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Abstract

We consider the problem of enumerating spanning trees on lattices. Closed-form

expressions are obtained for the spanning tree generating function for a hypercubic

lattice of size N1×N2×· · ·×Nd in d dimensions under free, periodic, and a combination

of free and periodic boundary conditions. Results are also obtained for a simple quartic

net embedded on two non-orientable surfaces, a Möbius strip and the Klein bottle.

Our results are based on the use of a formula expressing the spanning tree generating

function in terms of the eigenvalues of an associated tree matrix. An elementary

derivation of this formula is given.
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1 INTRODUCTION

The problem of enumerating spanning trees on a graph was first considered by Kirchhoff [1]
in his analysis of electrical networks. Consider a graph G = {V, E} consisting of a vertex set
V and an edge set E. We shall assume that G is connected. A subset of edges T ⊂ E is a
spanning tree if it has |V |−1 edges with at least one edge incident at each vertex. Therefore
T has no cycles. In ensuing discussions we shall use T to also denote the spanning tree.

Number the vertices from 1 to |V | and associate to the edge eij connecting vertices i and
j a weight xij , with the convention of xii = 0. The enumeration of spanning trees concerns
with the evaluation of the tree generating function

T (G; {xij}) =
∑

T⊆E

∏

eij∈T

xij , (1)

where the summation is taken over all spanning trees T . Particularly, the number of spanning
trees on G is obtained by setting xij = 1 as

NSPT (G) = T (G; 1). (2)

Considerations of spanning tree also arise in statistical physics [2] in the enumeration of
close-packed dimers (perfect matchings) [3]. Using a similar consideration, for example, one
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of us [4] has evaluated the number of spanning trees for the simple quartic, triangular and
honeycomb lattices in the limit of |V | → ∞. In this Letter we report new results on the
evaluation of the generating function Eq. (1) for finite hypercubic lattices in arbitrary di-
mensions. Results are also obtained for a simple quartic net embedded on two non-orientable
surfaces, the Möbius strip and the Klein bottle. As the main formula used in this Letter is a
relation expressing the tree generating function in terms of the eigenvalues of an associated
tree matrix, for completeness we give an elementary derivation of this formula.

2 THE TREE MATRIX

For a given graph G = {V, E} consider a |V | × |V | matrix M(G) with elements

Mij(G) =











∑|V |
k=1 xik, i = j = 1, 2, · · · , |V |

−xij , if vertices i, j, i 6= j, are connected by an edge
0, otherwise.

(3)

We shall refer to M(G) simply as the tree matrix. It is well-known [5, 6] that the tree
generating function, Eq. (1), is given by the cofactor of any element of the tree matrix, and
that the cofactor is the same for all elements. Namely, we have the identity

T (G; {xij}) = the cofactor of any element of the matrix M(G). (4)

The tree generating function can also be expressed in terms of the eigenvalues of the
tree matrix M(G). We give here an elementary derivation of this result which we use in
subsequent sections.

Let M(G) be the tree matrix of a graph G = {V, E}. Since the sum of all elements in a
row of M(G) equals to zero, M(G) has 0 as an eigenvalue and, by definition, we have

det |Mij(G) − λδij| = −λF (λ) (5)

where

F (λ) =
|V |
∏

i=2

(λi − λ), (6)

λ2, λ3, . . . , λ|V | being the remaining eigenvalues.
Now the sum of all elements in a row of the determinant |Mij(G)−λδij | is −λ. This per-

mits us to replace the first column of det|Mij(G)−λδij | by a column of elements −λ without
affecting its value. Next we carry out a Laplace expansion of the resulting determinant along
the modified column, obtaining

det|Mij(G) − λδij| = −λ
|V |
∑

i=1

Ci1(λ), (7)

where Ci1(λ) is the cofactor of the (i1)-th element of the determinant. Combining Eqs.
(5)-(7), we are led to the identity

F (λ) =
|V |
∑

i=1

Ci1(λ). (8)
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Now, Ci1(0) is precisely the cofactor of the (i1)-th element of M(G) which, by Eq. (4), is
equal to the tree generating function T (G; {xij}). It follows that, after setting λ = 0 in Eq.
(8), we obtain an expression giving the tree generating function in terms of the eigenvalues
of the tree matrix [7, p. 39]

T (G; {xij}) =
1

|V |
|V |
∏

i=2

λi. (9)

This result can also be deduced by considering the tree matrix of a graph obtained from G
by adding an auxiliary vertex connected to all vertices with edges of weight x, followed by
taking the limit of x → 0 [8].

3 HYPERCUBIC LATTICES

We now deduce the closed-form expression for the tree generating function for a hypercubic
lattice in d dimensions under various boundary conditions.

3.1. Free boundary conditions
THEOREM 1. Let Zd be a d-dimensional hypercubic lattice of size N1 ×N2 ×· · ·×Nd with
edge weights xi along the ith direction, i = 1, 2, . . . , d. The tree generating function for Zd is

T (Zd; {xi}) =
2N−1

N
N1−1
∏

n1=0

· · ·
Nd−1
∏

nd=0

[

d
∑

i=1

xi

(

1 − cos
niπ

Ni

)

]

, (10)

(n1, . . . , nd) 6= (0, . . . , 0),

where N = N1N2 · · ·Nd.

PROOF.
The tree matrix of Zd assumes the form of a linear combination of direct products of

smaller matrices,

M(Zd) =
d
∑

i=1

xi[2IN1
⊗ IN2

⊗ · · · ⊗ INd

− IN1
⊗ · · · ⊗ INi−1

⊗ HNi
⊗ INi+1

⊗ · · · ⊗ INd
], (11)

where IN is an N × N identity matrix and HN is the N × N tri-diagonal matrix

HN =























1 1 0 0 · · · 0 0 0
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 1
0 0 0 0 · · · 0 1 1























. (12)

It is readily verified that HN is diagonalized by the similarity transformation

SNHNS−1
N = ΛN , (13)
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where SN and S−1
N are N × N matrices with elements

(SN )mn =
(

S−1
N

)

nm
=

√

2

N
cos

[

(2n + 1)
(

mπ

2N

)]

+





√

1

N
−
√

2

N



 δm,0,

m, n = 0, 1, . . . , N − 1, (14)

and ΛN is an N × N diagonal matrix with diagonal elements

λn = 2 cos
nπ

N
, n = 0, 1, . . . , N − 1. (15)

Here δm,n is the Kronecker delta. It follows that M(Zd) is diagonalized by the similarity
transformation

SNM(Zd)S
−1
N = ΛN , (16)

where
SN = SN1

⊗ SN2
⊗ · · · ⊗ SNd

, (17)

and ΛN is an N ×N diagonal matrix with diagonal elements

λn1,...,nd
= 2

d
∑

i=1

xi

[

1 − cos
niπ

Ni

]

, ni = 0, 1, . . . , Ni − 1. (18)

Now, we have λn1,...,nd
= 0 for n1 = n2 = · · · = nd = 0. This establishes Theorem 1 after

using Eq. (9). Q.E.D.

REMARK. The result Eq. (18) generalizes the d = 2 eigenvalues of M(Z2) for xi = 1
reported in [7, p. 74].

3.2. Periodic boundary conditions
In applications in physics one often requires periodic boundary conditions depicted by

the condition that two “boundary” vertices at coordinates (. . . , ni = 1, . . .) and (. . . , ni =
Ni, . . .), i = 1, 2, . . . , d, are connected by an extra edge. This leads to a lattice ZPer

d which is
a regular graph with degree 2d at all vertices. For d = 2, for example, ZPer

2 can be regarded
as being embedded on the surface of a torus.

THEOREM 2. Let ZPer
d be a hypercubic lattice in d dimensions of size N1 ×N2 × · · · ×Nd

with edge weights xi along the ith direction, i = 1, 2, ..., d with periodic boundary conditions.
The tree generating function for ZPer

d is

T (ZPer
d ; {xi}) =

2N−1

N
N1−1
∏

n1=0

· · ·
Nd−1
∏

nd=0

[

d
∑

i=1

xi

(

1 − cos
2niπ

Ni

)

]

, (19)

(n1, . . . , nd) 6= (0, . . . , 0).

PROOF.
The tree matrix assumes the form

M(ZPer
d ) =

d
∑

i=1

xi[2IN1
⊗ IN2

⊗ · · · ⊗ INd

− IN1
⊗ · · · ⊗ INi−1

⊗ GNi
⊗ INi+1

⊗ · · · ⊗ INd
], (20)
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where GN is the N × N cyclic matrix

GN =























0 1 0 0 · · · 0 0 1
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 1
1 0 0 0 · · · 0 1 0























. (21)

As in Eq. (16), the matrix M(ZPer
d ) can be diagonalized by a similarity transformation

generated by
RN = RN1

⊗ RN2
⊗ · · · ⊗ RNd

, (22)

where RN is an N × N matrix with elements

(RN)nj =
(

R−1
N

)∗

jn
= N−1/2ei2πjn/N , (23)

where ∗ denotes the complex conjugate, yielding eigenvalues of GN as

λn = 2 cos
2nπ

N
, n = 0, 1, . . . , N − 1. (24)

This establishes Theorem 2 after using Eq. (9). Q.E.D.

3.3. Periodic boundary conditions along m ≤ d directions
COROLLARY. Let Z

Per(m)
d be a hypercubic lattice in d dimensions of size N1×N2×· · ·×Nd

with periodic boundary conditions in directions 1, 2, . . . , m ≤ d and free boundaries in the
remaining d − m directions. The tree generating function is

T (Z
Per(m)
d ; {xi}) =

2N−1

N
N1−1
∏

n1=0

· · ·
Nd−1
∏

nd=0

[

m
∑

i=1

xi

(

1 − cos
2niπ

Ni

)

+
d
∑

i=m+1

xi

(

1 − cos
niπ

Ni

)



 , (n1, . . . , nd) 6= (0, . . . , 0). (25)

4 THE MÖBIUS STRIP AND THE KLEIN BOTTLE

Due to the interplay with the conformal field theory [9], it is of current interest in statistical
physics to study lattice systems on non-orientable surfaces [10, 11]. Here, we consider two
such surfaces, the Möbius strip and the Klein bottle, and obtain the respective tree generating
functions.

4.1. The Möbius strip
THEOREM 3. Let ZMob

2 be an M × N simple quartic net embedded on a Möbius strip
forming a Möbius net of width M and twisted in the direction N , with edge weights x1 and
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x2 along directions M and N respectively. The tree generating function for ZMob
2 is

T (ZMob
2 ; {x1, x2}) =

2MN−1

MN

M−1
∏

m=0

N−1
∏

n=0

[

x1

(

1 − cos
mπ

M

)

− x2

(

1 − cos
4n − 3 − (−1)m

2N
π

)]

, (m, n) 6= (0, 0). (26)

PROOF.
Specifically, let the the two vertices at coordinates {m, 1} and {M−m, N}, m = 1, 2, · · · , M

be connected with a lattice edge of weight x2. Then the tree matrix assumes the form

M(ZMob
2 ) = 2(x1 + x2)IM ⊗ IN − x1HM ⊗ IN − x2[IM ⊗ FN + JM ⊗ KN ], (27)

where

FN =























0 1 0 0 · · · 0 0 0
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 1
0 0 0 0 · · · 0 1 0























, JM =























0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

...
. . .

...
...

...
0 1 · · · 0 0 0
1 0 · · · 0 0 0























,

KN =























0 0 0 · · · 0 1
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
1 0 0 · · · 0 0























.

Since HM and JM commute, they can be simultaneously diagonalized by applying the simi-
larity transformation Eq. (13). The transformed matrix SNM(ZMob

2 )S−1
N is “block diagonal”

with N × N blocks

2
(

x1 − x1 cos
mπ

M
+ x2

)

IN − x2 (FN + (−1)mKN ) , m = 0, 1, . . . , M − 1. (28)

Now, the eigenvalues of GN = FN + KN and FN − KN are, respectively, 2 cos[2(n + 1)π/N ]
and 2 cos[(2n + 1)π/N ], n = 0, 1, ..., N − 1. Theorem 3 is established by combining these
results with Eq. (9). Q.E.D.

REMARK. For M = 2 and x1 = x2 = 1, Eq. (26) gives the number of spanning trees on a
2 × N Möbius ladder as

NSPT =
1

2N

2N−1
∏

j=1

[

3 − (−1)j − 2 cos
jπ

N

]

=
N

2

[

2 + (2 +
√

3)N + (2 −
√

3)N
]

. (29)

These two equivalent expressions have previously been given by [7, p.218] and by Guy and
Harary [12], respectively.
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4.2. The Klein bottle
The embedding of an M × N simple quartic net on a Klein bottle is accomplished by

further imposing a periodic boundary condition to ZMob
2 in the M direction, namely, by

connecting vertices of ZMob
2 at coordinates {1, n} and {M, n}, n = 1, 2, . . . , N with an edge

of weight x1. This leads to a lattice ZKlein
2 of the topology of a Klein bottle.

THEOREM 4 The tree generating function for ZKlein
2 (described in the above) is

T (ZKlein
2 ; {x1, x2}) =

2MN−1

MN

[

N−1
∏

n=1

2x2

(

1 − cos
2nπ

N

)

]

×
[M−1

2 ]
∏

m=1

2N−1
∏

n=0

[

2x1

(

1 − cos
2mπ

M

)

+ 2x2

(

1 − cos
nπ

N

)]

×
{

∏N−1
n=0

[

4z1 − 2z2

(

1 − cos (2n+1)π
N

)]

, for M even

1, for M odd,
(30)

where [n] is the integral part of n.

PROOF.
The tree matrix of ZKlein

2 assumes the form

M(ZKlein
2 ) = 2(x1 + x2)IM ⊗ IN − x1GM ⊗ IN − x2[IM ⊗ FN + JM ⊗ KN ]. (31)

To obtain its eigenvalues, we first apply the similarity transformation generated by RM

in the M subspace. While this diagonalizes GM with eigenvalues 2 cos(2mπ/M), m =
0, 1, . . . , M − 1, it transforms the matrix JM into

RMJMR−1
M =























1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 ω
0 0 0 · · · 0 ω2 0
...

...
...

. . .
...

...
...

0 0 ωM−2 · · · 0 0 0
0 ωM−1 0 · · · 0 0 0























, (32)

where ω = ei2π/M , and thus M(ZKlein
2 ) into























A0 + B0 0 0 · · · 0 0 0
0 A1 0 · · · 0 0 B1

0 0 A2 · · · 0 B2 0
...

...
...

. . .
...

...
0 0 BM−2 · · · 0 AM−2 0
0 BM−1 0 · · · 0 0 AM−1























, (33)

where Am and Bm are N × N matrices given by

Am = 2
[

x1 + x2 − x1 cos
2mπ

M

]

IN − x2FN ,

Bm = −ωmx2KN , m = 0, 1, . . . , M − 1. (34)
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The matrix Eq. (33) is block diagonal with blocks

UN(0) = A0 + B0 = x2(2IN − GN)

U2N (m) =

(

Am Bm

BM−m AM−m

)

, m = 1, 2, · · · ,
[

M − 1

2

]

(35)

and for M = even,

UN (M/2) = AM/2 + BM/2,

= 2(2x1 + x2)IN − x2(FN − KN), (36)

where the subscripts of the U matrices denote the matrix dimensions. It follows that we
need only to find the eigenvalues of the U matrices.

Eigenvalues of UN(0) and UN (M/2) can be deduced from those of GN and FN −KN . Fur-
thermore, eigenvalues of U2N (m) are obtained from those of GN after applying the similarity
transformation

T2N (m)U2N (m)T−1
2N (m) = 2

(

x1 + x2 − x1 cos
2mπ

m

)

I2N − x2G2N (37)

where

T2N (m) =

(

IN 0
0 ω−mIN

)

. (38)

Combining these results with Eq. (9), we are led to Eq. (30) and the theorem. Q.E.D.
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