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We give a rigorous proof of the representation of implied volatility as a
time-average of weighted expectations of local or stochastic volatility. With
this proof we fix the problem of a circular definition in the original derivation
of Gatheral, who introduced this implied volatility representation in his book
‘The Volatility Surface’.

1 Gatheral’s most-likely path approximation

In his book ‘The Volatility Surface — A Practitioners Guide’, Jim Gatheral presents an
approximation formula for the implied volatility of a European call, when the underlying
stock follows a general diffusion process

%S: (. S)) dt + (¢, Sy) AW (1)
under the pricing measure P. Here, the volatility term of the diffusion can be time- and
state-dependent as in a local volatility model, but also random as in a stochastic volatility
model. The ‘most-likely path approximation’ to implied Black-Scholes volatility in this
model consists of two parts: The first part is the assertion that implied variance — the
square of implied volatility — can be written as a time-average of weighted expectations
of o2(t,S;):
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Here, the measures G; are given by their Radon-Nikodym derivatives with respect to
the pricing measure,
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where T 7(t) is a function that is yet to be specified and I'gs denotes the Black-Scholes
Gamma. Let us emphasize that (2] is an exact formula, and that it is the second part
of the method where the approximation happens: Gatheral argues that the density (B])
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is concentrated (as a function of (¢,.5)) close to a narrow ridge connecting today’s stock
price Sy to the strike price K at time 7', and claims that a good approximation to (2)
is to evaluate it as if the density was entirely concentrated on this ridg. Adopting the
terminology of Gatheral [2] we call this ridge the most-likely path and the described
approximation method the most-likely path approximation.

In this note we will only be concerned with the first part of Gatheral’s method, i.e. the
derivation of the exact equation (2]), and in particular the definition of the yet unknown
function Gk 7(t). Gatheral [1] defines on page 27 first the ‘Black-Scholes forward implied
variance’ vg r(t) by
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and then, in the equation below, the quantity 7 r(t) by

T
E%T(t) = % v r(u)du . (5)
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There is, however, a problem with this definition — it is circular: vg () is defined as
a function of i (t), but then Gx 7(t) is defined as a function of vk 7(t). At best, it
can be seen as an implicit definition, which leaves the question open whether (and under
which conditions) the quantities vg r(t) and T 7(t) actually existd. We will show that
a simpler definition of Gk 7(t) can be given, which clarifies the problem of existence,
implies both equations () and (B) and finally leads to a proof of the implied volatility
representation (2)).

2 A rigorous proof of the implied volatility representation

2.1 Defining G r(t)

Consider the price of a call maturing at time 7" with strike K, written on an underlying
stock Sy that follows ({l). We denote this price by C(K,T). Moreover we denote by
Cps(t, St, K, T;0) the Black-Scholes price at time ¢ with a current spot price of S; for
a call option with strike K, maturity 7T', and with volatility parameter . We claim the
following:

Proposition 2.1. There exists a unique positive deterministic function G 7(t), such
that the equality
E[Cps(t, St, K, T;ok,r(t))] = C(K,T) (6)

is satisfied for allt € [0,T).

!See Gatheral [1, Page 29ff] for details.
2See also Lee |3, Sec. 2.3], who remarks that the proof in Gatheral [1] hinges upon the assumption of
the existence of vk, r(t).



Proof. For o = 0, the Black-Scholes price Cps(t, St, K,T;0) equals (S; — K). Since Sy
is a martingale, we have by Jensen’s inequality — or by positivity of calendar spreads —
that

E[Cps(t, Sy, K, T50)] = E[(S; — K)4] <E[(Sr - K)4] = C(K,T) .

For 0 — oo the Black-Scholes price Cpg(t, St, K, T; 0) approaches S;. In this case we get
E [CBS(t7 St7 K7 Ta OO)] =E [St] =E [ST] > O(K7 T) .

In addition o — Cgg(t, St, K, T; 0) is for any given S; a continuous and strictly monotone
increasing function, such that also o — E[Cps(t,S;, K, T;0)] is. We conclude that (@)
has a unique solution @ 7 for each t € [0,T). O

Note that for t = 0 equation (@) becomes
CBS(07 507 K7 T7 EK7T(O)) = C(K7 T) )

such that g 7(0) is simply the Black-Scholes implied volatility of the call C(K,T).
Thus, if we define

v r(t) = —% (E%{,T(t) (T - t)) )

Eﬁ{ff(t) satisfies (Bl), and we can recover implied variance from vg 7(t) by the integration
2 2 e
Oimp (K, T) = Gx 7(0) = T/o vi,r(t)dt . (7)

2.2 An Interpretation of G, ()

There is a nice interpretation to the definition of Gk 7(t) through equation (@), in terms
of a state-switching pricing model. Consider, for 7 between 0 and T', the price process
S{ given by

ST=8 t<r

dS7 /ST = o.dW,, t>T1. ®)
The process 5[ switches from dynamics of the type (Il) before time 7 to Black-Scholes
dynamics with fixed (constant and deterministic) volatility o, after time 7. Now we
can ask ourselves: Which volatility o, do we have to choose, such that 5[ yields the
same call option price C'(K,T) as the original model ([{l)? For 7 = 0, the answer is
the Black-Scholes implied volatility oimp(K,T). For 7 € (0,T') a simple conditioning
argument gives that

E[(5F - K)¢] =E[E [ (57— K)4| #]] =E(Cos(r, S, K, T30,)] -

If we set this equal to C'(K,T') we arrive precisely at equation ([6]) and see that we must
choose 0, = G (7). In the sense of the state-switching model (8), we can interpret
o 7(t) as a ‘forward-starting’ implied volatility of the call C(K,T).



2.3 Proving the implied volatility representation

Finally, let us derive equation (2)) from the definition of G 7(t). The Black-Scholes price
Cps(t, S, K, T;0) satisfies, of course, the valuation equation
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Moreover, we have the following relationship between Black-Scholes Gamma and Vega:
aCBS ) 62CBS
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Define now
f(t7 St) = CBS(t7 St7 K7 T7 5K,T(t))
By (@), (I0) and the definition of vk 7(t) we obtain that f(¢,S;) satisfies
of 1 2, O°f
ot~ avrrSi5g
On the other hand, applying Ito’s formula to f(¢,S;), it holds for any 7 € [0,7T), that
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Taking expectations, the left hand side equals C(K,T) — E[f(t,S¢)], which is 0 by (@)).
On the right hand side we interchange integral and expectation; the dSi-term contributes
0, and we insert (II]) to obtain

o:l/TE(£@5)—v )52 ]
2 . s Dt K,T t 852 .
Since 7 was arbitrary in [0,7), we conclude that also the integrand must equal 0 for all

t € [0,t). Rearranging terms and rewriting %J; as Black-Scholes Gamma evaluated at a
volatility of G 7(t), we get the equality

E [0%(t, S¢)S?TBs(St, ok, (1))]
E [SEFBS(Sf,a EK,T(t))]
Defining the measures G; by the Radon-Nikodym derivatives (B]), we can write this

equation as vg r(t) = E® [02(t, 5;)]. Inserting into (7) then yields the desired implied
volatility representation (2I).

’UK7T(t) = (13)
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