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Abstract

A novel application of the Padé approximation is proposed in which the

Padé approximant is used as an interpolation for the small and large coupling

behaviors of a physical system, resulting in a prediction of the behavior of

the system at intermediate couplings. This method is applied to quarkonium

systems and reasonable values for the c and b quark masses are obtained.
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The Padé approximation seeks to approximate the behavior of a function, f(x), by a ratio

of two polynomials of x. This ratio is referred to as the Padé approximant. Compared to

the usual perturbative power series approximation, the Padé approximant has the advantage

that it deviates less rapidly from the true values of f(x) as x becomes large. Recently, the

Padé approximation has been applied to quantum field theories to estimate the next order

term in a perturbation series [1]. The method involves calculating a certain physical quantity

perturbatively to nth order in the coupling constant and then forming a Padé approximant

which, when expanded in a power series of the coupling constant, reproduces the perturbative

result. The (n+1)th order term in the expansion of the Padé approximant yields an estimate

of the (n+ 1)th order term in the perturbation series for the physical quantity. It turns out

one can obtain reasonably good estimates from this approach.

In this paper a different usage of the Padé approximation is proposed. We observe that,

because of the nature of the Padé approximant, it can be expanded in a power series in x

when x is small as well as in a power series in 1
x

when x is large. It is therefore interesting

to ask the question: in cases when both the small x (e.g., weak coupling) and the large x

(e.g., strong coupling) behaviors of a theory can be computed perturbatively, is it possible to

form a single Padé approximant which interpolates the weak and strong coupling behaviors,

and if so, how well does this Padé interpolation approximate the behaviors of the theory

at intermediate values of the coupling constant? This is a particularly timely question

since, with the advance of duality in supersymmetric gauge theories [2], we may someday be

able to compute the strong coupling behaviors of a theory from its dual theory. The Padé

interpolation will then provide a means to estimate the behaviors of the theory for the entire

range of the coupling constant.

The method proposed here goes beyond interpolating the strong and weak coupling

behaviors of a system. For example, the expansion parameter x can be the temperature, the

strength of an applied field, or, as discussed below in the application to heavy quarkonia, a

parameter introduced to implement the Padé interpolation.

We have tested the Padé interpolation method with examples in which the exact result is

2



known, with encouraging success. To see how accurate the Padé interpolation can be and to

illustrate the methodology involved, let us consider a simple quantum mechanical two-state

system with the Hamiltonian,

H = σx + λσz, (1)

where the σ’s are the Pauli matrices and the coupling constant λ is assumed to be positive.

For λ ≪ 1, the σz term may be treated as a perturbation and we find, to second order in

perturbation theory, the eigenvalues of H are

E<
±

= ±1 ±
λ2

2
. (2)

For λ ≫ 1, the Hamiltonian can be written as H = λ(σz + 1
λ
σx), and the σx term can

be treated as a perturbation. We find, again to second order in perturbation theory, the

eigenvalues of H are now

E>
±

= ±λ±
1

2λ
. (3)

A Padé approximant which interpolates the small and large λ behaviors of the energies

can now be constructed. For the higher energy level E+, we find

E
(PA)
+ =

λ3 + 3
2
λ2 + 3

2
λ+ 1

λ2 + 3
2
λ+ 1

. (4)

This Padé approximant is uniquely determined from the perturbative expansions for E+

given in (2) and (3). The large λ behavior indicates that the polynomial in the numerator

must be one degree higher than the polynomial in the denominator and that the coefficient

for the highest order term in λ must be the same for the two polynomials. Without loss of

generality, we may choose this coefficient to be 1. If the numerator is a polynomial of degree

d, there will be a total of (2d− 1) coefficients to be determined for the Padé approximant.

Because the small λ behavior requires the numerator and the denominator to have the

same constant (i.e., λ-independent) term, there are only (2d − 2) remaining coefficients to

be determined. Expanding the Padé approximant and matching against the perturbation

series in (2) and (3) provide an additional four conditions, which selects d = 3.
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In Figure 1, the approximate result generated from Padé interpolation is compared with

the exact result, E+ =
√
λ2 + 1. We see that the Padé approximant (open squares) tracks

the exact result (solid curve) for all values of the coupling constant. In fact, E
(PA)
+ differs

from E+ by no more than about 1% for the entire range of λ. For example, for λ = 0.5, 1.0,

2.0, and 4.0, E
(PA)
+ is larger than E+ by 0.63%, 1.02%, 0.62%, and 0.18%, respectively. One

may improve the approximation by calculating more terms in the perturbation series for

E<
+ and E>

+ and constructing the corresponding Padé approximant. However, our example

suffices to demonstrate the potential power of the Padé interpolation method in that very

few terms in the perturbation expansions can yield a very accurate approximation to the

exact result for the entire range of the coupling constant.

For comparison, we have also plotted in Figure 1 the perturbative result for small λ,

E<
+ (dotted curve). As expected, it only agrees with the exact result for small values of λ

and diverges significantly from the exact result when λ becomes large. Similarly, E>
+ will

diverge from the exact result for small λ. In contrast, by interpolating E<
+ and E>

+ , the

Padé approximant is constrained not to deviate too far from the exact result for the full

range of the coupling constant. In this way, the Padé interpolation method can yield a very

good approximation, provided the quantity we try to approximate is a smooth, continuous

function of the coupling constant.

When applying the Padé interpolation, one should beware of potential unphysical singu-

larities coming from the zeroes of the polynomial in the denominator of the Padé approxi-

mant. This complication may limit the scope of applicability of the method. On the other

hand, this property may prove useful in some applications. For instance, when interpolat-

ing the high and low temperature behaviors of a system for which a phase transition takes

place at some intermediate temperature, one may try to construct a Padé-like approximant

(perhaps involving fractional powers in the polynomials) which mimics the singular behavior

near the phase transition point.

Another way to implement the Padé interpolation method is in cases when the Hamil-

tonian can be expressed as H = H1 +H2, where the exact solutions for H1 and H2 (but not
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H) are known. Introducing the interpolating Hamiltonian,

H(β) ≡ H1 + βH2, (5)

where β is a positive constant, we can then treat H2 as a perturbation when β ≪ 1 and treat

H1 as a perturbation when β ≫ 1, in exactly the same way as in the example (1). A Padé

approximant is formed interpolating the perturbative results for large and small β. Finally,

an approximate solution for the original Hamiltonian H is obtained by setting β equal 1 in

the Padé approximant. This method will be applied below to calculate quarkonium spectra.

Reasonable values for the c and b quark masses are obtained by fitting the calculated levels

to their measured values, which demonstrates the legitimacy of this Padé interpolation

approach.

Quarkonium refers to the bound state of a heavy quark Q (e.g., c or b quark) with its

antiquark Q̄. It is well known that such systems can be described reasonably well using

nonrelativistic quantum mechanics [3]. Various potential energy functions have been used

to model the QQ̄ interaction. It has been found that the potential description is flavor

independent, i.e., the same potential describes equally well the cc̄ and the bb̄ systems. We

consider here a central potential consisting of an attractive Coulomb term and a confining

linear potential [4]:

V (r) = −
α

r
+ λr, (6)

where α and λ are positive coupling constants. We shall focus on the S states for the purpose

of testing the proposed interpolation method. In this case, the Hamiltonian for the radial

Schrödinger equation is simply

Hr = −
1

2µ

d2

dr2
−
α

r
+ λr, (7)

where µ is the reduced mass for the heavy quark Q, µ = mQ/2. Note that Hr can be

expressed as the sum of two exactly solvable Hamiltonians: a Hamiltonian for the Coulomb

potential,
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HC = −
1

4µ

d2

dr2
−
α

r
, (8)

and a Hamiltonian for the linear potential,

HL = −
1

4µ

d2

dr2
+ λr. (9)

We have split the kinetic energy term in half so that the “effective mass” that appears in

HC and in HL is 2µ = mQ.

We may now form the interpolating Hamiltonian, Hr(β) = HC + βHL, and perform

perturbative calculations for small β as well as for large β. We shall summarize the results of

our calculation here. Details of the calculation can be found in Ref. [5] where the calculation

including the quarkonium P states is also discussed. (For the P states, the centrifugal

pontential energy term, l(l+1)
2µr2 , should be included with HC , resulting in a solvable ”hydrogen-

like” Hamiltonian. Because of the half kinetic energy term, care must be taken to redefine

the orbital angular momentum quantum number in order to extract the energy eigenvalues.)

The bound state energies for the S states of Hr(β) are computed for small β as well as

for large β to the same order in perturbation theory. Wherever necessary (e.g., integrals

involving the Airy functions, the eigenfunctions of HL), terms in the perturbation series are

evaluated numerically. In addition, for second and higher order calculations, the infinite

series that appear in the perturbation expansions are estimated using the method of accel-

eration of convergence [6,5]. A separate Padé approximant is formed interpolating the small

and large β results from our first, second, and third order calculations. Our estimates for

the S state energies are obtained by letting β equal 1 in the respective Padé approximant.

These are fitted to the corresponding measured values treating α, λ, mc, mb as well as

the zero-point energies Vc (for charmonium) and Vb (for bottomonium) as free parameters.

We used the data for the J/ψ(1S), J/ψ(2S), Υ(1S), Υ(2S), and Υ(3S) given in Ref. [7].

When performing the fit, care must be taken to avoid the artificial singularities of the Padé

approximant.

The details of the fit results are presented in Table 1. We see that the first-order ap-

proximation already produces a rather good fit to the measured S-state energies, although

6



the best fit values for mc and mb are somewhat high. The second-order approximation im-

proves the fit quality, reproducing all of the quarkonium S-levels. The fit quality, defined

as
∑

i

(

m
(experiment)
i −m

(calculated)
i

)2

, worsens (from less than 1 to 240) as we go to

the third-order approximation, primarily due to the increased difficulty to avoid a larger

number of unphysical singularities from the Padé approximant in performing the fit. Us-

ing the second-order results, our best fit values for mc and mb are 1.521 GeV and 5.046

GeV, respectively, to be compared with the values given in Ref. [7]: mc = 1.0 to 1.6 GeV;

mb = 4.1 to 4.5 GeV. The best fit values for the parameters in the quarkonium potential (6),

α = 0.4984 and λ = 0.1771 GeV2, also compare favorably with earlier results: α = 0.520

and λ = 0.183 GeV2 in Ref. [8]; α = 0.507 and λ = 0.169 GeV2 in Ref. [3].

We have also performed a fit with the constraint Vb − Vc = 2(mb − mc) on the model

parameters. The results are presented in Table 2. The fit quality in this case is comparable to

that of the unconstrained fit and the best fit values of the model parameters differ somewhat

from the best fit values of the unconstrained fit, indicating that the found minimum is

not sharp and allows for some variation of the quark masses as long as their difference

remains equal to half of the difference between the zero-point energies Vb and Vc. The model

parameters appear to be more stable than before as we go from first to second-order Padé

interpolation, which corroborates the physical significance of the constraint.

As a final check, we have integrated numerically the Schrödinger equation for the quarko-

nium systems with the second-order best fit values of the parameters to obtain the energy

levels. The results are shown in the last column of Table 1. This verifies the validity of the

Padé interpolation method.

In conclusion, using quarkonia and a simple two-state model as our testing grounds,

we have shown that Padé interpolation can be a powerful method for estimating physical

quantities at intermediate values of the coupling constant where perturbative calculations are

not reliable. There are many areas for which this method may be applicable. One of which

is the K-meson system. The strange quark mass, ms, has the value such that neither chiral

perturbation theory (for small quark masses) nor heavy quark effective theory (for large
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quark masses) gives a good description of K-meson properties. With Padé interpolation we

may be able to obtain a more accurate estimate of the K-meson properties by interpolating

the small ms and large ms behaviors which can be obtained perturbatively through chiral

perturbation theory and heavy quark effective theory, respectively. These issues are being

examined by one of us and the results will be reported in the near future [9].
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Table 1. Fit results from Padé interpolation.

Enrgy level Measured 1st order 2nd order 3rd order Numerical

J/ψ(1S) [MeV] 3097 3097 3097 3089 3097

J/ψ(2S) [MeV] 3686 3686 3686 3694 3687

Υ(1S) [MeV] 9460 9459 9460 9464 9456

Υ(2S) [MeV] 10023 10026 10023 10028 10020

Υ(3S) [MeV] 10355 10353 10355 10347 10356

Fit quality [MeV2] 13 < 1 240

Fit parameters

α 0.4600 0.4984 0.7510 0.4984

λ [GeV2] 0.1834 0.1771 0.1344 0.1771

Vc [MeV] 2767 2765 2953 2765

Vb [MeV] 9573 9585 9761 9585

mc [MeV] 1719 1521 1253 1521

mb [MeV] 5538 5046 4143 5046
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Table 2. Fit results from Padé interpolation with the constraint Vb − Vc = 2(mb −mc).

Enrgy level Measured 1st order 2nd order

J/ψ(1S) [MeV] 3097 3097 3098

J/ψ(2S) [MeV] 3686 3686 3685

Υ(1S) [MeV] 9460 9459 9460

Υ(2S) [MeV] 10023 10026 10022

Υ(3S) [MeV] 10355 10353 10356

Fit quality [MeV2] 13 3

Fit parameters

α 0.4850 0.4964

λ [GeV2] 0.1741 0.1784

Vc [MeV] 2770 2773

Vb [MeV] 9571 9574

mc [MeV] 1560 1572

mb [MeV] 4960 4972
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FIGURE CAPTION

Figure 1: see description in the text.
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