
ar
X

iv
:0

91
0.

41
77

v1
  [

q-
fin

.C
P

]  
21

 O
ct

 2
00

9

Exact Simulation of Bessel Diffusions

Roman N. Makarov and Devin Glew

Abstract. We consider the exact path sampling of the squared Bessel process and some other
continuous-time Markov processes, such as the CIR model, constant elasticity of variance dif-
fusion model, and hypergeometric diffusions, which can allbe obtained from a squared Bessel
process by using a change of variable, time and scale transformation, and/or change of mea-
sure. All these diffusions are broadly used in mathematicalfinance for modelling asset prices,
market indices, and interest rates. We show how the probability distributions of a squared
Bessel bridge and a squared Bessel process with or without absorption at zero are reduced to
randomized gamma distributions. Moreover, for absorbing stochastic processes, we develop a
new bridge sampling technique based on conditioning on the first hitting time at zero. Such an
approach allows us to simplify simulation schemes. New methods are illustrated with pricing
path-dependent options.

Keywords.Squared Bessel process, bridge sampling, first hitting time, CIR and CEV diffusion
models, hypergeometric diffusions, financial modeling, path-dependent options, randomized
quasi-Monte Carlo method.

AMS classification.60H10, 65C05, 91G20, 91G60.

1. Introduction

In this paper we study the exact path simulation of solvable continuous-time stochastic
processes with transition probability density functions being obtainable in analytically
closed-form. Despite the popularity of various approximation schemes for stochastic
differential equations (SDEs), theprecisepath sampling of continuous-time Markov
processes has certain advantages. Sampling from the exact probability distribution al-
lows us to avoid introducing a bias and also to integrate along a path over an arbitrarily
long time horizon.

Our main motivation is the Monte Carlo pricing of path-dependent financial deriva-
tives. The no-arbitrage price of a European-style option takes the form of a multi-
dimensional integral along a path of an underlying asset price process. The usual
procedure to the evaluation of such an integral is to employ the Monte Carlo method.
Pricing of an American-style option reduces to solving a dynamic-programming prob-
lem. Therefore, to apply the Monte Carlo method we have to sample paths from the
exact distribution of the asset price process (e.g., see [11]).

More specifically, we study continuous-time Markov processes that arise from a
squared Bessel (SQB) diffusion such as the squared radial Ornstein-Uhlenbeck pro-
cess (known also as the Cox-Ross-Ingersoll model), the constant-elasticity of diffusion
model (with a power volatility function), and so-called hypergeometric diffusions ob-
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tained from the squared Bessel process by means of a special combination of a change
of measure and changes of variables (see [4, 5, 6]). All thesestochastic processes are
broadly used in mathematical finance. Although for these models many fundamental
quantities such as probability distributions of the first-hitting time at a barrier, maxi-
mum and minimum values, and pricing formulas for barrier andlookback options can
be obtained in closed-form, the Monte-Carlo method remainsan important tool for the
verification of analytical formulas and also for pricing Asian and American derivatives.

As is shown in [12], the transition probability distributions of a squared Bessel pro-
cess (without absorption at zero) and a squared Bessel bridge relate to the so-called
randomized gamma distributions, which are mixture gamma distributions with a ran-
dom rate parameter. The simulation of an SQB process with absorption at the origin
is less studied in the literature. As is shown in [4], the normalized transition density
function of the SQB process is a gamma density which is randomized by a discrete
probability distribution generated by a power series expansion of the lower incomplete
gamma function. Therefore, to sample an increment of the random process we first
simulate the absorption event and then sample from the normalized density function in
case of surviving. Since we are able to derive the first-hitting time distribution of the
SQB process with absorption at zero, it is possible to implement a completely different
approach. First, we sample the first-hitting time,τ0, at the origin. After that, we sam-
ple the Bessel bridge with its value at timeτ0 tied at zero. We show that the simplest
realization of such an approach allows us to sample a path of the SQB process by only
employing the gamma and Poisson probability distributions.

The paper is organized as follows. Section 2 gives some basisresults about the
squared Bessel process and the squared Bessel bridge. Section 3 provides different
sampling algorithms. In Section 4, we introduce other diffusion processes arising from
the SQB process and provide simulation algorithms for them.Section 5 contains some
numerical results.

2. The Squared Bessel Process and Bessel Bridge

2.1. The Squared Bessel Process

Let us consider aλ0-dimensional squared Bessel (SQB) process(Xt)t≥0 obeying the
stochastic differential equation (SDE)

dXt = λ0dt + ν
√

XtdWt, Xt ∈ I = (0,∞), (2.1)

with constant parametersλ0 andν > 0. The scale and speed densities are respectively
s(x) = x−µ−1 andm(x) = 2

ν2 x
µ, whereµ ≡ 2λ0

ν2 −1 is called the index of the process.
The left-hand boundaryl = 0 is entrance ifµ ≥ 0, regular if−1 < µ < 0, or exit if
µ ≤ −1. The right-hand boundaryr = ∞ is natural. For the regular diffusion onI
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the transition probability density function (PDF) is givenby

p(t; x, y) ≡ P(Xt∈dy|X0=x)
dy =

(y

x

)µ
2 e−2(x+y)/ν2t

ν2t/2
Iµ̃

(
4
√

xy

ν2t

)

. (2.2)

whereµ̃ = µ if l = 0 is entrance or a regular reflecting boundary, and ˜µ = |µ| if l = 0
is exit or a regular killing boundary.

For simplicity of presentation, we assume here thatν = 2. A simple scale transfor-

mationX
(ν′

0,λ
′
0)

t =
(

ν′
0

ν′′
0

)2
X

(ν′′
0 ,λ′′

0 )
t , λ′

0 = λ′′
0

(
ν′

0
ν′′

0

)2
, allows us to modifyν without

changingµ (i.e. µ′ = µ′′).

2.2. The First Hitting Time Distribution

In the case whenl = 0 is an absorbing boundary (µ < 0, µ̃ = |µ|), the density in (2.2)
does not satisfy probability conservation onI. The first hitting time (FHT),τ0, at zero
for the SQB process(Xt) starting atx0 is defined byτ0 = inf{t : Xt = 0 | X0 =
x0}. The PDFq(x0; τ) for the FHT distribution is given by

q(x0; τ) = − ∂

∂τ

∫ ∞

0
p(τ ; x0, x)dx. (2.3)

By using that the transition PDFp satisfies Kolmogorov equations, we simplify the
expression in (2.3) to obtain

q(x0; τ) =
1

s(x)

∂

∂x

(
p(τ ; x0, x)

m(x)

) ∣
∣
∣
∣

x=0+

x=∞
. (2.4)

As a result, we derive a closed-form expression for the FHT PDF:

q(x0; τ) =
1

τΓ(|µ|)
(x0

2τ

)|µ|
exp

(

−x0

2τ

)

. (2.5)

A simple change of variable reduces the PDF in (2.5) to that ofthe gamma distribution
G(α, β) with shape parameterα = |µ| and rate parameterβ = 1. Therefore, the FHT,
τ0, can be sampled by using the formulaτ0 = x0

2Y , whereY ∼ G(|µ|, 1).

2.3. The Squared Bessel Bridge

Let 0 ≤ t1 < t < t2. Consider a stochastic bridge generated by a continuous-time
Markov process(Xt)t≥0 ∈ I with Xt1 andXt2 tied atx1 andx2, respectively. The
bridge PDFb defined byb(t1, t2, t; x1, x2, x)dx = P{Xt ∈ dx|xt1 = x1,Xt2 = x2}
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can be expressed in terms of the transition PDFp of (Xt) as follows:

b(t1, t2, t; x1, x2, x) =
p(t− t1; x1, x)p(t2− t; x, x2)

p(t2− t1; x1, x2)
. (2.6)

Clearly, the bridge PDFb in (2.6) integrates to unity thanks to the Chapman-Kolmogorov
equationp(t2− t1; x1, x2) =

∫

I p(t− t1; x1, x)p(t2− t; x, x2)dx. Notice that for the
bridge density of a Gaussian process may also be derived in closed form by using a
conditional multivariate normal distribution.

The PDF of the squared Bessel bridge(Xt)0≤t≤T conditional onX0 = x andXT =
z is given by

b(0, T, t; x, z, y) =
T

2t(T − t)
e
−

x̄ + ȳ

2t
− z̄t

2
Iµ̃(
√

x̄ȳ/t)Iµ̃(
√

ȳz̄/(T − t))

Iµ̃(
√

x̄z̄/T )
, (2.7)

wherex̄ ≡ x (T−t)
T , ȳ ≡ y T

T−t , andz̄ ≡ z
T (T−t) , 0 < t < T.

Suppose thatXt is sampled conditionally on the FHT,T = τ0. If t ≥ τ0, then set
Xt = 0. Otherwise, ift < τ0, we use the Bessel bridge withX0 andXT=τ0 tied atx
andz = 0, respectively. In the limiting case asz → 0+ in (2.7), we obtain

b(0, T, t; x, 0, y) =
T

2t(T − t)

(
ȳ

x̄

)µ̃/2

exp

(

− x̄ + ȳ

2t

)

Iµ̃

(√
x̄ȳ

t

)

. (2.8)

Notice that the PDF in (2.8) has the same form as that in (2.2).

3. Simulation Algorithms

In this section we present several algorithms for the precise path generation of the
SQB process(Xt). That is, for every time partition 0= t0 < t1 < · · · < tN , N ≥
1, we sample a path-skeletonX ≡ (X0,X1, . . . ,XN ), Xn ≡ Xtn , from the exact
multivariate probability distribution. The algorithms proposed below are all based on
sampling from a randomized gamma distribution of the form G(α + Y, β), whereα +
Y > 0 andβ > 0 are scale and rate parameters, respectively, andY is a nonnegative
integer-valued random variable. As is mentioned above, we assume thatν = 2, so all
algorithms presented below deal with this case. In the general situation whenν 6= 2,
we proceed as follows. For givenλ0, ν, X0, sample a path of the SQB process with

µ = 2λ0/ν
2−1 that starts at

(
2
ν

)2
X0 by using one of algorithms in Figures 1–4. After

that, rescale the path obtained by multiplying its values by
(

ν
2

)2
.
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3.1. Randomized Gamma Distributions

Suppose that a discrete random variableY has discrete probabilitiesP{Y = n} = pn,
n = 0, 1, 2, . . . . The PDFf of the mixture probability distribution G(α+Y, β) admits
the form of a series expansion:f(x) =

∑∞
n=0 pn

βα+n

Γ(α+n)x
α+n−1e−βx.

Let us consider three choices for the randomizerY of the gamma distribution G(α+
Y, β). The resulting distributions are called the randomized gamma distribution of the
first, second, and third types, respectively.

Let Y1 ∼ P(λ) be a Poisson random variable with meanλ > 0. The randomized
gamma distribution of thefirst typeis G(Y1 + θ + 1, β), θ > −1, β > 0, with the PDF

f1(y) = β

(
β

λ

)θ/2

yθ/2e−λ−βyIθ(
√

4βλy), y > 0. (3.1)

A discrete random variableY2 is said to have a Bessel probability distribution
Bes(θ, b) with parametersθ > −1 andb > 0 if

P{Y2 = n} =
(b/2)2n+θ

Iθ(b) n! Γ(n + θ + 1)
, n = 0, 1, 2, . . . . (3.2)

This distribution is related to many other distributions, where the Bessel functionI is
involved in the density, including the squared Bessel bridge distribution (see [12] for
details). The randomized gamma distribution of thesecond typeis a mixture distri-
bution G(Y1 + 2Y2 + θ + 1, β), β > 0, θ > −1, whereY1 ∼ P((a + b)/(4β)) and
Y2 ∼ Bes(θ,

√
ab/(2β)) are independent Poisson and Bessel variates, respectively.

For any positive numbersβ, a, b, andθ > −1, the PDF is

f2(y) =
β

Iθ(
√

ab/(2β))
e−(a+b)/4β−βyIθ(

√
ay)Iθ(

√

by), y > 0. (3.3)

A discrete random variateY3 is said to follow anincomplete Gammaprobability
distribution, which we simply denote by IΓ(θ, λ) with parametersλ > 0 andθ > 0, if

P{Y3 = n} = e−λ λn+θ

Γ(n + θ + 1)

Γ (θ)

γ (θ, λ)
, n = 0, 1, 2, . . . . (3.4)

Notice that ifθ = 0, 1, 2, . . ., then the distribution ofY3 is a truncated and shifted
Poisson distribution thanks to the property

γ (m,a)

Γ (m)
= 1−

(

1 + x + . . . +
xm−1

(m− 1)!

)

e−x, m = 0, 1, 2, . . . .

We call a mixture Gamma distribution G(Y3 +1, β), Y3 ∼ IΓ(θ, λ), the randomized
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input X0 > 0, 0 = t0 < t1 < · · · < tN , µ > −1
for n from 1 toN do

Yn ∼ P

(
Xn−1

2(tn − tn−1)

)

Xn ∼ G

(

Yn + µ + 1,
1

2(tn − tn−1)

)

end for
return (X0,X1, . . . ,XN )

Figure 1. The sequential sampling method for modeling an SQB process without absorption.

gamma distribution of thethird type. The PDF is

f3(y) = β
Γ (θ)

γ (θ, λ)

(
β

λ

)−θ/2

y−θ/2e−λ−βyIθ(
√

4βλy), y > 0. (3.5)

3.2. Simulation of Processes without Absorption

The randomized distribution of the first type is closely connected with the transition
distribution of a squared Bessel process(Xt) without absorption (i.e.µ ≥ 0, or µ ∈
(−1, 0) andx = 0 is a reflecting boundary). The conditional distribution ofXt, t > 0,
givenX0 = x0 > 0, is then a randomized gamma distribution of the first type. The
transition PDF in (2.2) withν = 2 has the form of the PDFf1 in (3.1) with θ = µ,
β = 1/2t, andλ = x0/2t. Therefore, we have the following sampling scheme:

Xt ∼ G(µ + Y + 1, 1/2t), whereY ∼ P(x0/2t), t > 0. (3.6)

The sampling algorithm is presented in Figure 1.
A path of the standard squared Bessel bridge can be generatedusing the second type

randomized gamma distribution. The bridge PDF in (2.7) reduces to that in (3.3) by
settinga ≡ x/t2, b ≡ z/(T − t)2, β ≡ T

2t(T−t) , andθ = µ. Then,Xt conditional
on X0 = x andXT = z, 0 < t < T , can be obtained by generating two independent

random variablesY ∼ P
(

1
2T

[
T−t

t x + t
T−tz

])

andZ ∼ Bes
(

µ,
√

xz
T

)

, and then

Xt ∼ G
(

Y + 2Z + µ + 1, T
2t(T−t)

)

.

3.3. Sequential Simulation of Processes with Absorption

Assume that a stochastic process(Xt)t≥0 ∈ R+ admits absorption at the origin.
For example, for an SQB process we have thatµ < 0 andx = 0 is a killing boundary
or exit. Clearly, the transition PDFp given by (2.2) with ˜µ = |µ|, µ < 0, does not
integrate to one. Let us define the probabilityPs of surviving before timet and the
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input X0 > 0, 0 = t0 < t1 < · · · < tN , µ < 0
τ̃0←∞
for n from 1 toN do

if τ̃0 =∞ then

pa ← Γ
(

|µ|, Xn−1

2(tn − tn−1)

)

/Γ(|µ|)
Un ∼ U(0, 1)
if Un < pa then τ̃0← tn

end if
if tn < τ̃0 then

Yn ∼ IΓ
(

|µ|, Xn−1

2(tn − tn−1)

)

Xn ∼ G

(

Yn + 1,
1

2(tn − tn−1)

)

else
Xn ← 0

end if
end for
return (X0,X1, . . . ,XN ) andτ̃0

Figure 2. The sequential sampling method for an SQB process with absorption at the origin.

probabilityPa of absorption before timet for the process(Xt) started atX0 = x:

Ps(x; t) =

∫ ∞

0
p(t; x, y)dy > 0 andPa(x; t) = 1− Ps(x; t) > 0.

Observe that the actual transition probability distribution is then a mixture of continu-
ous and discrete probability distributions with the following generalized PDF:

p(X0→ Xt) = Ps(X0; t) ·
(

p(t; X0,Xt)

Ps(X0; t)

)

+ Pa(X0; t) · δ(Xt),

whereδ denotes a delta function.
By using (2.5), we obtain the following probabilities of surviving and absorption of

the SQB process before timet:

Ps(x; t) = P{τ0 > t} =
γ
(
|µ|, x

2t

)

Γ(|µ|) andPa(x; t) = P{τ0 ≤ t} =
Γ
(
|µ|, x

2t

)

Γ(|µ|) ,

whereγ(a, x) andΓ(a, x) are the lower and upper incomplete gamma functions, re-
spectively. The normalized transition PDF of the SQB process conditioned on the
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input X0 > 0, 0 = t0 < t1 < · · · < tN , µ < 0

Y ∼ G(|µ|, 1), τ0←
X0

2Y
for n from 1 toN do

if tn < τ0 then

Yn ∼ P

(
Xn−1(τ0− tn)

2(τ0− tn−1)(tn − tn−1)

)

Xn ∼ G

(

Yn + |µ|+ 1,
τ0− tn−1

(τ0− tn)(tn − tn−1)

)

else
Xn ← 0

end if
end for
return (X0,X1, . . . ,XN ) andτ0

Figure 3. The sequential sampling method conditional on the FHT,τ0, for modeling an SQB
process with absorption at the origin.

survival of the process before timet is

p(t; x, y)

Ps(x; t)
=

Γ (|µ|)
γ
(
|µ|, x

2t

)

(
x

x0

)µ
2 e−(x+x0)/2t

2t
I|µ|

(√
xx0

t

)

. (3.7)

As is seen, the function in the right-hand side of (3.7) reduces to the form of (3.5)
with θ = |µ|, λ = x/2t, andβ = 1/2t. Thus, the above normalized transition PDF
follows the randomized gamma distribution of the third kindG(Y + 1, 1/2t), where
Y ∼ IΓ(|µ|, x/2t). As a result, we obtain the sampling algorithm given in Figure 2.
The algorithm returns a sample pathX and an approximation, ˜τ0 ∈ {t1, . . . , tN ,∞},
of the FHT,τ0.

3.4. Bridge Simulation of Processes with Absorption

Consider again the SQB process(Xt) with absorption at the origin. Since the first
hitting time PDFq(x0; τ) is available, we may first sample the FHT,τ0, and then
simulate a path of(Xt)t≥0 conditional onτ0 by using the bridge distribution. As is
seen from (2.8), the PDF ofXt, 0 < t < τ0, conditional onX0 = x andXτ0 = 0
is reduced to the PDFf1 in (3.1) of the randomized gamma distribution of the first
type withθ = |µ|, λ = x(τ0−t)

2τ0t
, andβ = τ0

2t(τ0−t) . As a result, we obtain a sequential
sampling algorithm conditional on the FHT (see Figure 3).

At last, in Figure 4, we provide the full bridge sampling algorithm, where a path
X = (X0,X1, . . . ,XN ), N = 2k, k ≥ 1, is sampled at the time points in the following
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order of generation:

tN , tN/2, tN/4, t3N/4
︸ ︷︷ ︸

, tN/8, t3N/8, t5N/8, t7N/8
︸ ︷︷ ︸

, . . . , t2, t6, . . . , tN−2
︸ ︷︷ ︸

, t1, t3, . . . , tN−1
︸ ︷︷ ︸

.

Here, we use that the bridge PDF in (2.7) with ˜µ = |µ| reduces to that in (3.3) by
settinga ≡ x/t2, b ≡ z/(T − t)2, β ≡ T

2t(T−t) , andθ = |µ|. Such a bridge sampling
algorithm is very useful for the quasi-Monte Carlo pricing of path-dependent options.

4. Generating Paths of the CIR, CEV, and Hypergeometric Diffusions

4.1. The CIR Process

Consider the Cox-Ingerssol-Ross (CIR) diffusion process(Yt)t≥0 ∈ I = R+ solving
the SDE

dYt = (λ0− λ1Yt)dt + ν
√

YtdWt , (4.1)

where constant parametersλ0, λ1, andν > 0. The respective scale and speed den-
sities ares(x) = x−µ−1eκx andm(x) = 2

ν2 x
µe−κx, whereκ ≡ 2λ1

ν2 . The boundary
classification of the CIR process is equivalent that of the SQB process. For the regular
diffusion onI, the transition PDF is

p(t; x, y) = cte
λ1t

(
yeλ1t

x

)µ/2

e−ct(yeλ1t+x)Iµ̃

(

2ct

√

xyeλ1t
)

, (4.2)

wherect ≡ κ/(eλ1t − 1) andµ̃ is defined as for the SQB process in Section 2.
The CIR process is reduced to an SQB process with the same parametersλ0 andν

by means of scale and time transformation,Yt = e−λ1tXsλ1
(t), where the monotonic

time-transformation functionsλ1 is defined by

sλ1(t) ≡
{

t if λ1 = 0,
eλ1t−1

λ1
if λ1 6= 0.

(4.3)

The transition PDF for the CIR process relates to that of the SQB process as follows:

p(CIR)(t; x, y) = eλ1tp(SQB)(sλ1(t); x, eλ1ty).

If a reflecting boundary condition is imposed atx = 0, or the origin is entrance,
then the CIR diffusion is a conservative stochastic process. The corresponding tran-
sition density is given by (4.2) with ˜µ = µ > −1. The transition distribution of
the conservative CIR model reduces to the randomized gamma distribution of the first
type. The respective SQB process admits no absorption at zero and can be simulated
by the sequential method in Figure 1.

Consider the case wherex = 0 is a killing boundary or exit, so the transition PDF
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input X0 > 0, 0 = t0 < t1 < · · · < tN , N = 2k, µ < 0

Y ∼ G(|µ|, 1), τ0←
X0

2Y
if tN < τ0 then

YN ∼ P

(
X0(τ0− tN )

2τ0tN

)

, XN ∼ G

(

Yn + |µ|+ 1,
τ0

tN (τ0− tN )

)

else
XN ← 0

end if
for l from 1 tok do

for m from 1 to 2l−1 do
n = (2m− 1)2k−l

if tn ≥ τ0 then
Xn ← 0

else
n1← n− 2k−l, n2← n + 2k−l

if tn2 ≥ τ0 then

Yn ∼ P

(
Xn1(τ0− tn)

2(τ0− tn1)(tn − tn1)

)

Xn ∼ G

(

Yn + |µ|+ 1,
τ0− tn1

(τ0− tn)(tn − tn1)

)

else

Yn ∼ P

(
Xn1(tn2 − tn)

2(tn2 − tn1)(tn − tn1)
+

Xn2(tn − tn1)

2(tn2 − tn1)(tn2 − tn)

)

Zn ∼ Bes

(

|µ|, Xn1(τ0− tn)

2(τ0− tn1)(tn − tn1)

)

Xn ∼ G

(

Yn + 2Zn + |µ|+ 1,
tn2 − tn1

2(tn − tn1)(tn2 − tn)

)

end if
end if

end for
end for
return (X0,X1, . . . ,XN ) andτ0

Figure 4. The full bridge sampling method conditional on the FHT,τ0, for modeling an SQB
process with absorption at the origin.
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is given by (4.2) with ˜µ = |µ|, whereµ < 0. The FHT,τ0, at zero for the CIR model
is given by

τ
(CIR)
0 ≡ inf{t : Yt = 0} ≡ inf{t : Xsλ1

(t) = 0} d
= s−1

λ1
(τ

(SQB)
0 ),

where we defines−1
λ1

(τ) = ∞ if τ > sλ1(∞). The corresponding PDF is given by

q(CIR)(x0; τ) = eλ1τ q(SQB)(x0; sλ1(τ)). We have thatP{τ (CIR)
0 <∞} = P{τ (SQB)

0 <
sλ1(∞)}.

Clearly, the sampling of a CIR path at timesti, i = 0, 1, . . . ,N , reduces to the
sampling of an SQB trajectory. The method for sampling a pathand the FHT,τ0, is
given as follows.
Step 1. Set timessi = sλ1(ti), i = 0, 1, . . . ,N .

Step 2. Obtain a sample path(X0,X1, . . . ,XN ) of the SQB process at timessi, i =

0, 1, . . . ,N , and the FHT,τ (SQB)
0 , (or its approximation ˜τ0) by using one of

the algorithms in Figures 1–4.

Step 3. SetYi = e−λ1tiXi, i = 0, 1, . . . ,N .

Step 4. Setτ (CIR)
0 =

{

s−1(τ
(SQB)
0 ) if τ

(SQB)
0 < sλ1(∞)

∞ otherwise
.

Step 5. Return(Y0, Y1, . . . , YN ) andτ
(CIR)
0 .

4.2. The CEV Diffusion Model

The constant elasticity of variance (CEV) diffusion process{Ft}t≥0 obeys the stocha-
stic differential equationdFt = rFtdt + δF β+1

t dWt, t ≥ 0, F0 > 0, wherer, δ, β are
real parameters. We assume here thatδ > 0 andβ < 0.

The boundaryF = 0 of the state space(0,∞) is regular ifβ < −0.5 or exit if
−0.5 ≤ β < 0. Here we consider the case where the endpointF = 0 is a killing
boundary. The transition PDFp0(t; F0, F ), F0, F > 0, t > 0, for the CEV process

(F
(0)
t ) with zero drift (r = 0) takes the form

p0(t; F0, F ) =
F−2β− 3

2 F
1
2

0

δ2|β|t exp

(

−F−2β + F−2β
0

2δ2β2t

)

I 1
2|β|

(

F−βF−β
0

δ2β2t

)

. (4.4)

The densityp0(t; F0, F ) does not integrate (with respect toF ) to unity for t > 0, since
F = 0 is an absorbing point.

A drifted CEV processF (r)
t with r 6= 0 is obtained fromF

(0)
t by means of scale

and time transformation:F (r)
t = ertF

(0)
sλ1

(t)
, wheresλ1 is given by (4.3) withλ1 ≡

2rβ. The resulting transition densitypr with r 6= 0 is given bypr(t; F0, F ) =
e−rtp0(sλ1(t); F0, e

−rtF ).
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The Monte Carlo simulation of the CEV diffusion is based on the reduction of it
to the CIR or SQB process by using the mappingX(F ) ≡ F−2β

δ2β2 . There are two dual
approaches:

(i) First, eliminate the drift and then, by using the mappingX, reduce the driftless
CEV process to an SQB process defined byXt = X(F

(0)
t ), t ≥ 0, with λ0 =

2 + 1/β andν = 2. Sample a path of the SQB process and then obtain a path of
the driftless CEV process by applying the mappingF(x) ≡ (δ2β2x)−1/2β. After
that, restore the drift using the time and scale transformation.

(ii) By using the mappingX, reduce the drifted CEV process to a CIR process defined
by Yt = X(F

(r)
t ), with λ0 = 2 + 1/β, λ1 = 2rβ, andν = 2. The resulting

CIR process can be obtained from an SQB process by means of time and scale
transformation. Sample a path of the CIR process and then obtain a path of the
CEV model by applying the inverse mappingF.

The FHT,τ0, at zero for the CEV diffusion model is given by

τ
(CEV )
0 ≡ inf{t : Ft = 0} d

= τ
(CIR)
0

d
= s−1

λ1=2rβ(τ
(SQB)
0 ).

Notice that if a reflecting boundary condition is imposed atF = 0 whenβ < −0.5
(or β > 0 and henceF = 0 is entrance), then the CEV diffusion is a conservative
stochastic process. The corresponding transition density(for the case withβ < −0.5)
is given by (4.4) with the replacementI 1

2|β|
→ I 1

2β
. By analogy with the CIR model

without absorption at zero, the transition distribution ofthe conservative CEV model
reduces to the randomized gamma distribution of the first type, hence the algorithm in
Figure 1 is applied.

4.3. Diffusion Canonical Transformation

Several families of analytically solvable diffusions can be derived from known under-
lying diffusion processes. We refer to this construction asthe “diffusion canonical
transformation”methodology (see [4, 5, 6] for details).

Let us start with a one-dimensional time-homogeneous regular diffusion(Xt)t≥0 ∈
I ≡ (l, r), −∞ ≤ l < r ≤ ∞, defined by its infinitesimal generator:(G f)(x) ≡
1
2ν2(x)f ′′(x) + λ(x)f ′(x). The functionsλ andν denote, respectively, the (infinitesi-
mal) drift and diffusion coefficients of the process. Consider two linearly independent
fundamental solutionsϕ+

s and ϕ−
s of the differential equation(G ϕ)(x) = sϕ(x),

s ∈ C, x ∈ I, such that for real valuess = ρ > 0 the solutionsϕ+
ρ andϕ−

ρ are
respectively increasing and decreasing functions ofx (see, e.g., [3]).

Let us introduce another diffusion(X(ρ)
t )t≥0 ∈ I with generator

(G(ρ) f)(x) ≡ 1
2
ν2(x)f ′′(x) +

(

λ(x) + ν2(x)
u′

ρ(x)

uρ(x)

)

f ′(x) , (4.5)
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where astrictly positivefunctionuρ(x), ρ > 0, is a linear combination ofϕ±
ρ : uρ(x) =

q1ϕ
+
ρ (x) + q2ϕ

−
ρ (x), q1,2 ≥ 0, q1 + q2 > 0. A transition densityp(ρ)

X for theX(ρ)-
diffusion is then related to a transition densitypX for theX-diffusion as follows:

p
(ρ)
X (t; x0, x) = e−ρt uρ(x)

uρ(x0)
pX(t; x0, x), x, x0 ∈ I , t > 0 . (4.6)

Now we consider anF -diffusion {Ft ≡ F(X
(ρ)
t ), t ≥ 0} defined by strictly mono-

tonic real-valued mappingF = F(x) with F
′,F′′ continuous onI and having in-

finitesimal generator(GFh)(F ) ≡ 1
2 σ2(F )h′′(F ) + rFh′(F ), whereF ∈ IF =

(min{F(l+),F(r−)}, max{F(l+),F(r−)}), andr is a real constant so thatρ+ r > 0.
The transition PDFpF for anF -diffusion (Ft)t≥0 is related to the transition PDF

for the underlyingX (or X(ρ)) diffusion as follows:

pF (t; F0, F ) =
ν(X(F ))

σ(F )

uρ (X(F ))

uρ (X(F0))
e−ρtpX(t; X(F0),X(F )) . (4.7)

HereX ≡ F
−1 is the inverse map.F admits the general quotient form:

F(x) =
c1ϕ

+
ρ+r(x) + c2ϕ

−
ρ+r(x)

q1ϕ+
ρ (x) + q2ϕ

−
ρ (x)

≡ vρ+r(x)

uρ(x)
(4.8)

wherec1 andc2 are real constants. For a full classification of strictly monotonic maps
of the form (4.8) see [6]. The diffusion coefficient functionis

σ(F ) =
ν(x)|W (x)|

u2
ρ(x)

, x = X(F ) , F ∈ IF , (4.9)

where we define the WronskianW (x) ≡ uρ(x)v′ρ+r(x)− u′
ρ(x)vρ+r(x) .

In the next two subsections we present two examples of hypergeometric diffusions.
The concluding subsections gives a general simulation algorithm.

4.4. The Bessel-K Diffusions

Here we specifically consider a 4-parameter BesselK-family arising from an under-
lying (λ0-dimensional) squared Bessel process with a positive indexµ. We use the
generating functionuρ(x) = ϕ−

ρ (x) = x−µ/2Kµ

(
2
√

2ρx/ν
)

and the mapping:

F(x) = c
Iµ

(

2
√

2(ρ + r)x/ν
)

Kµ

(
2
√

2ρx/ν
) , (4.10)
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wherec, ρ, ν, andµ are independently adjustable positive parameters, andr > −ρ is a
real constant. The functionsI andK denote the modified Bessel functions of the first
and second kind, respectively. (see [1] for definitions and properties).

The functionF(x) (and the respective inverseX(F )) mapsx ∈ (0,∞) andF ∈
(0,∞) into one another. The transformation (4.10) hence leads to afamily of processes
(Ft) ∈ (0,∞) with the diffusion coefficient function

σ(F(x)) = c
√

2

(√
ρ Iµ

“

2
ν

√
2(ρ+r)x

”

Kµ+1( 2
ν

√
2ρx)

K2
µ( 2

ν

√
2ρx)

+

√
ρ+r Iµ+1

“

2
ν

√
2(ρ+r)x

”

Kµ( 2
ν

√
2ρx)

)

(4.11)

Lemma 4.1 (Campolieti and Makarov, [4, 6]).The processes of the BesselK-family
obeying the SDEdFt = rFtdt + σ(Ft)dWt with (4.10)–(4.11) have the following
boundary classification: the boundaryF = 0 is exit if µ ≥ 1 or is a regular killing
boundary if0 < µ < 1; the boundaryF = ∞ is non-attracting natural. Moreover,
the discounted process(e−rtFt)t≥0 is a martingale. The transition PDFpF is given
by (4.7) withν(x) = ν

√
x, andσ andpX respectively specified by (4.11) and (2.2).

The density,q(F0; τ), for the FHT at the origin for a Bessel-K process started at
F0 > 0 is readily derived by using equation (2.4), giving the generalized inverse Gaus-
sian distribution:

q(F0; τ) =

(
2x0/ρν2

)µ/2

2Kµ

(
2
√

2ρx0/ν
) τ−µ−1e−ρτ−2x0/ν2τ , τ > 0, x0 = X(F0). (4.12)

4.5. The Confluent-U Diffusions

The confluent hypergeometric family ofF -diffusions arises from an underlying CIR
process withµ > 0. Here we specialize to theconfluent-U family with generating
functionuρ(x) = ϕ−

ρ (x) = U(υ, µ + 1, κx) and mapping

F(x) = c
M(υ + b

λ1
, µ + 1, κx)

U(υ, µ + 1, κx)
, (4.13)

whereυ ≡ ρ
λ1

, µ ≡ 2λ0
ν2 − 1, κ ≡ 2λ1

ν2 , andc are arbitrary positive constants, andr >
−ρ. The confluent hypergeometric functionsM andU are two linearly independent
solutions to Kummer’s differential equation (see [1] for definitions and properties).

The functionF(x) mapsx ∈ (0,∞) onto F ∈ (0,∞) and is monotonically in-
creasing. This transformation leads to a family of processes (Ft) ∈ (0,∞) with the
diffusion coefficient function

σ(F(x)) = cκν
√

x

(

υ M
“

ρ+r
λ1

,µ+1,κx
”

U(υ+1,µ+2,κx)

U2(υ,µ+1,κx)
+

( ρ+r
λ1

)M
“

ρ+r
λ1

+1,µ+2,κx
”

(µ+1)U(υ,µ+1,κx)

)

(4.14)
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Lemma 4.2(Campolieti and Makarov, [4, 6]).The processes of the confluentU -family
solving the SDEdFt = rFtdt+σ(Ft)dWt with (4.13)–(4.14) have the same boundary
classification as that for the Bessel-K in Lemma 4.1. Moreover, the discounted process
(e−rtFt)t≥0 is a martingale. The transition PDFpF is given by (4.7) withν(x) =
ν
√

x, andσ andpX respectively specified by (4.14) and (4.2).

The density for the first-hitting time at the origin,q(F0; τ), for a confluent-U process
started atF0 > 0 is

q(F0; τ) =
∣
∣T ′(τ)

∣
∣
e−κx0T (τ)(T (τ))υ−1(1 + T (τ))µ−υ

U(υ, µ + 1, κx0)Γ(υ)
, τ > 0, (4.15)

wherex0 = X(F0) and we use the time changeT (τ) ≡ e−λ1τ

1− e−λ1τ
. The latter func-

tion in (4.15) is known as a Tricomi exponential PDF (see [9])given by p(T ) =
e−zT T a−1(1 + T )b−a−1

Γ(a)U(a, b, z)
, T > 0, wherea = υ, b = µ + 1, z = κx0,. It integrates to

unity thanks to the integral representation ofU (see [1]).

4.6. Simulation ofF -Diffusions

We generalize the sampling algorithms for an SQB process presented in Figure 3 and
Figure 4. Within that approach a path is sampled conditionally on the FHT at zero.
The Bessel-K and confluent-U diffusion models are both absorbing at zero and have
the first-hitting time distribution in analytically closed-form. For a sampling algorithm
we only need to obtain the distribution of the respective bridge process. In doing,
so we use one important observation that the distribution ofanF -diffusion bridge is
reduced to the distribution of a bridge of the respective underlying diffusion (e.g. the
Bessel and CIR bridges).

By applying the analogue of formula (2.7) for anF -diffusion with PDFpF (t; F0, F )
in place of the PDFp(t; x, y), and using the representation (4.7), we have the following
expression for the bridge PDF of anF -diffusion with Ft1 andFt2 tied atF1 andF2

respectively:

bF (t1, t2, t; F1, F2, F ) =
ν(X(F ))

σ(F )
b
(ρ)
X (t1, t2, t; X(F1),X(F2),X(F )) (4.16)

=
ν(X(F ))

σ(F )
bX(t1, t2, t; X(F1),X(F2),X(F ))

wherebX andb
(ρ)
X denote the bridge PDFs of the diffusions(Xt) and(X

(ρ)
t ), respec-

tively. Here, after plugging (4.7) in the formula of the bridge PDFbF , we first cancel
Jacobiansνσ and then cancel Doob’s factors of the forme−ρt uρ(y)

uρ(x) . If follows from
(4.16) that anF -diffusion bridge is obtained by applying the mapping function F to
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the bridge process for the underlying diffusion(Xt) with Xt1 andXt2 tied atX(F1)
andX(F2) respectively. For example, in the particular case of the Bessel-K diffusion
when the underlying process(Xt) is a squared Bessel process, theF -bridge is just a
nonlinear transformation of a standard Bessel bridge.

Our primary goal is to sample a path skeleton(F0, F1, . . . , FN ), Fi ≡ Fti of an
F -diffusion at timesti, i = 0, 1, . . . ,N , 0 = t0 < t1 < · · · < tN = T , for a given
initial conditionFt=0 = F0. The simulation scheme based on the bridge distribution
is as follows:

Step 1. Sample the FHT,τ0, from the GIG or exponential Tricomi distribution for the
Bessel-K or Confluent-U model, respectively.

Step 2. Obtain a sample path(X0,X1, . . . ,XN ) of the respective underlying process
(the SQB or CIR diffusion) conditional onX0 = X(F0) andXτ0 = 0.

Step 3. Apply the respective mapping functionF to obtain a sample path of theF -
diffusion model:Fi = F(Xi), i = 1, 2, . . . ,N .

The main result is that this simulation scheme allows us to avoid a direct sampling
from complicated transition probability distributions.

Let us present an alternative approach from [5] to computingmathematical expec-
tations of path functionals of the formQ ≡ E[f(F1, F2, . . . , FN )|F0] for F -diffusion.
By using a path integral approach, the expected value of sucha path functional can be
represented as a multivariate integral:

Q =

∫

RN

f(F(x1), . . . F(xN))e−ρT uρ(xN)

uρ(x0)

N∏

k=1

pX(tk − tk−1; xk−1, xk)dx1 · · · dxN .

The integral above may be estimated by the Monte Carlo method. The underlying
diffusion is simulated by sampling from the exact transition probabilty distribution.
The resulting unbiased estimatorξ of the path integralQ takes the form:

ξ = f(F(X1), . . . F(XN ))e−ρT uρ(XN )

uρ(X0)
,

where the path(X0,X1, . . . ,XN ) is sampled by using one of the algorithms from
Section 3. Notice that we cannot use the Euler method (or any other approximation
method, which does not guarantee the positiveness of the approximation process) since
the estimatorξ is infinite if XN = 0. Using large and small argument asymptotics of
the Bessel functionK and Kummer functionU , we obtain that the variance ofξ is
finite if µ < 1. Notice that the use of an exact simulation method allows usto lift this
restriction.
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5. Simulation Study

5.1. Simulation of Randomizers

The three discrete probability distributions used in the construction of randomized
gamma distributions are all log-concave and unimodal as is stated below.

Lemma 5.1.Let Y be a Poisson, Bessel or incomplete gamma random variable. The
distribution ofY is log-concave. That is, the ratioP{Y = n + 1}/P{Y = n} is
decreasing inn. Furthermore, the distribution ofY is unimodal and has a unique
mode or two modes at consecutive integers. Moreover, one mode is always located

at m = ⌊λ⌋ for the Poisson distribution, atm =
⌊

(
√

b2 + θ2− θ)/2
⌋

for the Bessel

distribution and atm = max(0, ⌊λ− θ⌋) for the incomplete gamma distribution.

Proof. See [8, 4] for the proof for the Bessel and incomplete gamma distributions,
respectively. 2

To generate a Bessel or incomplete gamma random variate, we can use a generic
acceptance-rejection (A-R) method from [7] stated below without proof.

Lemma 5.2 (Devroye, [7]).For any discrete log-concave distributions with mode at
m, we have, for alln ≥ 0: pn ≤ pm min

{
1, e1−pm|n−m|} .

As an alternative sampling method we use the inversion method by chop-down
search (C-D-S) from the modem. Such a sampling method for a discrete distribu-
tion with probabilities{pk}k≥0 is based on the numerical inversion of the CDFF by
the formulaF−1(u) = arg min{n ≥ 0 | u−∑n

k=0 pk < 0}, u ∈ [0, 1].
It is well known that the computational cost of such a method has the lowest possible

value if and only if the vector of discrete probabilities is arranged in increasing order.
Instead of the preliminary computation of probabilities followed by sorting of them, we
start the search algorithm at the modem and then successively calculate probabilities
of values to the left and to the right of the mode choosing the largest one. Notice
that probabilitypm need only be computed once, and that other probabilities canbe
obtained by using simple recurrences.

We now present some numerical results comparing the two methods of simulation
of P(λ), Bes(θ,b), and IΓ(θ, λ) random variables. For each of the two methods, one
million values are sampled. For simulation of each of the Poisson random variables,
the parameterλ is allowed to vary as a continuous uniform random variable. For
the two parameter Bessel and incomplete gamma distributions, the first parameter is
allowed to vary as a continuous uniform random variable while the second parameter
is held constant. Then the procedure is repeated by allowingthe second parameter to
vary while the first one is held constant. Results of these tests are given in Table 1.

Table 1 shows that the chop-down search method from the mode is significantly
faster than the acceptance-rejection technique for generating random variables in ev-
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Table 1. Comparison of the acceptance-rejection and chop-down search methods for
the Poisson, Bessel, and incomplete gamma distributions.

Distribution A-R Method C-D-S Method

Time No. of Iter. Time No. of Iter.

P(λ) λ ∼ U(0, 1000) 189.9 2.6 35.2 34.2

Bes(θ, b) θ ∼ U(0, 1000), b = 10 220.6 1.6 100.4 1.1

Bes(θ, b) θ = 10,b ∼ U(0, 1000) 414.1 4.0 103.3 17.3

IΓ(θ, λ) θ ∼ U(0, 100), λ =10 336.6 3.7 51.1 1.8

IΓ(θ, λ) θ = 10, λ ∼ U(0, 1000) 363.7 3.9 51.4 10.8

Note: Time in seconds and average number of iterations for the simulation of 106 random variables
from the Poisson, Bessel, and incomplete gamma distributions using the acceptance-rejection (A-R) and
chop-down search (C-D-S) methods.

ery case and is a much better choice for simulating random variables when it can be
implemented.

5.2. Comparison of Sampling Schemes for the SQB Process

In this section we aim to compare the following three sampling schemes.

1) Sequential sampling conditional on the FHTτ0 with the use of the randomized
gamma distribution of the first kind.

2) Bridge sampling conditional on the FHTτ0 with the use of the randomized gamma
distribution of the second kind.

3) Unconditional sequential sampling with the use of the randomized gamma distri-
bution of the third kind.

We start by sampling multiple paths of the SQB process over a discretized partition of
a time interval[0, T ], 0 = t0 < t1 < · · · < tN = T, using one of the three methods
just mentioned. Then we average these sample paths in order to approximate the mean
of the SQB process. To study the sampling algorithms, we compare our sample means
to the true mean of the SQB process as well as the time requiredto simulate a set
number of sample paths of the process.

For calculation of the mean of the SQB process, we use the formula

E[Xt] =
x0 + λ0t

Γ(|µ|) γ
(

|µ|, x0

2t

)

+
x0

Γ(|µ|)
(x0

2t

)|µ|−1
exp

(

−x0

2t

)

,

which is valid forµ < 0 andν = 2. The expression is derived by considering the mo-
ment generating function of the SQB process at timet and using the small asymptotics
of the BesselI function.

To this end, we look at the largest amount by which the sample mean, µ̄t, dif-
fers from the true mean,µt ≡ E[Xt], (the maximum absolute error) at timesti, i =
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0, 1, . . . ,N , given by max
i=0,1,...,N

|µti − µ̄ti |. We will also examine the largest sample

standard deviation of the process, given by max
i=0,1,...,N

σ̄ti/
√

n, wheren is the sample

size. After simulating one million sample paths for each of the three sample schemes
and averaging them, we obtain the data shown in Table 2. From this data, we can see

Table 2. Comparison of sampling schemes for the SQB process.

Scheme 1 Scheme 2 Scheme 3

µ Time MAE MST Time MAE MST Time MAE MST

-0.25 1741 .00244 .00271 5044 .00297 .00270 2501 .00534 .00270

-0.5 1600 .00111 .00252 4462 .00191 .00251 2280 .00158 .00251

-1.5 953. .00193 .00144 2614 .00240 .00145 1406 .00149 .00145

Note: Time in seconds, maximum absolute error (MAE), and the maximum standard deviation (MST)
taken from the average of 106 sample paths of the SQB process using sampling schemes 1, 2, and 3
respectively for varying values ofµ. For all three choices ofµ, we setX0 = 1, T = 1, ν = 2, and the
partition of [0, T ] to be 0, 1

32,
2
32, . . . , 1.

that sampling scheme 1 is the fastest one. Scheme 2 is much slower than schemes 1
and 3 since it involves sampling from the Bessel distribution.

5.3. Sampling from the GIG and Tricomi Exponential Distributions

A common approach to sampling from a nonstandard probability distribution is to use
an acceptance-rejection method. This approach is employedin [2] and [9] for sampling
from the GIG and Tricomi exponential distributions, respectively. If the parameters of
a probability distribution remain constant, then a much faster sampling technique is the
one that is based on the numerical inversion of a distribution function. To sample from
a continuous CDFF by using the inverse transform method, we generate a uniformly
distributed on(0, 1) random variableU and then setX = F−1(U), whereF−1 the
inverse ofF .

In cases where the inverse ofF can not be expressed in closed-form, the inverse
transform relies on numerical approximation. A root-finding method such as Newton’s
method or the bisection method can be applied to solve equation F (X) = U , U ∈
(0, 1). A faster approach is to compute the CDF on a fine mesh and then approximate
the inverse of the CDF by some simpler functions. The simplest method is to use a
piece-wise linear interpolation. In [10] a fast and efficient variate generation method
is proposed. In that method, the inverse CDFF−1 is approximated by the Hermite
interpolation functions. For a given partitionl = x0 < x1 < · · · < xn = r of the
support(l, r) of a CDFF , the distribution function is computed by either integrating
the density function on each subinterval(xk−1, xk), or by employing an ODE solver,
since the CDFF solves a simple ODEF ′(x) = f(x), x ∈ (l, r), F (l) = 0, wheref
is the respective PDF.
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5.4. Path-Dependent Options

This section reviews some discretely-monitored path-dependent options that will be
used for pricing options in the following subsection. First, we assume that we have
sampled a path of a asset price process(Ft) over a discrete time partition,T =
{ti}i=0,1,...,N , of the time interval[0, T ], T > 0. Let the values of process(Ft) at
time pointst = ti be denoted byFi, for all i = 0, 1, . . . ,N .

The payoff function of an Asian-style option depends on the arithmetic average of
the underlying asset values:AN = 1

N

∑N
i=1 Fi. For anaverage price call option, the

payoff to the option holder at timeT is (AN − K)+ whereK is the strike price and
(x)+ ≡ max(x, 0). The average price put optionis defined similarly. Its payoff at
timeT is (K − AN )+.

The second type of path-dependent options we will price are lookback options. In
this case, the payoff functions depend on the maximum,MN = max

i=0,1,...,N
Fi, or the

minimum,mN = min
i=0,1,...,N

Fi, values of the underlying asset price attained during the

option’s life, [0, T ]. A standard lookback callgives the right to buy at the lowest price
recorded during the options life. Hence, the payoff to the holder at timeT is FN−mN .
A standard lookback putgives the right to sell at the highest price recorded during the
options life. Thus, the payoff at timeT is MN − FN .

5.5. Pricing Path-dependent Options under Nonlinear Volatility Models

In this section we present some numerical results regardingpricing Asian and look-
back options under the CEV, Bessel-K and Confluent-U families of diffusions using
Monte-Carlo algorithms based on generating from randomized Gamma distributions.
Specifically, we look at a plain sequential Monte-Carlo sampling method (MCM) and a
randomized quasi Monte-Carlo method (RQMCM) which uses digital scrambling via
a Sobol’s sequence for the randomization. For the Bessel-K and Confluent-U models,
we also use the weighted method (MCMW) described in Subsection 4.6. One million
simulations are completed for each payoff function and are then averaged to get the
final option pricing results. For the RQMC method, these 106 simulations correspond
to 100 randomizations and 10 000 simulations per randomization.

In the tests that follow, we fix the value of the annual local volatility function
σloc(S0) = 0.25 at the initial asset priceS0 = 100. The strike price isK = 100.
The interest rate isr = 0.02 per annum and all options have six months to expiration:
T = 0.5. The number of asset price observations isN = 128. First we look at pricing
under the CEV model. For the CEV model,σloc(S0) = δSβ

0 . Typical observed values
of the CEV elasticity parameterβ are strongly negative so we chooseβ = −2. Then
we choose the parameterδ so that it satisfiesδF β

0 = 0.25. This yieldsδ = 2500. Next
we consider the Bessel-K subfamily of diffusions. To ensure thatσloc(F0) = 0.25 the
following parameters are used:ρ = 0.001,r = 0.02, c = 154.4870,µ = 0.25, and
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ν = 2. The last pricing model considered here is the Confluent-U family of diffusions.
Specifically, we examine the case wherec = 788.3679, ρ = 0.001, λ1 = 0.0009,
µ = 0.25, andν = 2. Table 3 contains option pricing results corresponding tothese
models. The prices reported are obtained using the RQMC method. Table 4 reports
the computational cost of pricing the average price Asian call using the three methods.

Table 3. Pricing path-dependent options under the three models using the RQMC
method. The value of the sample standard error is given afterthe± sign.

Model Asian Call Asian Put Lookback Call Lookback Put

CEV 4.30237±.00081 3.80260±.00160 14.55220±.00255 12.09087±.00300

Bessel-K 4.28605±.00049 3.79717±.00033 13.15557±.00113 13.23640±.00081

Confluent-U 4.28724±.00049 3.79922±.00032 13.31158±.00093 13.11594±.00084

Table 4. Computational cost of pricing the average price Asian call option.

Model Method Smpl.Var., ¯σ2 Time (sec) Cost, ¯σ2T Relat. Cost

CEV MCM 32.574 7438 242296 52.4

RQMCM 0.065 70762 4622 1.0

Bessel-K MCMW 33.044 33291 1100088 52.6

MCM 41.830 10506 439444 21.0

RQMCM 0.235 89029 20895 1.0

Confluent-U MCMW 31.636 33312 1053853 49.4

MCM 40.801 10174 415122 19.5

RQMCM 0.238 89715 21308 1.0

As seen in Table 4, the RQMC method offers a clear improvementin reductive
cost over the plain MC method. On the other hand, the weightedmethod offers no
improvement in cost at all, mostly due to its relatively large computational time. The
extra time required for the weighted method is partly due to the computation of special
functions in the weight. It could also be attributed to sampling more points in each
of the sample paths for a price process(Ft). When conditioning on the FHTτ0 and
sampling at timet, we check first whethert ≥ τ0. If t ≥ τ0 we do not have to sample
from any probability distributions sinceFt = 0. When using the weighted method
we are looking at the case with no absorption so we don’t have this benefit. In other
words, for every point of the discretized sample path, we must sample from probability
distributions which takes up more time. This combined with the fact that forµ ≥ 1 we
have no guarantee that the mean of the weighted estimator is finite makes the weighted
method a poor choice for pricing options. We have a much better choice in the exact
sampling method.
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4. G. Campolieti and R. Makarov,Pricing path-dependent options on state dependent volatil-
ity models with a Bessel bridge, International Journal of Theoretical and Applied Finance
10 (2007), pp. 1–38.

5. G. Campolieti and R. Makarov,Monte Carlo Path Integral Pricing of Asian Options on
State Dependent Volatility Models Using High Performance Computing, Quantitative Fi-
nance 8 (2008), pp. 147–161.

6. G. Campolieti and R. Makarov,Solvable Nonlinear Volatility Diffusion Models with Affine
Drift , submitted to Stochastic: An International Journal of Probability and Stochastic Pro-
cesses, 2009.

7. L. Devroye, A simple generator for discrete log-concave distributions, Computing39
(1987) 87–91.

8. L. Devroye,Simulating Bessel random variables, Statistics and Probability Letters, 57
(2002), pp. 249–257.

9. D.L. Fitzgerald,Tricomi and Kummer functions in occurrence, waiting time and exceedance
statistics, Journal Stochastic Environmental Research and Risk Assessment, 16:3 (2002),
pp. 1436–3240.
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