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Optimal partial hedging in a dis
rete-timemarket as a knapsa
k problemPeter LindbergDepartment of Mathemati
s, Åbo Akademi University, Fänriksgatan 3, 20500 Åbo, Finlandemail: plindber�abo.�Abstra
tWe present a new approa
h for studying the problem of optimalhedging of a European option in a �nite and 
omplete dis
rete-timemarket model. We 
onsider partial hedging strategies that maximizethe su

ess probability or minimize the expe
ted shortfall under a 
ost
onstraint and show that these problems 
an be treated as so 
alledknapsa
k problems, whi
h are a widely resear
hed subje
t in linearprogramming. This observation gives us better understanding of theproblem of optimal hedging in dis
rete time.1 Introdu
tionIn this paper we work with a �nite, arbitrage-free and 
omplete marketmodel in dis
rete time. It is a well-known fa
t that a European option
an be hedged perfe
tly in su
h a market and that the pri
e of aperfe
t hedge is equal to the unique arbitrage-free pri
e of the option.However, the seller of the option might not be willing to use all themoney he has re
eived from selling the option to 
onstru
t a hedgingstrategy. She/he may instead want to 
reate only a partial hedge. Thiskind of a hedge 
osts less than a perfe
t one but for
es the investor tofa
e the risk of a shortfall.There are di�erent ways to measure the risk that an investor whouses a partial hedge must take. In this paper the optimality is mea-sured in terms of su

ess probability (i.e. the probability that short-fall will not o

ur) and in terms of expe
ted shortfall, when a 
ost
onstraint is given. Föllmer and Leukert [4℄, [5℄ and Föllmer and1

http://arxiv.org/abs/0910.5101v1


S
hied [6℄ have studied these problems in both dis
rete and 
ontinuoustime. They sear
h an optimal solution among admissible strategies,i.e. strategies whi
h are self-�nan
ing and whose value pro
esses arenon-negative. Their solution te
hniques are mainly based on di�erentappli
ations of Neyman-Pearson lemma. Runggaldier, Trivellato andVargiolu [10℄, Favero [2℄, Favero and Vargiolu [3℄ and S
agnellato andVargiolu [11℄ study the problems via dynami
 programming in bino-mial and multinomial models in the 
ase where the strategies are onlyrequired to be self-�nan
ing.The main 
ontribution of this paper is that these types of partialhedging problems 
an be redu
ed to knapsa
k problems (see Se
tion2.3 for a des
ription of a knapsa
k problem). In parti
ular, this newapproa
h allows us to prove some of the existing results in an alterna-tive way. Gathering the results under knapsa
k theory helps us alsoto see interestingly how admissibility 
ondition a�e
ts the optimal so-lutions.The partial hedging problems 
overed in this paper are presentedin Se
tion 2. In Se
tion 3, it is shown that the problem of maximizingsu

ess probability under admissibility 
onstraint 
an be redu
ed toa 0-1 knapsa
k problem. An approximative algorithm for solving theproblem is obtained by studying a related 
ontinuous knapsa
k prob-lem. Comparison with the Neyman-Pearson-based results in Föllmerand S
hied [6℄ is also 
arried out. In Se
tion 4 we will prove that if ad-missibility 
onstraint is omitted, the su

ess probability is maximizedby an optimal quasi-repli
ating strategy, i.e. a strategy that repli
atesthe option in all but one state. In Se
tions 5 and 6 we 
onsider theproblem of �nding a strategy that minimizes the expe
ted shortfall.A knapsa
k problem approa
h is used to show how admissibility 
on-straint a�e
ts the solutions. An alternative proof for the result inS
agnellato and Vargiolu [11℄, p.148, will be given.2 Partial hedging problems and knapsa
k problems2.1 Market modelThe market model that we work with in this paper is based on a �nite�ltered probability spa
e (Ω,F , {Fi}
T
i=0,P), where Ω = {ω1, . . . , ωn},

F0 = {∅,Ω}, FT = F = P(Ω) and P({ωi}) > 0 for all ωi ∈ Ω. Here
P(Ω) denotes the set of all subsets of Ω. We set T to be equal to thematurity date of the European option whi
h we want to hedge.2



The pri
es of the d+ 1 assets on the market follow a d+ 1-dimen-sional non-negative {Fi}-adapted sto
hasti
 pro
ess {St, t = 0, . . . , T},where
St = (S

(0)
t , S

(1)
t , . . . , S

(d)
t )and S(i)

t is the value of asset i at time t. However, we will follow theapproa
h in Föllmer and S
hied [6℄ and present all values in units ofthe numéraire asset S0, whose value therefore is assumed to be stri
tlypositive at all times. The dis
ounted pri
e of asset i at time t (i.e. itsvalue in units of the numéraire asset S0) is given by X(i)
t := S

(i)
t /S

(0)
tand the 
orresponding pri
e pro
ess is {Xt, t = 0, . . . , T}, where

Xt = (1,X
(1)
t , . . . ,X

(d)
t ).A trading strategy is an Rd+1-valued {Fi}-predi
table sto
hasti
pro
ess ξ = {ξt, t = 0, . . . , T}, where

ξt = (ξ
(0)
t , ξ

(1)
t , . . . , ξ

(d)
t )and ξ(i)t is the quantity of asset i in the portfolio at time t. The valuepro
ess V = {Vt, t = 0, . . . , T} of ξ is de�ned through

Vt = ξt ·Xt =

d
∑

i=0

ξ
(i)
t X

(i)
t .A strategy ξ is 
alled self-�nan
ing if

ξt ·Xt = ξt+1 ·Xtfor all t = 0, . . . , T − 1. A self-�nan
ing strategy ξ is 
alled admissibleif its value pro
ess satis�es Vt ≥ 0 for all t = 0, . . . , T .We assume that the market is arbitrage-free and 
omplete and let
P∗ denote the unique equivalent martingale measure. Moreover, H isa dis
ounted European 
ontingent 
laim, i.e. a non-negative randomvariable on (Ω,FT ,P). It is known that H 
an be hedged perfe
tly,i.e. there exists a self-�nan
ing strategy ξ su
h that H = ξT ·XT . Theinitial 
ost of this repli
ating strategy is equal to the unique dis
ountedarbitrage-free pri
e of H and is given by πH = E∗(H), where πH isexpressed in units of the numéraire asset.Remark 2.1. Completeness is usually de�ned to mean that every non-negative FT -measurable random variable 
an be repli
ated. However, it3



is easy to show that in our �nite market the same holds for an arbitraryrandom variable. This 
an be done by studying separately its positiveand negative part.Remark 2.2. It is well known that the value pro
ess V of a self-�nan
ing strategy ξ satis�es
Vt = V0 +

t
∑

i=1

ξi · (X i −X i−1).Moreover, in a �nite probability spa
e it is easy to show that V isalways a P∗-martingale.2.2 Partial hedging problemsNext we �x an upper bound v < E∗(H) for the initial payment (innuméraire units) that the investor wants to use for 
reating a hedgingstrategy. Under this 
ost 
onstraint we try to �nd an optimal partialhedging strategy. The problems 
onsidered in this paper are statedbelow. In problems A and B optimality is measured in terms of su
-
ess probability, in C and D through expe
ted shortfall. Note that inproblems A and C the optimal solution is sear
hed among admissiblestrategies, whereas in B and D we only require that the strategies areself-�nan
ing.Problem A. Find an admissible strategy whose value pro
ess V max-imizes P(VT ≥ H) under the 
onstraint V0 ≤ v.Problem B. Find a self-�nan
ing strategy whose value pro
ess V max-imizes P(VT ≥ H) under the 
onstraint V0 ≤ v.Referring to the dis
ussion in Föllmer and S
hied [6℄, p.341 we statethat the problem of minimizing the expe
ted shortfall E[(H − VT )+]
an be simpli�ed to the following problems:Problem C. Find an admissible strategy whose value pro
ess V max-imizes E(VT ) under 
onstraints VT ≤ H and V0 ≤ v.Problem D. Find a self-�nan
ing strategy whose value pro
ess Vmaximizes E(VT ) under 
onstraints VT ≤ H and V0 ≤ v.
4



2.3 The knapsa
k problemThe main purpose of this paper is to show that the partial hedgingproblems A, C and D above 
an be redu
ed to knapsa
k problems.The knapsa
k problem is usually illustrated as follows (see e.g Dantzig[1℄, p.273 or Martello and Toth [8℄, p.1): A traveller has to �ll aknapsa
k of a 
ertain size c by sele
ting some of n obje
ts havingsizes wi, i = 1, . . . , n, respe
tively. The �
omfort� or �gain� given bythe obje
ts is measured with numbers gi, i = 1, . . . , n, respe
tively.The traveller wants to sele
t obje
ts that give her/him the maximaltotal �
omfort� or �gain� under the 
onstraint that the total size ofthe 
hosen obje
ts will not ex
eed the knapsa
k size c. We model apossible de
ision by an n-dimensional binary ve
tor x whose elementssatisfy
xi =

{

1 if object i is selected
0 otherwise.Mathemati
ally, we have to �nd an n-dimensional binary ve
tor x thatmaximizes

n
∑

i=1

gixiamong all binary ve
tors satisfying
n

∑

i=1

wixi ≤ c.This problem is 
ommonly referred to as the 0-1 knapsa
k problem. Ifit is possible to 
hoose any fra
tion of an obje
t, i.e. if the de
isionve
tor 
an be of the form 0 ≤ xi ≤ 1, i = 1, . . . , n, we 
all the problema 
ontinuous knapsa
k problem. The solution value of a 
ontinuousknapsa
k problem is 
learly an upper bound for the solution value ofthe 
orresponding 0-1 knapsa
k problem.3 Maximizing the su

ess probability under admissibil-ity 
ondition (Problem A)We will �rst present brie�y how Problem A is treated using Neyman-Pearson lemmas in Föllmer and S
hied [6℄, pp.333-339. After thatit will be shown that the same results 
an be a

omplished throughknapsa
k problem theory. Finally, we will dis
uss an approximativealgorithm for solving Problem A. 5



3.1 Neyman-Pearson approa
hThe following result 
an be found with its proof in Föllmer and S
hied[6℄, p.335. Re
all that v is the upper bound for the initial payment wewant to use to set up a hedging strategy.Theorem 3.1. Assume that the set ΓA ∈ FT maximizes the probability
P(Γ) among all sets Γ ∈ FT satisfying the 
onstraint

E∗(H · 1Γ) ≤ v. (1)Then the repli
ating strategy ξA of the option HA := H · 1ΓA solvesProblem A. Moreover, ΓA = {V A
T ≥ H}, where V A is the value pro
essof the strategy ξA.In Föllmer and S
hied [6℄ the authors de�ne the measure

dQ :=
H

E∗(H)
dP∗and 
onsider the generalized density dP/dQ that is re
eived from theLebesque de
omposition. For our purposes it is enough to know thatin our �nite probability spa
e this density takes the form

dP

dQ
(ωi) :=

{

pi/qi if Q(ωi) 6= 0
+∞ if Q(ωi) = 0,

(2)where
pi := P(ωi) (3)and

qi := Q(ωi) =
P∗(ωi)H(ωi)

E∗(H)
. (4)On
e α := v/E∗(H) is de�ned, the level

c∗ := inf

{

c ∈ R+|Q

(

dP

dQ
> c · E∗(H)

)

≤ α

} (5)is introdu
ed and it is shown, using Neyman-Pearson lemma, that if
Q(dP/dQ > c∗ · E∗(H)) = α, (6)then ΓA = {dP/dQ > c∗ · E∗(H)} is an optimal set des
ribed in The-orem 3.1. 6



To over
ome the 
ase when equation (6) is not satis�ed, the in-di
ator fun
tion 1ΓA is repla
ed by a randomized test, i.e. an FT -measurable fun
tion ψ su
h that 0 ≤ ψ ≤ 1. After de�ningR as the setof all randomized tests, the authors 
onsider the optimization problemof �nding a randomized test ψ∗ ∈ R that maximizes the expe
tation
E(ψ) among all ψ ∈ R satisfying the 
onstraint E∗(H · ψ) ≤ v. Su
han optimal randomized test is by generalized Neyman-Pearson lemmagiven by

ψNP = 1{dP/dQ>c∗·E∗(H)} + γ · 1{dP/dQ=c∗·E∗(H)}, (7)where
γ =

α− Q(dP/dQ > c∗ · E∗(H))

Q(dP/dQ = c∗ · E∗(H))
.Note that Q(dP/dQ = c∗ · E∗(H)) > 0 in our �nite probability spa
e,i.e. γ is well-de�ned.Finally it is shown that the repli
ating strategy ξ∗ of the option

H∗ := H · ψ∗ a
tually maximizes the expe
tation of the so 
alledsu

ess ratio ψV among all admissible strategies with V0 ≤ v and thatthe su

ess ratio ψV ∗ of ξ∗ 
oin
ides with ψ∗.3.2 Knapsa
k approa
hIn our �nite market model the problem of �nding an optimal set ΓAdes
ribed in Theorem 3.1 is, in fa
t, a 0-1 knapsa
k problem. To seethis, note that for any Γ ∈ FT we have that
H1Γ =

∑

ωi∈Γ

H1ωi
.Thus, using (4) we 
an write the 
onstraint (1) in form

∑

ωi∈Γ

qi ≤ α :=
v

E∗(H)
.Further, P(Γ) 
an be written as ∑

ωi∈Γ pi, where pi is as in (3).Sin
e Ω 
onsists of n elements, we see that �nding an optimalsu

ess set Γ is equal to �nding an optimal n-dimensional binary ve
tor
xA. The problem of �nding ΓA 
an thus be written as the following0-1 knapsa
k problem: 7



Problem A
′. Find an n-dimensional binary ve
tor xA that maximizes

n
∑

i=1

pixiunder the 
onstraint
n

∑

i=1

qixi ≤ α.We will below use the notation zA for the value of the optimalsolution, i.e.
zA :=

n
∑

i=1

pix
A
i = P(V A

T ≥ H), (8)where the latter equality follows from the fa
t ΓA = {V A
T ≥ H} men-tioned in Theorem 3.1.Many numeri
al algorithms have been developed to solve 0-1 knap-sa
k problems. A ni
e overview of some of these te
hniques 
an befound in Martello and Toth [8℄ and in Martello et al. [9℄. However,exa
t solution algorithms 
an be di�
ult to implement in a large prob-ability spa
e, where n is huge. A good approximative algorithm willbe given in Se
tion 3.3.Remark 3.2. It is often assumed (see e.g. Martello and Toth [8℄,p.14), that the variables pi, qi and α in a 0-1 knapsa
k problem arepositive integers. This assumption is a 
orner stone even for some nu-meri
al algorithms. However, in Problem A′ above we allow 0 < pi ≤ 1and 0 ≤ qi ≤ 1. Algorithms that are based on the integer assump-tion, 
annot naturally be used in this 
ase. Note that our assumption

v < E∗(H), or equivalently α < 1, rules out the possibility of the trivialsolution xi = 1 for all i = 1, 2, . . . , n.Next we will show that �nding an optimal randomized test ψ∗ de-s
ribed in se
tion 3.1 
an alternatively be seen as a 
ontinuous knap-sa
k problem (
f. Se
tion 2.3). The key point is that in our �niteprobability spa
e there is a one-to-one 
orresponden
e between the setof all randomized tests and the set of all n-dimensional ve
tors x satis-fying 0 ≤ xi ≤ 1 for i = 1, . . . , n. This 
orresponden
e is simply givenby equation
ψ(ωi) = xi. (9)8



Using (3) and (4) we see that the problem of �nding an optimal ψ∗ isequivalent to �nding an n-dimensional ve
tor x∗ that maximizes
n

∑

i=1

pixiunder 
onstraints
n

∑

i=1

qixi ≤ α :=
v

E∗(H)
, 0 ≤ xi ≤ 1, i = 1, . . . , n.Assume now that the array (ω1, . . . , ωn) is ordered so that the quo-tient pi/qi is non-in
reasing. Here we use the 
onvention pi/qi = +∞,if qi = 0. Thus, the most preferable states, the items that give thehighest probability 
ompared to 
ost, are pla
ed �rst in the array.Suppose now that we 
onse
utively 
hoose the items, starting fromthe one giving the best probability over 
ost quotient and 
ontinuinguntil we �nd the �rst item s that we no longer 
an a�ord to 
hoose.In other words, we de�ne the 
riti
al element

s := min

{

j :

j
∑

i=1

qi > α

}

. (10)Due to assumption α < 1 we know that 1 ≤ s ≤ n. In Martelloand Toth [8℄, pp.16,17 it is proved, by a simple 
ontradi
tion, that anoptimal solution to the 
ontinuous knapsa
k problem is given by
x∗i =











1, i = 1, . . . , s − 1
α−

Ps−1

j=1
qj

qs
, i = s

0, i = s+ 1, . . . , n.

(11)We denote the optimal solution value by
z∗ :=

n
∑

i=1

pix
∗
i .The value z∗ is an upper bound, the so 
alled Dantzig's bound for theoptimal value zA in (8). If ∑s−1

i=1 qi = α, then zA = z∗. Note theanalogy with the Neyman-Pearson based result in (6).Note that the di�eren
e between the optimal solutions ψNP in (7)and ψ∗(ωi) = x∗i , i = 1, . . . , n (
f. (11)) is that the Neyman-Pearson9



approa
h tells us to sear
h a 
riti
al level L := {dP/dQ = c∗ · E∗(H)}whereas the knapsa
k approa
h suggests looking for a 
riti
al element
ωs. The de�nitions of c∗ in (5) and s in (10) give that {ωs} ⊆ L. Infa
t, there is no restri
tion on the values of an optimal randomizedtest ψ on the 
riti
al set L ex
ept that the level 
ondition

EQ(ψ1{dP/dQ=c∗·E∗(H)}) = α− Q(dP/dQ > c∗ · E∗(H))must be satis�ed. This fa
t is mentioned also in Föllmer and Leukert[5℄, p.126.The parti
ular form in (2) that the derivative dP/dQ takes in a�nite probability spa
e allows us to interpret the Neyman-Pearson re-sult in 
omplian
e with the knapsa
k approa
h, i.e. that we 
hoose tohedge against the states having the best probability over 
ost quotient.This �
ost-e�e
tiveness� interpretation of the Neyman-Pearson lemmais mentioned already in Kadane [7℄.3.3 Greedy algorithmWe get an approximative solution to Problem A′ if we set x∗s = 0 in(11). This te
hnique is 
alled the greedy algorithm in Martello andToth [8℄. The resulting solution 
learly satis�es the 
ost 
onstraintdue to the de�nition of the 
riti
al element. Its solution value
zG =

s−1
∑

i=1

pisatis�es
zG ≤ zA ≤ z∗ = zG +

α−
∑s−1

i=1 qi
qs

ps ≤ zG + ps.In other words, when using the greedy algorithm, the error is boundedabove by ps.We 
an expe
t the greedy algorithm to work well in �nan
ial ap-pli
ations, sin
e the probability spa
e is usually relatively large, i.e.the probability for a single ωi is small. For example, in a binomialmodel with N steps, the maximal probability for an individual ω is
pmax = max{p, 1−p}N , where p is the probability for an upward moveduring a single period. Even if p would be as high as 0.9, we wouldstill have that, for instan
e for N = 100, pmax would be as small as
≈ 2.7 × 10−5. 10



Note that we 
an in general rea
h higher probability by trun
atingthe 
riti
al xs in (11) than if we would trun
ate the entire set L :=
{dP/dQ = c∗ · E∗(H)} in (7). Indeed, after 
hoosing all the elementsin {dP/dQ > c∗ ·E∗(H)} we 
ould still a�ord to 
hoose some elementsin L.However, from the 
omputational point of view, it is often favor-able to group together the elements having the same pi/qi-ratio. Forexample, 
onsider a binomial model of N steps. Then Ω 
onsists of 2Nelements. If H is an option whose value depends only on the value ofthe underlying asset at maturity, the ratio pi/qi has the same value forall paths that lead to the same asset pri
e at maturity. Thus, insteadof ordering the 2N elements separately, we may order the pi/qi-levels,whose number is at most N+1, and sear
h the 
riti
al level L. Finally,we 
an study the elements in L separately to see how many of them we
an a�ord to hedge against. As a result, we obtain the same solutionas with the greedy algorithm, but with less 
omputational e�ort, sin
e
N + 1 ≪ 2N .4 Maximizing the su

ess probability when admissibil-ity is not required (Problem B)Next theorem shows that we 
an with any initial 
apital v0 < E∗(H)always 
reate a so 
alled quasi-repli
ating strategy, in other words aself-�nan
ing strategy that repli
ates H for all ex
ept one ω′. Thisfa
t is then used to give a solution to Problem B. The notion quasi-repli
ating strategy is dis
ussed in 
ontext of binomial model e.g. inFavero [2℄ and Favero and Vargiolu [3℄.Theorem 4.1. Take v0 < E∗(H) and an arbitrary ω′ ∈ Ω. Then we
an 
onstru
t a strategy ξ whose value pro
ess V satis�es V0 = v0 and
VT (ω) = H(ω) for all ω ∈ Ω \ ω′. Moreover,

VT (ω′) =
v0 − E∗(H1Ω\ω′)

P∗(ω′)
.Proof. Note that VT (ω′) 
an be negative. However, due to 
omplete-ness, there is a self-�nan
ing strategy ξ with value pro
ess V thatrepli
ates the random variable

H ′ = H1Ω\ω′ +
v0 − E∗(H1Ω\ω′)

P∗(ω′)
1ω′ .11



(See Remark 2.1). Moreover, V0 = E∗(VT ) = E∗(H ′) = v0, sin
e V isa P∗-martingale.Corollary 4.2. Let v0 ≤ v and ωi su
h that
P(ωi) = min

ω∈Ω
P(ω).Then the repli
ating strategy ξB for the random variable

HB = H1Ω\ωi
+ λ1ωi

,where
λ =

v0 − E∗(H1Ω\ωi
)

P∗(ωi)is a solution to Problem B.5 Minimizing expe
ted shortfall under admissibility
ondition (Problem C)The following result is a simpli�ed version of Theorem 8.10 in Föllmerand S
hied [6℄, p.341, where the result is proved for a general lossfun
tion and in a 
ase where the market does not have to be 
omplete.Theorem 5.1. Assume that there is a randomized test ψC ∈ R thatmaximizes the expe
tation E(Hψ) among all ψ ∈ R satisfying the 
on-straint E∗(H · ψ) ≤ v. Then the repli
ating strategy ξC of the option
HC := H · ψC solves Problem C.An optimal randomized test 
an be found by using the generalizedNeyman-Pearson lemma, as is done in Föllmer and S
hied [6℄, p.347.An alternative approa
h is to 
onsider the problem of �nding ψC as a
ontinuous knapsa
k problem. Re
all (4) and (9) and de�ne

mi := M(ωi) :=
P(ωi)H(ωi)

E(H)
. (12)Then the problem of �nding an optimal randomized test 
an be writtenin the following form.Problem C

′. Find an n-dimensional ve
tor xC that maximizes
n

∑

i=1

mixi12



under 
onstraints
n

∑

i=1

qixi ≤ α :=
v

E∗(H)
, 0 ≤ xi ≤ 1, i = 1, . . . , n.This time the array (ω1, . . . , ωn) is ordered so that the quotient

mi/qi is non-in
reasing. Equations (4) and (12) give that
mi

qi
=

E∗(H)

E(H)

pi

p∗i
,where pi = P(ωi) and p∗i = P∗(ωi). Thus, the states are ordered so thatthe quotient pi/p

∗
i is non-in
reasing. The 
riti
al element t is de�nedas

t := min

{

j :

j
∑

i=1

qi > α

}and an optimal solution is by Theorem 2.1 in Martello and Toth [8℄,p.16 given by
xC

i =











1, i = 1, . . . , t− 1
α−

Pt−1

j=1
qj

qt
, i = t

0, i = t+ 1, . . . , n.Note that xC does not in general 
oin
ide with x∗ in (11) sin
e thearray (ω1, . . . , ωn) is ordered di�erently.6 Minimizing expe
ted shortfall when admissibility isnot required (Problem D)Favero [2℄ and Favero and Vargiolu [3℄ study the problem of minimizingexpe
ted shortfall in the spe
ial 
ase of a binomial model, when admis-sibility is not required. S
agnellato and Vargiolu [11℄ dis
uss the sameproblem in a more general multinomial model. In those papers, theauthors prove their results via dynami
 programming. In this paperwe provide an alternative approa
h by showing that even this problem
an be redu
ed to a knapsa
k problem. To begin with, we state thefollowing theorem.Theorem 6.1. Assume that the random variable XD maximizes E(X)among all random variables X that satisfy X ≤ H and E∗(X) ≤ v.Then the repli
ating strategy ξD for XD solves Problem D.13



Proof. Take any self-�nan
ing strategy ξ with value pro
ess V su
hthat V0 ≤ v and VT ≤ H. The random variable VT satis�es E∗(VT ) =
V0 ≤ v by the martingale property. Thus, we have by assumption that

E(VT ) ≤ E(XD).On the other hand, for the strategy ξD with the value pro
ess V D wehave
V D

T = XD ≤ Hand
V D

0 = E∗(V D
T ) = E∗(XD) ≤ v.Further, the maximal expe
tation is attained by using strategy ξ

D,sin
e
E(V D

T ) = E(XD).Remark 6.2. Note that we 
annot use in Theorem 6.1 a similar ap-proa
h via randomized tests that is used in Theorem 5.1. In Problem Cthe optimal solution is sear
hed among strategies whose value pro
esses
V satisfy 0 ≤ VT ≤ H, whi
h enables us to express VT as the produ
tof the 
laim H and a randomized test ψ. In Problem D, however, thevalue pro
ess VT may be
ome negative. On the other hand, the moregeneral approa
h in Theorem 6.1 
ould be used to redu
e Problem C.Instead of sear
hing for an optimal randomized test we 
ould look foran optimal random variable XC that maximizes E(X) among all ran-dom variables X satisfying the 
onstraints 0 ≤ X ≤ H and E∗(X) ≤ v.In other words, the only di�eren
e would be the additional 
onstraint
X ≥ 0, whi
h is 
onne
ted with the admissibility 
ondition.Denote pi := P(ωi), p∗i := P∗(ωi) and hi := H(ωi). The problem of�nding XD obviously takes the following form in our �nite probabilityspa
e:Problem D

′. Find a ve
tor xD that maximizes
n

∑

i=1

xipiunder 
onstraints
n

∑

i=1

xip
∗
i ≤ v, xi ≤ hi, i = 1, . . . , n.14



This is almost similar to the 
ontinuous knapsa
k problem C′. Theonly di�eren
e is that instead of 
onstraint 0 ≤ xi ≤ 1 we have xi ≤ hi,i.e. the values of the de
ision variables xi are unbounded below andbounded by a deterministi
, but varying non-negative boundary above.The problem 
an be solved in a way that resembles the solution methodfor a 
ontinuous knapsa
k problem.Assume that the array of the states ωi, i = 1, . . . , n is ordered sothat
p1

p∗1
≥ . . . ≥

pn

p∗n
.The following theorem gives a solution to Problem D′.Theorem 6.3. An optimal solution xD to Problem D′ is given by

xD
i = hi for i = 1, . . . , n− 1

xD
n =

v −
∑n−1

i=1 hip
∗
i

p∗n
. (13)Proof. We prove our result in a way that resembles the proof of The-orem 2.1 in Martello and Toth [8℄. Firstly note that for any optimalsolution x it has to hold that

n
∑

i=1

xip
∗
i = v. (14)Without any loss of generality we 
an assume that pi/p

∗
i > pi+1/p

∗
i+1for all i. Let x∗ be an optimal solution to Problem D′ and supposethat x∗k < hk for some k < n. Now if we take ǫ > 0 small enough,we 
ould in
rease x∗k by ǫ and de
rease x∗n by ǫp∗k/p∗n. But this wouldin
rease the value of our obje
tive fun
tion by ǫ(pk − pnp

∗
k/p

∗
n) (> 0sin
e pk/p

∗
k > pn/p

∗
n) and give us a 
ontradi
tion. Therefore, x∗k = hkfor k < n is ne
essary for an optimal solution x∗. The statement (13)follows from (14).Thus, we have proved that if we 
hoose ωi su
h that

dP

dP∗
(ωi) = min

ω∈Ω

dP

dP∗
(ω),then the optimal strategy solving Problem D is by Theorem 6.1 therepli
ating strategy ξD for the random variable

HD = H1Ω\ωi
+ ϕ1ωi

,15



where
ϕ =

v − E∗(H1Ω\ωi
)

P∗(ωi)
.Note that this result 
oin
ides with the result in S
agnellato and Var-giolu [11℄, pp.148,149, where the authors prove it for a 
omplete multi-nomial model via dynami
 programming.The knapsa
k problem approa
h helps us to see the di�eren
e be-tween the optimal strategies when admissibility is or is not required,i.e. the di�eren
e between the solutions to Problems C and D. In both
ases we arrange the states similarly, su
h that the ratio P/P∗ is non-in
reasing. Then we 
hoose 
onse
utively ω's for whi
h we want tohedge the option perfe
tly, starting from ω1 that has the largest ratio.When admissibility is required, the 
riti
al element ωt is the �rst onethat we no longer 
an a�ord to 
hoose. The remaining 
apital is thenused to 
onstru
t a partial hedge for this state. If the admissibility
ondition is dropped, we 
an 
ontinue 
hoosing ω's until we rea
h thelast one, ωn, having the least ratio. The value HD(ωn) is then adjustedso that the 
ost 
onstraint is satis�ed.A
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