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Optimal partial hedging in a disrete-timemarket as a knapsak problemPeter LindbergDepartment of Mathematis, Åbo Akademi University, Fänriksgatan 3, 20500 Åbo, Finlandemail: plindber�abo.�AbstratWe present a new approah for studying the problem of optimalhedging of a European option in a �nite and omplete disrete-timemarket model. We onsider partial hedging strategies that maximizethe suess probability or minimize the expeted shortfall under a ostonstraint and show that these problems an be treated as so alledknapsak problems, whih are a widely researhed subjet in linearprogramming. This observation gives us better understanding of theproblem of optimal hedging in disrete time.1 IntrodutionIn this paper we work with a �nite, arbitrage-free and omplete marketmodel in disrete time. It is a well-known fat that a European optionan be hedged perfetly in suh a market and that the prie of aperfet hedge is equal to the unique arbitrage-free prie of the option.However, the seller of the option might not be willing to use all themoney he has reeived from selling the option to onstrut a hedgingstrategy. She/he may instead want to reate only a partial hedge. Thiskind of a hedge osts less than a perfet one but fores the investor tofae the risk of a shortfall.There are di�erent ways to measure the risk that an investor whouses a partial hedge must take. In this paper the optimality is mea-sured in terms of suess probability (i.e. the probability that short-fall will not our) and in terms of expeted shortfall, when a ostonstraint is given. Föllmer and Leukert [4℄, [5℄ and Föllmer and1

http://arxiv.org/abs/0910.5101v1


Shied [6℄ have studied these problems in both disrete and ontinuoustime. They searh an optimal solution among admissible strategies,i.e. strategies whih are self-�naning and whose value proesses arenon-negative. Their solution tehniques are mainly based on di�erentappliations of Neyman-Pearson lemma. Runggaldier, Trivellato andVargiolu [10℄, Favero [2℄, Favero and Vargiolu [3℄ and Sagnellato andVargiolu [11℄ study the problems via dynami programming in bino-mial and multinomial models in the ase where the strategies are onlyrequired to be self-�naning.The main ontribution of this paper is that these types of partialhedging problems an be redued to knapsak problems (see Setion2.3 for a desription of a knapsak problem). In partiular, this newapproah allows us to prove some of the existing results in an alterna-tive way. Gathering the results under knapsak theory helps us alsoto see interestingly how admissibility ondition a�ets the optimal so-lutions.The partial hedging problems overed in this paper are presentedin Setion 2. In Setion 3, it is shown that the problem of maximizingsuess probability under admissibility onstraint an be redued toa 0-1 knapsak problem. An approximative algorithm for solving theproblem is obtained by studying a related ontinuous knapsak prob-lem. Comparison with the Neyman-Pearson-based results in Föllmerand Shied [6℄ is also arried out. In Setion 4 we will prove that if ad-missibility onstraint is omitted, the suess probability is maximizedby an optimal quasi-repliating strategy, i.e. a strategy that repliatesthe option in all but one state. In Setions 5 and 6 we onsider theproblem of �nding a strategy that minimizes the expeted shortfall.A knapsak problem approah is used to show how admissibility on-straint a�ets the solutions. An alternative proof for the result inSagnellato and Vargiolu [11℄, p.148, will be given.2 Partial hedging problems and knapsak problems2.1 Market modelThe market model that we work with in this paper is based on a �nite�ltered probability spae (Ω,F , {Fi}
T
i=0,P), where Ω = {ω1, . . . , ωn},

F0 = {∅,Ω}, FT = F = P(Ω) and P({ωi}) > 0 for all ωi ∈ Ω. Here
P(Ω) denotes the set of all subsets of Ω. We set T to be equal to thematurity date of the European option whih we want to hedge.2



The pries of the d+ 1 assets on the market follow a d+ 1-dimen-sional non-negative {Fi}-adapted stohasti proess {St, t = 0, . . . , T},where
St = (S

(0)
t , S

(1)
t , . . . , S

(d)
t )and S(i)

t is the value of asset i at time t. However, we will follow theapproah in Föllmer and Shied [6℄ and present all values in units ofthe numéraire asset S0, whose value therefore is assumed to be stritlypositive at all times. The disounted prie of asset i at time t (i.e. itsvalue in units of the numéraire asset S0) is given by X(i)
t := S

(i)
t /S

(0)
tand the orresponding prie proess is {Xt, t = 0, . . . , T}, where

Xt = (1,X
(1)
t , . . . ,X

(d)
t ).A trading strategy is an Rd+1-valued {Fi}-preditable stohastiproess ξ = {ξt, t = 0, . . . , T}, where

ξt = (ξ
(0)
t , ξ

(1)
t , . . . , ξ

(d)
t )and ξ(i)t is the quantity of asset i in the portfolio at time t. The valueproess V = {Vt, t = 0, . . . , T} of ξ is de�ned through

Vt = ξt ·Xt =

d
∑

i=0

ξ
(i)
t X

(i)
t .A strategy ξ is alled self-�naning if

ξt ·Xt = ξt+1 ·Xtfor all t = 0, . . . , T − 1. A self-�naning strategy ξ is alled admissibleif its value proess satis�es Vt ≥ 0 for all t = 0, . . . , T .We assume that the market is arbitrage-free and omplete and let
P∗ denote the unique equivalent martingale measure. Moreover, H isa disounted European ontingent laim, i.e. a non-negative randomvariable on (Ω,FT ,P). It is known that H an be hedged perfetly,i.e. there exists a self-�naning strategy ξ suh that H = ξT ·XT . Theinitial ost of this repliating strategy is equal to the unique disountedarbitrage-free prie of H and is given by πH = E∗(H), where πH isexpressed in units of the numéraire asset.Remark 2.1. Completeness is usually de�ned to mean that every non-negative FT -measurable random variable an be repliated. However, it3



is easy to show that in our �nite market the same holds for an arbitraryrandom variable. This an be done by studying separately its positiveand negative part.Remark 2.2. It is well known that the value proess V of a self-�naning strategy ξ satis�es
Vt = V0 +

t
∑

i=1

ξi · (X i −X i−1).Moreover, in a �nite probability spae it is easy to show that V isalways a P∗-martingale.2.2 Partial hedging problemsNext we �x an upper bound v < E∗(H) for the initial payment (innuméraire units) that the investor wants to use for reating a hedgingstrategy. Under this ost onstraint we try to �nd an optimal partialhedging strategy. The problems onsidered in this paper are statedbelow. In problems A and B optimality is measured in terms of su-ess probability, in C and D through expeted shortfall. Note that inproblems A and C the optimal solution is searhed among admissiblestrategies, whereas in B and D we only require that the strategies areself-�naning.Problem A. Find an admissible strategy whose value proess V max-imizes P(VT ≥ H) under the onstraint V0 ≤ v.Problem B. Find a self-�naning strategy whose value proess V max-imizes P(VT ≥ H) under the onstraint V0 ≤ v.Referring to the disussion in Föllmer and Shied [6℄, p.341 we statethat the problem of minimizing the expeted shortfall E[(H − VT )+]an be simpli�ed to the following problems:Problem C. Find an admissible strategy whose value proess V max-imizes E(VT ) under onstraints VT ≤ H and V0 ≤ v.Problem D. Find a self-�naning strategy whose value proess Vmaximizes E(VT ) under onstraints VT ≤ H and V0 ≤ v.
4



2.3 The knapsak problemThe main purpose of this paper is to show that the partial hedgingproblems A, C and D above an be redued to knapsak problems.The knapsak problem is usually illustrated as follows (see e.g Dantzig[1℄, p.273 or Martello and Toth [8℄, p.1): A traveller has to �ll aknapsak of a ertain size c by seleting some of n objets havingsizes wi, i = 1, . . . , n, respetively. The �omfort� or �gain� given bythe objets is measured with numbers gi, i = 1, . . . , n, respetively.The traveller wants to selet objets that give her/him the maximaltotal �omfort� or �gain� under the onstraint that the total size ofthe hosen objets will not exeed the knapsak size c. We model apossible deision by an n-dimensional binary vetor x whose elementssatisfy
xi =

{

1 if object i is selected
0 otherwise.Mathematially, we have to �nd an n-dimensional binary vetor x thatmaximizes

n
∑

i=1

gixiamong all binary vetors satisfying
n

∑

i=1

wixi ≤ c.This problem is ommonly referred to as the 0-1 knapsak problem. Ifit is possible to hoose any fration of an objet, i.e. if the deisionvetor an be of the form 0 ≤ xi ≤ 1, i = 1, . . . , n, we all the problema ontinuous knapsak problem. The solution value of a ontinuousknapsak problem is learly an upper bound for the solution value ofthe orresponding 0-1 knapsak problem.3 Maximizing the suess probability under admissibil-ity ondition (Problem A)We will �rst present brie�y how Problem A is treated using Neyman-Pearson lemmas in Föllmer and Shied [6℄, pp.333-339. After thatit will be shown that the same results an be aomplished throughknapsak problem theory. Finally, we will disuss an approximativealgorithm for solving Problem A. 5



3.1 Neyman-Pearson approahThe following result an be found with its proof in Föllmer and Shied[6℄, p.335. Reall that v is the upper bound for the initial payment wewant to use to set up a hedging strategy.Theorem 3.1. Assume that the set ΓA ∈ FT maximizes the probability
P(Γ) among all sets Γ ∈ FT satisfying the onstraint

E∗(H · 1Γ) ≤ v. (1)Then the repliating strategy ξA of the option HA := H · 1ΓA solvesProblem A. Moreover, ΓA = {V A
T ≥ H}, where V A is the value proessof the strategy ξA.In Föllmer and Shied [6℄ the authors de�ne the measure

dQ :=
H

E∗(H)
dP∗and onsider the generalized density dP/dQ that is reeived from theLebesque deomposition. For our purposes it is enough to know thatin our �nite probability spae this density takes the form

dP

dQ
(ωi) :=

{

pi/qi if Q(ωi) 6= 0
+∞ if Q(ωi) = 0,

(2)where
pi := P(ωi) (3)and

qi := Q(ωi) =
P∗(ωi)H(ωi)

E∗(H)
. (4)One α := v/E∗(H) is de�ned, the level

c∗ := inf

{

c ∈ R+|Q

(

dP

dQ
> c · E∗(H)

)

≤ α

} (5)is introdued and it is shown, using Neyman-Pearson lemma, that if
Q(dP/dQ > c∗ · E∗(H)) = α, (6)then ΓA = {dP/dQ > c∗ · E∗(H)} is an optimal set desribed in The-orem 3.1. 6



To overome the ase when equation (6) is not satis�ed, the in-diator funtion 1ΓA is replaed by a randomized test, i.e. an FT -measurable funtion ψ suh that 0 ≤ ψ ≤ 1. After de�ningR as the setof all randomized tests, the authors onsider the optimization problemof �nding a randomized test ψ∗ ∈ R that maximizes the expetation
E(ψ) among all ψ ∈ R satisfying the onstraint E∗(H · ψ) ≤ v. Suhan optimal randomized test is by generalized Neyman-Pearson lemmagiven by

ψNP = 1{dP/dQ>c∗·E∗(H)} + γ · 1{dP/dQ=c∗·E∗(H)}, (7)where
γ =

α− Q(dP/dQ > c∗ · E∗(H))

Q(dP/dQ = c∗ · E∗(H))
.Note that Q(dP/dQ = c∗ · E∗(H)) > 0 in our �nite probability spae,i.e. γ is well-de�ned.Finally it is shown that the repliating strategy ξ∗ of the option

H∗ := H · ψ∗ atually maximizes the expetation of the so alledsuess ratio ψV among all admissible strategies with V0 ≤ v and thatthe suess ratio ψV ∗ of ξ∗ oinides with ψ∗.3.2 Knapsak approahIn our �nite market model the problem of �nding an optimal set ΓAdesribed in Theorem 3.1 is, in fat, a 0-1 knapsak problem. To seethis, note that for any Γ ∈ FT we have that
H1Γ =

∑

ωi∈Γ

H1ωi
.Thus, using (4) we an write the onstraint (1) in form

∑

ωi∈Γ

qi ≤ α :=
v

E∗(H)
.Further, P(Γ) an be written as ∑

ωi∈Γ pi, where pi is as in (3).Sine Ω onsists of n elements, we see that �nding an optimalsuess set Γ is equal to �nding an optimal n-dimensional binary vetor
xA. The problem of �nding ΓA an thus be written as the following0-1 knapsak problem: 7



Problem A
′. Find an n-dimensional binary vetor xA that maximizes

n
∑

i=1

pixiunder the onstraint
n

∑

i=1

qixi ≤ α.We will below use the notation zA for the value of the optimalsolution, i.e.
zA :=

n
∑

i=1

pix
A
i = P(V A

T ≥ H), (8)where the latter equality follows from the fat ΓA = {V A
T ≥ H} men-tioned in Theorem 3.1.Many numerial algorithms have been developed to solve 0-1 knap-sak problems. A nie overview of some of these tehniques an befound in Martello and Toth [8℄ and in Martello et al. [9℄. However,exat solution algorithms an be di�ult to implement in a large prob-ability spae, where n is huge. A good approximative algorithm willbe given in Setion 3.3.Remark 3.2. It is often assumed (see e.g. Martello and Toth [8℄,p.14), that the variables pi, qi and α in a 0-1 knapsak problem arepositive integers. This assumption is a orner stone even for some nu-merial algorithms. However, in Problem A′ above we allow 0 < pi ≤ 1and 0 ≤ qi ≤ 1. Algorithms that are based on the integer assump-tion, annot naturally be used in this ase. Note that our assumption

v < E∗(H), or equivalently α < 1, rules out the possibility of the trivialsolution xi = 1 for all i = 1, 2, . . . , n.Next we will show that �nding an optimal randomized test ψ∗ de-sribed in setion 3.1 an alternatively be seen as a ontinuous knap-sak problem (f. Setion 2.3). The key point is that in our �niteprobability spae there is a one-to-one orrespondene between the setof all randomized tests and the set of all n-dimensional vetors x satis-fying 0 ≤ xi ≤ 1 for i = 1, . . . , n. This orrespondene is simply givenby equation
ψ(ωi) = xi. (9)8



Using (3) and (4) we see that the problem of �nding an optimal ψ∗ isequivalent to �nding an n-dimensional vetor x∗ that maximizes
n

∑

i=1

pixiunder onstraints
n

∑

i=1

qixi ≤ α :=
v

E∗(H)
, 0 ≤ xi ≤ 1, i = 1, . . . , n.Assume now that the array (ω1, . . . , ωn) is ordered so that the quo-tient pi/qi is non-inreasing. Here we use the onvention pi/qi = +∞,if qi = 0. Thus, the most preferable states, the items that give thehighest probability ompared to ost, are plaed �rst in the array.Suppose now that we onseutively hoose the items, starting fromthe one giving the best probability over ost quotient and ontinuinguntil we �nd the �rst item s that we no longer an a�ord to hoose.In other words, we de�ne the ritial element

s := min

{

j :

j
∑

i=1

qi > α

}

. (10)Due to assumption α < 1 we know that 1 ≤ s ≤ n. In Martelloand Toth [8℄, pp.16,17 it is proved, by a simple ontradition, that anoptimal solution to the ontinuous knapsak problem is given by
x∗i =











1, i = 1, . . . , s − 1
α−

Ps−1

j=1
qj

qs
, i = s

0, i = s+ 1, . . . , n.

(11)We denote the optimal solution value by
z∗ :=

n
∑

i=1

pix
∗
i .The value z∗ is an upper bound, the so alled Dantzig's bound for theoptimal value zA in (8). If ∑s−1

i=1 qi = α, then zA = z∗. Note theanalogy with the Neyman-Pearson based result in (6).Note that the di�erene between the optimal solutions ψNP in (7)and ψ∗(ωi) = x∗i , i = 1, . . . , n (f. (11)) is that the Neyman-Pearson9



approah tells us to searh a ritial level L := {dP/dQ = c∗ · E∗(H)}whereas the knapsak approah suggests looking for a ritial element
ωs. The de�nitions of c∗ in (5) and s in (10) give that {ωs} ⊆ L. Infat, there is no restrition on the values of an optimal randomizedtest ψ on the ritial set L exept that the level ondition

EQ(ψ1{dP/dQ=c∗·E∗(H)}) = α− Q(dP/dQ > c∗ · E∗(H))must be satis�ed. This fat is mentioned also in Föllmer and Leukert[5℄, p.126.The partiular form in (2) that the derivative dP/dQ takes in a�nite probability spae allows us to interpret the Neyman-Pearson re-sult in ompliane with the knapsak approah, i.e. that we hoose tohedge against the states having the best probability over ost quotient.This �ost-e�etiveness� interpretation of the Neyman-Pearson lemmais mentioned already in Kadane [7℄.3.3 Greedy algorithmWe get an approximative solution to Problem A′ if we set x∗s = 0 in(11). This tehnique is alled the greedy algorithm in Martello andToth [8℄. The resulting solution learly satis�es the ost onstraintdue to the de�nition of the ritial element. Its solution value
zG =

s−1
∑

i=1

pisatis�es
zG ≤ zA ≤ z∗ = zG +

α−
∑s−1

i=1 qi
qs

ps ≤ zG + ps.In other words, when using the greedy algorithm, the error is boundedabove by ps.We an expet the greedy algorithm to work well in �nanial ap-pliations, sine the probability spae is usually relatively large, i.e.the probability for a single ωi is small. For example, in a binomialmodel with N steps, the maximal probability for an individual ω is
pmax = max{p, 1−p}N , where p is the probability for an upward moveduring a single period. Even if p would be as high as 0.9, we wouldstill have that, for instane for N = 100, pmax would be as small as
≈ 2.7 × 10−5. 10



Note that we an in general reah higher probability by trunatingthe ritial xs in (11) than if we would trunate the entire set L :=
{dP/dQ = c∗ · E∗(H)} in (7). Indeed, after hoosing all the elementsin {dP/dQ > c∗ ·E∗(H)} we ould still a�ord to hoose some elementsin L.However, from the omputational point of view, it is often favor-able to group together the elements having the same pi/qi-ratio. Forexample, onsider a binomial model of N steps. Then Ω onsists of 2Nelements. If H is an option whose value depends only on the value ofthe underlying asset at maturity, the ratio pi/qi has the same value forall paths that lead to the same asset prie at maturity. Thus, insteadof ordering the 2N elements separately, we may order the pi/qi-levels,whose number is at most N+1, and searh the ritial level L. Finally,we an study the elements in L separately to see how many of them wean a�ord to hedge against. As a result, we obtain the same solutionas with the greedy algorithm, but with less omputational e�ort, sine
N + 1 ≪ 2N .4 Maximizing the suess probability when admissibil-ity is not required (Problem B)Next theorem shows that we an with any initial apital v0 < E∗(H)always reate a so alled quasi-repliating strategy, in other words aself-�naning strategy that repliates H for all exept one ω′. Thisfat is then used to give a solution to Problem B. The notion quasi-repliating strategy is disussed in ontext of binomial model e.g. inFavero [2℄ and Favero and Vargiolu [3℄.Theorem 4.1. Take v0 < E∗(H) and an arbitrary ω′ ∈ Ω. Then wean onstrut a strategy ξ whose value proess V satis�es V0 = v0 and
VT (ω) = H(ω) for all ω ∈ Ω \ ω′. Moreover,

VT (ω′) =
v0 − E∗(H1Ω\ω′)

P∗(ω′)
.Proof. Note that VT (ω′) an be negative. However, due to omplete-ness, there is a self-�naning strategy ξ with value proess V thatrepliates the random variable

H ′ = H1Ω\ω′ +
v0 − E∗(H1Ω\ω′)

P∗(ω′)
1ω′ .11



(See Remark 2.1). Moreover, V0 = E∗(VT ) = E∗(H ′) = v0, sine V isa P∗-martingale.Corollary 4.2. Let v0 ≤ v and ωi suh that
P(ωi) = min

ω∈Ω
P(ω).Then the repliating strategy ξB for the random variable

HB = H1Ω\ωi
+ λ1ωi

,where
λ =

v0 − E∗(H1Ω\ωi
)

P∗(ωi)is a solution to Problem B.5 Minimizing expeted shortfall under admissibilityondition (Problem C)The following result is a simpli�ed version of Theorem 8.10 in Föllmerand Shied [6℄, p.341, where the result is proved for a general lossfuntion and in a ase where the market does not have to be omplete.Theorem 5.1. Assume that there is a randomized test ψC ∈ R thatmaximizes the expetation E(Hψ) among all ψ ∈ R satisfying the on-straint E∗(H · ψ) ≤ v. Then the repliating strategy ξC of the option
HC := H · ψC solves Problem C.An optimal randomized test an be found by using the generalizedNeyman-Pearson lemma, as is done in Föllmer and Shied [6℄, p.347.An alternative approah is to onsider the problem of �nding ψC as aontinuous knapsak problem. Reall (4) and (9) and de�ne

mi := M(ωi) :=
P(ωi)H(ωi)

E(H)
. (12)Then the problem of �nding an optimal randomized test an be writtenin the following form.Problem C

′. Find an n-dimensional vetor xC that maximizes
n

∑

i=1

mixi12



under onstraints
n

∑

i=1

qixi ≤ α :=
v

E∗(H)
, 0 ≤ xi ≤ 1, i = 1, . . . , n.This time the array (ω1, . . . , ωn) is ordered so that the quotient

mi/qi is non-inreasing. Equations (4) and (12) give that
mi

qi
=

E∗(H)

E(H)

pi

p∗i
,where pi = P(ωi) and p∗i = P∗(ωi). Thus, the states are ordered so thatthe quotient pi/p

∗
i is non-inreasing. The ritial element t is de�nedas

t := min

{

j :

j
∑

i=1

qi > α

}and an optimal solution is by Theorem 2.1 in Martello and Toth [8℄,p.16 given by
xC

i =











1, i = 1, . . . , t− 1
α−

Pt−1

j=1
qj

qt
, i = t

0, i = t+ 1, . . . , n.Note that xC does not in general oinide with x∗ in (11) sine thearray (ω1, . . . , ωn) is ordered di�erently.6 Minimizing expeted shortfall when admissibility isnot required (Problem D)Favero [2℄ and Favero and Vargiolu [3℄ study the problem of minimizingexpeted shortfall in the speial ase of a binomial model, when admis-sibility is not required. Sagnellato and Vargiolu [11℄ disuss the sameproblem in a more general multinomial model. In those papers, theauthors prove their results via dynami programming. In this paperwe provide an alternative approah by showing that even this probleman be redued to a knapsak problem. To begin with, we state thefollowing theorem.Theorem 6.1. Assume that the random variable XD maximizes E(X)among all random variables X that satisfy X ≤ H and E∗(X) ≤ v.Then the repliating strategy ξD for XD solves Problem D.13



Proof. Take any self-�naning strategy ξ with value proess V suhthat V0 ≤ v and VT ≤ H. The random variable VT satis�es E∗(VT ) =
V0 ≤ v by the martingale property. Thus, we have by assumption that

E(VT ) ≤ E(XD).On the other hand, for the strategy ξD with the value proess V D wehave
V D

T = XD ≤ Hand
V D

0 = E∗(V D
T ) = E∗(XD) ≤ v.Further, the maximal expetation is attained by using strategy ξ

D,sine
E(V D

T ) = E(XD).Remark 6.2. Note that we annot use in Theorem 6.1 a similar ap-proah via randomized tests that is used in Theorem 5.1. In Problem Cthe optimal solution is searhed among strategies whose value proesses
V satisfy 0 ≤ VT ≤ H, whih enables us to express VT as the produtof the laim H and a randomized test ψ. In Problem D, however, thevalue proess VT may beome negative. On the other hand, the moregeneral approah in Theorem 6.1 ould be used to redue Problem C.Instead of searhing for an optimal randomized test we ould look foran optimal random variable XC that maximizes E(X) among all ran-dom variables X satisfying the onstraints 0 ≤ X ≤ H and E∗(X) ≤ v.In other words, the only di�erene would be the additional onstraint
X ≥ 0, whih is onneted with the admissibility ondition.Denote pi := P(ωi), p∗i := P∗(ωi) and hi := H(ωi). The problem of�nding XD obviously takes the following form in our �nite probabilityspae:Problem D

′. Find a vetor xD that maximizes
n

∑

i=1

xipiunder onstraints
n

∑

i=1

xip
∗
i ≤ v, xi ≤ hi, i = 1, . . . , n.14



This is almost similar to the ontinuous knapsak problem C′. Theonly di�erene is that instead of onstraint 0 ≤ xi ≤ 1 we have xi ≤ hi,i.e. the values of the deision variables xi are unbounded below andbounded by a deterministi, but varying non-negative boundary above.The problem an be solved in a way that resembles the solution methodfor a ontinuous knapsak problem.Assume that the array of the states ωi, i = 1, . . . , n is ordered sothat
p1

p∗1
≥ . . . ≥

pn

p∗n
.The following theorem gives a solution to Problem D′.Theorem 6.3. An optimal solution xD to Problem D′ is given by

xD
i = hi for i = 1, . . . , n− 1

xD
n =

v −
∑n−1

i=1 hip
∗
i

p∗n
. (13)Proof. We prove our result in a way that resembles the proof of The-orem 2.1 in Martello and Toth [8℄. Firstly note that for any optimalsolution x it has to hold that

n
∑

i=1

xip
∗
i = v. (14)Without any loss of generality we an assume that pi/p

∗
i > pi+1/p

∗
i+1for all i. Let x∗ be an optimal solution to Problem D′ and supposethat x∗k < hk for some k < n. Now if we take ǫ > 0 small enough,we ould inrease x∗k by ǫ and derease x∗n by ǫp∗k/p∗n. But this wouldinrease the value of our objetive funtion by ǫ(pk − pnp

∗
k/p

∗
n) (> 0sine pk/p

∗
k > pn/p

∗
n) and give us a ontradition. Therefore, x∗k = hkfor k < n is neessary for an optimal solution x∗. The statement (13)follows from (14).Thus, we have proved that if we hoose ωi suh that

dP

dP∗
(ωi) = min

ω∈Ω

dP

dP∗
(ω),then the optimal strategy solving Problem D is by Theorem 6.1 therepliating strategy ξD for the random variable

HD = H1Ω\ωi
+ ϕ1ωi

,15



where
ϕ =

v − E∗(H1Ω\ωi
)

P∗(ωi)
.Note that this result oinides with the result in Sagnellato and Var-giolu [11℄, pp.148,149, where the authors prove it for a omplete multi-nomial model via dynami programming.The knapsak problem approah helps us to see the di�erene be-tween the optimal strategies when admissibility is or is not required,i.e. the di�erene between the solutions to Problems C and D. In bothases we arrange the states similarly, suh that the ratio P/P∗ is non-inreasing. Then we hoose onseutively ω's for whih we want tohedge the option perfetly, starting from ω1 that has the largest ratio.When admissibility is required, the ritial element ωt is the �rst onethat we no longer an a�ord to hoose. The remaining apital is thenused to onstrut a partial hedge for this state. If the admissibilityondition is dropped, we an ontinue hoosing ω's until we reah thelast one, ωn, having the least ratio. The value HD(ωn) is then adjustedso that the ost onstraint is satis�ed.AknowledgementsI want to thank my supervisor Paavo Salminen for guidane and stim-ulating disussions and Esko Valkeila for bringing the idea of quasi-repliating strategies to my attention.Referenes[1℄ Dantzig,G.B.: Disrete-Variable Extremum Problems, Oper. Res. 5:266-277 (1957)[2℄ Favero,G.: Shortfall Risk Minimization under Model Unertainty inthe Binomial Case: Adaptive and Robust Approahes, Math. MethodsOper. Res. 53: 493-503 (2001)[3℄ Favero,G., Vargiolu,T.: Shortfall Risk Minimising Strategies in TheBinomial Model: Charaterisation and Convergene, Math. MethodsOper. Res. 64: 237-253 (2006)[4℄ Föllmer,H., Leukert,P.: Quantile hedging, Finane Stoh. 3: 251-273(1999)[5℄ Föllmer,H., Leukert,P.: E�ient hedging: Cost versus shortfall risk,Finane Stoh. 4: 117-146 (2000)16
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