
ar
X

iv
:0

91
0.

53
98

v1
  [

q-
fi

n.
R

M
] 

 2
8 

O
ct

 2
00

9 Inf-convolution of G-expectations

Xuepeng Bai∗ Rainer Buckdahn†

∗
School of Mathematics, Shandong University, 250100 Jinan, P.R China
Email: xuepeng.bai@gmail.com
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Abstract

In this paper we will discuss the optimal risk transfer problems when
risk measures are generated by G-expectations, and we present the rela-
tionship between inf-convolution of G-expectations and the inf-convolution
of drivers G.
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1 Introduction

Coherent risk measures were introduced by Artzner et al. [1] in finite
probability spaces and lately by Delbaen [8,9] in general probability spaces.
The family of coherent risk measures was extended later by Föllmer and
Schied [10,11] and, independently, by Frittelli and Rosazza Gianin [12,13]
to the class of convex risk measures.

The notion of g-expectations was introduced by Peng [15] as solutions
to a class of nonlinear Backward Stochastic Differential Equations (BSDE
in short) which were first studied by Pardoux and Peng [14]. Financial
applications were discussed in detail by El Karoui et al. [6].

Let us introduce the optimal risk transfer model we are concerned with.
This model can be briefly described as follows:

Two economic agents A and B are considered, who assess the risk as-
sociated with their respective positions by risk measures ρA and ρB. The
issuer, agent A, with the total risk capital X, wants to issue a financial
product F and sell it to agent B for the price π in order to reduce his risk
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exposure. His objective is to minimize ρA(X − F + π) with respect to F
and π, while the interest of buyer B is not to be exposed to a greater risk
after the transaction:

ρB(F − π) ≤ ρB(0).

Using the cash translation invariance property, this optimization problem
can be rewritten in the simpler form

inf
F
{ρA(X − F ) + ρB(F )}.

This problem was first studied by El Karoui and Pauline Barrieu [2,3,4]
for convex risk measures, in particular those described by g-expectation.

Related with the pioneering paper [1] on coherent risk measures, sub-
linear expectations (or, more generally, convex expectations, see [10,11,13])
have become more and more popular for modeling such risk measures. In-
deed, in any sublinear expectation space (Ω,H, Ê) a coherent risk measure
ρ can be defined in a simple way by putting ρ(X) := Ê[−X], for X ∈ H.

The notion of a sublinear expectation named G-expectation was first
introduced by Peng [17,18] in 2006. Compared with g-expectations, the
theory of G-expectation is intrinsic in the sense that it is not based on
a given (linear) probability space. A G-expectation is a fully nonlinear
expectation. It characterizes the variance uncertainty of a random vari-
able. We recall that the problem of mean uncertainty has been studied
by Chen-Epstein through g-expectation in [5]. Under this fully nonlinear
G-expectation, a new type of Itô’s formula has been obtained, and the
existence and uniqueness for stochastic differential equation driven by a
G-Brownian motion have been shown. For a more detailed description the
reader is referred to Peng’s recent papers [17,18,19].

This paper focuses on the mentioned optimization problem where the
g-risk measures are replaced by one dimensional G-expectations, i.e., the
problem:

ÊG1
� ÊG2

[X] := inf
F
{ÊG1

[X − F ] + ÊG2
[F ]}.

The main aim of this paper is to present the relationship between the above
introduced operator ÊG1

� ÊG2
[·] and the G-expectation ÊG1�G2

[·]. More
precisely, we show that both operators coincide if G1�G2 6= −∞.

In this paper we constrain ourselves to one dimensional G-expectation,
the multi-dimensional case is much more complicated and we hope to study
this case in a forthcoming publication.

Our approach is mainly based on the recent results by Peng [19] which
allow to show that ÊG1

� ÊG2
[·] constructed by inf-convolution of ÊG1

[·] and
ÊG2

[·] satisfies the properties of G-expectation. To our best knowledge, this
is the first paper that uses the results of Theorem 4.1.3 of [19] to prove
that a given nonlinear expectation is a G-expectation.
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This paper is organized as follows: while basic definitions and properties
of G-expectation and G-Brownian Motion are recalled in Section 2, Section
3 states and proves the main result of this paper: If G1�G2 6= −∞, then
ÊG1

� ÊG2
[·] also is a G-expectation and

ÊG1
� ÊG2

[·] = ÊG1�G2
[·].

2 Notation and Preliminaries

The aim of this section is to recall some basic definitions and properties of
G-expectations and G-Brownian motions, which will be needed in the se-
quel. The reader interested in a more detailed description of these notions
is referred to Peng’s recent papers [17,18,19].
Adapting Peng’s approach in [19], we let Ω be a given nonempty funda-
mental space and H be a linear space of real functions defined on Ω such
that :

i) 1 ∈ H.
ii) H is stable with respect to local Lipschitz functions, i.e. for all n ≥ 1,
and for all X1, ...,Xn ∈ H, ϕ ∈ Cl,lip(R

n), it holds also ϕ(X1, ...,Xn) ∈ H.

Recall that Cl,lip(R
n) denotes the space of all local Lipschitz functions

ϕ over R
n satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, x, y ∈ R
n,

for some C > 0,m ∈ N depending on ϕ. The set H is interpreted as the
space of random variables defined on Ω.

Definition 2.1 A sublinear expectation Ê on H is a functional H → R

with the following properties : for all X,Y ∈ H, we have
(a) Monotonicity: if X ≥ Y then Ê[X] ≥ Ê[Y ].
(b) Preservation of constants: Ê[c] = c, for all reals c.
(c) Sub-additivity (or property of self-dominacy):

Ê[X] − Ê[Y ] ≤ Ê[X − Y ].

(d) Positive homogeneity: Ê[λX] = λÊ[X],∀λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. It general-
izes the classical case of the linear expectation E[X] =

∫
ΩXdP, X ∈

L1(Ω,F ,P), over a probability space (Ω,F ,P). Moreover, ρ(X) = Ê[−X]
defines a coherent risk measure on H.
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Definition 2.2 For arbitrary n,m ≥ 1, a random vector Y = (Y1, Y2, ..., Yn) ∈
Hn (= H×H× ...×H) is said to be independent of X ∈ Hm under Ê[·] if
for each test function ϕ ∈ Cl,lip(R

n+m) we have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Remark: In the case of linear expectation, this notion of independence is
just the classical one. It is important to note that under sublinear expec-
tations the condition Y is independent to X does not imply automatically
that X is independent to Y.

Let X = (X1, ...,Xn) ∈ Hn be a given random vector. We define a func-
tional on Cl,lip(R

n) by

F̂X [ϕ] := Ê[ϕ(X)], ϕ ∈ Cl,lip(R
n).

It’s easy to check that F̂X [·] is a sublinear expectation defined on (Rn, Cl,lip(R
n)).

Definition 2.3 Given two sublinear expectation spaces (Ω,H, Ê) and (Ω̃, H̃, Ẽ),
two random vectors X ∈ Hn and Y ∈ H̃n are said to be identically dis-
tributed if for each test function ϕ ∈ Cl,lip(R

n)

F̂X [ϕ] = F̃Y [ϕ].

We now introduce the important notion of G-normal distribution. For this,
let 0 ≤ σ ≤ σ ∈ R, and let G be the sublinear function:

G(α) =
1

2
(σ2α+ − σ2α−), α ∈ R.

As usual α+ = max{0, α} and α− = (−α)+. Given an arbitrary initial
condition ϕ ∈ Cl,lip(R), we denote by uϕ the unique viscosity solution of
the following parabolic partial differential equation (PDE):

∂tuϕ(t, x) = G(∂2
xxuϕ(t, x)), (t, x) ∈ (0,∞) × R,

uϕ(0, x) = ϕ(x), x ∈ R.

Definition 2.4 : A random variable X in a sub-expectation space (Ω,H, Ê)
is called Gσ,σ-normal distributed, and we write X ∼ N (0; [σ2, σ2]), if for
all ϕ ∈ Cl,lip(R),

Ê[ϕ(x +
√
tX)] := uϕ(t, x), (t, x) ∈ [0,∞) × R.
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Remark: From [18], we have the following Kolmogrov-Chapman chain
rule:

uϕ(t+ s, x) = Ê[uϕ(t, x+
√
sX)], s ≥ 0.

In what follows we will take as fundamental space Ω the space C0(R
+) of

all real-valued continuous functions (ωt)t∈R+ with ω0 = 0, equipped with
the topology generated by the uniform convergence on compacts.
For each fixed T ≥ 0, we consider the following space of local Lipschitz
functionals :

HT = Lip(FT ) :
= {X(ω) = ϕ(ωt1 , ..., ωtm), t1, ..., tm ∈ [0, T ], ϕ ∈ Cl,lip(R

m),m ≥ 1}.
Furthermore, for 0 ≤ s ≤ t, we define

Hs
t = Lip(Fs

t ) :
= {X(ω) = ϕ(ωt2 − ωt1 , ..., ωtm+1

− ωtm), t1, ..., tm+1 ∈ [s, t],
ϕ ∈ Cl,lip(R

m),m ≥ 1}.

It is clear that Hs
t ⊆ Ht ⊆ Lip(FT ), for s ≤ t ≤ T. We also introduce the

space

H = Lip(F) :=

∞⋃

n=1

Lip(Fn).

Obviously, Lip(Fs
t ), Lip(FT ) and Lip(F) are vector lattices.

We will consider the canonical space and set

Bt(ω) = ωt, t ∈ [0,∞), for ω ∈ Ω.

Obviously, for each t ∈ [0,∞), Bt ∈ Lip(Ft). Let G(a) = Gσ,σ(a) =
1
2(σ2a+−σ2a−), a ∈ R.We now introduce a sublinear expectation Ê defined
on HT = Lip(FT ), as well as on H = Lip(F), via the following procedure:
For each X ∈ HT with

X = ϕ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btm −Btm−1
),

and for all ϕ ∈ Cl,lip(R
m) and 0 = t0 ≤ t1 < ... < tm ≤ T, m ≥ 1, we set

Ê[ϕ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btm −Btm−1
)]

= Ẽ[ϕ(
√
t1 − t0ξ1, ...,

√
tm − tm−1ξm)],

where (ξ1, ..., ξm) is an m-dimensional random vector in some sublinear
expectation space (Ω̃, H̃, Ẽ), such that ξi ∼ N (0; [σ2, σ2]) and ξi+1 is inde-
pendent of (ξ1, ..., ξi), for all i = 1, ...,m−1,m ∈ N. The related conditional
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expectation of X = ϕ(Bt1 − Bt0 , Bt2 − Bt1 , ..., Btm − Btm−1
) under Htj is

defined by

Ê[X|Htj ] = Ê[ϕ(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btm −Btm−1
)|Htj ]

= ψ(Bt1 −Bt0 , ..., Btj −Btj−1
)

where

ψ(x1, ..., xj) = Ẽ[ϕ(x1, ..., xj ,
√
tj+1 − tjξj+1, ...,

√
tm − tm−1ξm)].

We know from [18,19] that Ê[·] defines consistently a sublinear expectation
on Lip(F), satisfying (a)-(d) in Definition 2.1. The reader interested in a
more detailed discussion is referred to [18,19].

Definition 2.5 The expectation Ê[·] : Lip(F) → R defined through the
above procedure is called Gσ,σ-expectation. The corresponding canonical
process (Bt)t≥0 in the sublinear expectation is called a Gσ,σ-Brownian mo-

tion on (Ω,H, Ê).
At the end of this section we list some useful properties that we will need
in Section 3.

Proposition 2.6 ([18,19]) The following properties of Ê[·|Ht] hold for
all X,Y ∈ H = Lip(F) :
(a’)If X ≥ Y , then Ê[X|Ht] ≥ Ê[Y |Ht].
(b’)Ê[η|Ht] = η, for each t ∈ [0,∞) and η ∈ Ht.
(c’)Ê[X|Ht] − Ê[Y |Ht] ≤ Ê[X − Y |Ht].
(d’)Ê[ηX|Ht] = η+

Ê[X|Ht] + η−Ê[−X|Ht], for each η ∈ Ht.
We also have

Ê[Ê[X|Ht]|Hs] = Ê[X|Ht∧s], and in particular, Ê[Ê[X|Ht]] = Ê[X].

For each X ∈ Lip(F t
T ), Ê[X|Ht] = Ê[X], moreover, the properties (b’) and

(c’) imply: Ê[X + η|Ht] = Ê[X|Ht] + η, whenever η ∈ Ht.
We will need also the following two propositions, and for proofs the reader
is referred to [18,19].

Proposition 2.7 For each convex function ϕ and each concave func-
tion ψ with ϕ(Bt) and ψ(Bt) ∈ Ht, we have Ê[ϕ(Bt)] = E[ϕ(σWt)] and
Ê[ψ(Bt)] = E[ψ(σWt)], where (Wt)t≥0 is a Brownian motion under the lin-
ear expectation E.

Proposition 2.8 Let Ê1[·] and Ê2[·] be a Gσ1,σ1
and a Gσ2,σ2

expecta-
tion on the space (Ω,H), respectively. Then, if [σ1, σ1] ⊆ [σ2, σ2], we have
Ê1[X] ≤ Ê2[X] and Ê1[X|Ht] ≤ Ê2[X|Ht], for all X ∈ H and all t ≥ 0.
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3 Inf-convolution of G-expectations

The aim of this section is to state the main result of this paper, that
is the relationship between the inf-convolution ÊG1

� ÊG2
[·] and the G-

expectation ÊG1�G2
[·]. We begin with the definitions necessary for the

understanding of these both expressions.
For given 0 ≤ σi ≤ σi ∈ R, i=1,2, let Gi = Gσi,σi

and we denote by Êi[·] the

Gi-expectation ÊGi
[·] on (Ω,H) (= (C0(R

+), Lip(F))). The inf-convolution
of Ê1[·] with Ê2[·], denoted by Ê1� Ê2[·] is defined as :

Ê1� Ê2[X] = inf
F∈H

{Ê1[X − F ] + Ê2[F ]}, X ∈ H.

Notice that Ê1� Ê2[·] : H → R ∪ {−∞}.
In the same way we define

G12G2(x) = inf
y∈R

{G1(x− y) +G2(y)}, x ∈ R.

Observe also that G12G2(·) : R → R ∪ {−∞}. It is easy to check that
G12G2(·) has the following form:

G12G2(x) =

{
−∞, [σ1, σ1] ∩ [σ2, σ2] = ∅;
1
2 (σ2x+ − σ2x−), [σ1, σ1] ∩ [σ2, σ2] = [σ, σ] 6= ∅.

If G12G2(·) = −∞, then also Ê1� Ê2[·] = −∞. More precisely, we have
the following proposition:

Proposition 3.1 If [σ1, σ1] ∩ [σ2, σ2] = ∅, then Ê1�Ê2[X] = −∞, for
all X ∈ H.
Proof: Without loss of generality we may suppose σ1 < σ2. Choosing
F = −λB2

t , λ > 0, t > 0, we then have due to Proposition 2.7 that for all
X ∈ H,

Ê1[X − F ] + Ê2[F ]

= Ê1[X + λB2
t ] + Ê2[−λB2

t ]

≤ Ê1[X] + Ê1[λB
2
t ] + Ê2[−λB2

t ]

≤ Ê1[X] + λσ2
1t− λσ2

2t.

Letting λ→ ∞, we obtain Ê1� Ê2[X] = −∞. �

If [σ1, σ1] ∩ [σ2, σ2] is not empty we have the following theorem, which
is the main result of this paper.

Theorem 3.2 Let Ê1[·] and Ê2[·] be the two G-expectations on the
space (Ω,H), which have been defined above. If G12G2(·) 6= −∞, then
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Ê1� Ê2[·] is a G-expectation on (Ω,H) and has the driver G12G2, i.e.,
Ê1� Ê2[·] = ÊG1�G2

[·].

Let us first discuss Theorem 3.2 in the special case.

Lemma 3.3 Let [σ1, σ1] ⊆ [σ2, σ2]. Then G12G2(·) = G1(·), as well as
Ê1� Ê2[·] = Ê1[·].

Proof: We already know that G12G2(·) = G1(·), so it remains only to
prove that Ê1� Ê2[·] = Ê1[·]. For this we note that, firstly, by choosing
F = 0 in the definition of Ê1� Ê2, we get Ê1� Ê2 ≤ Êi, i = 1, 2.
On the other hand, due to Proposition 2.8 we know that Ê1 ≤ Ê2. Thus,
from the subadditivity of Ê1[·],

Ê1[X − F ] + Ê2[F ] ≥ Ê1[X − F ] + Ê1[F ] ≥ Ê1[X], F ∈ H.
Consequently, Ê1�Ê2[·] = Ê1[·]. Thus, Theorem 3.2 holds true in this spe-
cial case.
The case [σ1, σ1] ⊇ [σ2, σ2] can be treated analogously. �

The situation becomes more complicate if neither [σ1, σ1] ⊆ [σ2, σ2] nor
[σ2, σ2] ⊆ [σ1, σ1].Without loss of generality, we suppose that [σ1, σ1]

⋂
[σ2, σ2]

= [σ2, σ1]. In this case

G12G2(x) =
1

2
(σ2

1x
+ − σ2

2x
−) = G3(x), x ∈ R,

where G3 = Gσ2,σ1
. By Ê3[·] we denote the G-expectation on (Ω,H) with

driver G3(·). The above notations will be kept for the rest of the paper.
Our aim is to prove that Ê1� Ê2[·] = Ê3[·].

The proof is based on Theorem 4.1.3 in Peng’s paper [19]; this theo-
rem characterizes the intrinsic properties of G-Brownian motions and G-
expectations.

Lemma 3.4 ( see Theorem 4.1.3, Peng [19]) Let (B̃t)t≥0 be a process

defined in the sub-expectation space (Ω̃, H̃, Ẽ) such that
(i) B̃0 = 0;
(ii) For each t, s ≥ 0, the increment B̃t+s − B̃t has the same distribution as
B̃s and is independent of (B̃t1 , B̃t2 , ..., B̃tn), for all 0 ≤ t1, ..., tn ≤ t, n ≥ 1.
(iii) Ẽ[B̃t] = Ẽ[−B̃t] = 0, and limt↓0 Ẽ[|B̃t|3]t−1 = 0.

Then (B̃t)t≥0 is a Gσ,σ-Brownian motion with σ2 = Ẽ[B̃2
1 ] and σ2 =

−Ẽ[−B̃2
1 ].

In the sequel, in order to prove Theorem 3.2 we will show that the inf-
convolution Ê1� Ê2[·] is a sublinear expectation on (Ω,H). This will make
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Lemma 3.4 applicable. More precisely, we will show that under the sub-
linear expectation Ê1� Ê2[·] the canonical process (Bt)t≥0 satisfies the
assumptions of Lemma 3.4 for σ = σ1, σ = σ2. This has as consequence
that (Bt)t≥0 is a Gσ2,σ1

-Brownian motion under Ê1� Ê2[·], and implies

that Ê1� Ê2[·] = Ê3[·].

Proposition 3.5 Under the assumption [σ1, σ1]
⋂

[σ2, σ2] = [σ2, σ1], the
inf-convolution Ê1� Ê2[·] is a sublinear expectation on (Ω,H).
Proof: (a) Monotonicity: The monotonicity is an immediate consequence
of that of the G-expectation Ê1[·].

(b) Preservation of constants: From the preservation of constants prop-
erty and the subadditivity of Ê1, we have

Ê1� Ê2[c]

= inf
F∈H

{Ê1[c− F ] + Ê2[F ]}

= c+ inf
F∈H

{Ê1[−F ] + Ê2[F ]}

≥ c+ inf
F∈H

{Ê3[−F ] + Ê3[F ]}
≥ c.

The latter lines follow from the fact that Ê3 ≤ Êi, i = 1, 2, and the subad-
ditivity of Ê3. Moreover, by taking F=0 in the definition of Ê1� Ê2[c] we
get the converse inequality.

(c) Sub-additivity: Given arbitrary fixed X,Y ∈ H, in virtue of the sub-
additivity of Ê1[·] and Ê2[·], we have for all F1, F2 ∈ H

Ê1[X − Y − F1] + Ê2[F1] + Ê1[Y − F2] + Ê2[F2]

≥ Ê1[X − (F1 + F2)] + Ê2[F1 + F2].

Consequently,

Ê1� Ê2[X − Y ] + Ê1� Ê2[Y ]

= inf
F1,F2∈H

{Ê1[X − Y − F1] + Ê2[F1] + Ê1[Y − F2] + Ê2[F2]}

≥ inf
F1,F2∈H

{Ê1[X − F1 − F2] + Ê2[F1 + F2]}

= Ê1� Ê2[X].

(d)Finally, the positive homogeneity is an easy consequence of that of Ê1[·]
and Ê2[·]. �

The following series of statements has as objective to prove that the canon-
ical process (Bt)t≥0 satisfies under the sublinear expectation Ê1� Ê2[·] the
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assumptions of Lemma 3.4.

Lemma 3.6: Let ϕ be a convex or concave function such that ϕ(Bt) ∈ H,
then Ê1� Ê2[ϕ(Bt)] = Ê3[ϕ(Bt)].
Proof: We only prove the convex case, the proof for concave ϕ is analogous.
If ϕ is convex we have according to Proposition 2.7 ,

Ê3[ϕ(Bt)] = E[ϕ(σ1Wt)] = Ê1[ϕ(Bt)].

By Proposition 2.8 we know that Êi[·] ≥ Ê3[·], i = 1, 2, and consequently,
also Ê1� Ê2[·] ≥ Ê3[·].
On the other hand, since obviously, Ê1� Ê2[·] ≤ Ê1[·], we get, for convex
functions ϕ, Ê1� Ê2[ϕ(Bt)] = Ê3[ϕ(Bt)]. Similarly we can prove the con-
cave case. �

Remark: From Proposition 3.5 we know already that Ê1� Ê2[·] is a sub-
linear expectation. This implies Ê1� Ê2[0] = 0. From Lemma 3.6, we have
that F ∗ = 0 is an optimal control when ϕ is convex, while the optimal
control is F ∗ = ϕ(Bt) when ϕ is concave. Moreover,

Ê1�Ê2[−Bt] = Ê1�Ê2[Bt] = 0

Ê1� Ê2[B
2
t ] = σ2

1t, Ê1� Ê2[−B2
t ] = −σ2

2t.

Lemma 3.7: We have Ê1� Ê2[|Bt|3]
t → 0, as t→ 0.

Proof: Since ϕ(x) = |x|3 is convex, we obtain due to Lemma 3.6 that:

Ê1� Ê2[|Bt|3] = Ê3[|Bt|3] = σ3
1E[|W1|3]t3/2,

where (Wt)t≥0 is Brownian motion under the linear expectation E. The
statement follows now easily.

Proposition 3.8: We have

Ê1� Ê2[ϕ(Bt −Bs)] = Ê1� Ê2[ϕ(Bt−s)], t ≥ s ≥ 0, ϕ ∈ Cl,lip(R).

The proof of Proposition 3.8 is rather technical. To improve the readability
of the paper, the proof is postponed to the annex.

Lemma 3.9: For each t ≥ s, Bt −Bs is independent of (Bt1 , Bt2 , ..., Btn )
under the sub-linear expectation Ê1� Ê2[·], for each n ∈ N, 0 ≤ t1, ..., tn ≤
s, that is, for all ϕ ∈ Cl,lip(R

n+1)

Ê1� Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

= Ê1� Ê2[Ê1� Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,...,Btn)].
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We shift also the proof of Lemma 3.9 to the annex.

We are now able to give the proof of Theorem 3.2:

Proof (of Theorem 3.2): It is sufficient to apply Lemma 3.4. Due
to the above statements, we know that the canonical process (Bt)t≥0 is
a G-Brownian motion under the sublinear expectation Ê1�Ê2[·]. Conse-
quently Ê1�Ê2[·] is a G-expectation on the space (Ω,H) and has the driver
G12G2 = Gσ2,σ1

. �

Given n sublinear expectations Ê1, ..., Ên we define iteratively

Ê1�Ê2�Ê3 := (Ê1�Ê2)�Ê3,

and
Ê1�Ê2�...�Êk := (Ê1�Ê2�...�Êk−1)�Êk, 3 ≤ k ≤ n.

Then from Theorem 3.2 it follows:

Corollary 3.10: Let 0 ≤ σi ≤ σi, 1 ≤ i ≤ n, and denote by Êi[·] the
Gσi, σi

-expectation on the space (Ω,H). Then under the assumption⋂n
i=1[σi, σi] 6= ∅, Ê1�Ê2�...�Ên[·] also is a G-expectation and has the

driver Gσ1,σ1
�Gσ2,σ2

�...�Gσn,σn . Moreover, for any permutation i1, ..., in
of the natural numbers 1,...,n it holds:

Ê1�Ê2�...�Ên[·] = Êi1�Êi2�...�Êin [·].

Remark: If
⋂n

i=1[σi, σi] is empty, then Ê1�Ê2�...�Ên[·] = −∞, other-

wise Ê1�Ê2�...�Ên[·] is a Gσ,σ-expectation, where [σ, σ] =
⋂n

i=1[σi, σi].

4 Annex

4.1 Proof of Proposition 3.8

We begin with the proof of Proposition 3.8. For this we need the following
two lemmas.

Lemma 4.1: For all T > 0 and all X ∈ HT , we have

inf
F∈HT

{Ê1[X − F ] + Ê2[F ]} = inf
F∈H

{Ê1[X − F ] + Ê2[F ]}.
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Proof: From HT ⊆ H we see that

inf
F∈HT

{Ê1[X − F ] + Ê2[F ]} ≥ inf
F∈H

{Ê1[X − F ] + Ê2[F ]}.

Thus it remains to prove the converse inequality.
First we notice that, due to Proposition 2.8 and the subadditivity of Ê3,
for any F ∈ H,

Ê2[F |HT ] + Ê1[−F |HT ] ≥ Ê3[F |HT ] + Ê3[−F |HT ] ≥ 0.

Consequently, for all X ∈ HT and all F ∈ H,

Ê1[X − F ] + Ê2[F ]

= Ê1[Ê1[X − F |HT ]] + Ê2[F ]

= Ê1[X + Ê1[−F |HT ]] + Ê2[F ]

= Ê1[X − (−Ê1[−F |HT ])] + Ê2[−Ê1[−F |HT ]]

−Ê2[−Ê1[−F |HT ]] + Ê2[Ê2[F |HT ]]

≥ Ê1[X − (−Ê1[−F |HT ])] + Ê2[−Ê1[−F |HT ]]

≥ inf
F∈HT

{Ê1[X − F ] + Ê2[F ]}.

The statement now follows easily. �

Lemma 4.2: For all X ∈ Hs
t , 0 ≤ s ≤ t, the following holds true:

inf
F∈Ht

{Ê1[X − F ] + Ê2[F ]} = inf
F∈Hs

t

{Ê1[X − F ] + Ê2[F ]}.

Proof: Firstly, from Hs
t ⊆ Ht, we have, obviously, for all X ∈ Hs

t ,

inf
F∈Ht

{Ê1[X − F ] + Ê2[F ]} ≤ inf
F∈Hs

t

{Ê1[X − F ] + Ê2[F ]}.

Secondly, for any X ∈ Hs
t and F ∈ Ht, we can suppose without loss of gen-

erality that X = ϕ(Bt1−Bs, ..., Btn −Bs) and F = ψ(Bt′
1
, Bt′

2
, ..., Bt′

k
, Bt1−

Bs, ..., Btn − Bs), where t′1, ..., t
′
k ∈ [0, s], t1, ..., tn ∈ [s, t], n, k ∈ N, ϕ ∈

Cl,lip(R
n) and ψ ∈ Cl,lip(R

n+k).
To simplify the notation we put:

Y1 = (Bt′
1
, Bt′

2
, ..., Bt′

k
), Y2 = (Bt1 −Bs, ..., Btn −Bs),x = (x1, x2, ..., xk).

12



Then,

Ê1[X − F ] + Ê2[F ]

= Ê1[Ê1[ϕ(Y2) − ψ(Y1, Y2)|Hs]] + Ê2[F ]

= Ê1[Ê1[ϕ(Y2) − ψ(x, Y2)]|x=Y1
] + Ê2[F ]

= Ê1[(Ê1[ϕ(Y2) − ψ(x, Y2)] + Ê2[ψ(x, Y2)] − Ê2[ψ(x, Y2)])|x=Y1
] + Ê2[F ]

≥ Ê1[ inf
F∈Hs

t

{Ê1[X − F ] + Ê2[F ]} − Ê2[ψ(x, Y2)]|x=Y1
] + Ê2[F ]

= inf
F∈Hs

t

{Ê1[X − F ] + Ê2[F ]} + Ê1[−Ê2[ψ(x, Y2)]|x=Y1
]

+Ê2[Ê2[ψ(x, Y2)]|x=Y1
]

≥ inf
F∈Hs

t

{Ê1[X − F ] + Ê2[F ]}.

Thus the proof is complete now. �

Now we are able to prove Proposition 3.8.

Proof (of Proposition 3.8): For arbitrarily fixed s ≥ 0, we put B̃t =
Bt+s−Bs, t ≥ 0. Then, obviously, Hs

t+s = H̃t, t ≥ 0, where H̃t is generated

by B̃t. Moreover, B̃t is a G-Brownian Motion under Ê1 and Ê2.
According to the Lemmas 4.1 and 4.2, we have the following:

Ê1� Ê2[ϕ(Bt −Bs)]

= inf
F∈Hs

t

{Ê1[ϕ(Bt −Bs) − F ] + Ê2[F ]}

= inf
F∈ eHt−s

{Ê1[ϕ(B̃t−s) − F ] + Ê2[F ]}

= inf
F∈Ht−s

{Ê1[ϕ(Bt−s) − F ] + Ê2[F ]}

= Ê1� Ê2[ϕ(Bt−s)].

Thus the proof of Proposition 3.8 is complete now. �

4.2 Proof of Lemma 3.9

Let us come now to the proof of Lemma 3.9, which we split into a sequel
of lemmas.

Lemma 4.3: For all ϕ ∈ Cl,lip(R
n+1), n ∈ N and 0 ≤ t1, ..., tn ≤ s ≤ t, it

holds:

Ê1� Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

≥ Ê1� Ê2[Ê1� Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,...,Btn)].
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Proof: Let X = ϕ(Bt1 , Bt2 , ..., Btn , Bt − Bs). Without loss of general-
ity we can suppose that F ∈ H has the form ψ(Bt′

1
, Bt′

2
, ..., Bt′

k
, Bt′

k+1
−

Bs, ..., Bt′m − Bs), where 0 ≤ t1, ..., tn, t
′
1, ..., t

′
k ≤ s, t′k+1, ..., t

′
m ≥ s,m ≥

k,m, k ∈ N, and ϕ ∈ Cl,lip(R
n+1), ψ ∈ Cl,lip(R

m).

For simplifying the notation we put:

x1 = (x1, ..., xn),x2 = (x′1, ..., x
′
k), Y1 = (Bt1 , Bt2 , ..., Btn ),

Y2 = (Bt′
1
, ..., Bt′

k
), Y3 = (Bt′

k+1
−Bs, ..., Bt′m −Bs).

Then

Ê1[X − F ] + Ê2[F ] = Ê1[Ê1[X − F |Hs]] + Ê2[Ê2[F |Hs]]

= Ê1[Ê1[ϕ(x1, Bt −Bs) − ψ(x2, Y3)]|x1=Y1,x2=Y2
]

+Ê2[Ê2[ψ(x2, Y3)]|x2=Y2
]

= Ê1[(Ê1[ϕ(x1, Bt −Bs) − ψ(x2, Y3)] + Ê2[ψ(x2, Y3)]

−Ê2[ψ(x2, Y3)])|x1=Y1,x2=Y2
] + Ê2[Ê2[ψ(x2, Y3)]|x2=Y2

]

≥ Ê1[(Ê1� Ê2[ϕ(x1, Bt −Bs)] − Ê2[ψ(x2, Y3)])|x1=Y1,x2=Y2
]

+Ê2[Ê2[ψ(x2, Y3)]|x2=Y2
]

≥ Ê1� Ê2[Ê1� Ê2[ϕ(x1, Bt −Bs)]|x1=Y1
]

= Ê1� Ê2[Ê1� Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,...,Btn)].

Hence, we get

Ê1� Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

≥ Ê1� Ê2[Ê1� Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,...,Btn)].

The proof of the Lemma 4.3 is complete now. �

Let Lip(Rn), n ∈ N, denote the space of bounded Lipschitz functions
ϕ ∈ Lip(Rn) satisfying:

|ϕ(x) − ϕ(y)| ≤ C|x− y| x, y ∈ R
n,

where C is a constant only depending on ϕ.

The proof that

Ê1� Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

≤ Ê1� Ê2[Ê1� Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,...,Btn)]

is much more difficult than that of the converse inequality. For the proof
we need the following statements.
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Lemma 4.4: We assume that the random variable ϕ(Bt1 , Bt2−Bt1 , ..., Btn−
Btn−1

), with ti ≤ ti+1, i = 1, ..., n−1, n ∈ N and ϕ ∈ Lip(Rn), satisfies the
following assumption: there exist L,M ≥ 0 s.t. |ϕ| ≤ L, and ϕ(x, y) = 0,
for all (x, y) ∈ [−M,M ]c × R

n−1.
We define

φ(x) : = Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]

= inf
F∈H

t1
tn

{Ê1[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
) − F ] + Ê2[F ]}.

Then we have the existence of an ε-optimal ψ̃(x) of the form ψ(x,Bt′
2
−

Bt1 , ..., Bt′
l+1

− Bt1), i.e., for any ε > 0 we can find a finite dimensional

function ψ(x, ·) ∈ Cl,lip(R
l), l ≥ 1, such that, for suitable t′2, ...., t

′
l+1 ≥ t1,

ψ̃(x) := Ê1[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)

−ψ(x,Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1)]

+Ê2[ψ(x,Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1)]

satisfies
|ψ̃(x) − φ(x)| ≤ ε.

Proof: Since ϕ ∈ Lip(Rn), we find for any ε > 0 some sufficiently large
J ≥ 1 s.t. for all x, x̃ ∈ R with |x−x̃| ≤ 2M

J it holds |ϕ(x, y)−ϕ(x̃, y)| ≤ ε/6.
We then let −M = x0 ≤ x1 ≤ .... ≤ xJ = M, be such that |xj+1 − xj | =
2M
J , 0 ≤ j ≤ J − 1.

On the other hand, for every fixed j there are some mj ≥ 1, ti,j ≥ t1
(2 ≤ i ≤ mj) and ψxj ∈ Cl,lip(R

mj−1), such that

φ(xj) ≤ Ê1[ϕ(xj , Bt2 −Bt1 , ..., Btn −Btn−1
)

−ψxj (Bt2,j
−Bt1 , ..., Btmj ,j

−Bt1)]

+Ê2[ψ
xj (Bt2,j

−Bt1 , ..., Btmj ,j
−Bt1)]

≤ φ(xj) + ε/6.

Since there are only a finite number of j we can find a finite dimensional
function denoted by ψ(xj , y), y ∈ R

l, s.t. for each fixed j, ψ(xj , ·) ∈
Cl,lip(R

l) and

ψ(xj , Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1) = ψxj (Bt2,j

−Bt1 , ..., Btmj ,j
−Bt1),

where {t′2, ..., t′l+1} =
⋃J

j=1{t2,j , ..., tmj ,j}.
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With the convention ψ(x0, y) = ψ(xJ , y) = 0, y ∈ R
l, we define

ψ(x, y) :=





xj+1−x
xj+1−xj

ψ(xj , y) +
x−xj

xj+1−xj
ψ(xj+1, y), x ∈ [xj , xj+1],

0 ≤ j ≤ J − 1,
0, otherwise.

Obviously, ψ(x, y) ∈ Cl,lip(R
l+1).

We now introduce ψ̃(x) :

= Ê1[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
) − ψ(x,Bt′

2
−Bt1 , ..., Bt′

l+1
−Bt1)]

+Ê2[ψ(x,Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1)].

If x /∈ [−M,M ], ϕ(x, ·) = 0 and ψ(x, ·) = 0. Consequently, ψ̃(x) = 0.
Moreover, from Proposition 3.5 we have that for x /∈ [−M,M ] also φ(x) =
0. Then ψ̃(x) = φ(x) = 0 when x /∈ [−M,M ], and we have also |ψ̃(xj) −
φ(xj)| ≤ ε/6 for each j. We also recall that, for all 0 ≤ j ≤ J − 1 and all
x ∈ [xj, xj+1],

|ϕ(x, y) − ϕ(xj , y)| ≤ ε/6, for all y ∈ R
n−1.

Our objective is to estimate

|ψ̃(x) − φ(x)| ≤ |ψ̃(x) − φ(xj)| + |φ(xj) − φ(x)|.

For this end we notice that, with the notation:

Y1 = (Bt2 −Bt1 , ..., Btn −Btn−1
), Y2 = (Bt′

2
−Bt1 , ..., Bt′

l+1
−Bt1),

we have from the definition of φ(x) and φ(xj) and from the properties of

Ê1�Ê2 as sublinear expectation:

|φ(x) − φ(xj)| ≤ Ê1�Ê2[|ϕ(x, Y1) − ϕ(xj , Y1)|] ≤ ε/6.

On the other hand, since |ϕ(x, Y1) − ϕ(xj , Y1)| ≤ ε/6,

|ψ̃(x) − φ(xj)|
= |Ê1[ϕ(x, Y1) − ψ(x, Y2)] + Ê2[ψ(x, Y2)] − φ(xj)|
≤| Ê1[ϕ(xj , Y1) − ψ(x, Y2)] + Ê2[ψ(x, Y2)] − φ(xj) | +ε/6.
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Due to the definition of φ(xj), the latter expression without module is
non-negative. Thus,

|ψ̃(x) − φ(xj)|
≤ Ê1[ϕ(xj , Y1) − ψ(x, Y2)] + Ê2[ψ(x, Y2)] − φ(xj) + ε/6

≤ Ê1[
xj+1 − x

xj+1 − xj
(ϕ(xj , Y1) − ψ(xj , Y2)) +

x− xj

xj+1 − xj
(ϕ(xj+1, Y1)

−ψ(xj+1, Y2))] + Ê2[
xj+1 − x

xj+1 − xj
ψ(xj , Y2) +

x− xj

xj+1 − xj
ψ(xj+1, Y2)]

−φ(xj) + 2ε/6

≤ xj+1 − x

xj+1 − xj
{Ê1[ϕ(xj , Y1) − ψ(xj , Y2)] + Ê2[ψ(xj , Y2)] − φ(xj)}

+
x− xj

xj+1 − xj
{Ê1[ϕ(xj+1, Y1) − ψ(xj+1, Y2)] + Ê2[ψ(xj+1, Y2)] − φ(xj)}

+2ε/6.

Hence, due to the choice of ψxj and ψxj+1 ,

|ψ̃(x) − φ(xj)| ≤ 5ε/6.

This latter estimate combined with the fact that for |φ(x) − φ(xj)| ≤ ε/6
then yields

|ψ̃(x) − φ(x)| ≤ ε.

The proof of Lemma 4.4 is complete now. �

Lemma 4.4 allows to prove the following:

Lemma 4.5: Let ϕ ∈ Lip(Rn) be bounded and such that, for some
real M > 0, supp(ϕ) ⊂ [−M,M ] × R

n−1. Then, for all 0 ≤ t1 ≤ t2... ≤ tn,

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

= Ê1�Ê2[Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|x=Bt1

]].

Proof: Firstly, it follows directly from Lemma 4.3 that:

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

≥ Ê1�Ê2[Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|x=Bt1

]]. (1)

Secondly, from Lemma 4.4 we know that for any ε > 0 there is some
ψ ∈ Cl,lip(R

l+1) such that |ψ̃(x)−φ(x)| ≤ ε, for all x ∈ R, where ψ̃(x) and
φ(x) have been introduced in Lemma 4.4 .
Due to Lemma 4.1, there is φ̃(Bt′′

1
, ...., Bt′′

k
) ∈ Ht1 , 0 ≤ t′′1, ..., t

′′
k ≤ t1, k ∈ N,

such that

|Ê1[φ(Bt1) − φ̃(Bt′′
1
, ...., Bt′′

k
)] + Ê2[φ̃(Bt′′

1
, ...., Bt′′

k
)] − Ê1�Ê2[φ(Bt1)]| ≤ ε.
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For t′2, ..., t
′
l+1 ≥ t1 from the definition of ψ̃(x) in Lemma 4.4 we put

ψ′(x) = Ê2[ψ(x,Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1)]

and

F = ψ(Bt1 , Bt′
2
−Bt1 , ..., Bt′

l+1
−Bt1) + φ̃(Bt′′

1
, ...., Bt′′

k
) − ψ′(Bt1).

Notice that
Ê2[F |Ht1 ] = φ̃(Bt′′

1
, ...., Bt′′

k
)

and

Ê1[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
) − F |Ht1 ] = ψ̃(Bt1) − φ̃(Bt′′

1
, ...., Bt′′

k
).

Then, due to the choice of φ̃(Bt′′
1
, ...., Bt′′

k
),

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)] − Ê1�Ê2[φ(Bt1)]

≤ Ê1[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
) − F ] + Ê2[Ê2[F |Ht1 ]]

−(Ê1[φ(Bt1) − φ̃(Bt′′
1
, ...., Bt′′

k
)] + Ê2[φ̃(Bt′′

1
, ...., Bt′′

k
)]) + ε

= Ê1[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
) − F ]

−Ê1[φ(Bt1) − φ̃(Bt′′
1
, ...., Bt′′

k
)] + ε

= Ê1[Ê1[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
) − F |Ht1 ]]

−Ê1[φ(Bt1) − φ̃(Bt′′
1
, ...., Bt′′

k
)] + ε

= Ê1[ψ̃(Bt1) − φ̃(Bt′′
1
, ...., Bt′′

k
)] − Ê1[φ(Bt1) − φ̃(Bt′′

1
, ...., Bt′′

k
)] + ε

≤ Ê1[|φ(Bt1) − ψ̃(Bt1)|] + ε

≤ 2ε.

From the definition of φ in Lemma 4.4 and the arbitrariness of ε > 0 it
follows then that

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

≤ Ê1�Ê2[Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|x=Bt1

]].

This together with (1) yields the wished statement. The proof of Lemma
4.5 is complete now. �

In the next statement we extend Lemma 4.5 to general functions of Lip(Rn).

Lemma 4.6: Let ϕ ∈ Lip(Rn), n ≥ 1, and tn ≥ tn−1 ≥ ... ≥ t1 ≥ 0.
Then

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

= Ê1�Ê2[Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|x=Bt1

]].
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Proof: Let L > 0 be such that |ϕ| ≤ L. Given an arbitrarily large M > 0
we define, for all y ∈ R

n−1,

ϕ̃(x, y) :=





ϕ(x, y), x ∈ [−M,M ]
ϕ(−M,y)(M + 1 + x), x ∈ [−M − 1,−M ]
ϕ(M,y)(M + 1 − x), x ∈ [M,M + 1]
0, otherwise.

Obviously, ϕ̃ satisfies the assumptions of Lemma 4.5.
Letting

ϕ̃′(x) = Ê1�Ê2[ϕ̃(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]

and
φ(x) = Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1

)],

we have

|φ(x) − ϕ̃′(x)|
= |Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1

)]

−Ê1�Ê2[ϕ̃(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|

≤ Ê1�Ê2[|ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)

−ϕ̃(x,Bt2 −Bt1 , ..., Btn −Btn−1
)|]

≤ 2L

M
|x|.

Consequently,

|Ê1�Ê2[φ(Bt1)] − Ê1�Ê2[ϕ̃
′(Bt1)]| ≤ Ê1�Ê2[|φ(Bt1) − ϕ̃′(Bt1)|]

≤ Ê1�Ê2[
2L

M
|Bt1 |] =

2L

M
Ê1�Ê2[|Bt1 |].

On the other hand, from the definition of ϕ̃ we also obtain

|Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

−Ê1�Ê2[ϕ̃(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]|

≤ Ê1�Ê2[|ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)

−ϕ̃(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)|]

≤ 2L

M
Ê1�Ê2[|Bt1 |].

Thus, since due to Lemma 4.5

Ê1�Ê2[ϕ̃(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)] = Ê1�Ê2[ϕ̃

′(Bt1)],
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we get by letting M 7→ +∞ the relation

Ê1�Ê2[ϕ(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
)]

= Ê1�Ê2[Ê1�Ê2[ϕ(x,Bt2 −Bt1 , ..., Btn −Btn−1
)]|x=Bt1

]].

The proof of Lemma 4.6 is complete. �

Lemma 4.7: For all ϕ ∈ Lip(Rn−1), n ≥ 1, and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, we
have

Ê1�Ê2[ϕ(Bt2 −Bt1 , ..., Btn −Btn−1
)]

= Ê1�Ê2[Ê1�Ê2[ϕ(y,Bt3 −Bt2 , ..., Btn −Btn−1
)]|y=Bt2

−Bt1
]

Proof: Lemma 4.2 allows to repeat the arguments of the Lemmas 4.3 to
4.6 in Htn

t1 . The result of Lemma 4.7 then follows. �

Finally, we have:

Lemma 4.8: Let ϕ ∈ Lip(Rn+1), n ≥ 1 and 0 ≤ t1, ..., tn ≤ s. Then

Ê1�Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

= Ê1�Ê2[Ê1�Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,Bt2

,...,Btn)]].

Proof: Without any loss of generality we can suppose 0 ≤ t1 ≤ t2 ≤ ... ≤ tn.
Then there is some ϕ̃ ∈ Lip(Rn+1) such that ϕ(Bt1 , Bt2 , ..., Btn , Bt−Bs) =
ϕ̃(Bt1 , Bt2 − Bt1 , ..., Btn − Btn−1

, Bt − Bs) ∈ Ht. With the notation x =
(x1, ..., xn), and due to the Lemmas 4.1 to 4.7 we have

Ê1�Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

= Ê1�Ê2[ϕ̃(Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
, Bt −Bs)]

. . . .

= Ê1�Ê2[Ê1�Ê2[ϕ̃(x, Bt −Bs)]|x=(Bt1
,Bt2

−Bt1
,...,Btn−Btn−1

)]]

= Ê1�Ê2[Ê1�Ê2[ϕ(x, Bt −Bs)]|x=(Bt1
,Bt2

,...,Btn)]]

= Ê1�Ê2[Ê1�Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,Bt2

,...,Btn)]].

The proof of Lemma 4.8 is complete now. �

Let us now come to the proof of Lemma 3.9.
Proof (of Lemma 3.9) : In a first step, we will prove that for each
ϕ ∈ Cl,lip(R

n+1) there exists a sequence of bounded Lipschitz functions
(ϕN )N≥1 such that

Ê1[|ϕN (Bt1 , Bt2 , ..., Btn , Bt −Bs) − ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)|]
−→ 0, as N −→ ∞.
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For this end we put

lN (x) = (x ∧N) ∨ (−N), N ≥ 1, x ∈ R,

and
ϕN (x1, ..., xn+1) = ϕ(lN (x1), ..., lN (xn+1)),

and we notice that

|x− lN (x)| ≤ |x|2
N

, for all x ∈ R.

Obviously, the functions ϕN are bounded and Lipschitz, and, moreover,

|ϕN (x1, ..., xn+1) − ϕ(x1, ..., xn+1)|
= |ϕ(lN (x1), ..., lN (xn+1)) − ϕ(x1, ..., xn+1)|

≤ C(1 + |x1|m + ...+ |xn+1|m)

√√√√
n+1∑

i=1

|xi|4
N2

=
C(1 + |x1|m + ...+ |xn+1|m)

√∑n+1
i=1 |xi|4

N
,

where C and m ≥ 0 are constants only depending on ϕ. Then, in virtue of
the finiteness of Ê1[(1 + |Bt1 |m + ... + |Btn |m + |Bt − Bs|m)(

∑n
i=1 |Bti |4 +

|Bt −Bs|4)
1

2 ], we get

Ê1[|ϕN (Bt1 , Bt2 , ..., Btn , Bt −Bs) − ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)|] −→ 0,
as N −→ ∞.

Let x1 = (x1, ..., xn) and Y1 = (Bt1 , Bt2 , ..., Btn ). Then, due to our above
convergence result,

|Ê1�Ê2[ϕN (Y1, Bt −Bs)] − Ê1�Ê2[ϕ(Y1, Bt −Bs)]|
≤ Ê1�Ê2[|ϕN (Y1, Bt −Bs) − ϕ(Y1, Bt −Bs)|]
≤ Ê1[|ϕN (Y1, Bt −Bs) − ϕ(Y1, Bt −Bs)|]
−→ 0, as N −→ ∞,

and, from Lemma 4.3,

|Ê1�Ê2[Ê1�Ê2[ϕN (x1, Bt −Bs)]|x1=Y1
]]

−Ê1�Ê2[Ê1�Ê2[ϕ(x1, Bt −Bs)]|x1=Y1
]]|

≤ Ê1�Ê2[Ê1�Ê2[|ϕN (x1, Bt −Bs) − ϕ(x1, Bt −Bs)|]|x1=Y1
]

≤ Ê1[|ϕN (Y1, Bt −Bs) − ϕ(Y1, Bt −Bs)|]
−→ 0, as N −→ ∞.
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On the other hand, from Lemma 4.8 we have

Ê1�Ê2[ϕN (Bt1 , Bt2 , ..., Btn , Bt −Bs)]

= Ê1�Ê2[Ê1�Ê2[ϕN (x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,Bt2

,...,Btn)]].

Combining the above results we can conclude that

Ê1�Ê2[ϕ(Bt1 , Bt2 , ..., Btn , Bt −Bs)]

= Ê1�Ê2[Ê1�Ê2[ϕ(x1, ..., xn, Bt −Bs)]|(x1,...,xn)=(Bt1
,Bt2

,...,Btn)]].

The proof is complete now. �
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