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Abstract. A quantum integrable model is considered which describes a quantization
of affine hyper-elliptic Jacobian. This model is shown to possess the property of du-
ality: a dual model with inverse Planck constant exists suchthat the eigen-functions
of its Hamiltonians coincide with the eigen-functions of Hamiltonians of the original
model. We explain that this duality can be considered as duality between homologies
and cohomologies of quantized affine hyper-elliptic Jacobian.

0Membre du CNRS
1Laboratoire associé au CNRS.
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1 Introduction.

The relation between the affine Jacobian and integrable models is well known (cf. [1]).
In the paper [2] we have shown that the algebra of functions onthe affine Jacobian is
generated by action of hamiltonian vector fields from finite number of functions. The
latter functions are coefficients of highest non-vanishingcohomologies of the affine
Jacobian. Actually, the idea that such description of the algebra of functions is possible
appeared from the paper [3] which considers the structure ofthe algebra of observables
for quantum and classical Toda chain.

In the present paper we give quantum version of [2]. A quantummechanical model
is formulated which gives a quantization of the affine Jacobian. As usual in Quan-
tum Mechanics we can describe not the variety itself but the algebra of functions on
it (observables). We need to show that the quantum algebra ofobservables possesses
essential property of corresponding classical algebra of functions. In our case this prop-
erty is the possibility of creating every observable from a finite number of observables
(cohomologies) by action of Hamiltonians.

In the process of realization of this program we find the Baxter equations which
describe the spectrum of the model. It happens that these equations possess the property
of duality: there is dual model with inverse Planck constantfor which the eigen-vectors
are the same. The algebras of observables of two dual models commute. The next
ingredient of our study is the method of separation of variables developed by Sklyanin
[4]. Using this method we present the matrix elements of any observable in terms of
certain integrals.

We show that the integrals in question are expresses in termsof deformed Abelian
integrals (cf.[3, 5]). The observables for both dual models are defined in terms of coho-
mologies. The most beautiful feature of our construction isthat in these cohomologies
enter the integrals for matrix elements in such a way that thecohomologies of dual
model play role of homologies for original one and vise a versa. We consider this rela-
tion between week-strong duality in quantum theory with duality between homologies
and cohomologies as the most important conclusion of this paper.

2 Affine Jacobian.

In this section we briefly summarize necessary facts concerning relation between inte-
grable models and algebraic geometry following the paper [2]. The reason for repeating
certain facts from [2] is that we shall need them in slightly different situation.

Consider2× 2 matrix which depends polynomially on the parameterz:

m(z) =

(
a(z) b(z)
c(z) d(z)

)
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where the matrix elements are polynomials of the form:

a(z) = zg+1 + a1z
g + · · ·+ ag+1, (1)

b(z) = zg + b1z
g−1 + · · ·+ bg,

c(z) = c2z
g + c3z

g−1 · · ·+ cg+2,

d(z) = d2z
g−1 + d3z

g−2 · · ·+ dg+1

In the the affine spaceC4g+2 with coordinatesa1, · · · , ag+1, b1, · · · , bg, c2, · · · , cg+2,
d2, · · · , dg+1 consider the (2g+1)-dimensional affine varietyM defined as quadric

f(z) ≡ a(z)d(z)− b(z)c(z) = 1 (2)

We consider this simplest situation, but in principle it is possible to put arbitrary poly-
nomial of degree2g in RHS.

On the quadricM let us consider the sectionsJaff(t) defined by the equations:

a(z) + d(z) = t(z) (3)

wheret(z) is given polynomial of the form:

t(z) = zg+1 + zgt1 + · · ·+ tg+1, (4)

The notationJaff(t) stands for affine Jacobi variety. The definition of affine Jacobi
variety and its equivalence toJaff(t) described above are given in the Appendix A. We
include Appendix A because there is minor difference with the situation considered in
[1] and [2]. The varietyM is foliated into the affine JacobiansJaff(t). Mechanical
model described below provides a clever way of describing this foliation.

We would like to understand the geometrical meaning of quantum integrable mod-
els. The general philosophy teaches that in order to describe the quantization of a
manifold one has to deform the algebra of functions on this manifold preserving cer-
tain essential properties of this algebra. The classical algebra must allow the Poisson
structure in order that quantization is possible.

Certain Poisson brackets for the coefficients of matrixm(z) can be introduced. We
do not write them down explicitly, if needed they can be obtained taking classical limit
of the commutation relations (14). The algebra

Â = C [ a1, · · · , ag+1, b1, · · · , bg, c2, · · · , cg+2, d2, · · · , dg+1]

becomes a Poisson algebra. The most important properties ofthis Poisson structure are
the following. First, the coefficients of the determinantf(z) belong to the center of the
Poisson algebra, so, the equation (2) is consistent with Poisson structure. Second, the
tracet(z) generates commutative sub-algebra:

{t(z), t(z′)} = 0

It can be shown, actually, that the coefficienttg+1 of the trace belongs to the center,
it is convenient to puttg+1 = (−1)g+12. The subject of our study is the algebra of
functions on theM:

A =
Â

{f(z) = 1, tg+1 = (−1)g+12}
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on which the Poisson structure is well defined.
The Poisson commutative algebra generated by the coefficients t1, · · · , tg is called

the algebra of integrals of motion. Introduce the commutingvector-fields

∂ig = {ti, g}, i = 1, · · · g

The vector-fields∂j describe motion along the sub-varietiesJaff(t).
One can think of these vector-fields as

∂j =
∂

∂τj

whereτj are ”times” corresponding to the integrals of motiontj . Define the ring of
integrals of motion

T = C [t1, · · · , tg] (5)

Introduce the space of differential formsCk with basis

x dτi1 ∧ · · · ∧ dτik , x ∈ A

and the differential
d = ∂jdτj

Consider corresponding cohomologiesHk. In the paper [2] the arguments are given in
favour of the following

Conjecture 1. The cohomologiesHk are finite-dimensional over the ringT , they are
isomorphic to the cohomologies of the affine varietyJaff(t) with t in generic position.

On the algebraA and on the spacesCk one can introduce degree [2]. Take the ba-
sis ofHg considered as a vector space overT which is composed of homogeneous
representatives

Ωα = gα dτ1 ∧ · · · ∧ dτg
whereα takes finite number of values. The fact of foliation ofM into varietiesJaff(t)
corresponds to the following statement concerning the algebraA [2]

Proposition 1. Every elementx ofA can be presented in the form

x =
∑

α

pα(∂1, · · · , ∂g)gα (6)

wherepα(∂1, · · · , ∂g) are polynomials of∂1, · · · , ∂g with coefficients inT .

The representation (6) is not unique, the equations
∑

α

pα(∂1, · · · , ∂g)gα = 0 (7)

are counted byHg−1 [2].
The formula (6) can be useful only if we are able to control thecohomologies.

Concerning these cohomologies we adopt several conjectures following [2].
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3 Conjectured form of cohomologies.

The affine varietyJaff(t) allows the following description. Consider the hyper-elliptic
curveX of genusg:

w2 − t(z)w + 1 = 0 (8)

This curve has two points over the pointz =∞ which we denote by∞±.
Consider a matrixm(z) satisfying (2). Take the zeros ofb(z):

b(z) =

g∏

j=1

(z − zj)

and
wj = d(zj)

Obviouslyzj, wj satisfy the equation of the curveX (8). Thusm(z) defines a pointP
(divisor) on the symmetrizedg-th powerX [g] of the curveX . The divisorP consists
of the pointspj = (zj , wj) ∈ X .

Oppositely one can reconstructm(z) starting form the divisorP . Corresponding
map is singular, the singularities being located on

D = {P | pi = σ(pj) for somei, j or pi =∞± for somei} (9)

Whereσ is hyper-elliptic involution. Thus the alternative description ofJaff(t) is

Jaff(t) = X [g]−D

Consider the meromorphic differentials onX with singularities at∞±. We chose
the following basis of these differentials:

µk(p) = zg+k
dz

y
, −g ≤ k ≤ 0

µk(p) =
[
y
d

dz
(zk−g−1y)

]
≥

dz

y
, k ≥ 1 (10)

wherep = (z, w), y = 2w − t(z), [ ]≥ means that only non-negative degrees of
Laurent series in the brackets are taken.

The form
µ̃k =

∑

i

µk(pi)

is viewed as a form onJaff(t). It is easy to see that the formsµk (henceµ̃k) with
k ≥ g + 1 are exact. Consider the spaceWm with the basis:

Ωk1,··· ,km
= µ̃k1 ∧ · · · ∧ µ̃km

where−g ≤ kj ≤ g. Following [2] we adopt the
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Conjecture 2. We have

Hm =
Wm

σ ∧Wm−2
(11)

where

σ =

g∑

j=1

µ̃j ∧ µ̃−j

According to (9) the singularities of differential forms occur either atpi = σ(pj) or at
pi =∞±. The non-trivial essence of Conjecture 2 is that the first kind of singularities
can be eliminated by adding exact forms. There are(g − 1)-forms singular atpi =
σ(pj) such that these singularities disappear after applyingd. This is the origin of the
spaceσ ∧W k−2 [2].

Consider briefly the dual picture. On the affine curve with punctures at∞± there
are2g + 1 non-trivial cyclesδk with k = −g, · · · , g. The cyclesδk , k < 0 are
a-cycles, the cyclesδk , k > 0 are b-cycles andδ0 is the cycle around∞+. One
defines the cycles̃δk on the symmetrical power of the affine curve. The∧-operation is
introduced for these cycles by duality with cohomologies. The non-trivial consequence
of Conjecture 2 is that every cycle onJaff(t) can be constructed by wedging̃δk. The
formula dual to (11) is

Hm =
Wm

σ′ ∧Wm−2
(12)

whereWm is spanned by

∆k1,··· ,km
= δ̃k1 ∧ · · · ∧ δ̃km

and

σ′ =

g∑

j=1

δ̃j ∧ δ̃−j

We need to factorize overσ′ ∧Wm−2 because the 2-cycleσ′ intersects withD.
Let us return to the relation ofHg to the algebraA. Notice that

dτ1 ∧ · · · ∧ dτg ≃ µ̃1 ∧ · · · ∧ µ̃g ≡ Ω

The functions
xk1,··· ,kg

= Ω−1 Ωk1,··· ,kg

are symmetric polynomials ofz1, · · · , zg. Recall thatb1, · · · , bg are nothing but ele-
mentary symmetric polynomials ofz1, · · · , zg. Hence the coefficients of cohomologies
have the form:

gα = gα(b1, · · · , bg)
The dimension ofHg is determined by Conjecture 2:

α = 1, · · · ,
(
2g+1
g

)
−
(
2g+1
g−2

)
,

The equations (7) are consequences of the following ones
g∑

k=1

∂k
(

Ω−1 (µ−k ∧Ωk1,··· ,kg−1
)
)

= 0, ∀ Ωk1,··· ,kg−1
∈W g−1 (13)
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4 Quantization of affine Jacobian.

Let us consider a quanization of algebraA. The parameter of deformation (Planck
constant) is denoted byγ, we shall also use

q = eiγ

Consider the 2× 2 matrixm(z) with noncommuting entries. Suppose that the depen-
dence on the spectral parameterz is exactly the same as in classical case (1). The
variablesaj , bj , cj , dj are subject to commutation relations which are summarized as
follows:

r21(z1, z2) m1(z1) k12(z1) s12 m2(z2) k21(z2) =

= m2(z2) k21(z2) s21 m1(z1) k12(z1) r12(z1, z2) (14)

where usual conventions are used: the equation (14) is written in the tensor product
C2 ⊗ C2, a1 = a ⊗ I, a2 = I ⊗ 2, a21 = Pa12P whereP is the operation of
permuattions. TheC-number matricesr, k, s are:

r12(z1, z2) =
z1 − qz2

1− q (I ⊗ I) +
z1 + qz2
1 + q

(σ3 ⊗ σ3) +

+ 2 (z1σ
− ⊗ σ+ + z2σ

+ ⊗ σ−),

k12(z) = I ⊗ (I − σ3) +
(
q−σ

3

+ z(q2 − 1)σ−
)
⊗ (I + σ3),

s12 = I ⊗ I − (q − q−1)σ− ⊗ σ+ (15)

These commutation relations are important because they respect the form of matrix
m(z) prescribed by (1), we shall explain how they are related to more usual r-matrix
relations in the next section.

Define the polynomials:

t(z) = qa(z) + q2d(z)− z(q2 − 1)b(z)

f (z) = qd(z)t(zq−2)− q2d(z)d(zq−2)− qb(z)c(zq−2) (16)

The algebraÂ(q) is generated by a1, · · · ,ag+1, b1, · · · , bg, c2, · · · , cg+2,
d2, · · · ,dg+1, The polynomialf(z) belongs to the center of̂A(q). The coefficients of
t(z) are commuting, actually,tg+1 belongs to the center of̂A(q). We define:

A(q) =
Â(q)

{f(z) = 1, tg+1 = (−1)g+12}

The non-commutative algebraA(q) defines a quantization of the algebra of function
on the quadricM. However, we cannot define directly the quantization of the algebra
of functions on the affine Jacobian because the coefficients of t(z) are not in the center
of A(q). What we can do is to describe the quantum version of Proposition 1 and of
description of cohomologies. The exposition will be more detailed than in the classical
case.
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Like in the paper [3] we accept the following

Conjecture 3. The algebraA(q) is spanned as linear space by elements of the form:

x = pL(t1, · · · , tg)g(b1, · · · , bg)pR(t1, · · · , tg) (17)

wherepL(t1, · · · , tg), g(b1, · · · , bg), pR(t1, · · · , tg) are polynomials.

We were not able to prove this statement, however, since the algebraA(q) is graded we
can check it degree by degree. This has been done up to degree 8. Notice the similarity
between the representation (17) and the representation forspin operators proved in
[6]. Conjecture 3 implies that certain generalization of the results of [6] is possible.
In fact the formula (17) is similar to the formula (6): we can either symmetrize or
anti-symmetrizetj in (17) which corresponds in classics to multipilation bytj or to
applying∂j . In order to have complete agreement with clasical case we have to show
that only finitely many different polynomialsg(b1, · · ·bg) (cohomologies) create entier
algebraA(q).

Notice that the commutation relations (14) imply in particular that

[b(z), b(z′)] = 0

which means that we have the commutative family of operatorszj defined by

b(z) =
∏

(z − zj)

So, every polynomialsg(b1, · · · , bg) can be considered as symmetric polynomial of
zj and vice versa.

It is very convenient to use the following formal definitions. Consider the ringT
defined in (5). ByVk we denote the space of anti-symmetric polynomials ofk variables
such that their degrees with respect to every variable is notless than1 with coefficients
in T ⊗ T . In other wordsVk is the space spanned by the polynomials:

pL · h · pR ≡ pL(t1, · · · , tg)h(z1, · · · , zk)pR(t′1, · · · , t′g)

whereh is anti-symmetric, vanishing when one ofzj vanishes. The following opera-
tions can be defined.
1. Multiplication bytj andt′j .
2. Operation∧ : Vk ⊗ V l → Vk+l which is defined as follows:

(pL · h · pR) ∧ (p′L · h′ · p′R) = pLp
′
L · (h ∧ h′) · pRp′R

where

(h ∧ h′)(z1, · · · , zk+l) =

=
1

k! l!

∑

π∈Sk+l

(−1)π h(zπ(1), · · · , zπ(k))h
′(zπ(k+1), · · · , zπ(k+l))

We have a map
Vg χ−→ A(q)
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defined on the basis elements as

χ(pL · h · pR) = pL(t1, · · · , tg)
h(z1, · · · , zg)∏
zi
∏
i<j(zi − zj)

pR(t1, · · · , tg)

and continued linearly. The Conjecture 3 states that this map is surjective. We want to
describe the kernel of the mapχ.

First, consider the spaceV1. The elements of this space are polynomials of one
variablez with coefficients inT ⊗ T . In Appendix B we describe certain basis in
V1 considered as a linear space overT ⊗ T . The basis in question consists of the
polynomials: sk with k ≥ −g such that the degree ofsk with respect toz equals
g + k + 1. The kernel ofχ is the joint of three sub-spaces, let us describe them.

1. Fork ≥ g + 1 we have:

χ
(
sk ∧ Vg−1

)
= 0 (18)

2. Considerc ∈ V2 defined as

c =

g∑

j=1

sj ∧ s−j

we have

χ
(
c ∧ Vg−2

)
= 0 (19)

3. Considerd ∈ V1 defined as

d = (tj − t′j)s−j

we have

χ
(
d ∧ Vk−1

)
= 0 (20)

The construction of the space

Vg
Ker(χ)

≃ A(q)

is in complete correspondence with the classiccal case. In classics we start with all
the 1-formsµ̃k. Imposing (18) corresponds to throwing away the exact formsand
working with µ̃k for k = −g · · · , g only. Imposing (19) corresponds to factorizing
overσ ∧W k−2 in classics. Finally, (20) corresponds to the equation (13).

The origin of the equations (18), (19), (20) will be explained in the Section 9. There
should be purely algebraic method of prooving these equations, but we do not know it.
It is important to mention that accepting Conjecture 3 we areforced to conclude that
the kernel ofχ is completely described by the equations (18), (19), (20). This is proved
by calculation of characters similarly to that of [3].
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5 The realization ofA(q).

We want to describe a realization of the algebraA(q) in a space of functions. Consider
the quantum mechanical system described by the operatorsxj with j = 1, · · · , 2g + 2
andy (zero mode). The operatorsxj andy are self-adjoint, they satisfy the commuta-
tion relations:

xkxl = q2xlxk k < l,

yxk = q2xky ∀k

The hamiltonian of the system is

h = q−1

2g+2∑

k=1

xkx
−1
k−1

where
x2g+3 ≡ qyx1

Physically this model defines the simplest lattice regularization of the chiral Bose field
with modified energy-momentum tensor.

It is useful to double the number of degrees of freedom. Consider the algebraA
generated by two operatorsu andv satisfying the commutation relations:

uv = qvu

Take the algebraA⊗(2g+2) the operatorsuj , vj (j = 1, · · · , 2g + 2) are defined asu
andv acting inj-th tensor component. The original operatorsxi are expressed in terms
of ui, vi as follows:

xk = vk

k−1∏

j=1

u−2
j , y =

2g+2∏

j=1

uj

Consider the “monodromy matrix”

m̃(z) =

(
ã(z) b̃(z)

c̃(z) d̃(z)

)
= l2g+2(z) · · · l1(z) (21)

where the l-operators are

l(z) =
1√
z

(
zu −qvu

zv−1u−1 0

)
(22)

This is a particular case of more genaral l-operatorl(z, κ) in which the last matrix
element is not0 but κzu, the model corresponding to the latter l-operator is a subject
of study in a series of papers [7].

The matrix elements of the matrixm(z) satisfy the commutation relations:

r12(z1, z2)m̃1(z1)m̃2(z2) = m̃2(z2)m̃1(z1)r12(z1, z2) (23)
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where the r-matrixr12(z1, z2) is defined ealier (15). These are canonical r-matrix com-
mutation relations. The quantum determinant of the matrixm̃(z) is defined by

f (z) = d̃(z)ã(zq−2)− b̃(z)c̃(zq−2),

it belongs to the center, in our realization of̃m(z) one hasf (z) = 1. The trace of
m̃(z) generates commuting quantities, we denote this trace as follows:

ã(z) + d̃(z) = yt(z)

The matrix elements of the matrix̃m(z) are of the form:

ã(z) = ã0z
g+1 + ã1z

g + · · ·+ ãg+1, (24)

b̃(z) = b̃0z
g + b̃1z

g−1 + · · ·+ b̃g,

c̃(z) = c̃1z
g+1 + c̃2z

g + · · ·+ c̃g+1z,

d̃(z) = d̃1z
g + d̃2z

g−1 + · · ·+ d̃gz

where, in particular,̃a0 = y. This form of polynomials̃a(z), b̃(z), c̃(z), d̃(z) does
not corresponds to what we have in the classical model of affine Jacobian. This is the
reason for modifying the matrix̃m(z) as follows:

m(z) =

(
ã0b̃

−1

0 0

−d̃1b̃
−1

0 1

)
m̃(z)

(
b̃0ã

−1
0 0

qd̃1ã
−1
0 1

)

The matrix elements of this matrix have structure (1), they satisfy closed commutation
relations (14), the operatorsf(z) andt(z) defined for these two matrices coincide, in
particular we have

t1 = h

Thus the modification of matrix̃m(z) which is necessary for relation to the affine
Jacobian is responcible for appearing of strangely lookingcommutation relations (14).

6 Q-operator.

Our first goal is to define Baxter’s Q-operator. Let us realizethe operatorsv, u inL2(R)
as follows

v = eϕ, u = eiγ
d

dϕ

We shall work in theϕ-representation, i.e. in the spaceH = (L2(R))⊗(2g+2). Follow-
ing the standart procedure (cf. [8]) one introduces the vectorsQ(ζ | ψ1, · · · , ψ2g+2)
which depend on

ζ = 1
2 log z

and2g + 2 additional parameters,ψj , and satisfy the equation:

(−1)g+1t(z)Q(ζ | ψ1, · · · , ψ2g+2) =

= Q(ζ + iγ | ψ1, · · · , ψ2g+2) +Q(ζ − iγ | ψ1, · · · , ψ2g+2)

11



In ϕ-representation the “components” of these vectors are given by

Q(ϕ1, · · · , ϕ2g+2 | ζ | ψ1, · · · , ψ2g+2) =

= e
1
2
(1+ π

γ
)ζ+ 1

4iγ
ζ2

2g+2∏

k=1

λ(ζ | ϕk − ψk )〈 ϕk | ψk−1 〉 (25)

whereψ0 ≡ ψ2g+2,

〈 ϕ | ψ 〉 = e
1

4iγ
(2ϕψ−ϕ2), (26)

λ(ζ | ψ) = e−
1

2iγ
ζψ Φ(ψ − ζ) e

π+γ
γ

(ψ−ζ),

and the functionΦ(ϕ) satisfies the functional equation:

Φ(ϕ+ iγ)

Φ(ϕ− iγ) =
1

1 + eϕ
(27)

The solution to this equation is

Φ(ϕ) = exp



∫

R+i0

eikϕ

4 sinhγk sinhπk

dk

k




This wonderful function and its applications can be found in[9].
As usual we want to considerQ(ϕ1, · · · , ϕ2g+2 | ζ | ψ1, · · · , ψ2g+2) as the kernel

of an operator:

Q(ϕ1, · · · , ϕ2g+2 | ζ | ψ1, · · · , ψ2g+2) = 〈 ϕ1, · · · , ϕ2g+2 |Q(ζ) | ψ1, · · · , ψ2g+2 〉

The subtle point is that we have to use mixed representations: the vectors| ψ 〉 are the
eigenvectors of the operators

w ≡ eψ = uvu

Notice that this justifies the notation〈 ϕ | ψ 〉 in (26), and that

[ ψ, ϕ ] = 2iγ

The operatorsQ(ζ) satisfy the equations

(−1)g+1t(z)Q(ζ) = Q(ζ + iγ) + Q(ζ − iγ) (28)

This is famous Baxter’s equation.
Before going further let us discuss the properties of the operatorQ(ζ). We have

Φ(ϕ) = Φ(ϕ̄);

Φ(ϕ) ∼ exp

(
1

4iγ
ϕ2

)
, as ϕ→∞ (29)
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so, the kernel ofQ(ζ) for ζ ∈ R is an oscilating function, and it is rather clear that our
operator is well defined on the functions ofψj of Schwartz class (Schψ) sending them
to functions ofϕj which are also of Schwartz class (Schϕ). Using the equations (29)
one easily finds the kernel〈 ψ |Q∗(ζ) | ϕ 〉 of the adjoint operatorQ∗(ζ) (we consider
the case of realζ). Further, notice that the l-operator can be rewritten as

l(z) =
1√
z

(
zu −qu−1w

zuw−1 0

)
(30)

Applying to this l-operator the same procedure as before onefinds thatQ∗(ζ) also
solves the Baxter equation (28):

(−1)g+1t(z)Q∗(ζ) = Q
∗(ζ + iγ) + Q

∗(ζ − iγ)

It can be shown that actually

Q(ζ) = Q
∗(ζ) for ζ ∈ R

Considering the kernel of the operatorQ
∗(ζ) one finds that this operator acts from

Schϕ to Schψ. So, the productsQ(ζ)Q(ζ′) are well defined at least forζ, ζ′ ∈ R.
We want to show that the operatorsQ(ζ) constitute a commutative family:

[ Q(ζ),Q(ζ′) ] = 0 (31)

To this end we want to show that the operatorQ(ζ) can be rewritten as

Q(ζ) = tra
(
La2q+2(ζ) · · · La1(ζ)

)
(32)

where the operatorsLaj(ζ) act in the tensor product of the “auxilary space” labeled
by a and of the “quantum space” whereϕj , ψj act. Actually in our case the “auxilary
space” will be isomorphic to the “quantum space”, i.e. we shall have a universal l-
operator. If the operatorsLaj(ζ) satisfy Yang-Baxter equations with some R-matrix
then the commutativity (31) follows from the standart argument.

To find the representation (32) rewrite (25) as

Q(ζ) = e
1
2
(1+ π

γ
)ζ+ 1

4iγ
ζ2
∫ 2g+2∏

j=1

dϕ′
jdψ

′
j〈 ψ′

j | Laj(ζ) | ϕ′
j 〉〈 ϕ′

j | ψ′
j−1 〉

whereϕ′
j , ψ

′
j are operators acting in the “auxiliary space”,ψ′

0 = ψ′
2g+2. So, (32)

indeed takes place if the kernel of the “universal” l-operator is given by

〈 ϕ′ | ⊗ 〈 ψ | L(ζ) | ψ′ 〉 ⊗ | ϕ 〉 = δ(ϕ− ϕ′)δ(ψ − ψ′)λ(ζ | ϕ− ψ)

Hence the formula (32) holds for the operatorsLaj(ζ) of the form:

L12(ζ) = P12L̂12(ζ)

whereP12 is the operator of permutation, and the operatorL̂12(ζ) acts in the tensor
product as follows:

L̂12(ζ) = λ(ζ| ϕ⊗ I − I ⊗ ψ)
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Thus the operatorQ(ζ) can be considered as trace of “universal” monodromy matrix
and the commutativity (31) follows from the Yang-Baxter equation:

R̂12(ζ1 − ζ2) L̂23(ζ1) L̂12(ζ2) = L̂23(ζ2) L̂12(ζ1) R̂23(ζ1 − ζ2) (33)

with the simple r-matrix:

R̂12(ζ) = exp

(
(I ⊗ ψ − ϕ⊗ I)ζ

2iγ

)

The Yang-Baxter equation (33) in our case is almost trivial.In the case of the more
general l-operator̂l(z, κ) mentioned above we would need to use a more complicated
r-matrix and the proof of Yang-Baxter equations needs some non-trivial identities [10].

The self-ajoint (for realζ1, ζ2) operatorsQ(ζ1), Q(ζ2) commute, hence the eigen-
vectors ofQ(ζ) do not depend onζ. Actually, the operatorQ(ζ) is an entire function
of ζ. The kernel ofQ(ζ) has poles, but in the process of analytical continuation the
poles never pinch the contour of integration. The Baxter’s equation (28) implies that
Q(ζ1) andt(z2) also commute. Suppose thatQ(ζ) antt(z) are eigen-values of these
operators, due to the equation (28) they satisfy

(−1)g+1t(z)Q(ζ) = Q(ζ + iγ) +Q(ζ − iγ) (34)

Let us discuss further analytical properties ofQ(ζ). Since the operatorQ(ζ) is
an entire functions ofζ the eigen-valueQ(ζ) is an entire function as well. As it has
been saidt(0) = tg+1 belongs to the center of the algebra defined by the commutation
relations (23), so, we can fix it. It is convenient to puttg+1 = (−1)g+12 which allows
to reqiure that

Q(ζ)→ 1, ζ → −∞ (35)

From quasi-classical consideration which are completely parallel to those from [8, 3] it
is naturally to conjecture that the eigenvalues ofQ(ζ) have zeros only on the real axis
and that asymptotically forζ →∞ one has:

Q(ζ) ∼ e−(g+1)(1+ π
γ

)ζ cos

(
(g + 1)ζ2

γ
+
π

4

)
(36)

The important question is whether the equations (34) together with the analytical
properties described above are sufficient to find the spectrum of commuting Hamilto-
nians. In our opinion it is impossible, the additional information is needed which is
provided in the following section.

7 Duality.

Consider the functionΦ(ζ). The most interesting property of this function is its duality:
together with the equation (27) it satisfies the equation

Φ(ϕ+ iπ)

Φ(ϕ− iπ)
=

1

1 + e
π
γ
ϕ

14



Using this property and the definition of the operatorQ(ζ) one finds that there is dual
equation forQ(ζ):

(−1)g+1T (Z)Q(ζ) = Q(ζ + πi) + Q(ζ − πi) (37)

where
Z = e

2π
γ
ζ ,

andT (Z) is the trace of the monodromy matrix

M̃(Z) = L2g+2(Z) · · · L1(Z)

with

L(Z) =
1√
Z

(
ZU−1 −QV U

ZV −1U−1 0

)

The dual operators
U = e

π
γ
ϕ, V = eπi

d
dϕ

satisfy the commutation relations

UV = QV U

with dual
Q = ei

π2

γ

The only non-trivial commutation relations ofu, v with U, V are

uV = −V u, vU = −Uv

which means that

S (l(z)⊗ I)(I ⊗ L(Z)) = (I ⊗ L(Z))(l(z)⊗ I) S

with S = σ3 ⊗ σ3. From here it is obvious that

[ t(z),T (Z) ] = 0

All that is the result of manifest duality of the kernel ofQ(ζ) with respect to
change:

γ → π2

γ
, ζ → π

γ
ζ, ϕj →

π

γ
ϕj , ψj →

π

γ
ψj

It is clear thatT (Z1) andQ(ζ2) commute, so, the equation (37) implies the equa-
tion for eigen-values:

(−1)g+1T (Z)Q(ζ) = Q(ζ + πi) +Q(ζ − πi) (38)

The functionQ(ζ) is not an entire function ofz as it is the case in other situations
(for example [11]), that is why the equation (28) alone does not look strong enough to
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define it. However, the equation (37) controlling the behaviour ofQ(ζ) under the2πi
-rotation inz-plane must provide the missing information.

So, our main conjecture is the following

Conjecture 4. The spectrum ont(z) (and, simultaneously, ofT (Z)) is described by
all solutions of the equations (34) and (38) such that
1. t(z) andT (Z) are polynomials of degreeg + 1.
2.Q(ζ) is an entire function ofζ.
3.Q(ζ) satisfies (35) and (36).
4. All the zeros ofQ(ζ) in the strip−(π + γ) < Im(ζ) < (π + γ) are real.

8 Separation of variables.

The relation of integrable models to the algebraic geometrycan be completely under-
stood in the framework of separation of variables.

We have already mentioned that

[ b(z), b(z′) ] = 0

which implies commutativity of the operatorszj defined as roots ofb(z). Consider the
operators

wj = (−1)g+1q d(←−z j)

whered(←−zj ) means thatzj which does not commute with coefficients ofd(z) is sub-
stituted to this polynomial form the left. Following Sklyanin [4] one shows that

zjwk = wkzj , j 6= k; zjwj = q2wjzj

and

w2
j −wjt(←−z j) + 1 = 0 (39)

Introduce the operators
ζj = 1

2 log(zj)

and consider the wave-function corresponding to given set of eigen-values of integral
of motion t1, · · · , tg in ζ-representation. The equation (39) implies [4] that we can
look for this wave function in the form:

〈 ζ1, · · · , ζg | t1, · · · , tg 〉 = Q(ζ1) · · · Q(ζg)

whereQ(ζ) satisfies the equation:

Q(ζ + iγ) +Q(ζ − iγ) = (−1)g+1t(z)Q(ζ)

wheret(z) is constructed from the eigen-valuest. This equation coincides with the
equation (28) written for particular eigen-values. So, following [8] we claim that the
wave function in separated variables is defined by eigen-value of the operatorQ which
connects two different approaches to integrable models.
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Notice that the vector| t1, · · · , tg 〉 is eigen-vector for the operatorsT 1, · · · ,T g

since the functionQ(ζ) satisfies the equation (37). In order to identify explicitlythe
eigen-vales ofT 1, · · · ,T g we shall write| t1, · · · , tg;T1, · · · , Tg 〉.

We have the algebra of operatorsA(q) and the dual algebraA(Q) which act in the
same spaceH. All the operators fromA(q) commute with the operators fromA(Q).
The fundamental property ofA(q) is that it is spanned as linear space by the elements
of the form (17) according to Conjecture 3. Similar fact mustbe true forA(Q). Taking
these facts together one realizes the algebraA(q) · A(Q) is spanned by the elements of
the form:

X =xX = pL(t1, · · · , tg)PL(T 1, · · · ,T g) (40)

× g(b1, · · · , bg)G(B1, · · · ,Bg) PR(T 1, · · · ,T g)pR(t1, · · · , tg)

We denote byh(z1, · · · , zg) andH(Z1, · · · ,Zg) anti-symmetric polynomials ob-
tained fromg(b1, · · · , bg) andG(B1, · · · ,Bg), for example:

h(z1, · · · , zg) =
∏

zi
∏

i<j

(zi − zj)g(b1(z1, · · · , zg), · · · , bg(z1, · · · , zg))

Let us consider the matrix element of the operatorX between two eigen-vectors of
Hamiltonians. The wave functions are real for realζ. By requirement of self-ajointness
of t(z) and T (Z) one defines the scalar product (cf. [4]). The matrix element in
question is

〈 t1, · · · tg ; T1, · · · , Tg | X | t′1, · · · t′g ; T ′
1, · · · , T ′

g 〉 =
= pL(t1, · · · , tg)pR(t′1, · · · , t′g)PL(T1, · · · , Tg)PR(T ′

1, · · · , T ′
g) (41)

×
∞∫

−∞

dζ1 · · ·
∞∫

−∞

dζg h(z1, · · · , zg)H(Z1, · · · , Zg)
g∏

j=1

Q(ζj)Q′(ζj)

When does the integral for the matrix element (41) converge?Suppose that

h ∼ zg+k+1
j , H ∼ Zg+l+1

j when ζj →∞

then the integrand in the matrix element behaves whenζj →∞ as

exp 2ζj
(
(k − 1) +

π

γ
(l − 1)

)

hence for genericγ the integral converges only ifk = 1, l = 0 or k = 0, l = 1.
Whenγ is small we can allow the operators withl = 0 andk < π

γ
, oppositely, when

γ is big the operators withk = 0 and l < γ
π

are allowed. The limitsγ → 0 and
γ → ∞ are two dual quasi-classical limits. For these limits the operatorsl = 0, ∀k
andk = 0, ∀l respectively define the classical observables. At least these operators
must be defined in the quantum case: if the quantization procedure makes sense the
principle of correspondence must hold. Hence, the fact thatin general only two oper-
ators withk = 1, l = 0 or k = 0, l = 1 lead to convergent integrals means that some
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regularization of these integrals is needed. The regularized integrals in question must
allow to define the matrix element (41) for arbitraryk, l, they have to coincide with
usual integrals whenever the latter are applicable, they must satisfy some additional
requirements which will be discussed in the Section 9. The origin of these additional
requirements is in the cohomological construction explained in Section 4.

Notice that any anti-symmetric with respect toz1, · · · , zg andZ1, · · · , Zg polyno-
mial

h(z1, · · · , zg)H(Z1, · · · , Zg)
can be presented as linear combination of products of Schur-type determinants

det|zkj

i | det|Z lji |

where{k1, · · · , kg} and{l1, · · · , lg} are arbitrary sets of positive integers. So, the
integrals (41) can be expressed in terms of 1-fold integrals

〈 l | L 〉 ≃
∞∫

−∞

Q(ζ)Q′(ζ)l(z)L(Z)dζ (42)

wherel andL are polynomials such thatl(0) = 0 andL(0) = 0. The symbol≃
means that the integrals in RHS are not always defined, the regularization is defined in
th Appendix B, in the next section we describe results of thisregularization..

9 Deformed Abelian differentials.

In Appendix B we define the polynomialssk(z). These polynomials are of the form

sk(z) = zg+1+k, −g ≤ k ≤ 0

sk(z) =
1

iγ

(
qk − 1

qk + 1

)
zg+1+k + · · · , k ≥ 1 (43)

where· · · stands for terms of lower degree (containingtj , t′j in coefficients) explicitly
given in Appendix B.

In the classical case every polynomial defines an Abelian differentials on the affine
curveX − ∞±. Similarly we consider the polynomialssk as corresponding to “de-
formed Abelian differentials.” Let us be more precise. The regularized integrals are
defined in Appendix B in such a way that they satisfy several conditions. First of them
is

〈 sk | Sl 〉 = 0 k ≥ g + 1, ∀l (44)

〈 sk | Sl 〉 = 0 ∀k, l ≥ g + 1 (45)

Due to (44) we consider the polynomialssk, k ≥ g + 1 as corresponding to exact
forms. The polynomialssk with k = −1, · · · ,−g correspond to first kind differentials,
so corresponds to the third kind one,sk with k = 1, · · · , g correspond to second kind
differentials.
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Explicitly the relation with classical case is as follows. Consider the caset(z) =
t′(z) and take the limit:

rk = z−1 lim
γ→0

sk(z)

Then the classical Abelian differential related tosk is

µk =
rk(z)

y
dz

Similar interpretation can be given toSk which correspond to Abelian differentials
in dual classical limitγ → ∞. However, the most interesting feature of our construc-
tion is that together with this cohomological interpretation an alternative “homological”
one is possible. The polynomialsSk, k ≥ g+1 correspond to retractable cycles accord-
ing to (45). The polynomialsSk for k = ±1, · · · ,±g are interpreted as analoguesa
andb cyclesδk on the “deformed affine curve”,S0 corresponds to cycleδ0 around∞+

which is non-trivial on the affine curve.The pairing〈 l | L 〉 defines the integral of dif-
ferential defined byl over cycle defined byL. The asymptotic of the integrals〈 l | L 〉
in the classical limitγ → 0 are, indeed, described by Abelian integrals. Certainly, the
opposite interpretation (l-cycle,L-differential ) is possible which corresponds to dual
classical limit. It is not the first time that this kind of objects appears [5], but it is the
first time that we observe real duality between two classicallimits.

Let us define the pairing between two polynomialsl1 andl2

l1 ◦ l2 = lim
Λ→∞

Λ+iπ∫

Λ

[
Q(ζ)Q′(ζ)l1(z)δ

−1
γ (QQ′l2)(ζ − iπ) +

+Q(ζ − πi)Q′(ζ − iπ)l1(z)δ
−1
γ (QQ′l2)(ζ − iγ)

]
dζ (46)

One can show that these formulae give well-defined anti-symmetric pairings which
correspond classically to natural pairing between meromorphic differentials

ω1 ◦ ω2 = resp=∞+


ω1(p)

p∫
ω2




The polynomialss±j and forj = 1, · · · , g constitute canonical basis:

sk ◦ sl = sgn(k − l)δk,−l
Similarly, to introduce the definition ofL1 ◦L2 it is sufficient to do necessary replace-
ments in (46): li ↔ Li, z ↔ Z, γ ↔ π. The polynomialsS±j are canonically
conjugated.

The following anti-symmetric polynomials play role of 2-formsσ andσ′ used in
classics:

c(z1, z2) =

g∑

j=1

(s−j(z1)sj(z2)− sj(z1)s−j(z2)) , (47)

C(Z1, Z2) =

g∑

j=1

(S−j(Z1)Sj(Z2)− Sj(Z1)S−j(Z2))
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As usual [5] the most important property of deformed Abelianintegrals is that the
Riemann bilinear relations remain valid after the deformation. Namely, consider the
the following2g × 2g period matrix:P with the matrix elements

Pkl =〈 sk | Sl 〉 k, l = −g, · · · ,−1, 1, · · · , g

The deformed Riemann bilinear identity is formulated as

Proposition 2. The matrixP belongs to the symplectic group:

P ∈ Sp(2g) (48)

This Proposition 2 is equivalent to a number of bilinear relations between the deformed
Abelian integrals. Proving them it is convenient to consider the domain of smallγ (γ <
π/n) when the regularization of integrals simplifies, and then continue analytically
with respect toγ. Still the proof is rather complicated technically: it is based on non-
trivial properties of the regularized integrals. We do not give this bulky proof here.

There is one more relation for deformed Abelian integrals. One can check that

〈 d | Sk 〉 = 0, ∀k, d =

g∑

j=1

(tj − t′j)s−j (49)

〈 sk | D 〉 = 0, ∀k, D =

g∑

j=1

(Tj − T ′
j)S−j (50)

The relations (49) do not have direct analogue in terms of Abelian integrals, recall that
we puttj = t′j taking classical limit which turns the relation into triviality. However,
there is another way of taking the classical limit where thisequation is important [3].

10 Return to quantization of affine Jacobian.

Let us return to the main subject of this paper: quantizationof affine Jacobian. Consider
anyx ∈ A(q). Suchx is identified withx · I ∈ A(q) · A(Q), so, due to Conjecture 3
the matrix element ofx can be presented as

〈 t1, · · · tg | x | t′1, · · · t′g 〉 = pL(t1, · · · , tg)pR(t′1, · · · , t′g) (51)

×
∞∫

−∞

dζ1 · · ·
∞∫

−∞

dζg h(z1, · · · , zg)HI(Z1, · · · , Zg)
g∏

j=1

Q(ζj)Q′(ζj)

where the eigen-values ofT j are the same at the left and at the right, so, we do not
write them explicitly, the polynomialHI which corresponds toX = I is given by

HI(Z1, · · · , Zg) =

g∏

j=1

Zj
∏

i<j

(Zi − Zj)
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notice that

HI = S−1 ∧ · · · ∧ S−g (52)

The formula for the matrix elements (51) for smallγ (when no regularization of
integrals is needed) can be deduced rigorously starting from realization ofA(q) defined
in Section 4. The following equations follow respectively from (44), (49), (48) (recall
notations of Section 4):

sk ∧ Vg−1 ≃ 0, k ≥ g + 1 (53)

c ∧ Vg−2 ≃ 0, (54)

d ∧ Vg−1 ≃ 0, (55)

where≃means that these expression vanish being substitute into the integral (51). The
equation (54) needs explanation. To prove this equation onehas to take into account
the Riemann bilinear identity (48) and the formula (52); notice that

S−i ◦ S−j = 0, 1 ≤ i, j ≤ g

The formula for the matrix elements (51) can be rigorously deduced for smallγ.
Hence the equations (53), (54), (55) lead to equation for operators. The latter equations
are obtained applying the operationχ (Section 4):

χ
(
sk ∧ Vg−1

)
= 0, k ≥ g + 1 (56)

χ
(
c ∧ Vg−2

)
= 0, (57)

χ
(
d ∧ Vk−1

)
= 0 (58)

We conclude that the formulae for the polynomialssk needed in Section 4 are exactly
the same as given in (43). Thus we put together the algebraic part of this work with the
analytical one.

On the other hand the equations (56, 57, 58) are of purely algebraic character, so,
if they are valid for smallγ they must be valid always. That is why we regularized the
integrals for matrix element in order that the equations (53), (54), (55) hold for anyγ.

Moreover, there is a dual model and we can consider the operatorsX = xX from
A(q) · A(Q). The equations (56), (57), (58) and dual equations still have to be valid.
The regularized integrals are defined in such a way that it is the case. The equations
(56), (58) and their duals clearly follow from (44), (45) and(49), (50). The most
interesting is the equation (57). Due to the Riemann bilinear relation this equation
follows from

c ∧ Vg−2 ≃ 0 (59)

which is true if the sub-spacec∧Vg−2 of the spaceVg is convoluted with the sub-space

Vg
C ∧ Vg−2
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whereVk is the same asVk for dual model (this notation is not occasional: the space
Vk plays role ofk-cycles fork-forms fromVk). In other words we impose the equation

C ∧ Vg−2 = 0

and the dual equation (59) is imposed automatically due to the Riemann bilinear rela-
tion.

Let us discuss the classical limit in some more details. Consider the hyper-elliptic
curveX . If we realize this curve as characteristic equation of classical analogue of the
monodromy matrix̃m(z) (21) the branch points of the curve can be shown real non-
negative. Actually requiringtg+1 = (−1)g+12 we put one of branch points atz = 0.
Thus the branch points are0 = q1 < · · · < q2g+2. The Riemann surface is realized as
two-sheet covering of the plane ofz with cutsIk = [q2k−1, q2k], k = 1, · · · , g + 1.
The canonical a-cyclesδ−j and b-cyclesδj are shown on thefig. 1 follows:

δ
δ δ

q q qq0 3 q1 2 4 5

-1 -2

δ2

1

fig. 1

Under the classical dynamics every of the separated variableszj oscillates in the inter-
val: q2j−1 ≤ zj ≤ q2j , topologically it corresponds to motion along the a-cycleδ−j .
One can show that the integral〈 sk | S−j 〉 is described in the classical limitγ → 0
by δ−j of differentialµk. Thus theg-cycle (52) corresponds to classical trajectory
δ−1 ∧ · · · ∧ δ−g. Recall that the cycle (52) corresponds to insertion of unitoperator of
the dual model. Introducing other dual operators one gets integrals with respect to both
a-cycles and b-cycles. Classically the coresponding trajectories are not real, but the
factorization byσ′ ∧Wm−2 in (12) guarantees that the classical non-real trajectories
are not singular. We would like to finish this paper with this topological interpretation
of the dual model.

11 Appendix A.

In this Appendix we shall give the canonical definition of affine Jacobi varietyJaff(t).
Consider hyper-elliptic curveX of genusg:

w2 − t(z)w + 1 = 0
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We have the canonical basis with a-cyclesδk,−g ≤ k < 0 and b-cyclesδk, 0 < k ≤ g.
Associate with this basis the basis of normalized holomorphic differentialsωj :

∫

δ
−i

ωj = δij , Bij =

∫

δi

ωj

The Jacobi variety of this curve is theg-dimensional complex torus:

J(t) =
Cg

Zg ×BZg

With every pointp ∈ X we identify the pointα(p) ∈ J(t) with coordinates:

αj(p) =

p∫

b

ωj

for the reference pointb it is convenient to take one of the branch points. The curveX
has two points over the pointz = ∞, denote them by∞± and consider the(g − 1)-
dimensional subvariety ofJ(t) defined by

Θ± = {ζ ∈ J(t) | θ(ζ + α(∞−))θ(ζ + α(∞+)) = 0}

whereθ is Riemann theta-function. It can be shown that there exist an isomorphism:

Jaff(t) ≃ J(t)−Θ± (60)

The equivalence of this description with the description interms of divisors (Sec-
tion 1) is due to the Abel mapX [g]→ J(t) explicitely given by

ζ = α(P) + ∆, α(P) =
∑

α(pj)

where∆ is the Riemann characteristic.

12 Appendix B.

In this Appendix we describe the regularization of integrals which has been used in the
paper.

Define:

δξ(f(ζ)) = f(ζ + iξ)− f(ζ),

∆ξ(f(ζ)) = f(ζ + iξ)− f(ζ − iξ)
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Introduce the polynomials

sk(z) =
1

2iγ

{
t(z)∆−1

γ [zk−g−1t(z)]> + t′(z)∆−1
γ [zk−g−1t′(z)]> −

− t(z)∆−1
γ [zk−g−1q2(g+1−k)t′(zq−2)]> −

− t′(z)∆−1
γ [zk−g−1q2(g+1−k)t(zq−2)]> −

− 1
2

(
t′(z)[zk−g−1t(z)]> + t(z)[zk−g−1t′(z)]>

)
+

+ (q2(g+1−k)k − q2(k−g−1))[zk−g−1]>
}
, k ≥ 0;

sk(z) = zg+1+k, −g ≤ k ≤ 0;

where the notation[ ]> means that only the positive degrees of Laurent series in
brackets are taken. Obviously deg(sk) = g + 1 + k. Further, with every functionf(ζ)
associate the functions:

u[f ](ζ) =
1

2iγ

{
t(z)∆−1

γ (f(ζ)t(z)) + t′(z)∆−1
γ (f(ζ)t′(z))−

− t(z)∆−1
γ

(
f(ζ − iγ)t′(zq−2)

)
− t′(z)∆−1

γ

(
f(ζ − iγ)t(zq−2)

)
−

− f(ζ)t(z)t′(z) + f(ζ + iγ)− f(ζ − iγ)
}
,

v[f ](ζ) =
1

2iγ

{
(−1)g+1

(
∆−1
γ

(
f(ζ − iγ)t(zq−2)

)
Q(ζ)Q′(ζ − iγ) +

+ ∆−1
γ

(
f(ζ − iγ)t′(zq−2)

)
Q(ζ − iγ)Q′(ζ)−

−∆−1
γ (f(ζ)t(z))Q(ζ − iγ)Q′(ζ)

−∆−1
γ (f(ζ)t′(z))Q(ζ)Q′(ζ − iγ)

)
+

+ f(ζ)Q(ζ − iγ)Q′(ζ − iγ) + f(ζ − iγ)Q(ζ)Q′(ζ)
}

Define

s−k (ζ) =





−sk(z) + u[f ](ζ), f = zk−g−1, k ≥ 1;

−s0(z) + u[f ](ζ) + (−1)g+12, f = ζz−g−1, k = 0;

−zg+1+k, −g ≤ k ≤ −1

and

pk(ζ) =





v[f ](ζ), f = zk−g−1, k ≥ 1;

v[f ](ζ), f = ζz−g−1, k = 0;

0, −g ≤ k ≤ −1

These definitions imply that

(sk(z) + s−k (z)) Q(ζ)Q′(ζ) = δγ(pk(ζ)) (61)
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Similarly one introduces the functionsSk(Z), S−
k (ζ), Pk(ζ) changing everywhere

z byZ, q byQ andiγ-shift of ζ by iπ-shift of ζ. One has

(Sk(z) + S−
k (z)) Q(ζ)Q′(ζ) = δπ(Pk(ζ)) (62)

Our goal is to define a pairing〈 l | L 〉 between two arbitrary polynomialsl(z) and
L(Z) such thatl(0) = 0, L(0) = 0. Notice that every such polynomiall (L) can be
presented as linear combination of polynomialssk (Sk).

Consider the following two pictures:

γ

γ

π

Λ Λ
1

Λ

2

i

πi

i

i

fig. 2a

fig. 2b
Λ

2 1

We define

〈sk | Sl〉 ≡
Λ1∫

−∞

Q(ζ)Q′(ζ)sk(z)Sl(Z)dζ +

+

Λ2∫

Λ1

Q(ζ)Q′(ζ)s−k (ζ)Sl(Z)dζ +

∞∫

Λ2

Q(ζ)Q′(ζ)s−k (ζ)S−
l (ζ)dζ −

−
Λ1+iγ∫

Λ1

Sl(Z)pk(ζ)dζ −
Λ2+iπ∫

Λ2

s−k (ζ)Pl(ζ)dζ, (63)
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see (fig. 2a). The first integral in RHS converges at−∞ becausel(0) = L(0) = 0.
The equations (61,62) guarantee that the regularization (63) does not depend onΛ1, Λ2

if they remain ordered:Λ1 < Λ2. Moreover, let us transform (fig. 2a) into (fig. 2b).
The alternative definition of regularized integral referring to (fig. 2b) is

〈sk | Sl〉 ≡
Λ2∫

−∞

Q(ζ)Q′(ζ)sk(z)Sl(Z)dζ +

+

Λ1∫

Λ2

Q(ζ)Q′(ζ)sk(z)S
−
l (ζ)dζ +

∞∫

Λ1

Q(ζ)Q′(ζ)s−k (ζ)S−
l (ζ)dζ −

−
Λ1+iγ∫

Λ1

sk(z)Pl(ζ)dζ −
Λ2+iπ∫

Λ2

S−
l (ζ)pk(ζ)dζ (64)

The equivalence of the regularizations (63) and (64) is based on the following fact. It
is easy to realize that for anyl andL there exist a functionXkl(ζ) such that

(Sl(Z)− S−
l (ζ))pk(ζ) = δπ(Xkl(ζ)),

(sk(z)− s−k (ζ))Pl(ζ) = δγ(Xkl(ζ))

The equivalence in question follows from the equality:

Λ+iγ∫

Λ

(Sl(Z)− S−
l (ζ)) g(ζ)dζ =




Λ+iπ+iγ∫

Λ+iπ

−
Λ+iγ∫

Λ


 Xkl(ζ)dζ =

=




Λ+iπ+iγ∫

Λ+iγ

−
Λ+iπ∫

Λ


 Xkl(ζ)dζ =

Λ+iπ∫

Λ

(sk(z)− s−k (ζ)) G(ζ)dζ
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