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Abstract

We present a new model for credit index derivatives, in the top-down approach. This model
has a dynamic loss intensity process with volatility and jumps and can include counterparty risk.
It handles CDS, CDO tranches, N** -to-default and index swaptions. Using properties of affine
models, we derive closed formulas for the pricing of index CDS, CDO tranches and N*'-to-default.
For index swaptions, we give an exact pricing and an approximate faster method. We finally show
calibration results on 2009 market data.
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1 Introduction

Credit derivatives allow to transfer some credit risk: an investor can get or sell protection on a debt
issuer or on a basket of different names. Most popular credit basket derivatives are Credit Default
Swaps (CDS), where one gets protection on a whole basket against some premium paid on a regular
basis. For CDO tranches, the protection does not cover losses below some trigger or above a second
one. In N*P_to-default, the protection concerns precisely the N** default on the basket. An other kind
of derivatives are CDS options (swaptions): one gets the right to enter at a future date in a CDS at a
given premium rate. Depending on the market price of protection at the option maturity, the option
is exercised or not.

There are different risks in credit derivatives. The risk of default should be the more obvious. A
second kind of risk are movements in the market price of CDS. When the derivative is written on a
basket, risks comes from default risk and spread risk on underlyings and also depends on correlation
between names.

There is a first distinction between credit models. Some models are static: the intensity of default
of a name has no stochastic behaviour with respect to time evolution. It is sufficient to price CDS
or CDO tranches, but such models cannot handle options: the spread risk is not taken into account.
Dynamic models incorporate this risk, generally by making the default intensity stochastic.

There is an other splitting between credit basket models. In bottom-up models, credit basket
derivatives prices and risks are reconstructed from individual constituents and their correlations
[Li00, DGO1]. An alternative approach describes directly the risks on the basket [EGG09L [Sch06,
BPT07,[AHO7]. It is sufficient if one wants to hedge derivatives on a credit index with the index itself
or other derivatives and not with individual components. If one is concerned with individual names
risk, a second step is necessary, such as the random thinning [GGD09|.

We introduce a model which belongs to the second category: we model directly defaults on the
basket. Our model is also dynamic: the intensity of default is a dynamic, stochastic variable. More
precisely, the intensity of default of the basket is modeled by a Cox-Ingersoll-Ross process with jumps.
A diffusion term describes short movements of the credit index spread. Jumps intend to take into
account possible crises where the perceived credit quality of the basket decreases by a large amount.
After crises, the intensity can relax to a lower value. We also introduce a probability for the default
of the whole basket. Our model can handle counterparty risk: the counterparty can be correlated to
the basket or can even be one of the basket names.

We define first a model on an infinite pool of names where default events occur according to a
stochastic default intensity, without any bound on the total number of defaults. In a second time we
use this infinite pool model to model defaults on a finite basket. Using properties of affine models
[DPS00], we get closed formulas for the (conditional) expected loss or tranches losses. Usual credit
derivatives can be priced exactly: CDS, CDO tranches, N*'-to-default, index CDS options. It takes
reasonable time for most instruments. However for swaptions the exact pricing can be slower so we
introduce some approximations which reduces highly the computation time.

We describe our model in section [2| and the pricing of usual credit derivatives in section 3| We
finally show numerical results of calibration on market data in section



2 Model

2.1 Infinite pool
2.1.1 Description of the model

The credit portfolio in modeled in a top-down approach: the portfolio loss is considered directly.
Probabilities are considered to be risk-neutral probabilities. We consider first a portfolio of infinite
size. Its loss L; is a stochastic process with jumps [ d.JJ which occur with an intensity \; and size I:

dL; = 1dJ

where dJ are jumps of size 1. The recovery rates R of defaults are independent and identically
distributed. We denote by dv;(l) the distribution of the jump size | = 1 — R. In parallel, we have a
stochastic process Ny counting the number of default. It is similar to L; but with zero recovery rate:

AN, = dJ .
We want to build a model for the default intensity process with the following features:

e a diffusion process describing small fluctuations of the CDS index spread;

e positive jumps of the intensity which can produce episodes of crisis with many defaults on some
timescale;

e a mean reversion such that crises can relax.

Mathematically, the intensity A; will follow a stochastic process like
AN\t = K(Aso — Ap)dt + o(N)dW 4+ dX

where dW is a Brownian motion and dX a jump process with intensity .

It appears that this model has analytic solutions if we make some further assumptions on the
diffusion and jump process:

e the volatility is proportional to the square root of \: o(\;) = o/ A, as in a Cox-Ingersoll-Ross
process;

e the jump size are independent and identically distributed along a Gamma distribution of pa-
rameters n and # where n is an integer which describes the shape of the distribution and the
mean size of jumps is (n + 1)6:

n,—x/0
xre

e all processes are independent of each other (except the fact that \; is the intensity of jumps
dJ).

The justification of this set of assumption is computational tractability. This choice encompasses the
features we want to model without restricting the model too much. In fact one feature we might want
to include is missing: here jumps in the hazard rate are purely exogenous, there is no default contagion,
as in [EGGO09]. Including a jump term proportional to dL, for the intensity process requires numerical
integration of differential equations, which is tractable but much slower than analytical integration. A



few tests do not indicate that including default contagion changes the loss distributions and therefore
the CDO prices.

The default intensity process A; is thus supposed to follow a Cox-Ingersoll-Ross process with
additional jumps with intensity v and size distributed along a Gamma distribution (equation ):

dA\t = k(Ao — Ap)dt + o/ \edW +d X .

Parameters k, A\s, 0, n, v and 6 can be taken to be constant or piecewise constant. The model
parametrization contains in addition the initial default intensity Ag.

Experience shows that calibration of the model without a probability of default of all names tends
to incorporate it by setting a very high jump size in dX. We therefore introduce explicitly such a
possibility. We introduce a variable ) which jumps of one unit when all names default together, with
intensity aX; + 6. Q # 0 models a default of the whole portfolio. Parameters @ and (8 control the
probability of such an event and its correlation to the short-term credit quality of the basket modeled
by A. « gives a contribution independent of the current state of the system whereas § gives a higher
probability of total default during crises.

In order to handle counterparty risk, we introduce finally a variable R which jumps of one unit
when the counterparty defaults. It jumps with probability & when there is a jump in dJ and addi-
tionally with intensity (A; +n at any time. When the counterparty belongs to the set of index names,
¢ and n are set to zero and & controls the probability that a default concerns the counterparty. When
the counterparty is not one of the names, £ is set to zero, ( and 7 control the intensity of a default
of the counterparty and its correlation with defaults in the basket.

The intensity process jump distribution dvy(z) given in can be more general than a pure
gamma distribution by considering the sum of several gamma distributions with different parameters
@ 0@ and 9. If @ is kept constant, one can for example take a distribution of the form P(w)e‘x/ 0
where P is any polynomial. For clarity we write formulas for only one gamma distribution; the
generalization is straightforward.

2.1.2 Characteristic function

2.1.2.1 Theorem

Theorem 1. For constant parameters, the characteristic function at date t in the four variables ET,
Nr, Ar and Q1 for complex variables u, v, w and x is

E: (eUZT+UNT+W)\T+xQT+yRT> — eA(t,T;u,v,w,y)—i—B(t,T;um,w,y))\t+uzt+vﬁt+th+th

wz’tiﬂ
By —B_

1-1
X

B k4 /K2 + 202
== 2
o

Y = w— B o~ V/R2+20%¢ (T—1)

B=B_+

w— By
Yv=1-¢€"¢;(u)[1 -1 —e")] +a(l—e")+((1—¢Y)

1To simplify notation we drop the explicit dependency of functions A, B, B+, x and ¢ in variables ¢, T, u, v, w, ©
and y.




1 1 B — By

A = ———— + kAo B - )| m( 2=

502<B+—B->X§< [” “”((l—eBw >] “(w—f&)
In 1-6B

A —eB M\ 1 ow

"1 1 1 1
i”; k(1 — @By)n—k+1 {(1 — 0B (1— Hw)k] )

=B =N T =) =n(1 —e')(T —1) .

¢j(z) is the characteristic function of the individual loss size:

by(z) = /CZldVJ(l) :

The proof of this theorem and its generalization to piecewise constant parameters is described in
the following.
2.1.2.2 Differential equations

Proposition 1. The model we have described is an affine model in the three variables Et, Nt and A¢:
its characteristic function can be written in the form

E, (euZT—l—vﬁT—i—w)\T-&-mQT-f—yRT) —

eA(t7T;u7v7w7x7y)+B(t7T;u7v7w7x7y)At +C(t7T;u7,U7w7x7y)zt+D(t7T;u7U7w7x7y) Nt+E(t7T;u7U7w7I7y)Qt+F(t7T;u7v7w7x7y)Rt (2)

where A, B, C, D, E and F' are complex functions of the real parameters t and T and the complex
parameters u, v, w, r and y which satisfy differential equations f@ and boundary conditions

9.

Proof. Let suppose that equation holds. The variation of E; (e“ET+“NT+W‘T+IQT+yRT) when t
goes to t 4+ dt can be written as

dE, (e“ZT“NﬁmT”QTﬂRT) - [atAdt + 8,Bdt A + (eBdAt _ 1) +8,0dt Ly + 8,DAt N,

+ 0,Edt Q, + 0,Fdt Ry + (€CdZt+Ddﬁt+Fth _ 1) i (eEth _ 1) :|€A+BAt+CEt+Dﬁt+EQt+FRt (3)
where

1
BN 1 = Br(Aso — A)dt + Bo/AdW + §B2a2>\tdt + (eBdX - 1)

oCdLi+DANi+FdRy _ Cj+D)dJ+FdR _

el

On the other hand, we know from the trivial equation

E, {E "y (eUZT+UNT+U))\T+$QT+yRT):| —E, (euZT+vﬁT+wAT+xQT+yRT>

that L
E, [3tEt <GULT+UNT+7-U)\T+$QT+?JRT>:| =0.



Therefore the expected value of must vanish:
0= |0;Adt + 0y Bdt Ay + Br(Aoo — A¢)dt + %BZUQ)\tdt + ydt / (eP* — 1) dvx ()
+ 0,Cdt Ly + 8, DAt Ny + 0, Edt Q; + 8, Fdt Ry + Ayt <eD / e“Iduy(j) g’ + (1 - €)] - 1>
1 (e + B)dt (eE _ 1) (O + n)dt (eF _ 1) ] oATBAACL+DNi+EQu+FR;

Forgetting the last exponential, this equation is affine in Et, Nt, A, Qp and R;. As this must be
true for any value of stochastic variables L;, Nt, A¢, Q¢ and Ry, this equation holds if and only if the
following equations are satisfied

A, Tiu,v,w,x,y) = —KAB—7v(¢x(B)—1)—-70 (eE -1)—n (eF —1) (4)
o0B(t, T;u,v,w,x,y) = KB -— 30232 - (engJ(C) [feF +(1- f)] - 1)
—« (eE -1)—¢ (eF -1) (5)
0C(t, T;u,v,w,z,y) = 0 (6)
WD (t, T;u,v,w,z,y) = 0 (7)
WE(t, T;u,v,w,z,y) = 0 (8)
OF(t, T;u,v,w,z,y) = 0. (9)
with the boundary conditions at t =T
AT, T,u,v,w,y) = 0 (10)
B(T,T,u,v,w,y) = w (11)
C(T,T,u,v,w,y) = u (12)
D(T,T,u,v,w,y) = v (13)
E(T,T,u,v,w,y) = = (14)
F(T,T,u,v,w,y) = y. (15)

We have used the following notations for the characteristic functions of dv; and dvy
oy(z) = /QZldVJ(l)
ox(z) = /ez‘vdux(x) .

As a consequence, equation holds if and only if these differential equations are satisfied with
their boundary conditions. O

2.1.2.3 Analytical solution These equations can be solved in closed form, when parameters are
piecewise constant. We consider first the case where all parameters are constant, which completes
the proof of theorem

The equations for C'; D, E and F' have the simple solutions
C(t, T;u,v,w,z,y)
D(t, T;u,v,w,z,y)
E(t, T;u,v,w,x,y) =
F(t,T;u,v,w,z,y)

<< 8 @



The equation for B is a Riccati equation with constant coefficients:
1
0B(t, T;u,v,w,x,y) = —50232 + kB + 1 (16)
with
¢(Ua v, T, y) =1- ev¢J(u) [1 - 5(1 - ey)] + a(l - ex) + C(l - ey) :

The standard way for solving this equation is:

1. find a particular (constant) solution b;
2. write B = b+ f, which gives a Bernoulli equation;

3. change the variable to g = L to get a linear equation.

Instead of this, we give a more pedestrian but more direct derivation of the solution, which is
more in the spirit of the solution of the equation for A. We rewrite equation as

dB(t,T;u,v,w,:U,y) — dt
~lo2B2 4 kB +y

which can be integrated directly.

We find the simple poles decomposition after rewriting again this equation as

15 _ T
B-B,)(B-B) 2

where By are in fact the constant solutions of the differential equation ([L6]):

B k4 /K2 + 202
+ = 3 .
o

With non zero x and u on the imaginary axis B4 and B_ are distinct and the simple pole decompo-
sition
dB dB 2(By — B-)

- = 22 g
B-B, DB-B_ o2

= —/KZ2+ 202)dt

B-B. Br — B,
In( ——— ) =ln{ ——F— 24 202p(T -t
n(B—B_> n(BT—B_>+ K2+ 2029( )

is integrated as

where we simplify slightly the notations by writing B = B(t,T; u, v, w,z,y) and By = B(T, T, u,v,w,y).
The exponential of this equation is

B-B_.  Br-B_ _ jarsamimy
= g — tT
B-B, Br-B. x(t, T;u, v, w,z,y)

where we have introduced the notation x(t,T;u, v, w,z,y). It gives the following expression for B:

B_ —xB By —-B_
B:¢:B,++7l. (17)
1—x v

When T — t goes to infinity x goes to zero and B goes to B_.



We are left with the equation for A. For the moment, we set # = 0 and n = 0 (the last terms
of equation will give simple contributions that we give at the end of this section). This equation
will be solved as a function of B. Dividing equation (without the last term) by equation gives

dA KA B + 7 (¢x(B) — 1)

dB ~ 162B2 — kB + (P (C) — 1)

The assumption we have made on the jump size distribution ensures that the right-hand side is a
rational function. Equation gives the characteristic function of this distribution as

ox(w) = (1 - 027D

Therefore all poles of the rational functions are known: By and B_ are simple poles and there is a
pole of order n + 1 in

1
By = -
79
dA  KdoB+7((1—6B)~("tH —1)
dB $02(B— By)(B— B-)

To write down the pole decomposition, the first step is to use

1 1 1 1
102(B—-By)(B—B_) i0%(Bi-B.) (B - B, B —B_)

to separate the fraction in two parts:

dA 1 F(B) F(B) (18)
dB ~ lo2(By -B_)\B-B; B-B-_
where ( 1
_ Y(—By)"
. a0 F(B)
The first two terms give a contribution to 5= Br
H)\OOB:l: -7
+hAoo £ —————
e T BBy
where the constant term will be simplified between + and — components. The other poles of + ;jgl
come from the term i%:
7(—Be)n+1 n+1 ki ki
LB gy T .
_ +1 _ _
(B — By)" B-By  “= (B-By)
Multiplying by B — B+ and setting B = B4 give
1
ky = ——F7——— .
+ (By — Bg)t1

The decomposition is completed by computing

1 1 1 - 1
B — By ((B—Bg)”'H - (Bj:—BG)n+1) - _k=0 (B — Bg)"*k+1(B — By)k+1 °



The pole decomposition finally reads
+rA o

(—B,g)n+1 1
+ [Fc)\ooB:t + v ((Bj: — B@)"‘H -1 5B B

(—Bg)n+1
jFVkZO (By — Bg)" *T1(B — By)kH1

which has to be plugged into equation ((18]).
We can now integrate analytically:

1
B —— X
%UQ(B_F — B_)

g( + [H)\OOB:t‘F'Y((l_H;i)W—l)}ln(BBT:BB:::>

1 L[ 1-6B
+ 7(1 - ijE)n+1 1— 0By

A=Ar +

1 1
+ ’sz, gBin s [(1_93)/@(1_93T)k}> - (19)
For B # 0 or n # 0, there are additional contributions to A
—B(1 - e")(T —t) — (1 — e¥)(T — 1) (20)

Equations (17| , and . 20) together with terminal conditions By = w and A7 = 0 provide
an analytical solutlon for the four-dimensional characteristic function of the joint distribution of Ly,
Nr, Ar, Qr and Ry.

The formulas computed correspond to the case where all parameters are constant between the
computation time and the maturity 7" for which the distributions must be computed. If parameters
are piecewise constant, the integration has to be performed backwards, with intermediary boundary
conditions Br, and Ar;.

2.1.3 Loss distribution and moments

An inverse Fourier transform gives the Loss distribution from the characteristic function

E, (ez‘pLT) — oAT5ip,0,0,0,0)+B(t,T5ip,0,0,0,0)Ai+ipLe (21)

where u =ipandv=w =y =0.
The number of defaults can be obtained similarly by Fourier-inverting

E, ( e”’NT) — QAL T;0,ip,0,0,0)+B(t,T30,ip,0,0,0) Ae-+ipN;

where v = ip and u = w = y = 0. Computations involving N, are similar to ones with L; so in what
follows we focus on Lj.

We have to take into account the fact that the whole basket may default, which is modelled by
the nonnegative stochastic variable (). @ > 0 means that all names have defaulted. We write

—ooQr

lg;=0 =e€

10



This allows to compute quantities like
E, (eipzT]lQT:()) = E, (eipZT—ooQT)

= eA(t,T;’Lp,0,0,—OO,D)+B(t,T;Zp,0,0,—O0,0)At+Zth ﬂQt:O

and similarly

= - t=U *

We need in addition
Et (]]-QT>O) -1 Et (:[]-QT:O) —1— eA(t,T;0,0,0,—O0,0)-‘:—B(t,T;0,0,0,—O0,0))\t ]]-Qt:() .

In fact, x = —oo means that e* is set to 0 in formulas of theorem

The counterparty risk is handled similarly through variable Rt which is null until the counterparty
defaults. In the following, we do not take it into account in formulas in order not to overload formulas.
It is straightforward to extend them to this case.

~ ~ \2 ~ \2
The loss mean E(L7) or the loss variance E((LT) — E(LT) ) can be computed in two ways.

Either the Taylor expansion of equation in p ~ 0 is computed, which produces all moments up
to a given order, or differential equations are directly written and solved for the moments.

2.1.4 Time dependency

To be able to match market prices of index CDS at all maturities, some parameters must be time-
dependent. There are several possible choice. The long-run intensity Ao, can be taken piecewise
constant for example. An other possibility is a change of coordinate on the time variable. ¢ is taken
to be an increasing function ¢(7) of real time 7. If time goes faster, defaults are more likely to happen
in a given period of time, if times goes slower defaults have lower probability. For example if one
wants to fit exactly the index CDS quotes at several maturity, the simplest solution is to take a
piecewise affine function for f, with slope change at CDS maturities. When the slope changes by a
factor a, this is equivalent to a scaling of parameters

A — a A
Y — a v
0 — a 6
n — n
K — a K
c — a o
o — o
p — a p
§ — §
¢ — ¢
n — a 7n.

2.2 Finite basket

The model described really corresponds to an infinite pool of issuers: there can be any number of
defaults, even larger than the basket considered. There is no exhaustion of the issuers pool. Let us
consider now a basket of Ny issuers. We denote by Ny the number of default in the finite basket and
L, the corresponding loss.

11



2.2.1 Truncation

A first solution would be to truncate the number of defaults to the basket size Nj; and the loss to
LM = llNM:

Nt = min(ﬁt,NM)
Lt = min(zt,LM).

The expected loss E(L;) may be approximated to E(L;) if the contributions from L; > Ly are
negligible. If this approximation is not valid, a lengthier computation must be performed: a CDO
tranche with detachment point Lj; has to be priced to get the value of a index CDS. This would
slow down our calibration process. Moreover, the probability that a given issuer defaults in a basket
where many other issuers have already defaulted would be much greater than its default probability
in a basket without defaults yet, for the same default intensity: the number of default per unit of
time does not depend on the number of issuers alive in the basket. In some sense this is not a real
problem: it introduces some default contagion. On the other hand, this default correlation is not
controlled and does not come from the default intensity process.

2.2.2 Subpool and uniform probability

We therefore prefer an other solution. We consider that the finite pool is a part of the infinite pool.
The infinite pool can be considered to model the whole economy. With uniform probability on pool
components, the probability that a default of the infinite pool concerns the finite pool is proportional
to its number of elements. Starting from a finite pool size of Ny, after N defaults on the finite basket
a given default of the infinite pool has a probability proportional to Ny; — N to occur in the basket.
When the number of defaults in the basket is N = Nj; there is no more default: the number of
defaults is correctly bounded. We normalize this probability as W There is no loss of generality
with this choice of normalization: the model would be the same if this probability is multiplied by

some factor and the intensity process on the infinite pool is divided by the same factor.

We forget for the moment the probability of a simultaneous default of the whole basket. We can
compute the probability of k defaults in the credit basket as a sum over probabilities of j defaults
in the infinite pool weighted by the probability that j defaults in the infinite pool gives k£ defaults in
the finite basket. Denoting by pj; this probability we have

P(Np =k [Qr =0) =Y P(Np=j|Qr=0)pj - (22)
§=0
The py; coefficients satisfy the recursion

k Ny —k+1
Dj+1,k = Nij,k + Nus Pjk—1 (23)

with initial condition
Pok = 0o - (24)

It is possible to find a closed form solution to this set of equations. The observation of the solution
for k£ = 0,1,2 leads to the hypothesis that p;;, £ < j, can be expanded in eigenmodes

Pik = gl () .
1=0 Num

12



Equation is satisfied if and only if
(l — k:)akl = (N -—M—-k+ 1)0,]@,1,1

Ny —1 _
. = < k];w—l )a”(—l)k ! kZl

ap, = 0 kE<l.

which leads to

The coefficients a;; are given by the initial condition (24]). The expression for pgy is triangular and can
be computed recursively. To shorten the computation, we introduce a polynomial in some variable
Z:

Ny
P(Z) = ZPOka :
k=0

The initial condition por = dko is equivalent to P(Z) = 1. Using our solution for pgg in terms of ay

this polynomial is
Ny k

P(z)=>"%" (Z\;M—_z l) ay(—1)F1z" .

k=0 1=0

Switching sums in k and [ we can sum over k and get

Ny
P(Z)=> ay(l—-2)" 'z =1,
=0

Nm
all:( I )

After some rearrangement the solution finally is

Pjk = (JVkM) (—1)* Ek: (?) (-1 (NZM>] - (25)

=0

The unique solution to this equation is

Using this solution and taking into account the disaster event modelled by @, the probability of
default in the finite basket is

k

N\, e (R, N
PV =k) = ()RS () EVE| (=) ers| + by Elarse)  (26)
1=0 M
where the expected values on the right-hand side are given by theorem
[\ LY).0,— L Yo—
E <NM> lQT_(]] _ eA(o,T,o,ln(NM>,o, oo,0)+B(0,T,0,1n(NM),0, oo,o),\o (27)

E(]]‘QT>0) = 1 — eA(07T7070707_OO7O)+B(O,T7O7O,O7—OO7O))\O ) (28)

More generally, the conditional probability at time ¢ is given by a slightly modified formula:

1\ NN
(W) e

+ 5k,NMEt(ﬂQT>0) (29)

k

Pi(Np = k) = Igsn, (A;M__N]jt) (—1)kl§ (’;:j@ (—1)'E,
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where the expected value on the right-hand side are given by theorem

. (NZM>NT—Nt HQT0] _ eA(t,T,o,1n<N4M),o,foo,o)JrB(t,T,o,ln(NLM),o,foo,o),\t]th:O (30)

Et(HQT>O) - 1— eA(t,T,O,O,O,*OO,O)‘FB(t,T,O,O,O,700,0))\0 HQt:O ) (31)

We have finally obtained a closed formula for the default distribution as a finite sum. For small
enough Nj; or k it can be used. However for large values of Ny, and k this formula is completely
useless for numerical applications: it is a alternating sum of numbers with very large coefficients. For
example for Np; = 125 and k = 62, which corresponds to the highest contribution to the standard
senior tranche on CDX with a recovery rate of 40%, the highest coefficient has an order of magnitude
of 10°* and the final result is between 0 and 1: the computations should be done with very high
accuracy and cannot be done in a direct way on current processors. In the remaining parts of this
section we therefore give other computation techniques more suitable to numerical implementation.

2.2.3 Expected loss
In order to compute CDS prices, the expected loss
E(Lr) = LE(Ny) (32)

can be computed from the mean jump size [1, equal to 1 minus the average recovery rate, and the
expected number of defaults. To compute the latter quantity, we introduce the conditional mean
value

Ny
ej = E(N7|Np = j5,Qr =0) = ijkk‘
k=0

which does not depend on T as the probability of jumps in the basket does not depend explicitly on
time. In a first step we condition all probabilities by Q7 = 0, i.e. we do not consider a default of the
whole infinite pool. The recursion equation translates for the mean value to
%1% N M — k N M — €5
€j+1 — €5 = Pjk = .
J J P J NM NM

From the initial value eg = 0 the solution is

o

The unconditional expected number of defaults is obtained by averaging over the number of defaults
7 in the infinite pool and taking into account the default of the whole infinite pool:

(52) ]

The expected value on the right-hand side corresponds to the characteristic function we have com-
puted in theorem with v = ln(l — NL)

M

E(N7) = Ny <1 ~E

,x=—o0, u=w=1y=0:
E(Nr) = Nas [1 B eA(o,T;o,ln(1NlM),o,oo,o>+B(o,T;o,1n(1NlM),o,oo,o>,\0] ' (33)
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We find similarly the conditional average number of default:
1 Np—Ny
(m) e

5-).0,-00,0)+B(£T30.n(1- 51 ),0,-00,0) X¢

E¢(N7) = Nar — (Nag — Ny Es

Theorem (1] gives the explicit expression

A(t,T;0,In( 1—
E¢(N7) = Ny — (Nag — Ny e (0 lg—o . (34)

2.2.4 Expected tranche loss

For CDOs we have to compute the expected value of the tranche loss. We consider first the case of
fixed recovery rate, with default size {1 for all components. From a tranche with attachment point a
and detachment point d, the tranche loss is

Ly =(d—a)+(a—Ly)" —(d—Lr)*

The expected value of

Ny
E[(K — L)t ZIP’ Np = k)(K —l1k)*

can be rewritten using (22)) as

E[(K — Ly)*t :ilzp]k — lk) ]P(NT:j,QTzo).

7=0 Lk=0

(We suppose that the tranche does not contain the end of the basket: K < Iy Nys.) This quantity is

the integral of the function
Nt

Zpﬂg — hk)*

against the probability distribution of Nr.

Theorem [1] gives the Fourier transform of this distribution. We can invert it at each time T for
which we need to compute the tranche loss and integrate against fx. When calibrating, these Fourier
transforms has also to be done for all sets of model parameters. Alternatively, we can compute
the Fourier transform of fx, which has to be done only once for each value of K and integrate it
against the characteristic function of Np. This considerably reduces the number of numerical Fourier
transform to perform.

For each value of K needed, the Fourier transform of fx

0o Ny
f() =™ fx(i Z WZPIC — k)"
3=0 3=0

is computed numerically, using FFT for example. A bound on j has to be estimated. Matrix
elements p;;, have an explicit form given in equation but we have seen this expression is often
useless numerically. We therefore compute these numbers directly using the recursion from initial
condition . As these numbers does not depend on the model parameters or even the attachment
or detachment point but only on the basket size N, this computation has to be done only once for
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all instruments on a basket of size Nj;. The Fourier transform itself has to be done only once for
each detachment point K, basket size Nj; and recovery rate 1 — 7.

We finally obtain E[(K — Ly)"] as

1 oo "
B[ - L)) = - [ fi(-pB(e"710,0)
—0o0
or more explicitly using theorem
Y e A(0,130,ip,0,—00,0)+B(0,T30,ip,0,—50,0) A
E[(K — LT)+] - 277/ fr(=p)e (0,70,ip,0,—00,0)4B(0,T30,ip,0,—00,0) Ao (35)
— 0o

For N*B_to-default, we need to compute at every time step the quantity E(1y,<x) = P(Np < k).
It is computed similarly for k < Njs as

1 [*e ipN
E(1np<k) o g’“(_p)E<ew THQTZO)
-0
1 +oo N 0.4
- L o (—p)eAOT0,ip.0,-00,0)+ BOT:0,ip,0,0,0)Xo (36)
T J -
with
~ 0 k-1
Gp) = DM =D Y pe

=0 j=0 k'=0

2.2.5 Stochastic recovery

Stochastic recovery rate can be included in the framework. The loss process is no longer Ly = [y Np. If
recovery rates are independent of each other, Ly is given by the convolution of the jump distributions
up to the Ny jump.

When computing tranche losses, the function fx(j) has to be modified. More precisely, (K —l1 k)™
has to be replaced by the expected value of (K — L)t conditional to Ny = k: it is the integral of
this function weighted by the distribution of L7 conditional to Ny = k, i.e. the convolution of
distributions of the k first jumps.

If all recovery rates have the same mean 1—1;, the expected loss is still given by E(Lr) = l; E(Nr).
If the recovery rate mean depends on the number of past jumps, it is no longer true. In many cases
it is still possible to compute a simple formula for the expected loss. In other cases, one can always
use the algorithm for tranche losses for a tranche covering the whole basket.

3 Pricing

3.1 Index CDS

The price of a CDS is given by the difference between a protection leg which pays the amount of
defaults on the basket?]

T
CLops = / dL.ZC(0,7)
0

2We write payoffs with integrals to simplify notations; they are in fact discrete sums.
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and a premium leg which pays a fixed premium s
T
FLops = 3/ dr(Ny — N-)ZC(0,7) .
0

T is the maturity of the contract, time 0 is the pricing date and ZC'(0,T) is the zero coupon discount
factor. The price at time 0 is the risk-neutral expected value

T T
E(CLops — FLons) = /O dE(L,)ZC(0,7) — s /0 dr(Nar — E(N,)ZC(0,7) . (37)

The expected values which appear in the right-hand side can be computed using equation . With
a recovery rate of fixed mean size 1 — I, the expected value of L, is E(L;) = [{E(NN;). For more
complex cases, see section [2.2.5

3.2 CDO tranche

For a CDO tranche of attachment point ¢ and detachment point d, the tranche loss is

0 if L, <a
LY ={L.—a ifa<L,<d
(d—a) ifLr>d.

The credit and premium legs are
d T d
a, s
cred, = /O AL 7C(0, 7)
4 T
FLot = 3/0 dr ((d —a)— fod) ZC(0,7) .

Introducing
M2 = (d—a) — L2

The price is the risk-neutral expected value
T T
E(CLED - FLYE ) = — /0 dE(Mf’d> Z20(0,7) — s /0 dTIE(Mf’d> Z0(0,7) .  (38)
We decompose the remaining notional on the tranche as

M =(d—L)" —(a— L))" .

Its expected value is
E(Mp4) =E[(d - Ly)*] ~ E[(a — L.)*]

which can be computed using equation . This formula involves an integral in Fourier space. In
fact only one integral in Fourier space is needed when computing the price of a CDO tranche: by
linearity, all quantities in the Fourier space can be summed before doing a final integral.
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3.3 Nth_to-default

For a k*M_to-default let us introduce
IF =1y, < -

The credit and premium legs are
T
CL, = —(1-R) / dI*zc(o, )
0
T
FL, = s/ dr (1 - ij) 20(0,7) .
0
The price is the risk-neutral expected value

E(CLy — FLy) = — /OT dE(If) 20(0,7) — s/OT dr (1 - E(If)) Z20(0,7) . (39)
The probability
E(If) = P(N, < k)

is computed using equation (36)).

3.4 Options on Index CDS

As the model we consider is a dynamic model, options on index CDS (swaptions) can also be priced.
The owner of such an option get the right but not the obligation at some maturity to enter into an
index CDS at a rate K fixed in advance. A Payer Swaption gives the right to pay the premium leg
and get protection on the basket. A Receiver Swaption gives the right to receive the premium leg
and sell protection on the basket.

The price of the swap at exercise date t is a stochastic process which depends on A, L; and/or
N;. Expected values in formula have to be evaluated at date t:

T T
E((CLcps — FLeps) = /t dEy(L.)ZC (¢, 7) — K/t dr [Nar — Eo(N,)] ZC(t, 7) .

A Front End Protection clause can be included in a Payer Swaption: in this case if there are some
defaults before the option expiry the corresponding amount I, is paid at the exercise. A Receiver
Swaption would not be exercised if defaults occur prior to expiry. For a Payer swaption with Front-
End Protection the price at exercise date t is

[E:(CLcps — FLops) + L] *
whereas for a Receiver swaption it is
[Ei(FLcps — CLops) — Li ™
The price of the Payer swaption is the risk-neutral expected value
SP =Eo([E«(CLcps — FLeps) + L") Z0(0,1)
and similarly for the Receiver

SR = Eo([E«(FLeps — CLeps) — L ™) ZC(0,t) .
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In all cases the price is conditional to the values of A, L; and/or N;. The information available
at exercise date is supposed to be fully contained in these variables. The probability density of these
variables is obtained in the following way. The joint probability distribution of Ny and A; (conditional
to @Q; = 0) is computed by Fourier inversion from the characteristic function

EO (evﬁt—i-w)\t HQ 70>
=

computed using closed formulas , 17) and . This joint distribution is combined with the
probabilities of N; and L; conditional to NV; to get the joint probability of A;, N; and L;. With fixed
default size [1, the joint density is

d]P)()\t,Nt = ]{7, Lt) = de()\t’ Nt = j7 Qt — O)p]k(s(Lt _ llk)st
3=0
+ 6k7NNIdP()\t7 Q> O)é(Lt — l1k)st .

The conditional price is then integrated against this probability density. In the most general case,
a 2-dimensional Fourier transform and a 3-dimensional integral should be performed. In fact L; and
N; carry almost the same information and L; can be removed from the integration variables and
supposed to be equal to [1N;. If the recovery rate is deterministic this is exact, in other cases it is
a slight approximation. In any case, we have to compute a 2-dimensional Fourier transform and a
2-dimensional integral. Making few approximations, the numerical computations can be reduced to
few simple integrals, which can be useful in particular for calibration purpose. This will be detailed

in section B.7.41

3.5 Options on CDO tranches and exotic products

Options on CDO tranches can be priced exactly: the conditional price at the exercise date ¢ is
integrated against the probability density of A\; and L;. Other exotic payoffs can also be priced as
the model allows to compute the expected value at any date of any future loss.

3.6 Counterparty risk

The default risk of a counterparty can be handled within our framework through the auxiliary process
R introduced in section [2.1.1 R is set to 0 at the pricing date. It jumps of one unit when the
counterparty defaults.

If a quantity will not be paid if the counterparty has defaulted, the characteristic functions of
theorem [1| are computed with the last parameter set to y = —oo (or equivalently eV = 0 in all
formulas). In this limit, the contributions to the expected values are set to zero when @ is positive.
3.7 Large pool approximation

3.7.1 Limit

The distribution of Nt conditional to J\~fT and Q7 = 0 that we have denoted by pj;, = P(Nr = k|NT =
J, Q@7 = 0) has significant values around its mean value

1

~ J
ej =E(Nr|Nr =j,Qr =0) =Ny [1— <1—NM) ]
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The variance can also be computed: it is

Ny

. 1 \J 9 \J 1 \2%

k=0
We consider a fraction p of the portfolio, i.e. an average number of defaults e; ~ p/Nys. It corresponds
to
In(1—p)

T (1 — 1/Nap)
At fixed portfolio percentage p the variance asymptotic when Nj; goes to infinity is

’Uj Np(l —p)NM .
In proportion of the basket size N, the standard deviation is therefore

VU [p(1—p)
Nu Nu

When Ny goes to infinity, the distribution becomes peaked around its mean value. Our large pool
approximation consists in neglecting the dispersion of N conditional to Np: we take

1\
NT >~ NM 1-— <1 — ]\7]\4> ILQT:() . (40)
Similarly for the loss process we take
LT = LM [1 — 67MZT]1QT:()} (41)

with Lj; ~ [1Ny; and g such that

¢(—p) = /G_mUZdVJ(Z) —1-

Ny -
The value of the constants are chosen so that the mean of L conditional to NT is 1 Np. (By definition
the mean default size l; is {1 = [ jdvs(j).)

This is an acceptable approximation if the basket size Ny is large enough. Indeed for low losses,
L ~ L and jump sizes are not reduced. With many defaults, the recovery rate distribution smooths
the distribution so that the convolution implied by this approximation does not modify it too much.
Moreover senior CDO tranches are usually wide which means that the short scale information of
the distribution that we lose is not very important. The only case where it would be important to
perform an exact computation would be the pricing of a N*P-to-default where the combinatorics has
to be performed or at least approximated. As far as only the integral of the loss or default number
on some range is considered, this approximation is reasonable.

3.7.2 Expected loss

In order to compute CDS prices, the expected loss

E(Lr) = Lt |1~ E(e 71, )|
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can be computed analytically: it corresponds to the characteristic function we have computed with
U=—l,r=—00,v=w=y=_0

E(LT) — LM |:1 — eA(O,T;—M,0,0,—O0,0)+B(0,T;—,LL,0,0,—O0,0)>\0i| .
As we said above, constants Lj; and p are such that it is equal to

(=) " er]

LNy [1 B eA(O,T;O,ln(I@),O,oo,O)JrB(O,T;O,ln(l@),O,oo,O))\o] _

E(L7) = LE(Ng) = 4 Ny <1 —E

By construction, this is in fact the exact expression of section [2.2.3]

3.7.3 Expected tranche loss

For CDOs, the pricing of section using exact formulas is fast enough. However we show here how
it can be done in our large pool approximation. It is similar to the pricing of equity options with
Levy models. We have to compute the expected value of the tranche loss. It can be obtained as the
difference of two terms of the form

E[(K —Ly)*] = LyE {(6“% - 67“k>+ ]lQTZO:|

with . K
f(:—ln(l—) . (42)

To compute this quantity we introduce a second distribution d@(zT, Q) for the joint law of Ly
and Q7 with an explicit expression for the density function, such that it has the same mean value of
e*”LT]lQT:() as the real distribution dIP’(zT, Qr) coming from the double stochastic process, i.e. the
same mean value of L;.

The difference between both distributions for this quantity is computed by inverse Fourier trans-
form from

/ " iR (BE-B) (K — Lo)*]

—0o0

+oo o K - o ~ ~
_ / dK e K / (dIP’(LT, Qr) — dP(Lr, QT)) Ly (e_“LT _ oK ) 1o, —o
- +o00 : s +oo 0 o ~ ~
=Ly / (dIP’(LT,QT) - dIP(LT,QT)) /~ dKe" ™ (e_“LT —e i ) Lor=o
—00 Lt
1 1

o [ (ap(E _dP(L 2 ) elemmlry,, _
i [ (LT, Q) (L1, Qr) g u Qr=0

_ ”LMM) (Bt Er10, ) - B(ctEr1g, )]

u(u —

where we have used the fact that by construction of dog,

Yoo
/ (dP(ET, Qr) — dP(Lr, QT)) I =0

—00

oo _
/ (dP(ET, Qr) — dP(Lr, QT)) e 1,0 = 0.

—00
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Inverting this Fourier transform we get

Lo = BIK — Loyt 1/*“ —ipk MLy [ (i En) _ R liv-n)E
E[(K —L)*] = E[(K — Lp)*] + n dp e~ Sl [E<e P T) E(e p—u T)}

where K is given by equation . Expected values E under d@(ET, Qr) are computed in an explicit
way. E(e(ip_“)LTILQT:()) is given by theorem

E (e(ip*N)ZT 1o 0) — A0,T;ip—p,0,0,—00,0)+B(0, T;ip—11,0,0,—00,0) Ao
T— .

There are many choices for the auxiliary distribution d@(zT, Q7). We give two examples:

e The simplest choice is
o~ ~ 1 =
dP(L7,Qr) = 5<LT + u In [E (6 ”LtﬂQT:O)D 0Qr,0 -

It corresponds to the computation of the ”time value” of the tranche loss by Fourier transform,
which is then added to the ”intrinsic value”

B[(K — Lr)*] = Las (E[e 5 1g=0| — e K >+

e Numerically it may be a better idea to take the product of a distribution on ()7 such that
P(Qr =0) =P(Qr = 0)

and a Poisson distribution on LITT with parameter

N []E(eHZT EQT:()) ]
IE(]lC?T:O)

1— e #h

T =

=~ ~ = ~\ +
For this distribution the quantity E[(K — Ly)*] = LMIE[(e_“LT _ e HE ) JlQTZO] can be
computed exactly from the Poisson distribution as a finite sum.
Numerically, one can perform the Fourier inversion either using the FFT algorithm or using a
one-dimensional quadrature. If many detachment points K are needed the FF'T is the natural choice.

In the usual case where only one or a few tranches are priced (for example the five tranches of iTraxx)
performing the one-dimensional integrals directly will be faster.

3.7.4 Fast pricing of index swaptions

Proposition 2. The price of a Receiver Swaption of strike K, maturity t and tenor T —t with Front
End Protection can be computed (approximately) as a one-dimensional integral in Fourier space.

Let define the function
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where r s the instantaneous interest rate and

T
Li(\) = ! In (/ dr h(7-)eA(t’T;—“’ODv—00,0)+B(tm—u,0,0,—oo,0),\t> '
H t

+(0) is negative, the Receiver Swaption is never exercised and its price is zero. Otherwise, let

If Ly(
A >0 be a typical valueE| for Ay such that Ly(A) > 0. Introducing

T
an = l In </ dr h(T)eA(t,T;—u,O,O,—oo,O)—i—B(t,T;—,u,(],O,—oo,O)A)
2 t

T
/ drh(r)eAtTi=00 000+ BLri=m0.0.~000M By 221 (0 0, —00,0)
t

Br =

)

=~

T
/ dTh(T) eA(th;7/“'7070770070)+B(t77;7u7070770070)A
t

the price of the Receiver Swaption can be approrimated by

+o0 : - T
SR — LMl / dp Sll’l(p(aA ﬁAA)) |:/ dr h(T)eA(t,T;f,u,O,O,foo,O)
T J-x p t

E (e_ipft-i-ipﬁ,\)\t—uzt-l—B(t,T;—u,0,0,—oo,O))\t) o) (e—ipit‘f'ipﬁA)\t ﬂQt:0>:| ZC(O’ t)

with
E(efipfﬂripﬁ/x/\tfuZtJrB(t,T;fu,O,Uﬁoo,O))\t) —

614[07ty_2p_u7077'p/6/\+3(t777_/"’70707_0070) 70]+B[O7t)_2p_“7071p+B(th7_N70707_OO70)6A 70]A0

and
E (6_szt+7'pﬁA)‘t ]]-Qt:O) — 6A(0ut§—ZP7OuZP/BA,—0070)+B(0at3_3P7O’ZPBAa—0070)>\0 i

The price of a Payer Swaption is obtained by Call-Put parity:

T ~
SP =Ly [1 - / dr h(T)E<e_LLM]lQT:0>} ZC(0,t) — SR
t

with B
_LiT . .
E(e Tar 1Q70> _ eA(O,T,—/L,0,0,—O0,0)-‘,—B(O,T,—,U,,0,0,—O0,0))\O ]

As Call-Put parity holds for Receiver and Payer Swaptions, we consider here only a Receiver
swaption. The price of a Payer Swaption is given in term of the Receiver price as

SP = E()(CLCDS — FLcops + Lt) ZC(O,t) —SR.

Proof. First, replacing N by L/l, which is an approximation if the recovery rate is stochastic, the
option holds on the quantity

K T T
Et(FLCDS — CLCDS) — Lt = E dT [LM — Et(LT)] ZC(t,T) — / d]Et(LT)ZC(t, T) — Lt .
t t

Integrating by parts, this can be rephrased as

T
E«(FLcps — CLops) — Ly = / dr h(7) [Lar — Ee(L7)] — Ls (43)

3Which may be as simple as A = 0.
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where
h(t) = [5(7’ -T)+ K +r(r)| ZC(t, 1) .

r(7) is the instantaneous interest rate:
ZC(t,T) = eli dsr(s)
Using L, ~ Ly (1 — e*“ZT ]lQT:()), equation gives
T _ +
[E+(FLops — CLops) — Lt = L { / ar h(r)E; (i) — 1] . (44)
t
The expected value at date t is conditional to A, Et and ;. According to theorem |1} it is

Et (e_H‘ZT:[]_QTZO) = eA(t77-;_H‘10701_0070)+B(t17—;_u70707_0070)>\t_.U’Zt:[]_Qt:(] . (45)

If Q¢ = 0 and for a given value of A\, the quantity inside the bracket in equation decreases with
L;. There is a strike value L, () for which this quantity becomes negative and the payoff vanishes:

1
Li(\) = — ln<
) [
If the interest rate is not too negative, the integral is always positive. Depending of the strike K and
the value of \; it may give a negative L,(\;); in this case all values of L; will contribute to the final
payoft.

T
/ dr h(7_)eA(t,T;—u,O,O,—oo,O)+B(t,7‘;—u,0,0,—oo,0))\t) ) (46)
t

In particular if L,(0) < 0, and also if @; > 0, the Receiver swaption is never exercised and its
price is zero:
SR=0. (47)

In the following we consider the nontrivial case where L,(0) > 0.

We make an approximation at this point: L,()\;) is approximated by an affine function in ;.
Starting from a typical value for \; that we denote by A, equation can be rewritten as

T
L*()\t) _ l In </ dr h(T)eA(t,T;;L,O,O,OO,O)+B(t,T;u,0,U,OO,O)A)
2 t

T
+ lln </ dr gA(T)eB(t’T;“’O’O’OO’O)()‘tA)> (48)
1% t

where gj(7) is a measure on time given by

h(»r) eA(th;_H70707_0070)+B(t77_;_/1/70707_0070)A

9(1) = —7 .
/ dT/ h(T/)eA(thlv_/1/7070)+B(t77_/7_u7070)A
t

We finally linearize L,(\:) as
Li(\) =apn+Ba(M—A)+ 0O ((/\t - A)Q)

where
1 T
ap = —In (/ dr h(T)BA(t,T;—u7070,—0070)+B(t,7;—u7070,—0070)/\>
1% t
1 T
ﬁ/\ - / dTgA(T)B(ta T35 _M70707_0070> .
HmJt
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To support this approximation, we can notice first that for short tenors, the Dirac function dominates
in A(7), which means that the measure gj(7) reduces to a Dirac delta §(7 — T'). In this limit case,
equation shows that the approximation is exact. At the opposite limit, for tenors which are long
compared to the characteristic time 1/k, B(t,7,---) is almost everywhere equal to its limit value
—B_(---). The exponential can be factorized outside the integral, and the approximation becomes
exact in this limit. Between these two cases (short and large tenors), the approximation can be
controlled. The first term in the expansion in Ay — A which is neglected is the quadratic term. Its
coefficient is the variance of B(t,7,---) under the measure gs(7). Note that errors on L.()\;) have
no importance where the joint density of Ay and L; is negligible. This is especially true for negative
L,(\) or negative \; where the density is zero.

The price of the swaption is given by the risk-neutral expected value: the conditional payoff must
be integrated over A\, L; and @Q; using the joint distribution of these two stochastic variables. In
order to do this, we rewrite the payoff using the boundary L,(\;) as

T ~
[Et(FLCDS - CLCDS) - Lt]+ =Ly </t dr h(T)Et (6_MLT ]lQ-r:O) Hit<L*()\t) — ]thO]litSL*(/\t)> .

(49)
The expected value at time 0 of this expression will be computed by Fourier transform in L;. Both
terms vanish at +o0o0 but are constant or diverge in —oco. As L; has zero probability of being negative,
a cut-off can safely be set at a negative value. Therefore

17 .00

can be replaced in both terms by

]lL*(At)fMgitgL*(At)

for any M > L,(0) without changing their expected value.

The Fourier transform in Zt of this function is

+oo 7 1_e—ipM‘L()\)
1pLit - = o tpLs (At
/_OO AL Ly ) a0 = .

The inverse Fourier transform is the original function

L 00-mshista00 = o /oo e, (50)

and gives the expected value today:

1 +o0 l—eiipM AZJ’_AL()\)

_ —1i ip Ly

E(Lo-01z,cr.0)) = gﬂ/ dPTE(e pherinhs 001, ) .
—00

Using the linear approximation L, (A;) ~ ap + Ba(A: — A), this expected value can be computed
as a one-dimensional integral

1 [T° | _ e ipM p(an—Bah) ipLetipAaA
E(HQt:OHEtSL*()\t)) = 271-/ deelp ap—PA E(e ipLt+ipBa t]th:0>
—00

where E(e*ipthripﬁA/\t]th:o) is computed using theorem

E(e—vzpit+ipﬁAAt]l o 0) — oA0,;=ip,0,ipBa,—00,0)+B(0,t;—ip,0,ipfa,~00,0) Ao
t= .
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As we are in the case L,(0) > 0, this formula can be simplified if M is set to
M = 2(apn — BaA) ~ 2L, (0) > L,(0) .

With this choice for M, the expected value is

1 [ sin(p(ap — BaA)) —ipLy+ipBa
E(ﬂgtzoﬂzt%w) - / dp E(e pLi-+ipBa t]th:o) .

T J—o00 p

This gives the expected value of the second term in formula . The expected value of the first
term

T L
\/t\ dT h(T)Et (e*ll T:H‘QTZO) ]]'zt<L*()‘t)

is computed similarly. First, remind that the conditional expected value is given by equation (45)):

E, (ewZTﬂ 0 _0) = eAtTi—10.0,-00 0+ Blt:ri—p00,—00,0Ae—pLey o
- _

1 is replaced by 1 which can be rewritten using equation . This gives

Le<Li(At) Li(M)=M<Li<Li(Mt)

—uL, _ _
By (6 HQT:O) ]lL*()\t)*MSLtSL*(At) -
~ 1 +oo L~ 1= e—z‘pM )
eA(th;_M70707_oovo)+B(t77-;_u70707_oo70))‘t_MLtﬂQtO/ dpe_Zth - eZpL*()‘t) .
27 J_ o wp

The expected value at time 0 of this expression gives

- ZT J—
B[ (7 ) 0] =

Aty ri—1,0,0,—00,0) L 1—e™" —ipLetipLs (Ae)— L e+ Blt,i—1,0,0,—00,0)A
e\ sy ’ dp Ee tTUPLx(At)— Lot Ty —H,U,U,—00, tQO .
27( Zp t
o

Using again the linear approximation L,(A;) ~ ap + Ba(Ar — A), this expression can also be
evaluated as a one-dimensional integral

- ZT — Ty —H,U,U, =00,
]E{Et(e I ILQT:O) ]th<L*(>\t)} — AtT3—11,0,0,—00,0)

1 +o0 1— e M o~ ~
o dp Tezp(aA—ﬁAA)E (e—szH—zPﬁA)\t—MLt+B(t,T;—H,0,0,—0070)/\t ]th:())
—00

where E(e‘ipoHpﬂAAt_“Lf+B(t’T?_“’O’O’_°°’O))‘f ]th:o) is given by theorem

E (e*ipzt‘H;pﬁA/\t*lizt+B(t77'§*ﬂ7070770070))‘t ]IQ 0)
=

0,85 =1p—11,0,ipBa+B(t,73—11,0,0,—00,0),0]+ B0, t; —ip—1,0,ip+ B(t, 75— 11,0,0,—00,0) Ba,0] Ao
With the choice M = 2(ap — SaA) the integral is

— Zq— J— STy — 707077 70
E{Et<e © HQT:O) lzt<L*(At):| — QAT 0,0)

+ : ~ ~

T J o p

The summation over coupon dates finishes the computation of the Swaption price. 0
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4 Calibration

4.1 Algorithm

The model can be calibrated on many instruments, depending on what it is used for. As they are
the most liquid products, the market spread of index CDS should be matched. Other relatively
liquid instruments, at least on traded indices, are standard CDO tranches. One may therefore want
to match CDO market quotes for all available maturities. As the model for L can be the sum of
many basic building blocks with their own piecewise constant parameters sets, in principle many
(non-arbitrageable) sets of price can be reached. However, introducing too many parameters make
the calibration more difficult and more unstable. With too many parameters, the model can even be
under-specified. So we prefer to stick with one single building block. Moreover, time-dependency is
introduced in the minimal way of section [2.1.4] through a piecewise affine change of time. We calibrate
the model to match as closely as possible market quotes for CDO tranches (either one maturity or
all maturities) while matching precisely quotes for the index CDS. (It would be useful to calibrate
also on swaptions: CDS or CDO tranches are not really sensitive to some dynamical properties of
the model.)

The calibration routine uses the following steps:
1. Choose values for parameters Ag, Ao, K, 0, 1, 0, v, a and .

2. Conditionally to this set of parameters, calibrate the slopes a; of the time-dependence function
t = t(7) by a bootstrap method. One dichotomy or Newton algorithm for each CDS maturity
is needed, which is fast because there is a closed formula for the expected loss. CDS prices are
computed as explained in section (3.1

3. Price CDO tranches (as in section [3.2)) for this set of parameters and time-dependency function
and compute the sum of squared errors, relatively to the bid-ask spreads.

4. Loop on step 2 according to some optimization algorithm.

We use differential evolution [SP95| algorithm to find a global minimum of the objective function.

4.2 Numerical results

We take as an example iTraxx Europe Series 9 Version 1 (RED Code: 2I1666VAI6) data on September
30th, 2009. Quotes for the index, 9%-12% and 12%-22% tranches are spreads in bps. 0%-3%, 3%6%
and 6%-9% tranches have a running spread of 500bps and the quote are upfronts in percent.

4.2.1 Global calibration

Table |1| and figure Eﬁ show market quotes and the result of a global calibration on 5Y, 7Y and 10Y
instruments (maturing on June 20th, 2013, 2015 and 2018). We set the recovery rate to 40%.

4We plot the quantity %7 where s is the spread quote (tranches 4 and 5) or the running spread (5% for tranches
1, 2 and 3), T is the maturity in years and U the upfront quote for tranches 1, 2 and 3. Forgetting about discount
factors and with the hypothesis that on a given tranche the loss per unit of time is constant, we can write the upfront
in term of the tranche loss L and running spread s as U ~ L — sT (1 - %) This gives an approximation of the tranche

. ~ sT+U
loss: L T1sT/3
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Market Model
5Y Y 10Y 5Y Y 10Y
Index 102.1295% 103.147l§7% 104.@?5% 102.505% 103.487% 104.985%
0%—3% 36.81% (1.06)  45.81% (1.06)  52.50% (1.06) 36.10% 45.52% 52.94%
500 500 500
3%—6% 2.83% (1.06) 8.06% (1.12) 14.88% (1.12) 1.49% 8.55% 14.93%
500 500 500
6%-9% —6.95% (0.88) —5.59% (0.88) —1.94% (0.88) -7.44% -5.13% -2.33%
500 500 500
9%-12% 147.75 (12) 196.13 (12) 247.00 (11.5) 127.20 200.01 259.85
12%-22% 58.75 (8) 81.88 (8) 98.88 (8) 54.92 80.48 105.07

Table 1: Market quotes for iTraxx Furope Series 9, index and standard tranches on September 30,
2009 and model results after a global calibration. Index quotes are given as 100%—upfront, the three
first tranches are quoted upfront in percent; the running spreads in bp are given in small figures below

quotes. The last two tranches have quotes in spread, in bp. The numbers in parentheses are bid-ask
spreads.

100 ‘
Market 5Y —+—
Market 7Y — % -
Market 10Y - -x -
Model 5Y ---@---
80 Model 7Y
i ®, Mode 10Y - & - |
60 - _
()
>
©
>
40 L -
20 |
0
1 2 3 4 5
Tranche

Figure 1: Comparison of market and model values after a global calibration for iTraxx Europe Series 9

standard tranches on September 30, 2009. The value plotted is the quantity 1‘17; ":;f/]Q, in percent, where

s is the spread quote in percent (tranches 4 and 5) or the running spread (5% for tranches 1, 2 and
3), T is the maturity in years and U the upfront quote in percent for tranches 1, 2 and 3.
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The parameters obtained by a global calibration on all maturities are the following;:

Ao T7.115 n 9 B 0.005865

Ao 0.1846 0 0.08774 ai 0.766
k 4.303 6 5.704 as 1.268
o 0.9085 a 13771071 as 1.111 .

a1, az and ag are the slopes of the piecewise affine function ¢ = ¢(7) used to match index CDS quotes.
Calibrating eight free parameters plus three slopes we manage to fit exactly the three index quotes
and get a reasonable fit of the 15 CDO market quotes. Seven CDO quotes fall precisely within the
bid-ask spread and the other are a little outside.

4.2.2 Single maturity calibration

In order to test the model ability to match all quotes for a given maturity, we keep five free parameters
and freeze three quantities to the values obtained in the global calibration: %" = 0.04289, H‘;\—w =
0.5195 and a = 0. We calibrate on CDO tranches of one single maturity but we still match the index
quotes of the three maturities using the piecewise affine time change. The results are shown in table
2] and figure 2] All quotes are perfectly matched within the bid-ask spread. The model parameters
for each maturity are the following:

oY Y 10Y

Ao 1.013 1.815 6.379
Ao 0.01748  0.03061 0.3463
K 0.4076 0.7135 8.075
o 0.06084 0.1065 1.205
n 4 17 34

5 0.1049 0.09124  0.07845
0 1.622 0.6226 3.131
o 0 0 0

B 0.004045 0.005947 0.006013
al 0.996 0.851 0.834
ag 1.104 1.193 1.215
a3 0.936 1.056 1.063 .
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Market Model
5Y Y 10Y 5Y Y 10Y
Index 102.1295% 103.11%7% 104.1%585% 102.505% 103.487% 104.985%
0%—3% 36.81% (1.06)  45.81% (1.06)  52.50% (1.06) 36.78% 45.80% 52.52%
500 500 500
3%6% 2.83% (1.06) 8.06% (1.12) 14.88% (1.12) 2.79% 8.05% 14.90%
500 500 500
6%-9% —6.95% (0.88) —5.59% (0.88) —1.94% (0.88) -6.98% -5.59% -1.92%
500 500 500
9%-12% 147.75 (12) 196.13 (12) 247.00 (11.5) 148.44 196.29 245.97
12%-22% 58.75 (8) 81.88 (8) 08.88 (8) 57.61 81.40 100.31

Table 2: Market quotes for i Traxx Europe Series 9, index and standard tranches on September 30, 2009
and model Tesults after one calibration for each maturity. Index quotes are given as 100%—upfront,
the three first tranches are quoted upfront in percent; the running spreads in bp are given in small
figures below quotes. The last two tranches have quotes in spread, in bp. The numbers in parentheses
are bid-ask spreads.

100 T
Market 5Y —+—
Market 7Y — x -
Market 10Y - -x -
Model 5Y ---@---
80 Model 7Y
B & Model 10Y - - |
60 - S i
[} R
=}
®
>
40 - -
20 + —
0 | | | |
1 2 3 4 5
Tranche

Figure 2: Comparison of market and model values after one calibration for each maturity for iTraxz
Europe Series 9 standard tranches on September 30, 2009. The value plotted is the quantity 1i J}(/]Q,
in percent, where s is the spread quote in percent (tranches 4 and 5) or the running spread (5% for
tranches 1, 2 and 3), T is the maturity in years and U the upfront quote in percent for tranches 1, 2

and 3.
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5 Conclusion

We have presented a model for credit index derivatives with the following properties: dynamic,
with volatility and jumps on the loss intensity, allowing closed or semi-closed pricing of CDS, CDO
tranches, N*-to-default and options. It is also possible to price options on tranches or other exotic
products since forward conditional distributions can be computed.

In addition to default risk, our model handles volatility of the index spread and jump events,
which model possible crises. Beyond pricing, this can be useful for risk management. Counterparty
risk can also be included.

It is possible to match exactly index prices while matching reasonably CDO tranches quotes.
If only one maturity is considered for CDOs, we obtained a perfect calibration within the bid-ask
spread. It would be interesting to calibrate jointly on option prices to fix the remaining parameters
(mean reversion and volatility in particular) and get robust sets of parameters.

It would be interesting to study our model in the spirit of [CKO8] to see how it performs with
respect to hedging of default risk and spread risk: it contains several properties that the authors find
desirable, in particular the presence of jumps in the spread, not caused by the default of one of the
constituents.
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