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1 Introduction.

The relation between the affine Jacobian and integrable im&deell known €f. []).

In the paper|]]2] we have shown that the algebra of functiontheraffine Jacobian is

generated by action of hamiltonian vector fields from finibeniber of functions. The

latter functions are coefficients of highest non-vanishingomologies of the affine

Jacobian. Actually, the idea that such description of thelada of functions is possible
appeared from the papeﬂ [3] which considers the structutteecdlgebra of observables
for quantum and classical Toda chain.

In the present paper we give quantum versiorﬂ)f [2]. A quarmhenhanical model
is formulated which gives a quantization of the affine JaaobiAs usual in Quan-
tum Mechanics we can describe not the variety itself but thekaa of functions on
it (observables). We need to show that the quantum algebohssrvables possesses
essential property of corresponding classical algebraraftions. In our case this prop-
erty is the possibility of creating every observable fronnétdi number of observables
(cohomologies) by action of Hamiltonians.

In the process of realization of this program we find the Bagtpations which
describe the spectrum of the model. It happens that thesgieqs possess the property
of duality: there is dual model with inverse Planck consfantvhich the eigen-vectors
are the same. The algebras of observables of two dual modeimate. The next
ingredient of our study is the method of separation of vdeisdeveloped by Sklyanin
[H]. Using this method we present the matrix elements of aygeovable in terms of
certain integrals.

We show that the integrals in question are expresses in wroheformed Abelian
integrals (:f.[, E]). The observables for both dual models are definedimgef coho-
mologies. The most beautiful feature of our constructiahé in these cohomologies
enter the integrals for matrix elements in such a way thattiteomologies of dual
model play role of homologies for original one and vise a aeke consider this rela-
tion between week-strong duality in quantum theory withldyaetween homologies
and cohomologies as the most important conclusion of thpgpa

2 Affine Jacobian.

In this section we briefly summarize necessary facts commgrelation between inte-

grable models and algebraic geometry following the pﬂeﬂ'[lﬂe reason for repeating

certain facts from|]|2] is that we shall need them in slighilfedent situation.
Consider2 x 2 matrix which depends polynomially on the parameter



where the matrix elements are polynomials of the form:
a(z) =29+ a2+ +agi, (1)
b(z) =29 +b129 1+ + by,
c(z) = caz9 + 32971+ cgra,

d(z) = doz9 ' +d3297 % +dyi

In the the affine spac&*9+2 with coordinates, - - - ,ag+1, b1, -+ ,bg, 2, , Cgi2,
da, - - -, dg+1 consider the (2g+1)-dimensional affine varigty defined as quadric
f(z) = a(2)d(z) — b(z)c(z) =1 2)

We consider this simplest situation, but in principle it @spible to put arbitrary poly-
nomial of degre@g in RHS.
On the quadric\ let us consider the sectiotgg(t) defined by the equations:

a(z) +d(2) = () 3
wheret(z) is given polynomial of the form:
t(z) = 29T 4 29 + - gy, 4

The notationJu(t) stands for affine Jacobi variety. The definition of affine daco
variety and its equivalence th(t) described above are given in the Appendix A. We
include Appendix A because there is minor difference withghuation considered in
[] and I?r]. The varietyM is foliated into the affine Jacobian&g(¢). Mechanical
model described below provides a clever way of describirgfthiation.

We would like to understand the geometrical meaning of quanihtegrable mod-
els. The general philosophy teaches that in order to desthi® quantization of a
manifold one has to deform the algebra of functions on thisifoll preserving cer-
tain essential properties of this algebra. The classiglab must allow the Poisson
structure in order that quantization is possible.

Certain Poisson brackets for the coefficients of matrix) can be introduced. We
do not write them down explicitly, if needed they can be aeditaking classical limit
of the commutation reIationﬂM). The algebra

A:(C[ala"' aag+11b17"' 7bgaCQa"' 7cg+27d2a"' adg-i-l]

becomes a Poisson algebra. The most important propertikeis ¢foisson structure are
the following. First, the coefficients of the determingiit) belong to the center of the

Poisson algebra, so, the equatiﬂn (2) is consistent witksBoistructure. Second, the
tracet(z) generates commutative sub-algebra:

{t(2),t(z')} =0

It can be shown, actually, that the coefficiépt, of the trace belongs to the center,
it is convenient to put,; = (—1)9"12. The subject of our study is the algebra of
functions on theM:

o~

A

AT O =T = (2
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on which the Poisson structure is well defined.
The Poisson commutative algebra generated by the coetficign- - , ¢, is called
the algebra of integrals of motion. Introduce the commutiegtor-fields

The vector-field$); describe motion along the sub-varietigg(t).
One can think of these vector-fields as

0

whereT; are "times” corresponding to the integrals of motign Define the ring of
integrals of motion
T=Clts, - ,tg] (5)
Introduce the space of differential forra& with basis
xdry, A NdTy,,, zeA

and the differential
d = 9;dr;

Consider corresponding cohomologigs. In the paper|]2] the arguments are given in
favour of the following

Conjecture 1. The cohomologie&* are finite-dimensional over the ring, they are
isomorphic to the cohomologies of the affine variéfy(t) with ¢ in generic position.

On the algebrad and on the spaceS* one can introduce degreﬁ [2]. Take the ba-
sis of HY considered as a vector space o¥ewhich is composed of homogeneous
representatives

Qoa =gadri A---Nd1y

whereq takes finite number of values. The fact of foliation/of into varieties/as(t)
corresponds to the following statement concerning thebaigd [E]

Proposition 1. Every element of A can be presented in the form

x:Zpa((?l,-“ ,09)9a (6)

wherep, (01, - - - ,0,) are polynomials 0b, - - - , 9, with coefficients ir¥".

The representatiorﬂ(G) is not unique, the equations

> P01, ,05)9a =0 (7)

are counted by79~* [f].
The formula [b) can be useful only if we are able to control tbeomologies.
Concerning these cohomologies we adopt several conjadinitewing ||_§r].
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3 Conjectured form of cohomologies.

The affine variety/a#(t) allows the following description. Consider the hyperszit
curve X of genusy:

w? —t(x)w+1=0 (8)

This curve has two points over the point= co which we denote byo™.
Consider a matrixn(z) satisfying [P). Take the zeros bfz):

b(z) = [z - =)

j=1

and
w; = d(z))

Obviouslyz;, w; satisfy the equation of the curve (E). Thusm(z) defines a poinP
(divisor) on the symmetrizeg-th powerX [¢] of the curveX. The divisorP consists
of the pointsyp; = (z;, w;) € X.

Oppositely one can reconstruef(z) starting form the divisof. Corresponding
map is singular, the singularities being located on

D = {P | pi = o(p;) for somei, j or p; = oo™ for somei} (9)
Whereg is hyper-elliptic involution. Thus the alternative degtion of Jug(¢) is
Jati(t) = X[g] — D

Consider the meromorphic differentials hwith singularities abo®. We chose
the following basis of these differentials:

d

e(p) = 29T, —g <k <0
Y

d k_g-1 dz
= [y— = >
(p) = [y (""" )], e k21 (10)

wherep = (z,w), y = 2w — t(z), [ |> means that only non-negative degrees of
Laurent series in the brackets are taken.

The form
ik =y m(pi)

is viewed as a form oi(t). It is easy to see that the forms, (hencepy) with
k > g + 1 are exact. Consider the spdd&™ with the basis:

lea"' ;knl = ﬁk] ARRRA /"’Zk?m

where—g < k; < g. Following ] we adopt the



Conjecture 2. We have
J— Wm
o AWm2

g
o= TNy
j=1

According to [p) the singularities of differential formsaae either ap; = o(p;) or at
p; = ooT. The non-trivial essence of Conjecture 2 is that the firsti kihsingularities
can be eliminated by adding exact forms. There(gre- 1)-forms singular ap, =
o(p;) such that these singularities disappear after applyinthis is the origin of the
spacer A WFE=2 [

Consider briefly the dual picture. On the affine curve withgiures abo® there
are2g + 1 non-trivial cycleso,, with k = —g,---,g. The cyclesy, , £ < 0 are
a-cycles, the cycles§, , k > 0 are b-cycles andy is the cycle aroundo™. One
defines the cycle& on the symmetrical power of the affine curve. Th@peration is
introduced for these cycles by duality with cohomologidse fion-trivial consequence
of Conjecture 2 is that every cycle ol(t) can be constructed by wedgiﬁg. The
formula dual to [(21) is

m

(11)

where

Wi
H,=—/— 12
o' N Wy—o ( )

wherelV,, is spanned by

and

We need to factorize over’ A W,,,_, because the 2-cycle intersects withD.
Let us return to the relation df¢ to the algebrad. Notice that

AT A Ndrg =it A+ Ay = 0

The functions
Ty, kg = 0! le,... kg
are symmetric polynomials of;, - - - , z,. Recall thath,, - - - , b, are nothing but ele-
mentary symmetric polynomials ef, - - - , z,. Hence the coefficients of conomologies
have the form:
ga = ga(b1, -, by)
The dimension of{9 is determined by Conjecture 2:

o=1,0, (%)~ (),

The equationsf[?) are consequences of the following ones

g
DOk ( 7 (ke Ay ey 1) =0, Y Qg EWITH O (13)
k=1



4 Quantization of affine Jacobian.

Let us consider a quanization of algelbfa The parameter of deformation (Planck
constant) is denoted by, we shall also use

g=e"

Consider the 2 2 matrixm(z) with noncommuting entries. Suppose that the depen-
dence on the spectral parameteis exactly the same as in classical caﬂe (1). The
variablesa;, b;, c¢;, d; are subject to commutation relations which are summarized a
follows:

r21(21, 22) M1 (21) k12(21) s12 Ma(22) ka1 (22) =
= ma(22) k21(22) s21 M (21) k12(21) r12(z1, 22) (14)
where usual conventions are used: the equa@n (14) isewritt the tensor product

C2®C?%a =a®l, a; = 1I®2 ay = PaoP whereP is the operation of
permuattions. Th€-number matrices, k, s are:

21— gz 21+ qze
I®lI

1—gq Ie)+ 1+g¢

+2(z10” @t + ot ®@07),

Fia() = 10 (I =0*) + (¢ +2(¢ — 1)o™ ) & (I +0%),
se=I®I1—(q—q "o~ ®c* (15)

r2(21, 22) = (0® ®a®) +

These commutation relations are important because th@gcethe form of matrix
m(z) prescribed by|]1), we shall explain how they are related toenogual r-matrix
relations in the next section.

Define the polynomials:

t(2) = qa(z) + ¢*d(z) — 2(¢° — 1)b(z)

f(2) = qd(2)t(zq7?) — ¢*d(2)d(2q"?) — gb(2)e(2q ) (16)
The algebraﬁ(q) is generated by ai,---,a4+1, bi,---,by,  C2,-c-,Cgyo,
da,- -+ ,dgy1, The polynomialf (=) belongs to the center of(g). The coefficients of
t(z) are commuting, actually,; belongs to the center of(q). We define:
A
Alg) = 9

{f(2) =1, tgs1 = (-1)9712}

The non-commutative algebréd(q) defines a quantization of the algebra of function
on the quadricM. However, we cannot define directly the quantization of tigelara

of functions on the affine Jacobian because the coefficiéri{z pare not in the center
of A(q). What we can do is to describe the quantum version of Prapnsitand of
description of cohomologies. The exposition will be mortaded than in the classical
case.



Like in the paper|]|3] we accept the following

Conjecture 3. The algebrad(q) is spanned as linear space by elements of the form:

T = pL(tla e 7tg)g(b17 e abg)pR(tla e 7t(]) (17)
wherepr (t1,--- ,ty), g(bi,---,by), pr(ti,---,t,) are polynomials.

We were not able to prove this statement, however, sincddleb@A(q) is graded we
can check it degree by degree. This has been done up to ded¥e&&: the similarity
between the representati(l?) and the representatiospforoperators proved in
[E]. Conjecture 3 implies that certain generalization af tesults of [Ib] is possible.
In fact the formula |[(1i7) is similar to the formuIE (6): we cather symmetrize or
anti-symmetrizet; in ([L4) which corresponds in classics to multipilation f9yor to
applyingd;. In order to have complete agreement with clasical case we toashow
that only finitely many different polynomialgd, - - - b,) (cohomologies) create entier
algebraA(q).

Notice that the commutation relatio(14) imply in part&rithat

[b(2), b(=")] = 0

which means that we have the commutative family of operatpdefined by

b(z) = [](= — 2))

So, every polynomialg(by, - -- ,b,) can be considered as symmetric polynomial of
z; and vice versa.

It is very convenient to use the following formal definitiorSonsider the ring”
definedin ﬂS). ByW* we denote the space of anti-symmetric polynomialsedriables
such that their degrees with respect to every variable igesstthari with coefficients
in7 ® 7. In other words* is the space spanned by the polynomials:

PL h'pR EpL(tlv"' 7tg)h'(zlv"' azk)pR(tlla"' 7ti])

whereh is anti-symmetric, vanishing when one gfvanishes. The following opera-
tions can be defined.

1. Multiplication byt; andt;.

2. Operatiom : V* ® V! — VF+! which is defined as follows:

(pr - h-pr) A (pL - B -pR) =pLpL - (WAR) - prPR
where

(hAR) (21, 2hp1) =
1 v
=0 Z (=)™ h(2r1ys -+ Zn ()P (Zr(rg1)s s Zr(ett))
’ .FGSk+l
We have a map
VI 25 Ag)



defined on the basis elements as

h z ’-.- ’z
X(pL'h'pR):pL(tla"'7tg)1—[z_(l—[l (= 2
illjcj\#i

) pR(tlw" ’tg)

_zj

and continued linearly. The Conjecture 3 states that thig imaurjective. We want to
describe the kernel of the map

First, consider the spade!. The elements of this space are polynomials of one
variable z with coefficients in7 ® 7. In Appendix B we describe certain basis in
V! considered as a linear space o%rz 7. The basis in question consists of the
polynomials: s, with k& > —g such that the degree af, with respect toz equals
g + k + 1. The kernel ofy is the joint of three sub-spaces, let us describe them.

1. Fork > g + 1 we have:

x(sk/\Vg_l) =0 (18)

2. Consider € V? defined as

g
c= g SjNS_j
Jj=1

we have

x(cAVIT?) =0 (19)

3. Consider € V! defined as
d=(t; —t})s—;
we have
x(dAVEt) =0 (20)
The construction of the space

V9
Ker(x) — Ala)
is in complete correspondence with the classiccal caselabsics we start with all
the 1-formsp;. Imposing ) corresponds to throwing away the exact foamd
working with gy for k = —g--- , g only. Imposing @9) corresponds to factorizing
overo A Wk=2in classics. Finally[(20) corresponds to the equa@m(lS)

The origin of the equationﬂlS 19[[20) will be expladrie the Section 9. There
should be purely algebraic method of prooving these equgtiout we do not know it.
It is important to mention that accepting Conjecture 3 wefareed to conclude that
the kernel ofy is completely described by the equatiohg (18), (19], (28)s & proved
by calculation of characters similarly to that ﬂ [3].



5 The realization of A(q).

We want to describe a realization of the algeldi@) in a space of functions. Consider
the quantum mechanical system described by the operatovih j = 1,--- ,2g + 2
andy (zero mode). The operators andy are self-adjoint, they satisfy the commuta-
tion relations:

TRT = ¢PxT k<l,

yrp = ¢*xry Yk
The hamiltonian of the system is

2g+2
-1 -1
h=q g T4
k=1

where

L2943 = qYT1
Physically this model defines the simplest lattice regméion of the chiral Bose field
with modified energy-momentum tensor.

It is useful to double the number of degrees of freedom. CGlemghe algebrat
generated by two operatorsandv satisfying the commutation relations:

UV = qUU

Take the algebral®(29+2) the operators;;, v; (j = 1,---,2g + 2) are defined as
andv acting inj-th tensor component. The original operatorsire expressed in terms

of u;, v; as follows:
2g+2

k—1
_ -2 _
Ik—kaUj ) y—HUj
j=1 j=1

Consider the “monodromy matrix”

m(z) = (if((; 38) —lagia(z) o i(2) (21)
where the l-operators are
1 2U —quu
iz) = NZ (zv1u1 0 ) (22)

This is a particular case of more genaral |-operdfer ) in which the last matrix
element is nob but xzu, the model corresponding to the latter I-operator is a subje
of study in a series of paperﬁ [7].

The matrix elements of the matrix(z) satisfy the commutation relations:

r12(21, 22)m (21)ma(22) = Ma(z2)ma (21)r12(21, 22) (23)
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where the r-matrixi2 (21, 22) is defined eaIie@S). These are canonical r-matrix com-
mutation relations. The quantum determinant of the madtix) is defined by

f(2) = d(2)a(zq"*) = b(2)e(zq?),

it belongs to the center, in our realizationwi#(z) one hasf(z) = 1. The trace of
m(z) generates commuting quantities, we denote this trace lasviol

a(z) +d(z) = yt(2)
The matrix elements of the matrix(z) are of the form:
a(z) =ap? M +a2? + 4 agp, (24)
(2) = boz? + b1z9 ' 4 -+ by,
C

)
c(z) =129 + G229 + -+ + Eg112,
)

e

=~

o

2)=di2? +dyz? 4 4 dyz
g

o9

where, in particularay = y. This form of polynomialsi(z), b(z), ¢(z), d(z) does
not corresponds to what we have in the classical model ofeaffacobian. This is the
reason for modifying the matri(z) as follows:

-1 ~ .1
aob 0\ — boa 0
m(z) = o0 m(z) | + 20,

—dib, 1 qdia, 1
The matrix elements of this matrix have structlﬂe (1), tretisfy closed commutation
relations [14), the operatoi =) andt(z) defined for these two matrices coincide, in
particular we have

ti=nh

Thus the modification of matrixn(z) which is necessary for relation to the affine
Jacobian is responcible for appearing of strangely lookrgmutation relation4).

6 Q-operator.

Our first goal is to define Baxter's Q-operator. Let us realimeoperators, v in La(R)
as follows
w= e

v=e¥,

We shall work in thep-representation, i.e. in the spade= (L. (R))®(29+2) . Follow-
ing the standart proceduref( [E]) one introduces the vectof3(¢ | ¢, - ,24+2)
which depend on

(= %logz
and2g + 2 additional parameters;, and satisfy the equation:

(_1)g+1t(2)Q(< | U)lv e 71/)294’2) =
= Q(<+ZV|U)17 7w29+2)+Q(<_7;7|¢17"' 7¢29+2)

11



In p-representation the “components” of these vectors arendiye

Qp1,- -+ s p2gu2 | (b1, -+ sbagya) =

2g+2
= 3 UFDHTEE TT AC o — v ) | a1 ) (25)
k=1
whereyy = 2442,
(@l 9)=em@ev=e)), (26)
M) = e B = () e 79,
and the functionb () satisfies the functional equation:
d ) 1
(ptin) _ 27)
Blp— i) 1+er
The solution to this equation is
ek dk
d = -
() = exp ( / Asinh~k sinh 7k & )
R+40
This wonderful function and its applications can be founffin
As usual we want to considé€)(¢1, - - -, pag12 | | 91, -+ ,¥2g42) as the kernel
of an operator:
Q(Spla' c o, P294-2 | C | 1/111' o 7w2g+2) = <S011' c 02942 | Q(C) | wla" : 7w2g+2 >

The subtle point is that we have to use mixed representatibavectorg ) ) are the

eigenvectors of the operators
w = ew = uvu

Notice that this justifies the notatigny | + ) in (28), and that
[, 0] = 2iy
The operator®(() satisfy the equations
(1)) Q(¢) = Q¢ +iv) + Q(¢ — i)

This is famous Baxter’s equation.

(28)

Before going further let us discuss the properties of theatpeQ (¢). We have

12
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so, the kernel of2(¢) for ¢ € R is an oscilating function, and it is rather clear that our
operator is well defined on the functions:f of Schwartz class (Sgl) sending them
to functions ofp; which are also of Schwartz class (S¢hUsing the equationﬂzg)
one easily finds the kernék) | @*(¢) | ¢ ) of the adjoint operato@* (¢) (we consider
the case of rea]). Further, notice that the I-operator can be rewritten as

I(2) = i( u _qulw) (30)

ZUW 0

Applying to this |-operator the same procedure as beforefims thatQ*(¢) also
solves the Baxter equatiop {28):

(—1)7(2)Q"(¢) = Q" (¢ +iv) + Q" (¢ — i)
It can be shown that actually
() =Q7(¢) for (eR

Considering the kernel of the operat@”(¢) one finds that this operator acts from
Sch, to Sch,. So, the product® () Q(¢’) are well defined at least far, ' € R.
We want to show that the operata®{({) constitute a commutative family:

[Q(0),()]=0 (31)
To this end we want to show that the opera@®(() can be rewritten as
Q(O =1, (£a2q+2 (C) T Eal(o) (32)

where the operators,;(¢) act in the tensor product of the “auxilary space” labeled
by a and of the “quantum space” whege, «; act. Actually in our case the “auxilary
space” will be isomorphic to the “quantum space”, i.e. welldhave a universal |-
operator. If the operator8,;(¢) satisfy Yang-Baxter equations with some R-matrix
then the commutativity@l) follows from the standart arguntn

To find the representatioh (32) rewrife](25) as

2g+2

Q) = 20D [ TT dgjavy (4] £as(Q) 145 M) 1)
j=1
where ', 1, are operators acting in the “auxiliary spacef, = 1,,,. SO, (Bk)
indeed takes place if the kernel of the “universal” |-operas given by
(Pl @ (Y] LEQ) [P )@ [p)=0dlp—¢)0W =¥ —1)
Hence the formulg(32) holds for the operatés (¢) of the form:
L12(¢) = P12L12(C)

whereP;, is the operator of permutation, and the operaﬁoj(g) acts in the tensor
product as follows: R
L12(¢) =A@ - T®1))

13



Thus the operato@(() can be considered as trace of “universal” monodromy matrix
and the commutativity| (31) follows from the Yang-Baxter atjon:

7€12(C1 —(2) Z23(C1) 212(42) = 223@2) Z12(<1) 7€23@1 —(2) (33)

with the simple r-matrix:

)= (L2 = 221)

24y

The Yang-Baxter equatioru33) in our case is almost trivialthe case of the more
general I-operatof(z, ) mentioned above we would need to use a more complicated
r-matrix and the proof of Yang-Baxter equations needs soonetrivial identities ].

The self-ajoint (for reaf; , {») operator®(¢; ), @(¢=) commute, hence the eigen-
vectors ofQ(¢) do not depend og. Actually, the operato@((¢) is an entire function
of (. The kernel of@(() has poles, but in the process of analytical continuation the
poles never pinch the contour of integration. The Baxteyigation ) implies that
Q(¢) andt(z2) also commute. Suppose thaf() antt(z) are eigen-values of these
operators, due to the equati(28) they satisfy

(1) 14(2)Q(¢) = Q¢ + i) + Q(¢ — i) (34)

Let us discuss further analytical properties@f¢). Since the operato@(() is
an entire functions of the eigen-valug(({) is an entire function as well. As it has
been said(0) = t,41 belongs to the center of the algebra defined by the commantatio
relations [2B), so, we can fix it. It is convenient to pyt; = (—1)9+'2 which allows
to reqiure that

Q(¢) — 1, (— —o0 (35)

From quasi-classical consideration which are completefgifel to those from|]££| 3]it
is naturally to conjecture that the eigenvalue€Xt) have zeros only on the real axis
and that asymptotically faf — oo one has:

o(¢) ~ e (FDAFTIC oog (L +71)<2 + %) (36)

The important question is whether the equati (34) tegetlith the analytical
properties described above are sufficient to find the spmotfuicommuting Hamilto-
nians. In our opinion it is impossible, the additional infation is needed which is
provided in the following section.

7 Duality.

Consider the functio®(¢). The mostinteresting property of this function s its diyali
together with the equatiof (27) it satisfies the equation

Do +im) 1
(I)(QO—Z'W) 1—|—e%‘p

14



Using this property and the definition of the opera®((¢) one finds that there is dual
equation for@(¢):

(—1)IT(2)Q(C) = Q¢ + i) + Q(¢ — i) 37)

where
27
Z=e=¢,

andT'(Z7) is the trace of the monodromy matrix
M(Z) = Lagi2(Z) -+ L1(Z)

with

1 ZU"Y —QVU
L(Z)_ﬁ<zle1 0 )

The dual operators
U = e%sa’ V = eﬂiﬁ

satisfy the commutation relations
UV =QVU

with dual

2

Q=e"~
The only non-trivial commutation relations of v with U, V' are
uV = —Vu, vU = —-Uv
which means that
SU)NUIRLZ)=IQLZ)(I(z)®1I)S
with S = 0® ® 3. From here it is obvious that
[4(2),T(2)] = 0

All that is the result of manifest duality of the kernel @(¢) with respect to
change:

2
Y ™ ™ ™
7—’77 <_>;C7 90,7'—’;903‘7 %‘*;wg‘

Itis clear thatT'(Z;) and Q((2) commute, so, the equatioh [37) implies the equa-
tion for eigen-values:

(—=1)7F1T(2)Q(¢) = Q(¢ + i) + Q(¢ — i) (38)

The functionQ(¢) is not an entire function of as it is the case in other situations
(for example [2[L]), that is why the equatidn(28) alone dogts@ok strong enough to
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define it. However, the equatioE{37) controlling the bebaviof Q(¢) under the2ri
-rotation inz-plane must provide the missing information.
So, our main conjecture is the following

Conjecture 4. The spectrum o#(z) (and, simultaneously, &F (7)) is described by
all solutions of the equation§ (34) ar[d}(38) such that

1.t(z) andT'(Z) are polynomials of degreg+ 1.

2. Q(¢) is an entire function of .

3. Q(¢) satisfies[(35) and (36).
4. All the zeros o©(() in the strip— (7 + v) < Im({) < (7 + ) are real.

8 Separation of variables.

The relation of integrable models to the algebraic geomerybe completely under-
stood in the framework of separation of variables.
We have already mentioned that

[b(2),b(z") ] =0

which implies commutativity of the operatots defined as roots df(z). Consider the
operators
w; = (-1)"q d(F;)

whered(%;) means that; which does not commute with coefficientsd(z) is sub-

stituted to this polynomial form the left. Following Sklyiar{E] one shows that
Zjwy = Wiz, j#k; zZjw; = qzwjzj

and

wi —w;t(Z;)+1=0 (39)

Introduce the operators
¢ = 3 log(z))
and consider the wave-function corresponding to given keigen-values of integral

of motionty,--- ,t, in ¢-representation. The equatidn](39) impli€ks [4] that we can
look for this wave function in the form:

(Crore s Cgltn, st ) = Q) -+ Q(¢)
whereQ(() satisfies the equation:
Q¢ + i) + Q¢ —iv) = (=1)7T(2)Q()

wheret(z) is constructed from the eigen-valuesThis equation coincides with the
equation ) written for particular eigen-values. Soldeing [E] we claim that the
wave function in separated variables is defined by eigeneval the operato® which
connects two different approaches to integrable models.
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Notice that the vectof ¢4, --- , ¢, ) is eigen-vector for the operato®s,, - -- , T,
since the functiorQ(() satisfies the equauoﬂB?) In order to identify explicithe
eigen-valesofl’y, - - - , T, we shall write| ¢1,--- ,tg;Th, -+ , Ty ).

We have the algebra of operato4$g) and the dual algebrd (Q) which act in the
same spac$. All the operators fromA(q) commute with the operators from(Q).

The fundamental property of(q) is that it is spanned as linear space by the elements
of the form ) according to Conjecture 3. Similar fact maestrue forA(Q). Taking
these facts together one realizes the algetiig - A(Q) is spanned by the elements of
the form:

X =zX =pr(t1,--- ,ty)Pr(Th, - ,Ty) (40)
X g(b17 e abg)G(Bla e 7Bg) PR(T17 e 7Tg)pR(t17 e atg)
We denote bya(zi,---,2,) andH(Z,--- , Z,) anti-symmetric polynomials ob-
tained fromg(by, - - - ,b,) andG(Bs, - - - , By), for example:
h(z1,-- 2, HZZH i—2))gbi(z1,- -, 2g), - by(21, -, 24))

i<j

Let us consider the matrix element of the operatdretween two eigen-vectors of
Hamiltonians. The wave functions are real for r¢aBy requirement of self-ajointness
of t(z) andT'(Z) one defines the scalar product.( [f]). The matrix element in
question is

(ty, -ty Ty, ,Tg|X|t'1,-~-t;; Ty,---,T') =

:pL(tla" : 7tg)pR(t/l" o at:])PL(Tla" . aTg)PR(Tlla' o aT(;) (41)
x [ e [ ey hzee 2 H(Zy, o, Z) [] Q) Q(G)
4 ZO g g e J J

When does the integral for the matrix elem (41) conveBgipose that

g+k+1 g+l+1
, H ~ Z

h~ 2 when ¢; — oo

then the integrand in the matrix element behaves when oo as
™
exp2G;((k—1) + ;(l -1))

hence for generiey the integral convergesonly # = 1,i = 0ork = 0,l = 1.
When+ is small we can allow the operators with= 0 andk < g oppositely, when

7 is big the operators withk = 0 and/ < = are allowed. The limitsy — 0 and

v — oo are two dual quasi-classical limits. For these limits theraporsl = 0,Vk
andk = 0,VI respectively define the classical observables. At leasketioperators
must be defined in the quantum case: if the quantization droeemakes sense the
principle of correspondence must hold. Hence, the factithgéneral only two oper-
ators withk = 1,1/ = 0 or k = 0,7 = 1 lead to convergent integrals means that some
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regularization of these integrals is needed. The reg@driategrals in question must
allow to define the matrix eIeme41) for arbitraryl, they have to coincide with
usual integrals whenever the latter are applicable, thest matisfy some additional
requirements which will be discussed in the Section 9. Tlgiroof these additional
requirements is in the cohomological construction exgdiim Section 4.

Notice that any anti-symmetric with respectig- - - , 2z, andZy, - - - , Z, polyno-
mial

h(z1,- 20 H(Z0, - Zy)

can be presented as linear combination of products of Sgiperdeterminants
k; l
detz;” | detZ;’|

where{ky,--- ,kq} and{ly,--- ,1,} are arbitrary sets of positive integers. So, the
integrals ) can be expressed in terms of 1-fold integrals

<HM2/Q@MW@MAK (42)

wherel and L are polynomials such th@f0) = 0 and L(0) = 0. The symbol~
means that the integrals in RHS are not always defined, thearézation is defined in
th Appendix B, in the next section we describe results ofibdgilarization..

9 Deformed Abelian differentials.

In Appendix B we define the polynomiads (z). These polynomials are of the form

()= 27k <k <0
1 qk_l g+1+k
- (L) k> 43
sk(2) P (qk+1)z +--- > (43)

where- - - stands for terms of lower degree (containingt’; in coefficients) explicitly
given in Appendix B.

In the classical case every polynomial defines an Abelidemdifitials on the affine
curve X — oco™. Similarly we consider the polynomials. as corresponding to “de-
formed Abelian differentials.” Let us be more precise. Thgularized integrals are
defined in Appendix B in such a way that they satisfy severatitmns. First of them
is

(sk|Si)
(sk|S1)

Due to ) we consider the polynomials, £ > ¢ + 1 as corresponding to exact
forms. The polynomials, with k = —1,--- | —g correspond to first kind differentials,
s, corresponds to the third kind ong, with k = 1,--- , g correspond to second kind
differentials.

k>g+1, Vi (44)

=0
=0 Vk, I>g+1 (45)
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Explicitly the relation with classical case is as followsor@ider the casgz) =
t'(z) and take the limit:
re =2~ ' lim sg(2)
7—0

Then the classical Abelian differential relatedstois

ri(2) &
Y

Similar interpretation can be given . which correspond to Abelian differentials
in dual classical limity — co. However, the most interesting feature of our construc-
tion is that together with this cohomological interpretatan alternative “homological”
one s possible. The polynomials, k£ > g+ 1 correspond to retractable cycles accord-
ing to @). The polynomials), for k = £1,--. , £g¢ are interpreted as analogues
andb cyclesé;, on the “deformed affine curvel§, corresponds to cycl& aroundoo™
which is non-trivial on the affine curve.The pairifg@| L ) defines the integral of dif-
ferential defined by over cycle defined by.. The asymptotic of the integrald | L )
in the classical limity — 0 are, indeed, described by Abelian integrals. Certainby, th
opposite interpretatiori{cycle, L-differential ) is possible which corresponds to dual
classical limit. It is not the first time that this kind of objs appears[[S], but it is the
first time that we observe real duality between two clasdicals.

Let us define the pairing between two polynomialandi,

Hre =

A+im
hol= lim [ [QOQ QL) (QQE)C - i) +
A
(- m)Q (¢ — i (2)5; (QQL)(C — i7)]dc (46)

One can show that these formulae give well-defined anti-sgtrimpairings which
correspond classically to natural pairing between mergimordifferentials

p
W1 0 Wa = €S0+ (wl (p) /w2>

The polynomials 1 ; and forj =1, - - - , g constitute canonical basis:
Sk OS = sgr(k — 1)61@7_[

Similarly, to introduce the definition df, o L, it is sufficient to do necessary replace-
ments in Eb):li — L;, z < Z,~ < m. The polynomialsSy; are canonically
conjugated.
The following anti-symmetric polynomials play role of 2rfoso ando’ used in
classics:
g

c(z1,22) = ) (s-5(21)s(22) = 55(21)5-(22)). (47)
j=1
C(Z1,2,) = Z -i(21)85(Z2) = 5j(21)S-(Z2))

Jj=1
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As usual HS] the most important property of deformed Abeliategrals is that the
Riemann bilinear relations remain valid after the defoiorat Namely, consider the
the following2g x 2g period matrix: P with the matrix elements

Pkl:<sk|5l> kal:_ga"'a_lala"'ag
The deformed Riemann bilinear identity is formulated as

Proposition 2. The matrixP belongs to the symplectic group:

P € Sp(29) (48)

This Proposition 2 is equivalent to a number of bilineartietes between the deformed
Abelian integrals. Proving them it is convenient to consttle domain of smal (y <
7/n) when the regularization of integrals simplifies, and thentmue analytically
with respect toy. Still the proof is rather complicated technically: it issieal on non-
trivial properties of the regularized integrals. We do nigeghis bulky proof here.
There is one more relation for deformed Abelian integralse ©an check that

MQ

(d]Sp)=0, Yk, d=S(t;—t)s_, (49)

.MQ l

(s |DYy=0, vk D=3 T;-T)S_; (50)

1

J

The reIations@Q) do not have direct analogue in terms ofidbéntegrals, recall that
we putt; = t’; taking classical limit which turns the relation into trilitg. However,
there is another way of taking the classical limit where #ggation is |mportanﬂ3]

10 Return to quantization of affine Jacobian.

Let us return to the main subject of this paper: quantizaif@ffine Jacobian. Consider
anyx € A(q). Suchz is identified withz - T € A(q) - A(Q), so, due to Conjecture 3
the matrix element of can be presented as

(ti, -ty x|y, -ty ) =prlte, - tg)pR(ty, - ty) (51)
X /d<1"'/d<gh(zlv"'vz.q)HI(Zlv""ZQ)HQ(CJ')Q/(@)
—o0 —o0 J=1

where the eigen-values df; are the same at the left and at the right, so, we do not
write them explicitly, the polynomiali; which correspondst& = I is given by

Hi(Zy,-- .2, HZH Z;j)

1<J

20



notice that
Hr=8_1/N---NS (52)

The formula for the matrix eIementE[Sl) for smal(when no regularization of
integrals is needed) can be deduced rigorously startimg fealization of4(q) defined
in Section 4. The following equations follow respectivelyrh (@4), [4p), [(48) (recall
notations of Section 4):

se AVITh~0, k>g+1 (53)
cAVIT2 ~ 0, (54)
dAVI™t ~ 0, (55)

where~ means that these expression vanish being substitute mtotégral @). The
equation ) needs explanation. To prove this equatiorhasdo take into account
the Riemann bilinear identity (48) and the formu[Jg] (52)jic@that

S,iOS,j:O, 1§Z,j§g

The formula for the matrix eIementE[Sl) can be rigorousiguted for smalky.
Hence the equationf (53}, [54),](55) lead to equation foraipes. The latter equations
are obtained applying the operatigr{Section 4):

X(sk/\ngl) =0, k>g+1 (56)
X(c/\Vg_z) =0, (57)
x(dAVEh) =0 (58)

We conclude that the formulae for the polynomiglsneeded in Section 4 are exactly
the same as given iﬂ43). Thus we put together the algebaaiopthis work with the
analytical one.
On the other hand the equatiofs|(Bg, B, 58) are of purelyoedgecharacter, so,
if they are valid for smally they must be valid always. That is why we regularized the
integrals for matrix element in order that the equati¢np,(§&l), (5%) hold for anyy.
Moreover, there is a dual model and we can consider the apsréit= =X from
A(q) - A(Q). The equation ($6)[ (7). (58) and dual equations stilettawbe valid.
The regularized integrals are defined in such a way that itascase. The equations

58), (58) and their duals clearly follow fronh {44), {45) af&d), (50). The most

interesting is the equatioﬂS?). Due to the Riemann biliretation this equation
follows from

cAVIT2~0 (59)
which is true if the sub-spaee\ V92 of the spac@’ is convoluted with the sub-space

Yy
CA ngz
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whereV, is the same a¥* for dual model (this notation is not occasional: the space
V. plays role ofk-cycles fork-forms fromV*). In other words we impose the equation

C/\Vg_gzo

and the dual equatioﬂ59) is imposed automatically duedd=iiemann bilinear rela-
tion.

Let us discuss the classical limit in some more details. @enshe hyper-elliptic
curveX. If we realize this curve as characteristic equation ofsitad analogue of the
monodromy matrixm(z) (@) the branch points of the curve can be shown real non-
negative. Actually requiring,; = (—1)9"'2 we put one of branch points at= 0.
Thus the branch points afe= ¢; < -+ < ga24+2. The Riemann surface is realized as
two-sheet covering of the plane ofwith cutsI, = [gog—1,92%), K = 1,--- ,9 + 1.

The canonical a-cycles_; and b-cycleg; are shown on thég. 1follows:

fig. 1

Under the classical dynamics every of the separated vagapbscillates in the inter-
val: ¢2;-1 < z; < go5, topologically it corresponds to motion along the a-cytle.
One can show that the integr@b, | S_; ) is described in the classical limjt — 0

by 6_; of differential ;. Thus theg-cycle ) corresponds to classical trajectory
d_1 A+ ANd_g. Recall that the cycle@Z) corresponds to insertion of opérator of
the dual model. Introducing other dual operators one gétgials with respect to both
a-cycles and b-cycles. Classically the corespondingdiaijies are not real, but the
factorization byo’ A W,,,_5 in @) guarantees that the classical non-real trajectorie
are not singular. We would like to finish this paper with tlipalogical interpretation
of the dual model.

11 Appendix A.

In this Appendix we shall give the canonical definition of méfiJacobi varietyas(t).
Consider hyper-elliptic curv& of genusy:

w? —t(z)w+1=0
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We have the canonical basis with a-cydigs—g < k < 0 and b-cycles,, 0 < k < g.
Associate with this basis the basis of normalized holomiargifferentialsw;:

/wj =0ij, Bij :/wj
04

The Jacobi variety of this curve is tlgedimensional complex torus:

C9

T = 27 Bzs

With every pointp € X we identify the pointx(p) € J(t) with coordinates:

p

a;(p) = / wj

b

for the reference poiritit is convenient to take one of the branch points. The cuéve
has two points over the point= co, denote them byo™ and consider th¢g — 1)-
dimensional subvariety of (t) defined by

0F = {¢ € J(t) | 0(¢ + aloo™))0(¢ + a(ec™)) = 0}
wheref is Riemann theta-function. It can be shown that there erigs@morphism:
Jatt(t) = J () — ©F (60)

The equivalence of this description with the descriptioteirms of divisors (Sec-
tion 1) is due to the Abel mai [g] — J(t) explicitely given by

(=aP)+A, aP)=) ap;)

whereA is the Riemann characteristic.

12 Appendix B.

In this Appendix we describe the regularization of integrahich has been used in the
paper.
Define:

de(f(C)) = f(C+i&) = F(Q),
Ae(f(Q) = f(C+i&) — f(¢ =€)
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Introduce the polynomials

i) = 5 t(z)Agl[zk*H*t(z)] (AT I ()]
() AT R Y ()]
() AT [ 2<q+1 Vi)
L(E ()  H()]s + H()[h 0 ) +
+ (q2(“7+1_’“)’“ — TR k20
sk(z) = Z9t1tk —g<k<O0;

where the notation ]. means that only the positive degrees of Laurent series in
brackets are taken. Obviously deg) = g + 1 + k. Further, with every functiorf (¢)

associate the functions:
7= DA (FOHE) +F AT (FOF () -
—t(2) A (f(C— it (2q72)) —t'(2) A" (f(¢ —iv)t(zq7?)) —
— F(Ot) (2) + f(C+iy) — F(C—im)},

= 2W{ P (G M) QOG0 +
+ AT (¢ =it (zq7%) Q¢ —iv)Q'(C) —
- AT (f(Ot(= )) Q(¢ —1i7)Q'(¢)
— AT (F(OF(2) Q(QO)Q (¢ — i) +
+ (O —imMQ (¢ —iv) + f(¢—i7)Q(0)Q'(¢)}

ulf](C) =

Define

—sk(2) + u[f1(0), f=2t k>

sp(Q) =< —so(2) +u[f)C) + (~1)9112, f=(z7971 k=0;

—z9t1tk —g<k<-1

and
o[f1(¢), f=2FT k>

These definitions imply that

(sk(2) + 55, (2)) () Q(C) = 05 (P (<)) (61)
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Similarly one introduces the functioi$s (2), S, (¢), Px(¢) changing everywhere
z by Z, ¢ by Q andi~v-shift of ¢ by iw-shift of . One has

(Sk(2) + 5, (2)) (O)Q'(¢) = dx(Pr(<)) (62)

Our goal is to define a pairing! | L ) between two arbitrary polynomial$z) and
L(Z) such that(0) = 0, L(0) = 0. Notice that every such polynomialL) can be
presented as linear combination of polynomialgSy).

Consider the following two pictures:

iT[: ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
iyi ----------------------------------------------
fig. 2a | +
Al /\2
ini -----------------------------------------------
iyi ----------------------------------------------------------------
fig. 2b | +
AZ /\1
We define

Aq
(x| 1) = / Q(0) Q' (O)sk(2)Si(Z)dC +

/ QO)Q (O)s; (O)Si(Z)dC + / Q)2 ()55 (Q)ST ()¢ —

A1+l’y Ao+im
_ / SUZ)pr(O)dC — / ST(OPOC, (63)
A Ao
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see {ig. 2. The first integral in RHS converges-ato becausé(0) = L(0) = 0.
The equation (§[L,p2) guarantee that the regularizgt@rd@es not depend ok, A»
if they remain orderedA; < As. Moreover, let us transfornfig. 23 into (fig. 2b).
The alternative definition of regularized integral refegto (ig. 2b) is

Ao
(s | 1) = / Q(0)Q' ()i (x)Si(Z)dc +

Ay (e
+ / QO)Q(O)si(2)S,(C)dC + / Q(O)Q'(¢)s5 (O)ST(C)dC —
Ao Ay

A iy Ao+im
_ / s(2)PC)dC — / ST (Opi(C)de (64)
A Ao

The equivalence of the regularizatiofs| (63) ahdl (64) is dasethe following fact. It
is easy to realize that for adyand L there exist a functioX,; (¢) such that

(SU(Z) = S () (C) = 6 (X (Q)),
(sk(z) = 55 (O))P(C) = 64(Xn(Q))

The equivalence in question follows from the equality:

Aty Adimtiy  Atiy
/ (Si(Z2) = 5,7 (€)) 9(Q)d¢ = ( / - / ) X (Q)d¢ =
A Atim A

Atimtiy  Adir Adin
:( /- ) Xu(@ds = [ (sn(2) = 57 (€) GO

Ativy A A
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