
ar
X

iv
:0

91
1.

30
43

v1
  [

q-
fi

n.
PM

] 
 1

6 
N

ov
 2

00
9

Robust utility maximization for diffusion market

model with misspecified coefficients

R. Tevzadze 1),3) and T. Toronjadze 1),2)

1) Georgian–American University, Business School, 3, Alleyway II,
Chavchavadze Ave. 17, a, Tbilisi, Georgia,

E-mail: toronj333@yahoo.com

2) A. Razmadze Mathematical Institute, 1, M. Aleksidze St., Tbilisi, Georgia,

3)Institute of Cybernetics, 5, S. Euli St., Tbilisi, Georgia,
E-mail: tevzadze@cybernet.ge

The paper studies the robust maximization of utility of terminal wealth in the
diffusion financial market model. The underlying model consists with risky tradable
asset, whose price is described by diffusion process with misspecified trend and
volatility coefficients, and non-tradable asset with a known parameter. The robust
utility functional is defined in terms of a HARA utility function. We give explicit
characterization of the solution of the problem by means of a solution of the HJBI
equation.

Key words and phrases:The maximin problem, saddle point, Hamilton-Jacobi-
Bellman-Isaacs (HJBI) equation, robust utility maximization, generalized control.
Mathematics Subject Classification (2000): 60H10, 60H30, 90C47.

1 Introduction

The purpose of the present paper is to study the robust maximization of utility of terminal
wealth in the diffusion financial market model, where appreciate rate and volatility of the
asset price are not known exactly.

The utility maximization problem was first studied by Merton (1971) in a classical
Black-Scholes model. Using the Markov structure of the model he derived the Bellman
equation for the value function of the problem and produced the closed-form solution of
this equation in cases of power, logarithmic and exponential utility functions.
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For general complete market models, it was shown by Pliska (1986), Cox and Huang
(1989) and Karatzas et al (1987) that the optimal portfolio of the utility maximization
problem is (up to a constant) equal to the density of the martingale measure, which is
unique for complete markets. As shown by He and Pearson (1991) and Karatzas et al
(1991), for incomplete markets described by Ito-processes, this method gives a duality
characterization of optimal portfolios provided by the set of martingale measures. Their
idea was to solve the dual problem of finding the suitable optimal martingale measure and
then to express the solution of the primal problem by convex duality. Extending the do-
main of the dual problem the approach has been generalized to semimartingale models and
under weaker conditions on the utility functions by Kramkov and Schachermayer (1999).
All these papers consider a model of utility which assumes that beliefs are represented
by a probability measure. In 1999, Chen and Epstein have introduced a continuous-time
intertemporal version of multiple-priors utility in the case of a Brownian filtration. In
this case, beliefs are represented by a set P of probability measures and the utility is
defined as the minimum of expected utilities over the set P. Independently, Cvitanic
(2000) and Cvitanic and Karatzas (1999) examine, for a given option, hedging strategies
that minimize the expected “shortfall” that is, the difference between the payoff and the
terminal wealth. They consider the problem of determining a “worst-case” model Q̃, that
is a model that maximizes the minimal shortfall risk over all possible priors Q ∈ P. They
show that under some assumptions their sup-inf problem can be written as an inf-sup
problem. In 2004 Quenez studied the problem of utility maximization in an incomplete
multiple-priors model, where asset prices are semimartingales. This problem corresponds
to a sup-inf problem where the supremum is taken over the set of feasible wealths X (or
portfolios) and where the infimum is taken over the set of priors P. The author showed
that, under suitable conditions, there exists a saddle-point for this problem. Moreover,
Quenez developed a dual approach which consists in solving a dual minimization problem
over the set of priors and supermartingale measures and showed how a solution of the
dual problem induces one for the primal problem.

These sup-inf problems also can be called robust optimization problems since opti-
mization involves an entire class P of possible probabilistic models and thus takes into
account model risk. Optimal investment problems for such robust utility functionals were
considered, among others, by Talay and Zheng (2002), Korn and Wilmott (2002), Quenez
(2004), Schied (2005),(2008), Korn and Menkens (2005), Gundel (2005),Bordigoni at al.
(2007), Schied and Wu (2005), Föllmer and Gundel (2006), Hernández-Hernández and
Schied (2006, 2007) .

The numerous of publications are concerned to the case when one of these parameters
is known exactly. In the case of unknown drift coefficient the existence of saddle point of
corresponding minimax problem has been established and characterization of the optimal
strategy has been obtained (see [5], [8], [7]). For the case of unknown volatility coefficients
the construction of hedging strategy were given in the works [1], [3], [2], [16].

The most difficult case is to characterize the optimal strategy of minimax (or max-
imin) problem under uncertainty of both drift and volatility terms. Talay and Zheng [22]
applied the PDE-based approach to the max-min problem and characterized the value as
a viscosity solution of corresponding Hamilton-Jacob-Bellman-Isaacs (HJBI) equation. In
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general such problem does not admit a saddle point.
We consider incomplete diffusion financial market model which resembles to the model

considered by Schied (2008), Hernández-Hernández and Schied (2006, 2007). We suppose
that the market consists with riskless asset, risky tradable asset whose trend and volatility
are misspecified and non-tradable asset with a known parameters. Different from Quenez
(2004) and Schied (2008) approach we solve the maximin problem using HJBI equation
which corresponds to the primal problem. In case of unknown trend and volatility coeffi-
cient such maximin problem doesn’t have a saddle point in general. We are extending the
set of model coefficients i.e. doing some “randomization” and by this way we are getting a
problem with the saddle point. This gives us the possibility to replace maximin problem
by minimax problem which is convenient to study HJBI equation properties. Particu-
larly, we have found such form of this equation which coincides to equation obtained
by Hernández-Hernández and Schied (2006) in case of known volatility. The solvability
in classical sense of obtained equation is established and in case of specific drift coeffi-
cient HJBI equation is explicitly solved and saddle point (optimal portfolio and optimal
coefficients) of maximin problem found as well.

The paper is organized as follows. In section 2, we describe the model and consider the
misspecified coefficients as a generalized controls. Further we show the existence of saddle
point of generalized max-min problem and derive HJBI equation for value function. In
section 3 we prove the solvability in the classical sense of obtained PDE in the case of
power utility and give explicit PDE-characterization of a robust maximization problem.

2 The generalized coefficients and existence of saddle

point

Suppose that the financial market consists in a riskless asset

dS0
t = r(Yt)S

0
t dt (2.1)

with r(y) ≥ 0 and risky financial assets whose prices defined through stochastic differential
equation (SDE)

dSt

St

= (b̃(Yt) + µt)dt+ σtdwt. (2.2)

Here wt is a standard Brownian motion and Yt denotes a return of non-traded asset
modelled by SDE

dYt = β(Yt)dt+
(

ρdwt +
√

1 − ρ2dw⊥
t

)

, (2.3)

for a some correlation factor ρ ∈ [0, 1] and standard Brownian motion w⊥, which is
independent of w. We note b = b̃− r and assume that

A1) b(y), β(y), r(y) belongs to C1
b (R),

A2) b′(y) belongs to C0(R),
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where C1
b (R) denotes the class of bounded continuous functions with bounded derivatives

and C0(R) denotes the class of continuous function with compact supports.
Introduce the set ŨK of all measurable process (µt, σt) with value in the set K =

[µ−, µ+] × [σ−, σ+], where 0 ≤ µ− ≤ µ+, 0 ≤ σ− ≤ σ+ and denote by UK the subset of
predictable processes from ŨK . By Πx we denote the set of predictable processes such
that

∫ T

0
π2

t dt < ∞, P − a.s. and corresponding wealth process , defined as a solution of
SDE

dXt = (1 − πt)Xt

dS0
t

S0
t

+ πtXt

dSt

St

, (2.4)

X0 = x, (2.5)

satisfies condition Xt(π) ≥ 0.
The objective of economic agent is to find the optimal robust strategy of the problem

max
π∈Πx

min
(µ,σ)∈UK

EU(Xµ,σ
T (π)), (2.6)

with
dXt = r(Yt)Xtdt+ πt(b(Yt) + µt)dt+ πtσtdwt, X0 = x,

dYt = β(Yt)dt+ ρdwt +
√

1 − ρ2dw⊥
t , η0 = y,

(2.7)

where U(x) is HARA1) utility function.
If we denote by νt(dµdσ) the regular conditional distribution of the pair of processes

(µ, σ) ∈ ŨK , with respect to filtration Ft and by (f, νt) the integral
∫

K
f(µ, σ)νt(dµdσ),

where f(µ, σ) is an arbitrary continuous function , we can perform the following extension
maximin problem

max
π∈Πx

min
(µ,σ)∈ŨK

EU(Xµ,σ
T (π)), (2.8)

dXt = r(Yt)Xtdt+ πt(b(Yt) + (µ, νt))dt+ πt

√

(σ2, νt)dwt, X0 = x,

dYt = β(Yt)dt+ ρ
(σ, νt)
√

(σ2, νt)
dwt +

√

1 − ρ2
(σ, νt)2

(σ2, νt)
dw⊥

t , η0 = y.
(2.9)

Introduce the set P(K) of probability distributions with support onK (P(K) is a compact
metric space in a week topology, see [19]). Denote by νt the P(K)-valued predictable
process. Such type process usually called the generalized control in control theory. From
now on we identify ŨK to the set of generalized controls.

Remark 2.1. Let pY be the predictable projection of a process Y (see [17]). Then for
(µt, σt), (µ, σ) ∈ ŨK we have the equalities pµt = (µ, νt),

pσt = (σ, νt) and we can write

dXt = r(Yt)Xtdt+ πt(b(Yt) + pµt)dt+ πt

√

pσ2
t dwt, X0 = x

dYt = β(Yt)dt+ ρ
pσt
√

pσ2
t

dwt +

√

1 − ρ2
(pσt)

2

pσ2
t

dw⊥
t , η0 = y.

(2.10)

1) The function U(·) is a HARA (Hyperbolic Absolute Risk Aversion) utility if −u′

2(x)/u′(x) = γ/x,
γ < 1, γ 6= 0
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Since






πt

√

(σ2, νt) 0

ρ
(σ,νt)√
(σ2,νt)

√

1 − ρ2 (σ,νt)2

(σ2,νt)











πt

√

(σ2, νt) ρ
(σ,νt)√
(σ2,νt)

0
√

1 − ρ2 (σ,νt)2

(σ2,νt)





=

(

(σ2, νt)π
2
t ρ(σ, νt)πt

ρ(σ, νt)πt 1

)

(2.11)

the generator of the process (Xt, Yt) can be given by the function

Hπ,µ,σ(x, y, p, q)

=
1

2
π2σ2q11 + ρπσq12 +

1

2
q22 + xr(y)p1 + πb(y)p1 + πµp1 + β(y)p2. (2.12)

For all ν ∈ P(K), π ∈ R and (x, y, p, q) ∈ R+ ×R× R2 ×R3 we set

Hπ,ν(x, y, p, q) = (Hπ,µ,σ(x, y, p, q), ν) (2.13)

and

H(x, y, p, q) = max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q). (2.14)

Proposition 2.1. For each fixed (x, y, p, q) ∈ R+ × R × R2 × R3, with q11 < 0 the
function (π, ν) → Hπ,µ,σ(x, y, p, q) admits a saddle point (π∗, ν∗), i.e.

Hπ∗,ν∗

(x, y, p, q) = max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q) = min
ν∈P(K)

max
π∈R

Hπ,ν(x, y, p, q). (2.15)

Moreover

max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q) = max
π∈R

min
(µ,σ)∈K

Hπ,µ,σ(x, y, p, q). (2.16)

Proof. By Theorem of Neumann at al. (see Theorem lX.4.1 of [24]) for each positive
n and fixed point (x, y, p, q) the function of measures λ ∈ P([−n, n]), ν ∈ P(K)

(λ, ν) → Hλ,ν(x, y, p, q) =

∫ n

−n

∫

K

Hπ,µ,σ(x, y, p, q)λ(dπ)ν(dµdσ),

admits a saddle point (λ∗n, ν
∗
n), i.e.

Hλ∗
n,ν∗

n(x, y, p, q) = max
λ∈P([−n,n])

min
ν∈P(K)

Hλ,ν(x, y, p, q)

= min
ν∈P(K)

max
λ∈P([−n,n])

Hλ,ν(x, y, p, q). (2.17)
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By concavity of Hπ,ν with respect to π the maximizer π∗
n = arg minHπ,ν is unique and

thus λ∗n = δπ∗
n

2). Therefore we have

π∗
n =































−n, if − b(y)p1 + (µ, ν∗n)p1+(σ, ν∗n)ρq12
(σ2, ν∗n)q11

< −n,

−b(y)p1+(µ, ν∗n)p1+(σ, ν∗n)ρq12
(σ2, ν∗n)q11

, if − (b(y)p1 + µ, ν∗n)p1 + (σ, ν∗n)ρq12
(σ2, ν∗n)q11

∈ [−n, n]

n, if − (b(y)p1 + µ, ν∗n)p1 + (σ, ν∗n)ρq12
(σ2, ν∗n)q11

> n

and

Hπ∗
n,ν∗

n(x, y, p, q) = max
π∈[−n,n]

min
ν∈P(K)

Hπ,ν(x, y, p, q)

≡ 1

2
q22 + β(y)p2 + xr(y)p1

+ max
π∈[−n,n]

min
ν∈P(K)

[

1

2
(σ2, ν)q11π

2 + (σ, ν)ρq12π + (b(y) + (µ, ν))p1π

]

=
1

2
q22 + β(y)p2 + xr(y)p1

+ min
ν∈P(K)

max
π∈[−n,n]

[

1

2
(σ2, ν)q11π

2 + (σ, ν)ρq12π + (b(y) + (µ, ν))p1π

]

≡ min
ν∈P(K)

max
π∈[−n,n]

Hπ,ν(x, y, p, q). (2.18)

By compactness of P(K) we can assume without loss of generality that the sequence ν∗n
is convergent to some ν∗. Thus

π∗
n → π∗ ≡ −b(y)p1 + (µ, ν∗)p1 + (σ, ν∗)ρq12

(σ2, ν∗)q11
as n→ ∞.

It remains to use the equalities

max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q)

= lim
n→∞

max
π∈[−n,n]

min
ν∈P(K)

Hπ,ν(x, y, p, q) = Hπ∗,ν∗

(x, y, p, q) (2.19)

and

min
(µ,σ)∈K

max
π∈R

Hπ,µ,σ(x, y, p, q)

= lim
n→∞

min
(µ,σ)∈K

max
π∈[−n,n]

Hπ,µ,σ(x, y, p, q) = Hπ∗,ν∗

(x, y, p, q) (2.20)

to conclude that (π∗, ν∗) is saddle point of the problem.

2) δa denotes a measure with support in the point a
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On the other hand for each continuous function f on K

min
ν∈P(K)

(f, ν) = min
(µ,σ)∈K

f(µ, σ),

since for ν∗ = arg minν(f, ν) we have suppν∗ ⊆ {(µ∗, σ∗)|f(µ∗, σ∗) = min f(µ, σ)}.
Hence

max
π∈[−n,n]

min
ν∈P(K)

Hπ,ν(x, y, p, q) = max
π∈[−n,n]

min
(µ,σ)∈K

Hπ,µ,σ(x, y, p, q). (2.21)

This equality together to (2.19),(2.20) prove (2.16).
Now we define the value functions

v−(t, x, y) = max
π∈Πx

min
(µ,σ)∈UK

EU(X t,x,y
T )

v+(t, x, y) = min
(µ,σ)∈ŪK

max
π∈Πx

EU(X t,x,y
T ).

(2.22)

Since the Isaacs condition is satisfied (by Proposition 2.1) there exists value of differential
game v ≡ v+ = v−, which would be solution of HJBI equation

∂

∂t
v(t, x, y) + H(t, y, vx(t, x, y), vy(t, x, y), vxx(t, x, y), vxy(t, x, y), vyy(t, x, y)) = 0, (2.23)

v(T, x, y) = U(x). (2.24)

It can be rewritten as

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
ν∈P(K)

max
π∈R

[1

2
(σ2, ν)vxx(t, x, y)π

2 + (σ, ν)ρvxy(t, x, y)π

+ (b(y) + (µ, ν))vx(t, x, y)π
]

= 0, (2.25)

v(T, x, y) = U(x). (2.26)

Simplifying the expression we have

min
ν∈P(K)

max
π∈R

[

1

2
(σ2, ν)q11π

2 + (σ, ν)ρq12π + b(y)p1π + (µ, ν)p1π

]

= min
ν∈P(K)

[

((σ, ν)ρq12 + (b(y) + (µ, ν))p1)
2

−2(σ2, ν)q11

]

=















− p2
1

2q11
min

ν∈P(K)

[

((σ, ν)κ + b(y) + (µ, ν))2

(σ2, ν)

]

, if p1 6= 0

−ρ
2q2

12

2σM

, if p1 = 0,

(2.27)

where we suppose that q11 < 0 and use the notation κ = ρq12

p1
.

For the sake of simplicity we assume in addition
A3) b(y) + µ− ≥ 0, for all y ∈ R.
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Proposition 2.2. There exists ν∗ ∈ P(K) of the form ν∗ = αδµ±,σ−
+ (1 − α)δµ±,σ+

,
0 ≤ α ≤ 1, such that

min
ν∈P(K)

[

((b(y) + µ, ν) + κ(σ, ν))2

(σ2, ν)

]

=
((b(y) + µ, ν∗) + κ(σ, ν∗))2

(σ2, ν∗)
(2.28)

and

((µ, ν∗), (σ, ν∗)) =



































































(µ+,
µ+

κ
+ σ−σ+

σM
), if κ ∈

(

−∞,
µ+σM

σMσ− − σ+σ−

]

(µ+, σ−), if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

(κ,−1) constant, if κ ∈
(

−µ+

σ−
,−µ−

σ+

]

(µ−, σ+), if κ ∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

(µ−,
µ−

κ
+ σ−σ+

σM
), if κ ∈

(

µ−σM

σMσ+ − σ+σ−
,∞
)

, (2.29)

((b(y) + µ, ν∗) + κ(σ, ν∗))2

(σ2, ν∗)

=



































































κ(2(b(y) + µ+)σM + κσ−σ+)

σ2
M

, if κ ∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(b(y) + µ+ + κσ−)2

σ2
−

, if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

0, if κ ∈
(

−µ+

σ−
,−µ−

σ+

]

(b(y) + µ− + κσ+)2

σ2
+

, if κ ∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

κ(2(b(y) + µ−)σM + κσ−σ+)

σ2
M

, if κ ∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

. (2.30)

The proof is given in Appendix.
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Corollary 1.

min
ν∈P(K)

[

((b(y) + µ, ν)p1 + (σ, ν)ρq12)
2

2(σ2, ν)q11

]

= min
(µ,σ)∈K

[

(b(y)p1 + µp1 + σρq12)
2

2(2σMσ − σ−σ+)q11

]

=















































































ρq12(2p1(b(y) + µ+)σM + ρq12σ−σ+)

2q11σ2
M

, if
ρq12

p1
∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(p1(b(y) + µ+) + ρq12σ−)2

2q11σ
2
−

, if
ρq12

p1

∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

0, if
ρq12

p1
∈
(

−µ+

σ−
,−µ−

σ+

]

(p1(b(y) + µ−) + ρq12σ+)2

2q11σ
2
+

, if
ρq12

p1

∈
(

−µ−

σ+

,
µ−σM

σMσ+ − σ+σ−

]

ρq12(2p1(b(y) + µ−)σM + ρq12σ−σ+)

2q11σ2
M

, if
ρq12

p1
∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

ρ2q2
12

2σM
, if p1 = 0

. (2.31)

Proof. It is sufficient to verify that for ν∗ = αδµ±,σ−
+(1−α)δµ±,σ+

, 0 ≤ α ≤ 1 we get
(σ2, ν∗) = 2σM(σ, ν∗) − σ−σ+.

From this Corollary we obtain that the HJBI equation has the form

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

− min
(µ,σ)∈K

(b(y)vx(t, x, y) + µvx(t, x, y) + ρσvxy(t, x, y))
2

2(2σMσ − σ−σ+)vxx(t, x, y)
= 0, (2.32)

v(T, x, y) = U(x). (2.33)

Following to the Theorem 6 of [18] we can prove

Theorem 1 (Verification Theorem). Let v(t, x, y) be a classical solution of (2.25),
(2.26) with vxx < 0. Then there exists ν∗ defined by (2.29) with κ = ρ

vxy

vx
and the optimal

strategy is given by

π∗(t, x, y) = −(b(y) + µ, ν∗(t, x, y))vx(t, x, y) + (σ, ν∗(t, x, y))ρvxy(t, x, y)

(2σM(σ, ν∗(t, x, y))) − σ−σ+)vxx(t, x, y)
, (2.34)
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where

((µ, ν∗(t, x, y)), (σ, ν∗(t, x, y)))

=



































































(

µ+,
µ+vx(t, x, y)

ρvxy(t, x, y)
+
σ−σ+

σM

)

, if
ρvxy(t, x, y)

vx(t, x, y)
∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(µ+, σ−), if
ρvxy(t, x, y)

vx(t, x, y)
∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

(

ρvxy(t, x, y)

vx(t, x, y)
,−1

)

constant, if
ρvxy(t, x, y)

vx(t, x, y)
∈
(

−µ+

σ−
,−µ−

σ+

]

(µ−, σ+), if
ρvxy(t, x, y)

vx(t, x, y)
∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

(

µ−,
µ+vx(t, x, y)

ρvxy(t, x, y)
+
σ−σ+

σM

)

, if
ρvxy(t, x, y)

vx(t, x, y)
∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

. (2.35)

3 The power utility case

We now consider the robust utility maximization problem with power utility U(x) =
1
q
xq, with q < 1, q 6= 0. Hence we obtain the equation

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

− min
(µ,σ)∈K

((b(y) + µ)vx(t, x, y) + ρσvxy(t, x, y))
2

2(2σMσ − σ−σ+)vxx(t, x, y)
= 0, (3.1)

v(T, x, y) =
1

q
xq. (3.2)

The solution of this equation is of the form v(t, x, y) = 1
q
xqeu(t,y), where u satisfies

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2

y(t, y) + qr(y)

− 1

2(q − 1)
min

(µ,σ)∈K

(b(y) + µ+ ρσuy(t, y))
2

2σMσ − σ−σ+
= 0, (3.3)

u(T, y) = 0. (3.4)

It is evident that vxx(t, x, y) = (q − 1)xq−2eu(t,y) < 0.
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The equations (2.35) take the form

((µ, ν∗(t, y)), (σ, ν∗(t, y)))

=



































































(

µ+,
µ+

ρ
uy(t, y) +

σ−σ+

σM

)

, if ρuy(t, y) ∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(µ+, σ−), if ρuy(t, y) ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

(ρuy(t, y),−1)constant, if ρuy(t, y) ∈
(

−µ+

σ−
,−µ−

σ+

]

(µ−, σ+), if ρuy(t, y) ∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

(µ−,
µ+

ρ
uy(t, y) +

σ−σ+

σM

), if ρuy(t, y) ∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

. (3.5)

Remark 3.1. By corollary 1 and (2.35) the equation (3.3) can be written as

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2

y(t, y) + qr(y)

− ρuy(t, y)

2(q − 1)σ2
M

(2(b(y) + µ+)σM + σ−σ+ρuy(t, y))χ

(

ρuy(t, y) ≤
µ+σM

σMσ− − σ+σ−

)

− 1

2(q − 1)σ2
−

(b(y) + µ+ + ρσ−uy(t, y))
2χ

(

µ+σM

σMσ− − σ+σ−
< ρuy(t, y) ≤ −µ+

σ−

)

− 1

2(q − 1)σ2
+

(b(y) + µ− + ρσ+uy(t, y))
2χ

(

−µ−

σ+
< ρuy(t, y) ≤

µ−σM

σMσ+ − σ+σ−

)

− ρuy(t, y)

2(q−1)σ2
M

(2(b(y) + µ−)σM +σ−σ+ρuy(t, y))χ

(

ρuy(t, y)>
µ−σM

σMσ+−σ+σ−

)

= 0, (3.6)

u(T, y) = 0, (3.7)

where χ is the characteristic function.

Theorem 2. Under conditions A1)-A3) the problem (3.3), (3.4) admits a classical
solution with bounded uy(t, y) and a saddle point (ν∗(t, y), π∗(t, x, y)) of the problem
(2.6), (2.10) is defined by (3.5) and by

π∗(t, x, y) =
x

1 − q

(

b(y) + (µ, ν∗(t, y))

(σ2, ν∗(t, y))
+ ρ

(σ, ν∗(t, y))

(σ2, ν∗(t, y))
uy(t, y)

)

. (3.8)

Proof. By condition A2) there exists N ≥ 0 such that b′(y) = 0, if |y| > N . Thus
b(y) = b+, if y ≥ N and b(y) = b−, if y ≤ −N for some constants b+, b−. The solu-

tion of (3.3) on the intervals (−∞,−N ] and [N,∞) are u−(t) = − 1
2(q−1)

(b−+µ−)2

σ2
+

(T − t)

and u+(t) = − 1
2(q−1)

(b++µ−)2

σ2
+

(T − t) respectively. Now we consider the Cauchy-Dirichlet
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problem on the bounded domain (0, T ) × (−N,N)

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2

y(t, y)

− 1

2(q − 1)
min

(µ,σ)∈K

(b(y) + µ+ ρσuy(t, y))
2

2σMσ − σ−σ+
= 0, (3.9)

u(T, y) = 0, u(t,±N) = u±(t). (3.10)

Suppose

a1(t, y, u, p) =
1

2
p,

a(t, y, u, p) = β(y)p+
1

2
p− 1

2(q − 1)
min

(µ,σ)∈K

(b(y) + µ+ ρσp)2

2σMσ − σ−σ+

.

It is easy to see that a is Lipschitz function on the each ball of its domain, a(t, y, u, 0) is
bounded below and all conditions of Theorem 6.2 chapt.V of ([15]) are satisfied. There-
fore there exists a classical solution of (3.3),(3.4) with bounded uy(t, y) (the existence of
classical solution follows also from Example 3.6 of [10] if we consider mixed problem with
boundary conditions u(T, y) = 0, uy(t,±N) + u(t,±N) = u±(t)).

Now we can use the Theorem 1. From (2.34) follows that the strategy is of the form

π∗(t, x, y) = − 1

q − 1

b(y) + (µ, ν∗(t, y)) + (σ, ν∗(t, y))ρuy(t, y)

2(σ, ν∗(t, y))σM − σ−σ+

x

=
1

1 − q

b(y) + (µ, ν∗(t, y)) + (σ, ν∗(t, y))ρuy(t, y)

(σ2, ν∗(t, y))
x, (3.11)

where ν∗(t, y) is defined by (3.5).

Corollary 2. If b = 0 then

u(t, y) = − 1

2(q − 1)
(T − t) min

(µ,σ)∈K

µ2

2σMσ − σ−σ+
= − 1

2(q − 1)
(T − t)

µ2
−

σ2
+

is a solution of (3.3) and a saddle point of the maximin problem can be given explicitly

(µ∗
t , σ

∗
t ) = (µ−, σ+), π∗(t, x, y) = − µ−

2(q − 1)σ2
+

x.

Remark 3.2. When σ− = σ+ = σM we obtain

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2

y(t, y)

− 1

2(q − 1)σ2
M

min
µ−≤µ≤µ+

(b(y) + µ+ ρσMuy(t, y))
2

≡ ∂

∂t
u(t, y) +

1

2
uyy(t, y) + (2ρσMb(y) + β(y))uy(t, y) +

1

2

(

1 − ρ2σM

q − 1

)

u2
y(t, y)

− 1

2(q − 1)σ2
M

min
µ−≤µ≤µ+

((b(y) + µ)2 + 2µρσMuy(t, y)) = 0, (3.12)

u(T, y) = 0. (3.13)
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The existence of classical solution of such type equation has been obtained by D. Hernán-
dez-Hernández and A. Schied in [8].

Remark 3.3. Instead of PDE (3.3) we can use BSDE with quadratic growth

dVt = −
(

β(wt)Zt +
1

2
Z2

t + qr(wt)

− 1

2(q − 1)
min

(µ,σ)∈K

(b(wt) + µ+ ρσZt)
2

2σMσ − σ−σ+

)

dt+ Ztdwt + Z⊥
t dw

⊥
t , (3.14)

VT = 0. (3.15)

which solvability follows from the results of [12], [23]. The strategy now is a solution of
forward SDE

π∗
t =

1

1 − q

(

b(wt) + (µ, ν∗t (Z))

(σ2, ν∗t (Z))
+ ρ

(σ, ν∗t (Z))

(σ2, ν∗t (Z))
Zt

)

Xt(π
∗). (3.16)

A Appendix

Each measure ν may be realized as a distribution of the pair of random variables (ξ, η)
with the value in D. Simplifying the notation we b(y) + µ denote again by µ. Our aim is
to characterize the dependence of the minimizer of the problem

min
ν∈P(K)

[

((µ, ν) + κ(σ, ν))2

(σ2, ν)

]

= min
(ξ,η)∈K

[

(Eξ + κEη)2

Eη2

]

(A.1)

on the parameter κ ∈ R.

Proposition A.1. The pair

(ξ∗, η∗) = arg min
(ξ,η)∈K

[

(Eξ + κEη)2

Eη2

]

is such that ξ∗ is number, η∗ is Bernoulli random variables with value {σ−, σ+} and their
expectations are given as

(ξ∗, Eη∗) =



































































(

µ+,
µ+

κ
+
σ−σ+

σM

)

, if κ ∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(µ+, σ−), if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

(κ,−1)constant, if κ ∈
(

−µ+

σ−
,−µ−

σ+

]

(µ−, σ+), if κ ∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

(

µ−,
µ−

κ
+
σ−σ+

σM

)

, if κ ∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

. (A.2)
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Moreover

(ξ∗ + κEη∗)2

Eη∗2
=



































































κ(2µ+σM + κσ−σ+)

σ2
M

, if κ ∈
(

−∞,
µ+σM

σMσ− − σ+σ−

]

(µ+ + κσ−)2

σ2
−

, if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]

0, if κ ∈
(

−µ+

σ−
,−µ−

σ+

]

(µ− + κσ+)2

σ2
+

, if κ ∈
(

−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]

κ(2µ−σM + κσ−σ+)

σ2
M

, if κ ∈
(

µ−σM

σMσ+ − σ+σ−
,∞
)

. (A.3)

Proof. Let (µ+ +κσ−)(µ− +κσ+) ≤ 0. Then by continuity of function µ+κσ, (µ, σ) ∈
K, there exists (µ̂, σ̂) such that µ̂+ κσ̂ = 0. Thus (µ̂, σ̂) ∝ (κ,−1) and

[

(Eξ∗+κEη∗)2

Eη∗2

]

= 0.

If (µ+ + κσ−)(µ− + κσ+) > 0 then either κ > µ−

σ+
and ξ∗ = µ− or κ < −µ+

σ−
and ξ∗ = µ+.

Thus it is sufficient to study the minimization problem

min
η∈[σ−,σ+]

[

(µa + κEη)2

Eη2

]

for a = +,−.

We will show that η∗ is of the form η∗ = σ−χB + σ+χBc for some event B. Indeed, if
Eη∗ = y then Eη∗2 = 2σMy − σ−σ+ and η∗ is maximizer of the problem

max
η,Eη=y

Eη2,

since for any η, with Eη = y we get

Eη2 = E(η − σM)2 + 2σMy − σ2
M

≤
(

σ+ − σ−

2

)2

+ 2σMy − σ2
M

= 2σMy − σ−σ+ = Eη∗2.

Hence

min
η∈[σ−,σ+]

[

(µa + κEη)2

Eη2

]

= min
σ−≤y≤σ+

ψa(y),

where ψa(y) = (µa+κy)2

2σM y−σ−σ+
. Since

ψ′
a(y) =

κ2

2σM

− κ2

2σM

(2σM
µa

κ
+ σ−σ+)2

(2σMy − σ−σ+)2

the equation ψ′
a(y) = 0 has two roots;

ya
1 = −µa

κ
, ya

2 =
µa

κ
+
σ−σ+

σM

.
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If ya
1 = −µa

κ
∈ [σ−, σ+] then ya

2 = µa

κ
+ σ−σ+

σM
∈ [−σ+ + σ−σ+

σM
,−σ− + σ−σ+

σM
] and vise versa.

Moreover [σ−, σ+]∩ [−σ+ + σ−σ+

σM
,−σ− + σ−σ+

σM
] = ∅. Since limy→±∞ ψa(y) = ±∞ then the

least root is the maximizer and highest root is the minimizer. The case of ya
1 ∈ [σ−, σ+]

is equivalent to

κ ∈ [−σ+

µa

,−σ−
µa

]

and gives minψa(y) = ψa(y
a
1) = 0. From the relation ya

2 ∈ [σ−, σ+] follows −σ+ + σ−σ+

σM
≤

−µa

κ
≤ −σ+ − σ−σ+

σM
which equivalent to

κ ∈ (−∞,
µa

σ− − σ−σ+

σM

] ∪ [
µa

σ+ − σ−σ+

σM

,∞).

In this case minσ−≤y≤σ+
ψa(y) = ψa(y

a
2) = κ

2µa+κσ−σ+

σ2
M

.

Now we will consider step by step the all possibilities of displacement of κ in the
intervals formulated in Proposition.

1) κ ∈ (−∞, µa

σ−−
σ−σ+

σM

]. Since µa

σ−−
σ−σ+

σM

≤ −µ+

σ−
then κ ∈ (−∞,−µ+

σ−
] and ξ∗ = µ+.

Moreover minψ+(y) = ψ+(y+
2 ) = κ

2µ++κσ−σ+

σ2
M

.

2) κ ∈ ( µ+

σ−−
σ−σ+

σM

,−µ+

σ−
]. From κ ≤ −µ+

σ−
follows that y+

1 = −µ+

κ
< σ− and from

κ >
µ+

σ−−
σ−σ+

σM

follows y+
2 = µ+

κ
+ σ−σ+

σM
< σ−. Hence ψ+(y) is increasing on [σ−, σ+] and

arg minσ−≤y≤σ+
ψ+(y) = σ−.

3) κ ∈ (−µ+

σ−
,−µ−

σ+
]. Then y+

1 = −µ+

κ
∈ [σ−, σ+] and minψ+(y) = 0.

4) κ ∈ (−µ−

σ+
,

µ−

σ+−
σ−σ+

σM

]. Then µ−

κ
> σ+ − σ−σ+

σM
and y−1 = −µ−

κ
< −σ+ + σ−σ+

σM
<

σ−, y
−
2 = µ−

κ
+ σ−σ+

σM
> σ+. Hence ψ−(y) is decreasing on [σ−, σ+] and arg minψ+(y) = σ+.

5) κ ∈ ( µ−

σ+−
σ−σ+

σM

,∞]. Then κ >
µ−

σ+
and ξ∗ = µ−. On the other hand from µ−

κ
<

σ+ − σ−σ+

σM
follows y−2 ∈ [σ−, σ+]. Hence minσ−≤y≤σ+

ψ−(y) = ψ−(y−2 ).
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