
ar
X

iv
:g

r-
qc

/0
00

10
35

v2
  2

6 
Ja

n 
20

00

ON UPPER LIMITS FOR GRAVITATIONAL RADIATION

P.Astone1 and G. Pizzella2

1 INFN, Sezione di Roma
2 University of Rome Tor Vergata and INFN, Laboratori Nazionali di Frascati

P.O. Box 13, I-00044 Frascati, Italy

Abstract

A procedure with a Bayesan approach for calculating upper limits to gravitational
wave bursts from coincidence experiments with multiple detectors is described.

PACS:04.80,04.30

http://arXiv.org/abs/gr-qc/0001035v2


1 Introduction

After the initial experiments with room temperature resonant detectors, the new

generation of cryogenic gravitational wave (GW) antennas entered long term data taking

operation in 1990 (EXPLORER [1]), in 1991 (ALLEGRO [2]), in 1993 (NIOBE [3]), in

1994 (NAUTILUS [4]) and in 1997 (AURIGA [5]).

Searches for coincident events between detectors have been performed. Between

EXPLORER and NAUTILUS and between EXPLORER and NIOBE in the years 1995

and 1996 [6]. Between ALLEGRO and EXPLORER with data recorded in 1991 [7]. In

both cases no significative coincidence excesses were found and an upper limit to GW

bursts was calculated [7].

However, the upper limit determination has been done under the hidden hypothesis

that the signal-to-noise ratio (SNR) is very large. According to theoretical estimations the

signals expected from cosmic GW sources are extremely feeble, so small that extremely

sensitive detectors are needed. In fact, according to present knowledge, the detectors

available today have not yet reached the sensitivity to detect even a few events per year.

Thus it is important to study the problem of the upper limit determination in the

cases the SNRs of the observed events are not large. In order to do this we have to discuss

our definition of event.

The raw data from a resonant GW detector are filtered with a filter matched to

short bursts [8]. We describe now in more detail the procedure used for the GW detectors

of the Rome group, EXPLORER and NAUTILUS.

After the filtering of the raw-data, events are extracted as follows. Be x(t) the fil-

tered output of the electromechanical transducer which converts the mechanical vibrations

of the bar in electrical signals. This quantity is normalized, using the detector calibration,

such that its square gives the energy innovation Ef of the oscillation for each sample,

expressed in kelvin units. In absence of signals, for well behaved noise due only to the

thermal motion of the bar and to the electronic noise of the amplifier, the distribution of

x(t) is normal with zero mean. The variance (average value of the square of x(t)) is called

effective temperature and is indicated with Teff . The distribution of x(t) is

f(x) =
1

√

2πTeff

e
x2

2Teff (1)

For extracting events (in absence of signals the events are just due to noise) we set a

threshold in terms of a critical ratio defined by

CR =
|x|− < |x| >

σ(|x|) =

√

SNRf −
√

2
π

√

1 − 2
π

(2)

where σ(|x|) is the standard deviation of |x| and we put

SNRf =
Ef

Teff

(3)
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The threshold is set at a value CR such to obtain, in presence of thermal and

electronic noise alone, a number of events which can be easily exchanged among the other

groups who participate to the data exchange. For about one hundred events per day the

threshold corresponds to an energy Et = 19.5 Teff .

We calculate now the theoretical probability to detect a signal with a given SNR,

in presence of a well behaved Gaussian noise. We put y = (s + x)2 where s ≡
√

SNR is

the signal we look for and x is the gaussian noise. We obtain easily [9]

probability(SNR) =

∫

∞

SNRt

1√
2πy

e−
(SNR+y)

2 cosh(
√

y · SNR)dy (4)

We put SNRt = 19.5 for the present EXPLORER and NAUTILUS detectors.

2 Upper limit determination

We consider M detectors and search for M-fold coincidences over a total period of

time tm during which all detectors are in operation. Be n̄ the average number of accidental

coincidences (due to chance) and nc the number of coincidences which are found within

a given time window.

For events which have a Poissonian distribution in time the expected average number

of M-fold accidental coincidences is given [14] by

n̄ = MwM−1

1,M
∏

k

nk (5)

where nk is the event density of the kth detector.

The accidental coincidence distribution can be estimated experimentally by proper

shifting [10] the event occurrence times of each detector. In the case of Poissonian dis-

tribution the average number of the M-fold accidental coincidences coincides with that

given by eq. 5. The comparison between nc and n̄ allows to reach some conclusion about

the detection of GW or to establish an upper limit to their existence.

In paper [7] and in the previous paper [11] the upper limit has been estimated

as follows. It has been found that, for various energy levels of the observed events, the

number nc was smaller than or did not exceeded significantly n̄. Such numbers nc, one

for each energy level, were used for calculating the upper limit. A Poissonian distribution

of the number of the observed events was considered together with the hypothesis of

an isotropic distribution in the sky of the GW sources. The value of h (adimensional

perturbation of the metric tensor) was then derived from the energy levels, using the

detector cross-section for gravitational waves.

This procedure can be objected on two points:

a)The most important point is that, as shown in [12], for SNR small and up to values of a

few dozens, the energy of an event is not the energy of the GW absorbed by the detector.

This means that we cannot deduce the value of h directly from the energy levels of the

observed events;
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b)In addition, the efficiency of detection, again for SNR values up to one or two dozens,

is rather smaller than unity, and this changes the upper limit, particularly at small SNR.

We introduce a new procedure for estimating the upper limit, which circumvents

the difficulties indicated in the above two points.

The problem to determine the upper limit has been discussed in several papers. In

particular in paper [15], as indicated by the PDG, [16] and, more recently, in paper [17].

According to [17] the upper limit can be calculated using the relative belief updating ratio

R(nGW , nc, n̄) = e−nGW (1 +
nGW

n̄
)nc (6)

referring to a given period tm of data taking. This function is proportional to the likelihood

and it allows to infer the probability to have nGW signals for given priors (using the Bayes’s

theorem). It has already been used in High Energy Physics [18, 19].

We calculate the upper limit by solving the equation

R(nGW , nc, n̄) = 0.05 (7)

We remark that 5% does not represent a probability but it is an useful way to put a limit

independently on the priors1).

Eq. 7 has a very interesting solution. Putting nc = 0 we find nGW = 2.99, inde-

pendent on the value of the background n̄. If we use the calculations of ref. [15] we find

that, for nc = 0 and n̄ = 0, the upper limit is 3.09 (almost identical to the previous one)

but it decreases for increasing n̄. The reason for this different behavior is due to the non-

Bayesan character of the calculations made in [15], as we discuss in the following.

Suppose we have nc = 0 and n̄ 6= 0. This certainly means that the number of acci-

dentals, whose average value can be determined with any desired accuracy, has undergone

a fluctuation. For larger n̄ values, smaller is the (a priori) probability that such fluctua-

tion occur. Thus one could reason that it is less likely that a number nGW be associated

to a large value of n̄, since the observation gave nc = 0.

According to the Bayesan approach instead, as discussed in [17], one cannot ignore

the fact that the observation nc = 0 had already being made at the time the estimation of

the upper limit is considered. The Bayesan approach requires that, given nc = 0 and n̄ 6= 0,

one evaluate the chance that a number nGW of signals exist. This chance of a possible

signal is referred to the observation already made and, rather obviously, it cannot depend

on the previous fluctuation of the background, since the presence of a signal cannot be

related to the background due to the detector. Mathematically, it is easy to demonstrate,

using the results obtained in [17], that due to the Poissonian character of the number of

accidentals this relative chance (for nc = 0) is indeed independent on n̄.

It can be seen, comparing the results of [15] with those of [17], that the Bayesan

upper limits are for all values of nc and n̄ (except nc = n̄ = 0), greater than those obtained

1) To avoid confusion we shall continue to use the words upper limit, although it would be more
appropriate to call it standard sensitivity bound [20].
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Figure 1: Number of GW signals expected for the sensitivity limit of 5% versus the
number of coincidences equal to the average number of accidentals.

with the non-Bayesan procedure. In our opinion the Bayesan approach has to be preferred,

and so we do in this paper.

If we have nc 6= 0 then we apply eq. 6. It is interesting to show the result for the

case nc = n̄ 6= 0 for the standard sensitivity bound of 5%. The result is given in fig.1 We

note that for nc = n̄ and nGW << n̄ eq. 6 can be approximated with

nGW ≈
√

6 n̄ (8)

From the result shown in fig.1 it appears evident that the lowest upper limit is

obtained for nc ∼ n̄ ∼ 0. In order to obtain n̄ ∼ 0 one can raise the threshold used for

determining the events. However in doing this one diminish the efficiency of detection,

as shown in eq.4. Whether the procedure to raise the threshold is convenient or not, it

depends on the numerical effects of the two competing operations. Certainly for large GW

signals, when the detection efficiency is always unity, it is much better to have a threshold

that gives n̄ = 0. For smaller signals one has to consider specific cases. However it can

be seen that in the most interesting cases it is better to raise the threshold until we get

n̄ ∼ 0. This will be shown in the section where we reconsider the upper limit obtained

with ALLEGRO and EXPLORER in 1991 [7].

In the estimation of the upper limit we consider the efficiency of detection, which

we indicate with ǫk(SNR) where k refers to the kth detector. For EXPLORER and NAU-

TILUS the theoretical efficiency is obtained from eq. 4.

We must relate the h values of the GW to the energy E absorbed by the detectors.
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We have to consider that the absorbed energy depends on the direction of the impinging

GW and on its polarization. For taking care of the various polarization we use the average

value dividing the cross section by a factor of two. We then have [13]

h = 1.13 10−17
√

E (9)

with the energy E expressed in kelvin unit. This formula is valid only if the GW arrives

perpendicularly to the detector axis (θ = 90o). For a given direction we calculate the

absorbed energy using the sin(θ)4 dependency. We also consider that for an isotropic

distribution of sources the number of possible GW impinging directions is proportional

to sin(θ)2.

The procedure for calculating the upper limit is accomplished thru the following

points:

a) consider various values of h;

b) assume an isotropic distribution of the GW sources;

c) for each direction θ and for each h calculate the absorbed energy E(θ) by means of eq.

9 and the sin4(θ) dependency;

d) for each detector calculate the SNR for the adsorbed energy by taking into consideration

the noise Teff,k:

SNRk(θ) =
E(θ)

Teff,k

, k = 1, .., M (10)

e) using the individual efficiencies ǫk(SNRk(θ)) consider the total efficiency ǫt(θ) =
∏1,M

k ǫk(SNRk(θ));

f) integrate ǫt(θ) over θ with the weight sin2(θ), because of the assumed isotropic distri-

bution of the sources;

g) from eq.6, given nc and n̄, we obtain nGW . We then divide nGW by the result of point

f) and obtain for each value of h the upper limit during the measuring time tm.

We remark that in this case we have not used the energy of the observed events, as

done instead previously [11, 7].

The total efficiency is calculated with the following eq. 11.

ǫtot(h) =

∫ π
2

0

∏1,M

k ǫk(SNRk(θ))sin
2(θ)dθ

π
4

(11)

For more clarity we show in table 1 some of the steps needed for our calculation,

using two parallel detectors and nc = 0. We use the efficiency given by eq. 4, valid for a

well behaved noise2).

3 Ricalculation of the upper limit with the data of ALLEGRO and

EXPLORER in 1991

In a previous paper [7] the upper limit for GW bursts was calculated, using the data

recorded by ALLEGRO and EXPLORER in 1991. We wish now to recalculate the upper

limit according the considerations discussed in this paper.
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Table 1: Procedure for calculating the upper limit with two detectors. We assume that
one detector has noise Teff = 1 mK, the other one has noise Teff = 2 mK. For each
value of h we give: maximum energy adsorbed by the detector (for sin4(θ) = 1), SNR
and efficiency of detection for each detector, total weighted efficiency (having considered
an isotropic distribution of the GW sources. Due to the angular weighting ǫtotal < ǫAǫB).
The upper limit is given by 2.99

ǫtotal
.

h Eabs Detector A Detector B upper limit
1018 [mK] SNRA ǫA SNRB ǫB ǫtot

% % %
2 31 31 0.88 15.5 0.32 0.12 16
3 70 70 1 35 0.93 0.56 4.3
4 126 126 1 63 1 0.76 3.6
10 783 783 1 392 1 0.95 3.1

In 1991 the EXPLORER data filtering was done differently from that described in

this Introduction. For both ALLEGRO and EXPLORER the output of the electrome-

chanical transducer was sent to lock-ins referred to the frequencies of the resonant modes.

Then the outputs of the lock-ins (in phase and in quadrature) were filtered searching for

delta-like signals and combined for obtaining the energy innovation, which we still indi-

cate with Ef . In this case the probability to have an event (above threshold SNRt) due

to a signal with given SNR is obtained (see ref. [2, 12]) with the following equation:

probability(SNR) =

∫

∞

SNRt

e−(SNR+y)Io(2
√

y · SNR)dy (12)

Here y =
Ef

Teff
, Io is the modified Bessel function of order zero, and the noise temperature

Teff is the average value of the energy innovation Ef .

We recall that in a time period of 123 days 70 coincidences were found with a

background of 59.3. For extracting the events the ALLEGRO threshold was SNRt = 11.5

with a noise temperature Teff ∼ 8 mK. For EXPLORER the threshold was SNRt = 10

also with Teff ∼ 8 mK. Applying eq.6 we find an upper limit of nGW = 37 over the 123

days.

According to the previous considerations we can raise the event threshold, say for

EXPLORER, in order to reduce the number of accidentals. For instance, for a threshold

SNRt = 24 we get nc = 1 and n̄ = 0.74, obtaining, from eq. 6, the value nGW = 4.8.

Thus the procedure for calculating the upper limit with the Bayesan approach when

we have data at various thresholds, including cases with nc and n̄ different from zero, is

the following.

Start with nc and n̄ for various thresholds and use eq.6 for obtaining nGW at each

threshold. Calculate the upper limit for various values of h as shown in the previous

section. For each h take as upper limit the smallest value among those obtained by varying

2) The real data often show a non gaussian behaviour. In this case the efficiency differs from the theo-
retical one given by eq.4, but one can easily make use of the efficiency experimentally measured.
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Figure 2: The asterisks indicate the upper limit calculated in [7]. The other line indicates
the upper limit evaluated with the Bayesan approach.

the threshold. Clearly at large h values, when we get nc = 0, the upper limit is, for the

entire period of time, nGW = 2.99.

The result is shown in fig.2 together with that obtained previously in [7]. It turns

out that the two upper limits are similar.

The reason for this is due to the fact that in applying the previous algorithm [7] we

started from an energy level higher than the largest energy of the detected (accidental)

coincidences, thus obtaining, at this level (nc = n̄ = 0) an upper limit of 3.09 very close

to the value 2.99 obtained with the Bayesan approach. The similarity of the results at

lower h values is accidental. In the previous algorithm the increase at lower h is due only

to the increase of the number n̄ of accidentals. In the present algorithm the increase is

due to the smaller efficiency of detection and to the increase in nGW which roughly goes

with
√

n̄ (eq.8).

In spite of the similar numerical results, we believe that the procedure proposed here

which does not extract the value of h from the energy levels of the accidental coincidences

and it uses the Bayesan approach is methodologically more correct.

4 Discussion

The best upper limit which can be obtained with an array of M identical parallel

detectors in Mpl coincidence cannot go below the value 2.99, because this is the upper

limit [17] when one finds zero coincidences independently on the background.

The basic advantage in using many detectors comes from the fact that with many

detectors it is easier to obtain n̄ ∼ 0, and thus (in absence of GW) nc = 0. Because of
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the Poisson distributions, the average number of accidental coincidences for M detectors

in a time window ±w is given by eq.5. On the time scale of 1 second (w=1 s) it turns out

that nk << 1. By increasing the number of detectors one obtains smaller values of n̄, thus

approaching the requirement to have nc = 0 and then the lowest possible upper limit.

This is certainly true at large h values, where the detection efficiency for all detectors

is unity. The result, as shown in fig.2, is a plateau. Instead it might be convenient at low

h values to use the two most sensitive detectors, in order to have the largest possible

efficiency of detection. The overall upper limit is then obtained by taking the smallest

ones among the values of the various upper limit determinations.

The above procedure can be easily adjusted to the more general case of any distri-

bution of the GW sources, and of non-parallel detectors.

5 Acknowledgements

We have benefited from useful discussions with P.Bonifazi, G. D’ Agostini and F.

Ronga.

References

[1] P. Astone et al., Phys. Rev. D. 47, 362 (1993).

[2] E. Mauceli et al., Phys.Rev. D, 54, 1264 (1996)

[3] D.G. Blair et al. Phys. Rev. Lett. 74, 1908 (1995).

[4] P. Astone et al, Astroparticle Physics, 7 (1997) 231-243

[5] M.Cerdonio et al., First Edoardo Amaldi Conference on Gravitational wave Experi-

ments, Frascati, 14-17 June 1994

[6] P.Astone et al, Astroparticle Physics 10 (1999)83-92

[7] P.Astone et al. Phys.Rev. D, 59,122001, (1999)

[8] P.Astone, C.Buttiglione,S.Frasca, G.V.Pallottino, G.Pizzella Il Nuovo Cimento 20,9

(1997)

[9] A.Papoulis ”Probability, Random Variables and Stochastic Processes”, McGraw-Hill

Book Company (1965), pag 126.

[10] J. Weber, Phys. Rev. Lett. 22, 1320 (1969).

[11] E.Amaldi et al.,Astronomy and Astrophysics, vol216,pag 325-332 (1989).

[12] P.Astone, G.V.Pallottino, G.Pizzella, Journal of General Relativity and Gravitation

, 30(1998)105-114

[13] P.Astone et al, in ”Gravitational Astronomy” Ed. D.E.McClelland and H.A.Bachor,

World Scientific (1990)

[14] ”Data analysis techniques for high-energy physics experiments” by R.K.Bock et

al.,pag. 22, Cambridge University Press (1990)

[15] G.J.Feldman and R.D.Cousins, Phys.Rev.D 57, 3873 (1998) and physics/9711021

[16] C. Caso et al. “Review of particle physics”, Eur. Phys. J. C3 (1998) 1

(http://pdg.lbl.gov/)

[17] P.Astone and G.D’Agostini, CERN-EP/99-126 and hep-ex/9909047

9

http://arXiv.org/abs/physics/9711021
http://pdg.lbl.gov/
http://arXiv.org/abs/hep-ex/9909047


[18] ZEUS Collaboration, J. Breitweg et al., “Search for contact interactions in Deep-

Inelastic e+p → e+X scattering at HERA”, DESY Report 99-058, hep-ex/9905039,

May 1999, to be published in Eur. Phys. J. C.

[19] G. D’ Agostini and G. Degrassi, “Constraints on the Higgs boson mass from

direct searches and precision measurements”, internal report DFPD-99/TH/02,

hep-ph/9902226, Feb. 1999, to be published in Eur. Phys. J. C.

[20] G.D’Agostini Confidence limits: what is the problem? is there the solution?, contri-

bution to the Workshop on “Confidence Limits”, CERN, 17-18/1/2000, to appear.

10

http://arXiv.org/abs/hep-ex/9905039
http://arXiv.org/abs/hep-ph/9902226

