) + Pu(Xot) - 6(Xy),
whered denotes a delta function.

By using [2.5), we obtain the following probabilities of giving and absorption of
the SQB process before time

Pyt = Piro > 1 = LU 5) angp o) —py < 1y = LUL5)

F(lul) C(ul)

where~v(a,z) andl (a,z) are the lower and upper incomplete gamma functions, re-
spectively. The normalized transition PDF of the SQB precasnditioned on the
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input Xo>0,0=tg<t1 < - <ty,u<0
Xo
Y ~G 1), — —

for n from 1 toN do
if t,, < 10 then

Yn ~P anl(TO - tn) )
2(7—0 - tnfl)(tn - tnfl)
T0 — tnfl
X, ~G (Y, +|ul+1,
< M e =t = m))
else
X, —0
end if
end for

return (Xo, X1,...,Xxn) andm

Figure 3. The sequential sampling method conditional on the Fid;Tior modeling an SQB
process with absorption at the origin.

survival of the process before tinnés

p(tie,y) T (lul) (2% e roo/2 o mm

Tl (2) w(EE). e
Py(x;t) v (lul, %) \=o 2t t

As is seen, the function in the right-hand side [of §3.7) redum the form of[(315)

with 6 = |u|, A = x/2t, and = 1/2t. Thus, the above normalized transition PDF

follows the randomized gamma distribution of the third ki@dy” + 1,1/2¢), where

Y ~ IT(Jul,z/2t). As a result, we obtain the sampling algorithm given in FedBr

The algorithm returns a sample pahand an approximationyp € {t1,...,tx, 00},

of the FHT, 7.

3.4. Bridge Simulation of Processes with Absorption

Consider again the SQB procesk;) with absorption at the origin. Since the first
hitting time PDFq(xo; 7) is available, we may first sample the FH®D, and then
simulate a path ofX;);>o conditional onry by using the bridge distribution. As is
seen from[(Z18), the PDF of;, 0 < ¢ < 7, conditional onXy = z and X, = 0
is reduced to the PDF; in (3.1) of the randomized gamma distribution of the first
type withd = |u|, A = I(zTgo_tt), andf = 5;7. As aresult, we obtain a sequential
sampling algorithm conditional on the FHT (see Fidure 3).

At last, in Figure %, we provide the full bridge sampling aitjom, where a path
X = (X0, X1,...,Xn), N = 2% k > 1, is sampled at the time points in the following
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order of generation:

IN,tN/2:tN/as tanyas TNyss tanys tsnyss trvys, - - s t2, te, - o EN—2, T, 83, .. TN -1

Here, we use that the bridge PDF [n (2.7) with="|u| reduces to that if(3.3) by
settinga = z/t?, b= 2/(T —t)?, 3 = % andf = |u|. Such a bridge sampling
algorithm is very useful for the quasi-Monte Carlo pricirfgpath-dependent options.

4. Generating Paths of the CIR, CEV, and Hypergeometric Diftisions
4.1. The CIR Process

Consider the Cox-Ingerssol-Ross (CIR) diffusion prod@s$:>o € Z = R, solving
the SDE

dY; = (Ao — MYa)dt + v\/YdWy (4.1)
where constant parameteXs, A1, andv > 0. The respective scale and speed den-
sities ares(r) = z7# "1 andm(z) = %x“e*m, wherex = % The boundary
classification of the CIR process is equivalent that of th& p@cess. For the regular
diffusion onZ, the transition PDF is

yex\lt

X

/2
) e—Ct(yeA1t+fE)Iﬁ (th /Zl'ye)‘lt) , (42)

—

wherec; = r/(eM! — 1) and,7’is defined as for the SQB process in Secfibn 2.
The CIR process is reduced to an SQB process with the same@ns)o andy
by means of scale and time transformatidn,— e‘*ltXSM(t), where the monotonic

time-transformation functior,, is defined by

t if A1 =0,
sy (1) = I (4.3)
' { Sl A £ 0,

The transition PDF for the CIR process relates to that of @B $rocess as follows:
Pt y) = PP (s, (1), My).

If a reflecting boundary condition is imposedaat= 0, or the origin is entrance,
then the CIR diffusion is a conservative stochastic prac@ée corresponding tran-
sition density is given by[(412) withh = p > —1. The transition distribution of
the conservative CIR model reduces to the randomized garstdodtion of the first
type. The respective SQB process admits no absorption @azrer can be simulated
by the sequential method in Figure 1.

Consider the case whese= 0 is a killing boundary or exit, so the transition PDF
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input Xo>0,0=tg<t1<---<ty,N=2F <0
X
Y ~G(lul 1), 10— 5o

for [ from 1 tok do
for mfrom1to 2-1do
n = (2m — 1)2k!
if ¢,, > 1o then
X, <0
else
ng—n—2r1  ny,e—n4 2kt
if t,, > o then
Yn -~ P< an(TO - tn) >
2(0 — tnl)(tn - tnl)

70— tn
XnNG<Yn+|u|+1, L >
(10— tn)(tn — tnl)

else
X"l(tnz — tn) an(tn - tnl)

. 2Y
if ty < 7othen
Xo(10 — tn) 70
Yy ~P| ———= |, Xy~G|Y, 1L, —
N ( 270t N N + |'u| + tN(To—tN)

else

XN —0
end if

Y, ~P
(2(tn2 — ) (tn — tny)  2(tny — tny) (Eny —

X, —tn
7, ~ BeS<|,u|, 170 — tn)
2(10 — tny) (tn — tny)
tn, —t
Xn~G<Yn+ZZn+u+17 ng M
. Z(tn - tnl)(tnz - tn)
end if
end if
end for
end for

return (Xo, X1,...,Xy) andm

)
)

Figure 4. The full bridge sampling method conditional on the FH,for modeling an SQB

process with absorption at the origin.
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is given by [4.2) withy™= ||, whereu < 0. The FHT,7, at zero for the CIR model
is given by

T((]CIR) =inf{t : Y; =0} =inf{t : Xoy (1) = 0} L s;ll(TéSQB)),

where we defines;ll(r) = oo if 7 > s),(00). The corresponding PDF is given by
q(OIR)(:ro; T) = eAqu(SQB)(xo; sx,(7)). We have thaP{TéOIR) < oo} = IP’{TC()SQB) <
$3,(00)}.

Clearly, the sampling of a CIR path at timgs: = 0,1,..., N, reduces to the
sampling of an SQB trajectory. The method for sampling a paith the FHT 7o, is
given as follows.

Step 1. Settimes; = s),(t;), i =0,1,...,N.

Step 2. Obtain a sample patio, X1, ..., Xy) of the SQB process at times, i =
0,1,..., N, and the FHT,T(ESQB), (or its approximationry) by using one of
the algorithms in Figurdd [-4.

Step 3. Set; =e M X;,i=0,1,...,N.

_ SQB . SQB
Step 4. Set """ — ’ 1(Tc(’ ¢ )) . Tc(’ < (o) :
0 00 otherwise

Step 5. ReturtfYp, Vi, ..., Yy) andry"" 7.

4.2. The CEV Diffusion Model

The constant elasticity of variance (CEV) diffusion pracgB; }+>0 obeys the stocha-
stic differential equatiod F; = rFydt + 6Ff*1th, t > 0, Fyp > 0, wherer, d, 5 are
real parameters. We assume here thatO andg < O.

The boundaryF' = 0 of the state spac®, co) is regular if 3 < —0.5 or exit if
—0.5 < 8 < 0. Here we consider the case where the endpbint 0 is a killing
boundary. The transition PDpy(t; Fo, F'), Fo, F' > 0, ¢t > 0, for the CEV process

(Ft(o)) with zero drift (- = 0) takes the form

1
F28-3 2 F28 4 20 FBE5
P ErF)=_ "0 - -0 7 — 0 )\ (44
polt; Fo, F) exFJ( 20232t a0\ 0202 (4.4)

The densityg(t; Fo, F') does not integrate (with respectf) to unity fort > 0, since
F = 0is an absorbing point.

A drifted CEV processFt(r) with » # 0 is obtained fromFt(O) by means of scale

and time transformationFt(") = e"tFS(S) () Wheres,, is given by [438) with\; =
1
2r(3. The resulting transition density, with » # 0 is given byp,(t; Fo, F) =

B_Ttpo(S)\l(t); Fo,e " F).
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The Monte Carlo simulation of the CEV diffusion is based oe taduction of it
to the CIR or SQB process by using the mapp¥{d”) = %;f. There are two dual
approaches:
(i) First, eliminate the drift and then, by using the mappiigreduce the driftless
CEV process to an SQB process definedXgy= X(Ft(m), t > 0, with \g =
2+ 1/p andv = 2. Sample a path of the SQB process and then obtain a path of
the driftless CEV process by applying the mappiig) = (623%x)~1/2°. After
that, restore the drift using the time and scale transfdonat

(ii) By using the mapping, reduce the drifted CEV process to a CIR process defined
by Y; = X(Ft(’”)), with \g = 2+ 1/3, \1 = 2r3, andv = 2. The resulting
CIR process can be obtained from an SQB process by meanseohtichscale
transformation. Sample a path of the CIR process and thexinoatpath of the
CEV model by applying the inverse mappiRg

The FHT, 7o, at zero for the CEV diffusion model is given by

) Zint{e 0 =0y LA L gL (759D,
Notice that if a reflecting boundary condition is imposed’at 0 whens < —0.5
(or 5 > 0 and hencd” = 0 is entrance), then the CEV diffusion is a conservative
stochastic process. The corresponding transition defisityhe case withg < —0.5)

is given by [4.4) with the replacemeﬁt‘l — 1T i By analogy with the CIR model
without absorption at zero, the transmon dlstrlbutlorthré conservative CEV model

reduces to the randomized gamma distribution of the firs,tiience the algorithm in
Figured is applied.

4.3. Diffusion Canonical Transformation

Several families of analytically solvable diffusions canderived from known under-
lying diffusion processes. We refer to this constructiortrees“diffusion canonical
transformation”methodology (seé [4] 5] 6] for details).

Let us start with a one-dimensional time-homogeneous aegliffusion(X;):>o €
T = (l,r), —oo <1 < r < oo, defined by its infinitesimal generatofg f)(z) =
102(2) f"(x) + A(x) f'(z). The functions\ andv denote, respectively, the (infinitesi-
mal) drift and diffusion coefficients of the process. Cosmsitivo linearly independent
fundamental solutions and ¢ of the differential equation(G p)(z) = s¢(z),
s € C, z € Z, such that for real values = p > 0 the solutionSp;* ande, are
respectively increasing and decreasing functions (Hee, e.g.[[3]).

Let us introduce another diffusic(d(;m)tzo € 7 with generator

(6% D) = 32" @)+ (Mo + 020) 2
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where astrictly positivefunctionu,(x), p > 0, is alinear combination qﬁf: up(x) =

qae) (z) + g2, (x), qu2 > 0, g1+ g2 > 0. A transition densit){o()?) for the X (»)-
diffusion is then related to a transition density for the X -diffusion as follows:

(p)

P (20, 2) = et o)

px(t; zo,x), v,x0 €L, t > 0. (4.6)
up(0)

Now we consider aif-diffusion { F} = F(Xt(p>),t > 0} defined by strictly mono-

tonic real-valued mapping’ = F(x) with F’,F” continuous orZ and having in-
finitesimal generatotGeh)(F) = 102(F)W'(F) + rFI'(F), whereF € Ip =
(min{F(l+),F(r—)},max{F(l+),F(r—)}), andr is a real constant so that+ r > 0.

The transition PDRpr for an F-diffusion (F}):>o is related to the transition PDF
for the underlyingX (or X (*)) diffusion as follows:

=

P

3
S

D XX @)

HereX = F~1is the inverse mag: admits the general quotient form:

pr(t; Fo, F) =

2
!
e

F(:L') _ Cl@:)zrr(x) + CZ(Pp_er(x) — 'Up+1'(x) (48)

qap) (r) + @, (2) up()

wherec; andc; are real constants. For a full classification of strictly mimmic maps
of the form [4.8) se€ [6]. The diffusion coefficient functiisn

_ v(@)|W(z)|
o(F)= u%(:r)

z=X(F), FeTf, (4.9)

where we define the Wronskidi (z) = u,(z)v),,,.(z) — uj,(2)vpr () .
In the next two subsections we present two examples of hgpergtric diffusions.
The concluding subsections gives a general simulatiorrighgo.

4.4. The BesseK Diffusions

Here we specifically consider a 4-parameter BeBs&mily arising from an under-
lying (Ao-dimensional) squared Bessel process with a positive indeXe use the
generating function,(z) = ¢, (z) = :r*“/zKu (2\/2,095/1/) and the mapping:

. I, (2\/2(p+r)x/u> 210
(Z’)—C KM(Z\/ZpTx/V) ’ ( " )
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wherec, p, v, andu are independently adjustable positive parametersyand-p is a
real constant. The functionsand K denote the modified Bessel functions of the first
and second kind, respectively. (sek [1] for definitions amgerties).

The functionF(z) (and the respective inversg F')) mapsz € (0,00) andF' €
(0, 00) into one another. The transformatign (4.10) hence leadfatimély of processes
(Fy) € (0, 00) with the diffusion coefficient function

o(F(z)) = cV2 (fl( ]i:r)j)2%“< M)erl z(%@v (4.11)

Lemma 4.1 (Campolieti and Makarov[ [4, 6]'he processes of the Besgefamily
obeying the SDEIF; = rF,dt + o(F;)dW,; with (410)-{({4.11) have the following
boundary classification: the boundady = 0 is exit if x > 1 or is a regular killing
boundary if0 < p < 1; the boundaryl’ = oo is non-attracting natural. Moreover,
the discounted process "' F;):>o is a martingale. The transition PDB is given

by (4.7) withv(z) = v+/z, ando andpx respectively specified by (4111) and {2.2).

The density,q(Fo; 7), for the FHT at the origin for a Bess&l-process started at
Fy > Ois readily derived by using equatidn (2.4), giving the gatieed inverse Gaus-
sian distribution:

2
(21‘0/101/ )M/ ;,Lfleprle‘o/VzT

o) = 55 L (2V2po)v) |

, T>0, 2o = X(Fo). (4.12)

4.5. The Confluentt/ Diffusions

The confluent hypergeometric family éf-diffusions arises from an underlying CIR
process withuy > 0. Here we specialize to theonflueniZ/ family with generating
functionu,(z) = ¢, (z) = U(v, u + 1, k) and mapping

M+ £, p+ 1, k)
F(z) =c CYESOR (4.13)

wherev = £, = 29 — 1,5 = 2%, andc are arbitrary positive constants, and-

—p. The confluent hypergeometrlc functiond andi{ are two linearly independent
solutions to Kummer’s differential equation (séé [1] fofid#ions and properties).

The functionF(z) mapsz € (0,00) onto ' € (0,00) and is monotonically in-
creasing. This transformation leads to a family of proceésg) € (0, co) with the
diffusion coefficient function

oM (L pt ke U (v+Lpt+2,ks) (B M (B4 ub2 ke
J(F(:L')) = C"’CJV\/E ( ( L L{Z(v,uv?l,nw) + A1(,LL-5-1)<Z/1(U ptl k) >>(4 14)
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Lemma 4.2(Campolieti and MakaroV, [4] 6] he processes of the confluéfifamily
solving the SDEF; = rFydt + o (F;)dW; with (4.13)-{4.14) have the same boundary
classification as that for the Besdélin Lemma4.11. Moreover, the discounted process
(e7" F})i>0 is a martingale. The transition PDp is given by [4l7) with/(z) =
vy/x, ando andpx respectively specified by (4114) ahd {4.2).

The density for the first-hitting time at the origig(,Fo; ), for a confluentf process
started atFp > 0 is

e T () (T (r)" ML+ T(r))" "

q(Fo;7) = |T'(7)| U(v, i+ 1, kao)l (v)

, 7>0, (4.15)

7)\17’
wherezg = X(Fp) and we use the time chan@gr) = 67_&7. The latter func-

tion in (4.18) is known as a Tricomi exponential PDF (see @j)en by p(7) =

e*ZTTafl<l+ T)bfafl
MNa)U(a,b,z)

unity thanks to the integral representatioriofsee[1]).

, 7 > 0,wherea = v, b =p+ 1, z = kxo,. Itintegrates to

4.6. Simulation of I'-Diffusions

We generalize the sampling algorithms for an SQB processepted in Figurg]l3 and
Figure[4. Within that approach a path is sampled conditlprai the FHT at zero.
The BesseK and confluent{ diffusion models are both absorbing at zero and have
the first-hitting time distribution in analytically closédrm. For a sampling algorithm
we only need to obtain the distribution of the respectiveldpi process. In doing,
SO we use one important observation that the distributioanaf’-diffusion bridge is
reduced to the distribution of a bridge of the respectiveeulyihg diffusion (e.g. the
Bessel and CIR bridges).

By applying the analogue of formula(2.7) for &rdiffusion with PDFpy(t; Fo, F)
in place of the PDB(¢; z, v), and using the representatién (4.7), we have the following
expression for the bridge PDF of dntdiffusion with F;, and £}, tied at£7 and £»
respectively:

v(X(F))
F)

= )) bx<tl,t2,t;X(Fl),X<F2)aX(F))

bp(ty, ta, t; F1, Fo, F) = b\ (1, t2, t; X(F1), X(F2), X(F))  (4.16)

wherebx andbgf) denote the bridge PDFs of the diffusiofis;) and(Xt(”)), respec-
tively. Here, after pluggind (417) in the formula of the lgadPDFb -, we first cancel
Jacobians’ and then cancel Doob’s factors of the foaﬂptzp—gi’;. If follows from

(4.18) that ant"-diffusion bridge is obtained by applying the mapping fimetF to
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the bridge process for the underlying diffusioN;) with X, and X, tied atX(F})
andX(F») respectively. For example, in the particular case of thesBis diffusion
when the underlying proce$s(;) is a squared Bessel process, fidridge is just a
nonlinear transformation of a standard Bessel bridge.

Our primary goal is to sample a path skeletdw, [1,. .., Fn), F; = F;, of an
F-diffusion at timest;, i = 0,1,...,N, 0=ty < t1 < --- < ty = T, for a given
initial condition F;_g = Fp. The simulation scheme based on the bridge distribution
is as follows:

Step 1. Sample the FHTy, from the GIG or exponential Tricomi distribution for the
BesselK or Confluent/ model, respectively.

Step 2. Obtain a sample patio, X1, ..., Xy ) of the respective underlying process
(the SQB or CIR diffusion) conditional o = X(Fp) and X, = 0.

Step 3. Apply the respective mapping functibrio obtain a sample path of the-
diffusion model:F; = F(X;),i=1,2,...,N.

The main result is that this simulation scheme allows us mwdaa direct sampling
from complicated transition probability distributions.

Let us present an alternative approach froim [5] to computiaghematical expec-
tations of path functionals of the forj} = E[f(F, F2, ..., Fn)|Fo| for F-diffusion.
By using a path integral approach, the expected value of ayetth functional can be
represented as a multivariate integral:

N
Q= /RN f(F(z1),... F(ZEN))e—PTZl;(éI:)) L[lpx(tk — byt T, T)dTy - da

The integral above may be estimated by the Monte Carlo metfide: underlying
diffusion is simulated by sampling from the exact transitgrobabilty distribution.
The resulting unbiased estimatpof the path integral) takes the form:

pruP(XN)

§=f(F(X1),...F(Xn))e w0, (Xo)

where the path Xy, X1,...,Xun) is sampled by using one of the algorithms from
Section 8. Notice that we cannot use the Euler method (or #mr @pproximation
method, which does not guarantee the positiveness of threxipmation process) since
the estimatok is infinite if X = 0. Using large and small argument asymptotics of
the Bessel functioi and Kummer functiori/, we obtain that the variance gfis
finite if < 1. Notice that the use of an exact simulation method allows Ui this
restriction.
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5. Simulation Study

5.1. Simulation of Randomizers

The three discrete probability distributions used in thastaiction of randomized
gamma distributions are all log-concave and unimodal amied below.

Lemma 5.1.LetY be a Poisson, Bessel or incomplete gamma random variabke. Th
distribution of Y is log-concave. That is, the ratB{Y = n + 1}/P{Y = n}is
decreasing imn. Furthermore, the distribution o is unimodal and has a unique
mode or two modes at consecutive integers. Moreover, one iiscaways located

atm = || for the Poisson distribution, at. = {(\/bz + 62 — 9)/2J for the Bessel
distribution and atm = max(0, | A — 6|) for the incomplete gamma distribution.

Proof. See [8] 4] for the proof for the Bessel and incomplete gamrasilittions,
respectively. |

To generate a Bessel or incomplete gamma random variateawese a generic
acceptance-rejection (A-R) method from [7] stated belowhatit proof.

Lemma 5.2 (Devroye, [7]).For any discrete log-concave distributions with mode at
m, we have, for alh > 0: p,, < p,,, min {1, et=Pmin=mi}

As an alternative sampling method we use the inversion ndebyochop-down
search (C-D-S) from the mode. Such a sampling method for a discrete distribu-
tion with probabilities{p;, }1>0 is based on the numerical inversion of the CBby
the formulaF ~1(u) = argmin{n > 0| u — Y7 _opx < O}, u € [0, 1].

Itis well known that the computational cost of such a methasithe lowest possible
value if and only if the vector of discrete probabilities rsaaged in increasing order.
Instead of the preliminary computation of probabilitiebdaed by sorting of them, we
start the search algorithm at the madeand then successively calculate probabilities
of values to the left and to the right of the mode choosing #rgdst one. Notice
that probabilityp,, need only be computed once, and that other probabilitiedean
obtained by using simple recurrences.

We now present some numerical results comparing the twoadstbf simulation
of P(\), Besf,b), and I'(#, A) random variables. For each of the two methods, one
million values are sampled. For simulation of each of thes&an random variables,
the parameten is allowed to vary as a continuous uniform random variabler F
the two parameter Bessel and incomplete gamma distrilsjtibe first parameter is
allowed to vary as a continuous uniform random variable evtiie second parameter
is held constant. Then the procedure is repeated by allothimgecond parameter to
vary while the first one is held constant. Results of thess ta® given in Tablgl 1.

Table 1 shows that the chop-down search method from the nsodignificantly
faster than the acceptance-rejection technique for géngnandom variables in ev-
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Table 1. Comparison of the acceptance-rejection and chop-dowrtlseaethods for
the Poisson, Bessel, and incomplete gamma distributions.

Distribution A-R Method C-D-S Method
Time No. oflter.  Time No. of Iter.
P()) A ~ U(0,1000 189.9 2.6 35.2 34.2
Beq#,b) 6~ U(0,1000,b =10 220.6 1.6 100.4 1.1
Beq#,b) 6 =10,b~U(0,1000 414.1 4.0 103.3 17.3
Ir(6,\) 6~ U(0,100, A =10 336.6 3.7 51.1 1.8
Ir(@,\) 6=10\~U(0,1000 363.7 3.9 51.4 10.8

Note Time in seconds and average number of iterations for thelaiion of 16 random variables
from the Poisson, Bessel, and incomplete gamma distribsitising the acceptance-rejection (A-R) and
chop-down search (C-D-S) methods.

ery case and is a much better choice for simulating randomhlas when it can be
implemented.

5.2. Comparison of Sampling Schemes for the SQB Process

In this section we aim to compare the following three sangpichemes.

1) Sequential sampling conditional on the FHJ with the use of the randomized
gamma distribution of the first kind.

2) Bridge sampling conditional on the FHF with the use of the randomized gamma
distribution of the second kind.

3) Unconditional sequential sampling with the use of thedoemized gamma distri-
bution of the third kind.

We start by sampling multiple paths of the SQB process ovésaetized partition of
atime intervall0,7],0 = o < t1 < --- < ty = T, using one of the three methods
just mentioned. Then we average these sample paths in ordpptoximate the mean
of the SQB process. To study the sampling algorithms, we esenpur sample means
to the true mean of the SQB process as well as the time reqgtarstnulate a set
number of sample paths of the process.

For calculation of the mean of the SQB process, we use theufarm

mtl = R (0 3) i () ow(3),

which is valid foru < 0 andv = 2. The expression is derived by considering the mo-
ment generating function of the SQB process at tiraad using the small asymptotics
of the Bessel function.

To this end, we look at the largest amount by which the sam@anyy,, dif-
fers from the true meany, = E[X,], (the maximum absolute error) at timgs: =
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0,1,...,N, given by OnlwaxN lpee, — 1, We will also examine the largest sample
i

Uyl

standard deviation of the process, given_ba/1 rpvai/\/ﬁ wheren is the sample
1=0,1,...,

size. After simulating one million sample paths for eachhaf three sample schemes
and averaging them, we obtain the data shown in Table 2. Fnsndéata, we can see

Table 2. Comparison of sampling schemes for the SQB process.

Scheme 1 Scheme 2 Scheme 3
I Time MAE MST | Time MAE MST | Time MAE MST
-0.25| 1741 .00244 .00271 5044 .00297 .00270 2501 .00534 .00270
-0.5 | 1600 .00111 .00252 4462 .00191 .00251 2280 .00158 .00251
-1.5 | 953. .00193 .00144 2614 .00240 .00145 1406 .00149 .00145

Note Time in seconds, maximum absolute error (MAE), and the marn standard deviation (MST)
taken from the average of i@ample paths of the SQB process using sampling schemes ad3 a
respectively for varying values ¢f. For all three choices qgf, we setXo = 1, T = 1,v = 2, and the

partition of [0, 7] tobe 0 %, 3, ..., 1.

that sampling scheme 1 is the fastest one. Scheme 2 is mughardltan schemes 1
and 3 since it involves sampling from the Bessel distributio

5.3. Sampling from the GIG and Tricomi Exponential Distributions

A common approach to sampling from a nonstandard probaldiktribution is to use
an acceptance-rejection method. This approach is employ@pand [S] for sampling
from the GIG and Tricomi exponential distributions, regpesy. If the parameters of
a probability distribution remain constant, then a mucheiasampling technique is the
one that is based on the numerical inversion of a distributioction. To sample from
a continuous CDH" by using the inverse transform method, we generate a uniform
distributed on(0, 1) random variabld/ and then seX = F~1(U), whereF~! the
inverse ofF".

In cases where the inverse Bfcan not be expressed in closed-form, the inverse
transform relies on numerical approximation. A root-firgimethod such as Newton’s
method or the bisection method can be applied to solve equalX) = U, U €
(0,1). Afaster approach is to compute the CDF on a fine mesh and goxdmate
the inverse of the CDF by some simpler functions. The simiptesthod is to use a
piece-wise linear interpolation. 10 [10] a fast and effi¢ieariate generation method
is proposed. In that method, the inverse CPF! is approximated by the Hermite
interpolation functions. For a given partitidn= zg < z1 < --- < x, = r of the
support(l,r) of a CDFF, the distribution function is computed by either integngti
the density function on each subinteryal,_1, z), or by employing an ODE solver,
since the CDH solves a simple ODE"(z) = f(z), z € (I,r), F(l) = 0, wheref
is the respective PDF.
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5.4. Path-Dependent Options

This section reviews some discretely-monitored path-déeet options that will be
used for pricing options in the following subsection. Fime assume that we have
sampled a path of a asset price procéBg over a discrete time partitioril' =
{ti}i=01....n, Of the time interval0, 7], T > 0. Let the values of procegs}) at
time pointst = ¢; be denoted by}, foralli =0,1,..., N.

The payoff function of an Asian-style option depends on ttithmetic average of
the underlying asset valued:y = % Zi]\i , F;. For anaverage price call optionthe
payoff to the option holder at tim& is (Ay — K). whereK is the strike price and
(r)+ = max(z,0). Theaverage price put optiofs defined similarly. Its payoff at
timeTis (K — An)+.

The second type of path-dependent options we will price@kdack options. In

this case, the payoff functions depend on the maximiy, = gqaxN F;, or the
=Yl
minimum,my = rqin N F;, values of the underlying asset price attained during the
i

7777

option’s life, [0, T']. A standard lookback caljives the right to buy at the lowest price
recorded during the options life. Hence, the payoff to thedoat timel" is Fy —my.

A standard lookback pudives the right to sell at the highest price recorded durtirag t
options life. Thus, the payoff at tinfBis My — F.

5.5. Pricing Path-dependent Options under Nonlinear Volatity Models

In this section we present some numerical results reganlicgng Asian and look-
back options under the CEV, Bess¢€land Confluent/ families of diffusions using
Monte-Carlo algorithms based on generating from randodn@zamma distributions.
Specifically, we look at a plain sequential Monte-Carlo stamggmethod (MCM) and a
randomized quasi Monte-Carlo method (RQMCM) which usegaligcrambling via
a Sobol's sequence for the randomization. For the Bassald Confluent{ models,
we also use the weighted method (MCMW) described in Sulm®diie. One million
simulations are completed for each payoff function and laea taveraged to get the
final option pricing results. For the RQMC method, thesg sifhulations correspond
to 100 randomizations and 10 000 simulations per randoioizat

In the tests that follow, we fix the value of the annual localatibty function
o10¢(S0) = 0.25 at the initial asset pricSy = 100. The strike price igX = 100.
The interest rate i8 = 0.02 per annum and all options have six months to expiration:
T = 0.5. The number of asset price observationd’is- 128. First we look at pricing
under the CEV model. For the CEV model,.(So) = 5S€. Typical observed values
of the CEV elasticity parametet are strongly negative so we chog$e= —2. Then
we choose the paramet&so that it satisfie§ i = 0.25. This yields) = 2500. Next
we consider the Bess&-subfamily of diffusions. To ensure that,.(Fp) = 0.25 the
following parameters are used:= 0.001,r = 0.02, ¢ = 1544870, = 0.25, and
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v = 2. The last pricing model considered here is the Confleefamily of diffusions.
Specifically, we examine the case where= 7883679, p = 0.001, A1 = 0.0009,
pu = 0.25, andv = 2. Table[B contains option pricing results correspondinthése
models. The prices reported are obtained using the RQMCadethable # reports
the computational cost of pricing the average price Asidlruseng the three methods.

Table 3. Pricing path-dependent options under the three modelg ubm RQMC
method. The value of the sample standard error is given thiter sign.

Model Asian Call Asian Put Lookback Call Lookback Put

CEV 4.30237%.00081 3.80266.00160 14.55226.00255 12.0908F.00300
BesselK 4.28605:.00049 3.7971F.00033 13.15557.00113 13.2364£.00081
Confluent&/ 4.28724t.00049 3.79922.00032 13.31158.00093 13.11594.00084

Table 4. Computational cost of pricing the average price Asian qatilom.

Model Method  Smpl.Var.g® Time (sec) Cosz?T Relat. Cost
CEV MCM 32.574 7438 242296 52.4
RQMCM 0.065 70762 4622 1.0
BesselK MCMW 33.044 33291 1100088 52.6
MCM 41.830 10506 439444 21.0
RQMCM 0.235 89029 20895 1.0
Confluentt/ MCMW 31.636 33312 1053853 49.4
MCM 40.801 10174 415122 19.5
RQMCM 0.238 89715 21308 1.0

As seen in Tabl€l4, the RQMC method offers a clear improverirengéductive
cost over the plain MC method. On the other hand, the weightethod offers no
improvement in cost at all, mostly due to its relatively eigpmputational time. The
extra time required for the weighted method is partly duéédomputation of special
functions in the weight. It could also be attributed to sanglmore points in each
of the sample paths for a price proc€$$). When conditioning on the FHT, and
sampling at time, we check first whethar> 7y. If ¢ > 79 we do not have to sample
from any probability distributions sincé; = 0. When using the weighted method
we are looking at the case with no absorption so we don’t Haigebienefit. In other
words, for every point of the discretized sample path, wetrsaimiple from probability
distributions which takes up more time. This combined wii fact that fop, > 1 we
have no guarantee that the mean of the weighted estimatoitésrfiiakes the weighted
method a poor choice for pricing options. We have a much belieice in the exact
sampling method.
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