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We give a rigorous proof of the representation of implied volatility as a
time-average of weighted expectations of local or stochastic volatility. With
this proof we fix the problem of a circular definition in the original derivation
of Gatheral, who introduced this implied volatility representation in his book
‘The Volatility Surface’.

1 Gatheral’s most-likely path approximation

In his book ‘The Volatility Surface – A Practitioners Guide’, Jim Gatheral presents an
approximation formula for the implied volatility of a European call, when the underlying
stock follows a general diffusion process

dSt

St
= µ(t, St) dt + σ(t, St) dWt (1)

under the pricing measure P. Here, the volatility term of the diffusion can be time- and
state-dependent as in a local volatility model, but also random as in a stochastic volatility
model. The ‘most-likely path approximation’ to implied Black-Scholes volatility in this
model consists of two parts: The first part is the assertion that implied variance – the
square of implied volatility – can be written as a time-average of weighted expectations
of σ2(t, St):

σ2
imp(K,T ) =

1

T

∫ T

0

E
Gt

[
σ2(t, St)

]
dt . (2)

Here, the measures Gt are given by their Radon-Nikodym derivatives with respect to
the pricing measure,

dGt

dP
=

S2
t ΓBS(St, σK,T (t))

E
[
S2

t ΓBS(St, σK,T (t))
] , (3)

where σK,T (t) is a function that is yet to be specified and ΓBS denotes the Black-Scholes
Gamma. Let us emphasize that (2) is an exact formula, and that it is the second part
of the method where the approximation happens: Gatheral argues that the density (3)
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is concentrated (as a function of (t, S)) close to a narrow ridge connecting today’s stock
price S0 to the strike price K at time T , and claims that a good approximation to (2)
is to evaluate it as if the density was entirely concentrated on this ridge1. Adopting the
terminology of Gatheral [2] we call this ridge the most-likely path and the described
approximation method the most-likely path approximation.

In this note we will only be concerned with the first part of Gatheral’s method, i.e. the
derivation of the exact equation (2), and in particular the definition of the yet unknown
function σK,T (t). Gatheral [1] defines on page 27 first the ‘Black-Scholes forward implied
variance’ vK,T (t) by

vK,T (t) =
E

[
σ2(t, St)S

2
t ΓBS(St, σK,T (t))

]

E
[
S2

t ΓBS(St, σK,T (t))
] , (4)

and then, in the equation below, the quantity σK,T (t) by

σ2
K,T (t) =

1

T − t

∫ T

t

vK,T (u)du . (5)

There is, however, a problem with this definition – it is circular: vK,T (t) is defined as
a function of σK,T (t), but then σK,T (t) is defined as a function of vK,T (t). At best, it
can be seen as an implicit definition, which leaves the question open whether (and under
which conditions) the quantities vK,T (t) and σK,T (t) actually exist2. We will show that
a simpler definition of σK,T (t) can be given, which clarifies the problem of existence,
implies both equations (4) and (5) and finally leads to a proof of the implied volatility
representation (2).

2 A rigorous proof of the implied volatility representation

2.1 Defining σK,T (t)

Consider the price of a call maturing at time T with strike K, written on an underlying
stock St that follows (1). We denote this price by C(K,T ). Moreover we denote by
CBS(t, St,K, T ;σ) the Black-Scholes price at time t with a current spot price of St for
a call option with strike K, maturity T , and with volatility parameter σ. We claim the
following:

Proposition 2.1. There exists a unique positive deterministic function σK,T (t), such

that the equality

E [CBS(t, St,K, T ;σK,T (t))] = C(K,T ) (6)

is satisfied for all t ∈ [0, T ).

1See Gatheral [1, Page 29ff] for details.
2See also Lee [3, Sec. 2.3], who remarks that the proof in Gatheral [1] hinges upon the assumption of

the existence of vK,T (t).
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Proof. For σ = 0, the Black-Scholes price CBS(t, St,K, T ;σ) equals (St −K)+. Since St

is a martingale, we have by Jensen’s inequality – or by positivity of calendar spreads –
that

E [CBS(t, St,K, T ; 0)] = E [(St − K)+] ≤ E [(ST − K)+] = C(K,T ) .

For σ → ∞ the Black-Scholes price CBS(t, St,K, T ;σ) approaches St. In this case we get

E [CBS(t, St,K, T ;∞)] = E [St] = E [ST ] ≥ C(K,T ) .

In addition σ 7→ CBS(t, St,K, T ;σ) is for any given St a continuous and strictly monotone
increasing function, such that also σ 7→ E [CBS(t, St,K, T ;σ)] is. We conclude that (6)
has a unique solution σK,T for each t ∈ [0, T ).

Note that for t = 0 equation (6) becomes

CBS(0, S0,K, T ;σK,T (0)) = C(K,T ) ,

such that σK,T (0) is simply the Black-Scholes implied volatility of the call C(K,T ).
Thus, if we define

vK,T (t) = −
∂

∂t

(
σ2

K,T (t) · (T − t)
)

,

σ2
K,T (t) satisfies (5), and we can recover implied variance from vK,T (t) by the integration

σ2
imp(K,T ) = σ2

K,T (0) =
1

T

∫ T

0

vK,T (t) dt . (7)

2.2 An Interpretation of σK,T (t)

There is a nice interpretation to the definition of σK,T (t) through equation (6), in terms
of a state-switching pricing model. Consider, for τ between 0 and T , the price process
S̃τ

t given by

S̃τ
t = St t ≤ τ

dS̃τ
t /S̃τ

t = στdWt, t ≥ τ .
(8)

The process S̃τ
t switches from dynamics of the type (1) before time τ to Black-Scholes

dynamics with fixed (constant and deterministic) volatility στ after time τ . Now we
can ask ourselves: Which volatility στ do we have to choose, such that S̃τ

t yields the
same call option price C(K,T ) as the original model (1)? For τ = 0, the answer is
the Black-Scholes implied volatility σimp(K,T ). For τ ∈ (0, T ) a simple conditioning
argument gives that

E

[
(S̃τ

T − K)+

]
= E

[
E

[
(S̃τ

T − K)+

∣∣∣Fτ

]]
= E [CBS(τ, Sτ ,K, T ;στ )] .

If we set this equal to C(K,T ) we arrive precisely at equation (6) and see that we must
choose στ = σK,T (τ). In the sense of the state-switching model (8), we can interpret
σK,T (t) as a ‘forward-starting’ implied volatility of the call C(K,T ).
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2.3 Proving the implied volatility representation

Finally, let us derive equation (2) from the definition of σK,T (t). The Black-Scholes price
CBS(t, St,K, T ;σ) satisfies, of course, the valuation equation

∂CBS

∂t
= −

1

2
σ2S2

t

∂2CBS

∂S2
. (9)

Moreover, we have the following relationship between Black-Scholes Gamma and Vega:

∂CBS

∂σ
= σS2

t (T − t)
∂2CBS

∂S2
. (10)

Define now
f(t, St) = CBS(t, St,K, T, σK,T (t)).

By (9), (10) and the definition of vK,T (t) we obtain that f(t, St) satisfies

∂f

∂t
= −

1

2
vT,K(t)S2

t

∂2f

∂S2
. (11)

On the other hand, applying Ito’s formula to f(t, St), it holds for any τ ∈ [0, T ), that

f(T, ST ) − f(τ, Sτ ) =

∫ T

τ

{
∂f

∂S
dSt +

∂f

∂t
dt +

1

2
σ2(t, St)S

2
t

∂2f

∂S2
dt

}
. (12)

Taking expectations, the left hand side equals C(K,T ) − E [f(t, St)], which is 0 by (6).
On the right hand side we interchange integral and expectation; the dSt-term contributes
0, and we insert (11) to obtain

0 =
1

2

∫ T

τ

E

[(
σ2(t, St) − vK,T (t)

)
S2

t

∂2f

∂S2

]
dt .

Since τ was arbitrary in [0, T ), we conclude that also the integrand must equal 0 for all

t ∈ [0, t). Rearranging terms and rewriting ∂2f
∂S2 as Black-Scholes Gamma evaluated at a

volatility of σK,T (t), we get the equality

vK,T (t) =
E

[
σ2(t, St)S

2
t ΓBS(St, σK,T (t))

]

E
[
S2

t ΓBS(St, σK,T (t))
] . (13)

Defining the measures Gt by the Radon-Nikodym derivatives (3), we can write this
equation as vK,T (t) = E

Gt
[
σ2(t, St)

]
. Inserting into (7) then yields the desired implied

volatility representation (2).
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