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REGULARITY RESULTS FOR FULLY NONLINEAR

INTEGRO-DIFFERENTIAL OPERATORS WITH

NONSYMMETRIC POSITIVE KERNELS

YONG-CHEOL KIM AND KI-AHM LEE

Abstract. In this paper, we consider fully nonlinear integro-differential
equations with possibly nonsymmetric kernels. We are able to find dif-
ferent versions of Alexandro-Backelman-Pucci estimate corresponding to
three different cases: nonlinear equation with 0 < σ < 1 (supercritical
case) or 1 < σ < 2 (subcritical case), and linear equation with 0 < σ < 2 in-
cluding σ = 1 (critical case). And we show a Harnack inequality, Hölder
regularity, and C1,α-regularity of the solutions by obtaining decay esti-
mates of their level sets in each cases.

1. Introduction

In this paper, we are going to consider the regularity of the visocosity
solutions of integro-differential operators with possibly nonsymmetric kernel:

(1.0.1) Lu(x) = p.v.

∫

Rn

µ(u, x, y)K(y) dy

where µ(u, x, y) = u(x + y) − u(x) − (∇u(x) · y)χB1
(y), which describes the

infinitesimal generator of given purely jump processes, i.e. processes with-
out diffusion or drift part [CS]. We refer the detailed definitions of no-
tations to [KL]. Then we see that Lu(x) is well-defined provided that

u ∈ C1,1(x) ∩ B(Rn) where B(Rn) denotes the family of all real-valued bounded
functions defined on Rn. If K is symmetric (i.e. K(−y) = K(y)), then an odd

function
[
(∇u(x) · y)χB1

(y)
]
K(y) will be canceled in the integral, and so we

have that

Lu(x) = p.v.

∫

Rn

[
u(x + y) + u(x − y) − 2u(x)

]
K(y) dy.

On the other hand, if K is not symmetric, the effect of
[
(∇u(x) · y)χB1

(y)
]
K(y)

persists and we can actually observe that the influence of this gradient term
becomes stronger as we try to get an estimate in smaller regions.

Nonlinear integro-differential operators come from the stochastic control
theory related with

Iu(x) = sup
α
Lαu(x),
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or game theory associated with

(1.0.2) Iu(x) = inf
β

sup
α
Lαβu(x),

when the stochastic process is of Lèvy type allowing jumps; see [S, CS,
KL]. Also an operator like Iu(x) = supα infβLαβu(x) can be considered.
Characteristic properties of these operators can easily be derived as follows;

inf
αβ
Lαβv(x) ≤ I[u + v](x) − Iu(x) ≤ sup

αβ

Lαβv(x).
(1.0.3)

1.1. operators. In this section, we introduce a class of operators. All no-
tations and the concepts of viscosity solution follows [KL] where a more
general class of operators has been considered. Similar concepts can be
found at [CS] for symmetric kernel.

For our purpose, we shall restrict our attention to the operatorsLwhere
the measure m is given by a positive kernel K which is not necessarily
symmetric. That is to say, the operatorsL are given by

(1.1.1) Lu(x) = p.v.

∫

Rn

µ(u, x, y)K(y) dy

where µ(u, x, y) = u(x + y) − u(x) − (∇u(x) · y)χB1
(y).

And we consider the class L of the operators L associated with the
measuresm given by positive kernels K ∈ K0 satisfying that

(1.1.2) (2 − σ)
λ

|y|n+σ ≤ K(y) ≤ (2 − σ)
Λ

|y|n+σ , 0 < σ < 2.

The maximal operator and the minimal operator with respect to L are
defined by

(1.1.3) M+
L

u(x) = sup
L∈L
Lu(x) and M−

L
u(x) = inf

L∈L
Lu(x).

For x ∈ Ω and a function u : Rn → R which is semicontinuous on Ω, we
say that ϕ belongs to the function class C2

Ω
(u; x)+ (resp. C2

Ω
(u; x)−) and we

write ϕ ∈ C2
Ω

(u; x)+ (resp. ϕ ∈ C2
Ω

(u; x)−) if there are an open neighborhood

U ⊂ Ω of x and ϕ ∈ C2(U) such that ϕ(x) = u(x) and ϕ > u (resp. ϕ < u) on
U \ {x}. We note that geometrically u −ϕ having a local maximum at x inΩ

is equivalent to ϕ ∈ C2
Ω

(u; x)+ and u − ϕ having a local minimum at x in Ω

is equivalent to ϕ ∈ C2
Ω

(u; x)−. For x ∈ Ω and ϕ ∈ C2
Ω

(u; x)±, we write

µ(u, x, y;∇ϕ) = u(x + y) − u(x) − (∇ϕ(x) · y)χB1
(y),

and the expression for Lαβ u(x;∇ϕ) and Iu(x;∇ϕ) may be written as

Lαβ u(x;∇ϕ) =

∫

Rn

µ(u, x, y;∇ϕ)Kαβ(y) dy,

Iu(x;∇ϕ) = inf
β

sup
α
Lαβ u(x;∇ϕ),
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where Kαβ ∈ K0. Then we see thatM−
L

u(x;∇ϕ) ≤ Iu(x;∇ϕ) ≤ M+
L

u(x;∇ϕ),
andM+

L
u(x;∇ϕ) andM−

L
u(x;∇ϕ) have the following simple forms;

M+
L

u(x;∇ϕ) = (2 − σ)

∫

Rn

Λµ+(u, x, y;∇ϕ) − λµ−(u, x, y;∇ϕ)

|y|n+σ dy,

M−
L

u(x;∇ϕ) = (2 − σ)

∫

Rn

λµ+(u, x, y;∇ϕ) −Λµ−(u, x, y;∇ϕ)

|y|n+σ dy,

(1.1.4)

where µ+ and µ− are given by

µ±(u, x, y;∇ϕ) = max{±µ(u, x, y;∇ϕ), 0}.

We note if u ∈ C1,1(x), then Iu(x;∇ϕ) = Iu(x) andM±
L

u(x;∇ϕ) = M±
L

u(x).
We shall use these maximal and minimal operators to obtain regularity
estimates.

Let K(x) = supα Kα(x) where Kα’s are all the kernels of all operators in a
class L. For any class L, we shall assume that

(1.1.5)

∫

Rn

(|y|2 ∧ 1) K(y) dy < ∞.

Using the extremal operators, we provide a general definition of ellipticity
for nonlocal equations. The following is a kind of operators of which the
regularity result shall be obtained in this paper.

Definition 1.1.1. Let L be a class of linear integro-differential operators. Assume
that (1.1.5) holds forL. Then we say that an operatorJ is elliptic with respect to L,
if it satisfies the following properties:

(a) Ju(x) is well-defined for any u ∈ C1,1[x] ∩ B(Rn).

(b) If u ∈ C1,1[Ω] ∩ B(Rn) for an open Ω ⊂ Rn, then Ju is continuous on Ω.

(c) If u, v ∈ C1,1[x] ∩ B(Rn), then we have that

(1.1.6) M−
L

[u − v](x) ≤ Ju(x) −Jv(x) ≤ M+
L

[u − v](x).

The concept of viscosity solutions and its comparison principle and sta-
bility properties can be found in [CS] for symmetric kernels and in [KL] for
possibly nonsymmetric kernels. Kim and Lee [KL] considered much larger
class of operators but prove the regularity of viscosity solutions only for
1 < σ < 2.

1.2. Main equation. The natural Dirichlet problem for such a nonlocal
operator I. LetΩ be an open domain in Rn. Given a function g defined on
R

n \Ω, we want to find a function u such that

Iu(x) = 0 for any x ∈ Ω,

u(x) = g(x) for x ∈ Rn \Ω.

Note that the boundary condition is given not only on ∂Ω but also on the
whole complement of Ω. This is because of the nonlocal character of the
operator I. From the stochastic point of view, it corresponds to the fact
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that a discontinuous Lèvy process can exit the domain Ω for the first time
jumping to any point in Rn \Ω.

In this paper, we shall concentrate mainly upon the regularity properties
of viscosity solutions to an equation Iu(x) = 0. We shall briefly give a very
general comparison principle from which existence of the solutions can be
obtained in smooth domains. Since kernels of integro-differential operators
are comparable to the kernel of the fractional Laplace operator −(−∆)σ/2,
the theory we want to develop can be understood as a theory of viscosity
solutions for fully nonlinear operators of fractional order.

The differences between local and nonlocal operators have been dis-
cussed at [KL].

1.3. Known results and Key Observations. There are some known results
about Harnack inequalities and Hölder estimates for integro-differential
operators with positive symmetric kernels (see [J] for analytical proofs and
[BBC], [BK1], [BK2],[BL], [KS], [SV] for probabilistic proofs). The esti-
mates in all these previous results blow up as the index σ of the operator
approaches 2. In this respect, they do not generalize to elliptic partial differ-
ential equations. However there is some known result on regularity results
for fully nonlinear integro-differential equations associated with nonlin-
ear integro-differential operators with positive symmetric kernels which
remain uniform as the index σ of the operator approaches 2 (see [CS]).
Therefore these results make the theory of integro-differential operators
and elliptic differential operators become somewhat unified. For nonlinear
integro-differential operators with possibly nonsymmetric kernels, the au-
thors introduced larger classe of operators and proved Harnack inequalities
and Hölder estimates when 1 < σ < 2 (see [KL]).

In this paper, we are going to consider nonlinear integro-differential
operators with possibly nonsymmetric kernels, when 0 < σ < 2.

Throughout this paper we would like to briefly present the necessary
definitions and then prove some regularity estimates. Our results in this
paper are
• A nonlocal version of the Alexandroff-Backelman-Pucci estimate for

fully nonlinear integro-differential equations.

•A Harnack inequality, Hölder regularity and an interior C1,α-regularity
result for certain fully nonlinear integro-differential equations.

Key observations are the following:
• For the nonsymmetric case, K(y) and K(−y) can be chosen any ofλ/|y|n+σ

orΛ/|y|n+σ. Therefore there could be an extra term

∫

Rn

∣∣∣(∇u(x) · y)χB1
(y)

∣∣∣
|y|n+σ dy.

• The equation is not scaling invariant due to |χB1
(y)|.

• Somehow the equation has a drift term, not only the diffusion term.
The case 1 < σ < 2 and the case 0 < σ ≤ 1 require different technique due to
the difference of the blow rate as |y| approaches to zero and the decay rate
as |y| approaches to infinity. When 1 < σ < 2, a controllable decay rate of
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kernel allows Hölder regularities in a larger class, which is invariant under
an one-sided scaling i.e. if u is a solution of the homogeneous equation, then
so is uǫ(x) = ǫ−σu(ǫx) for 0 < ǫ ≤ 1. Critical case (σ = 1) and supercritical
case (0 < σ < 1) have been studied in [BBC] with different techniques due
to the slow decay rate of the kernel as |x| → ∞.

1.4. Outline of Paper. In Section 2, we show various nonlocal versions of
the Alexandroff-Backelman-Pucci estimate to handle the difficulties caused
by the gradient effect. It has different orders at subcritical, cirtical and
supercritical cases. In Section 3, we construct a special function and apply
A-B-P estimates to obtain the decay estimates of upper level sets which is
essential in proving Hölder estimates in Section 4.2.

In Section 4, we prove a Harnack inequality which plays an important role

in analysis. And then the Hölder estimates and an interior C1,α-estimates
come from the arguments at [CS, KL].

2. A nonlocal Alexandroff-Bakelman-Pucci estimate

The Alexandroff-Bakelman-Pucci (A-B-P) estimate plays an important
role in Krylov and Sofonov theory [KS] on Harnack inequality for linear
uniformly elliptic equations with measurable coefficients. The concept of
viscosity solution is given pointwise through touching test function; see
[KL]. A-B-P estimate tells us that the maximum value is controlled by an
integral quantity of the source term on the contact set, which will give us
key lemma (Lemma 2.1.1) saying that the pointwise value of nonnegative
function gives the lower bound of the measure of lower level set. We
employ measure theoretical version of A-B-P estimate introduced at [CS]
and extended to nonsymmetric case at [KL].

New A-B-P estimates below are two main differences from the arguments
at [CS, KL].

• The operators considered at [CS, KL] are scaling invariant, but (1.1.1)
doesn’t have such property due to χB1

(y) in the gradient term. So
we keep the size of the domain BR at the following estimates.
• The control of bad set, Lemma 2.1.1, deteriorates as R → 0 since

Rσ−2Jσ(R) goes to∞ as R→ 0. A-B-P estimate will be used to prove
key Lemma 3.2.1 where we have an extra term R to subdue the
blow-up rate. But we have still R × Rσ−2Jσ(R) ≈ Rσ−1 (for 0 < σ < 1)
and −log(R) (for σ = 1) which blows up when 0 < σ ≤ 1. So we
introduced a different version of A-B-P estimate (Lemma 2.2.1) for
0 < σ < 1 where we have better control of gradient term due to
the intergrability of the kernel near the origin. For the critical case
(i.e. σ = 1), we consider the linear equation, where the coefficent
of the gradient effect, bR, has a fixed direction on each small while
we still doesn’t know how to control the direction of bR for the fully
nonlinear case. Such consideration work for linear equation even
0 < σ < 2. The corresponding A-B-P estimate is at Lemma 2.3.1.
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Let R ∈ (0,R0] for some R0 ∈ (0, 1) (in fact, the existence of R0 was
mentioned in [KL]) and let u : Rn → R be a function which is not positive

outside the ball BR/2 and is upper semicontinuous on BR. We consider its
concave envelope Γ in B2R defined as

Γ(x) =


inf{p(x) : p ∈ Π, p > u+ in B2R} in B2R,

0 in Rn \ B2R,

where Π is the family of all the hyperplanes in Rn. Also we denote the
contact set of u and Γ in BR by C(u, Γ,BR) = {y ∈ BR : u(y) = Γ(y)} and set
C+(u, Γ,BR; b) = C(u, Γ,BR) ∩ {y ∈ BR : b · ∇Γ(y) ≥ 0} and C−(u, Γ,BR; b) =
C(u, Γ,BR) ∩ {y ∈ BR : −b · ∇Γ(y) ≥ 0} for b ∈ Rn.

2.1. A-B-P estimate with blow-up rate.

Lemma 2.1.1. Let 0 < σ < 2 and 0 < R ≤ R0. Let u ≤ 0 in Rn \ BR and let Γ be
its concave envelope in B2R. If u ∈ B(Rn) is a viscosity subsolution toM+

L
u = − f

on BR where f : Rn → R is a function with f > 0 on C(u, Γ,BR), then there exists
some constant C > 0 depending only on n, λ and Λ (but not on σ) such that for
any x ∈ C(u, Γ,BR) and any M > 0 there is some k ∈N ∪ {0} such that

(2.1.1)
∣∣∣Rk(x)

∣∣∣ ≤ C
Rσ−2( f (x) + Jσ(R)|∇Γ(x)|)

M
|Rk(x)|

where Rk(x) = {y ∈ Rk(x) : µ−(u, x, y;∇Γ) ≥ M0r2
k
} and Rk(x) = Brk

(x) \ Brk+1
(x)

for rk = ̺02−
1

2−σ−kR, ̺0 = 1/(16
√

n) and Jσ(R) is 1
1−σ (1−R1−σ) forσ ∈ (0, 1)∪(1, 2)

and − log(R) for σ = 1. Here, ∇Γ(x) denotes any element of the superdifferential
∂Γ(x) of Γ at x.

Remark. We note that ∇Γ(x) = ∇u(x) for x ∈ BR if Γ and u are differentiable
at x ∈ BR. In this case, ∂Γ(x) is a singleton set with element ∇u(x).

[Proof of Lemma 2.1.1] Let 0 < σ < 2 and 0 < R ≤ R0. Take any x ∈
C(u, Γ,BR). Since u can be touched by a hyperplane from above at x, we see

that∇ϕ(x) = ∇Γ(x) for someϕ ∈ C2
BR

(u; x)+. ThusM+
L

u(x;∇Γ) is well-defined
and we have that

M+
L

u(x;∇Γ) = (2 − σ)

∫

Rn

Λµ+(u, x, y;∇Γ) − λµ−(u, x, y;∇Γ)
|y|n+σ dy.

We note thatµ(u, x, y;∇Γ) = u(x+y)−u(x)−(∇Γ(x)·y)χB1
(y) ≤ 0 for any y ∈ BR

by the definition of concave envelope of u in B2R. Since µ+(u, x, y;∇Γ) ≤
|∇Γ(x)||y|χB1

(y) for any y ∈ Rn \ BR, we have that
∫

Rn

Λµ+(u, x, y;∇Γ)
|y|n+σ dy ≤

∫

B1\BR

Λ|∇Γ(x)||y|
|y|n+σ dy

= ωnΛ Jσ(R)|∇Γ(x)|
(2.1.2)
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where ωn denotes the surface area of Sn−1 and

Jσ(R) =


1

1−σ
(
1 − R1−σ

)
for σ ∈ (0, 1) ∪ (1, 2),

− log(R) for σ = 1.
(2.1.3)

Here we see that |Jσ(R)| is finite for 0 < σ < 2. Thus it follows from simple
calculation that

− f (x) ≤ M+
L

u(x;∇Γ)

= (2 − σ)
( ∫

Rn

−λµ−(u, x, y;∇Γ)
|y|n+σ dy +

∫

Rn

Λµ+(u, x, y;∇Γ)
|y|n+σ dy

)

≤ (2 − σ)

∫

Br0
(x)

−λµ−(u, x, y;∇Γ)
|y|n+σ dy + (2 − σ)ωnΛ Jσ(R) |∇Γ(x)|

for any x ∈ C(u, Γ,BR), where r0 = ̺02−
1

2−σR. Splitting the above integral in
the rings Rk(x), we have that

(2.1.4) f (x) ≥ (2 − σ)λ
∞∑

k=0

∫

Rk(x)

µ−(u, x, y;∇Γ)
|y|n+σ dy − (2 − σ)ωnΛJσ(R)|∇Γ(x)|.

Assume that the conclusion (2.1.1) does not hold, i.e. for any C > 0 there
are some x0 ∈ C(u, Γ,BR) and M0 > 0 such that

∣∣∣Rk(x0)
∣∣∣ > C

Rσ−2
(

f (x0) + Jσ(R)|∇Γ(x0)|
)

M0
|Rk(x0)|

for all k ∈N∪{0}. Since −µ ≤ µ− and (2−σ) 1
1−2−(2−σ) remains bounded below

for σ ∈ (0, 1] , it thus follows from (2.1.4) that

f (x0)

2 − σ ≥ λ
∞∑

k=0

∫

Rk(x0)

−µ(u, x0, y;∇Γ(x))

|y|n+σ dy − ωnΛJσ(R)|∇Γ(x0)|

≥ c

∞∑

k=0

M0

r2
k

rσ
k

CRσ−2 f (x0) + Jσ(R)|∇Γ(x0)|
M0

− ωnΛJσ(R)|∇Γ(x0)|.
(2.1.5)

Thus this implies that

f (x0) + (2 − σ)ωnΛJσ(R)|∇Γ(x0)| ≥
cρ2

0

1 − 2−(2−σ)
C( f (x0) + Jσ(R)|∇Γ(x0)|)

≥ C( f (x0) + (2 − σ)Jσ(R)|∇Γ(x0)|)

for any C > 0. Taking C large enough, we obtain a contradiction. Hence we
are done. �

Remark. Lemma 2.1.1 would hold for any particular choice of ̺0 by modi-

fying C accordingly. The particular choice ̺0 = 1/(16
√

n) is convenient for
the proofs in Section 3.



8 YONG-CHEOL KIM AND KI-AHM LEE

Lemma 2.1.2. [CS] Let Γ be a concave function on Br(x) where x ∈ Rn and let
h > 0. If |{y ∈ Sr(x) : Γ(y) < Γ(x) + (y − x) · ∇Γ(x) − h}| ≤ ǫ |Sr(x)| for any small
ǫ > 0 where Sr(x) = Br(x) \Br/2(x), then we have Γ(y) ≥ Γ(x)+ (y− x) · ∇Γ(x)− h
for any y ∈ Br/2(x).

Corollary 2.1.3. For any ǫ > 0, there is a constant C > 0 such that for any function

u with the same hypothesis as Lemma 2.1.1, there is some r ∈ (0, ̺02−
1

2−σ R) such
that

|{y ∈ Sr(x) : u(y) < u(x) + (y − x) · ∇Γ(x) − C Rσ−2( f (x) + Jσ(R)|∇Γ(x)|)r2}|
|Sr(x)| ≤ ǫ,

∫

Q

gη(∇Γ(y)) det[D2
Γ(y)]− dy ≤ CRn(σ−2) sup

y∈Q

(
Jσ(R)n

+ η−n| f (y)|n
)
|Q|

for any η > 0 and any cube Q ⊂ Br/4(x) with diameter d such that x ∈ Q and

r/4 < d < r/2, where ̺0 = 1/(16
√

n) and gη(z) = (|z|n/(n−1) + ηn/(n−1))1−n.

Proof. The first part can be obtained by taking M = CRσ−2( f (x)+Jσ(R)|∇Γ(x)|)/ǫ
in Lemma 2.1.1. Also the second part follows as a consequence of Lemma
2.1.2 and concavity;

det[D2
Γ(x)]− ≤ C(Rσ−2 f (x) + Rσ−2Jσ(R)|∇Γ(x)|)n

≤ 4nC
Rn(σ−2)Jσ(R)n + η−nRn(σ−2)| f (x)|n

gη(∇Γ(x))
.

Thus we have gη(∇Γ(x)) det[D2Γ(x)]− ≤ 4nC(Rn(σ−2)Jσ(R)n+η−nRn(σ−2)| f (x)|n).
Take any y ∈ C(u, Γ,BR) ∩ Q where Q ⊂ Br/4(x) is a cube with diameter

d such that x ∈ Q and r/4 < d < r/2. Similarly to the above, we can obtain

that gη(∇Γ(·)) det[D2Γ(·)]− ≤ 4nC(Rn(σ−2)Jσ(R)n + η−nRn(σ−2)| f (·)|n) a.e. on Q

because det[D2Γ(·)]− = 0 a.e. on Q\C(u, Γ,BR) as in [CC]. Hence this implies
the second part. �

We obtain a nonlocal version of Alexandroff-Bakelman-Pucci estimate in
the following theorem.

Theorem 2.1.4. Let u and Γ be functions as in Lemma 2.1.1. Then there exist a
finite family {Q j}mj=1

of open cubes Q j with diameters d j such that

(a) Any two cubes Qi and Q j do not intersect, (b) C(u, Γ,BR) ⊂
⋃m

j=1 Q j,

(c) C(u, Γ,BR) ∩Q j , φ for any Q j, (d) d j ≤ ̺02−
1

2−σ R where ̺0 = 1/(16
√

n),

(e)
∫

Q j
gη(∇Γ(y)) det(D2Γ(y))− dy ≤ CRn(σ−2)(sup

Q j
(Jσ(R)n + η−n| f |n)|Q j|,

( f ) |{y ∈ 4
√

n Q j : u(y) ≥ Γ(y) − CR(σ−2)(sup
Q j

( f + Jσ(R)|∇Γ|)d2
j
}| ≥ η0|Q j|,

where the constants C > 0 and η0 > 0 depend on n,Λ and λ ( but not on σ).

Proof. In order to obtain such a family, we start by covering BR with a tiling

of cubes of diameter ̺02−
1

2−σ R. Then discard all those that do not intersect
C(u, Γ,BR). Whenever a cube does not satisfy (e) and (f), we split it into 2n
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cubes of half diameter and discard those whose closure does not intersect
C(u, Γ,BR). Now our goal is to prove that eventually all cubes satisfy (e)
and (f) and this process ends after a finite number of steps.

Assume that the process does not finish in a finite number of steps.
Then we can have an infinite nested sequence of cubes. The intersection
of their closures will be a point x̂. So we may choose a sequence {xk} ⊂
C(u, Γ,BR) with limk→∞ xk = x̂. Since u(xk) = Γ(xk) for all k ∈N, by the upper

semicontinuity of u on BR we have that Γ(x̂) = lim supk→∞ u(xk) ≤ u(x̂).
Also we have that u(x̂) ≤ Γ(x̂) because u ≤ Γ on B2R by the definition of the
concave envelope Γ in B2R. Thus we obtain that u(x̂) = Γ(x̂). We will now get
a contradiction by showing that eventually one of these cubes containing x̂
will not split.

Take any ǫ > 0. Then by Corollary 2.1.3 there is a radius r ∈ (0, ̺02−
1

2−σR)
such that

|{y ∈ Sr(x̂) : u(y) < u(x̂) + (y − x̂) · ∇Γ(x̂) − CRσ−2( f (x̂) + Jσ(R)|∇Γ(x̂)|)r2}|
|Sr(x̂)| ≤ ǫ,

∫

Q j

gη(∇Γ(y)) det[D2
Γ(y)]− dy ≤ CRn(σ−2) sup

y∈Q j

(Jσ(R)n
+ η−n| f (y)|n) |Q j|

for any η > 0 and a cube Q j ⊂ Br/4(x) with diameter d j such that x ∈ Q j and

r/4 < d j < r/2. So we easily see that Q j ⊂ Br/2(x̂) and Br(x̂) ⊂ 4
√

n Q j. We
recall that Γ(y) ≤ u(x̂) + (y − x̂) · ∇Γ(x̂) for any y ∈ B2R because Γ is concave
on B2R and Γ(x̂) = u(x̂). Since d j is comparable to r, it thus follows that
∣∣∣{y ∈ 4

√
n Q j : u(y) ≥ Γ(y) − CRσ−2 sup

Q j

( f + Jσ(R)|∇Γ|)d2
j }
∣∣∣

≥
∣∣∣{y ∈ 4

√
n Q j : u(y) ≥ u(x̂) + (y − x̂) · ∇Γ(x̂) − CRσ−2( f (x̂) + Jσ(R)|∇Γ(x̂)|)r2}

∣∣∣
≥ (1 − ǫ)

∣∣∣Sr(x̂)
∣∣∣ ≥ η0|Q j|.

Thus we proved (f). Moreover, (e) holds for Q j because Q j ⊂ Br/2(x̂) and

Br(x̂) ⊂ 4
√

n Q j. Hence the cube Q j would not split and the process must
stop there. �

2.2. A-B-P estimate for 0 < σ < 1.

Lemma 2.2.1. Let 0 < σ < 1 and 0 < R ≤ R0. Let u ≤ 0 in Rn \ BR and let Γ be
its concave envelope in B2R. If u ∈ B(Rn) is a viscosity subsolution toM+

L
u = − f

on BR where f : Rn → R is a function with f > 0 on C(u, Γ,BR), then there exist
constants C > 0 depending only on n, λ and Λ (but not on σ) , and a vector b
depending on n, λ, Λ and σ such that for any x ∈ C+(u, Γ,BR; b) and any M > 0
there is some k ∈N ∪ {0} such that

(2.2.1)
∣∣∣R̃k(x)

∣∣∣ ≤ C
(Rσ−2 f (x) + R−1|∇Γ(x)|)

M
|Rk(x)|
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where R̃k(x) = {y ∈ Rk(x) : µ−(u, x, y;∇Γ) ≥ M0r2
k
} and Rk(x) = Brk

(x) \ Brk+1
(x)

for rk = ̺02−
1

2−σ−kR, ̺0 = 1/(16
√

n). Here, ∇Γ(x) denotes any element of the
superdifferential ∂Γ(x) of Γ at x.

Proof. Let 0 < σ < 1 and 0 < R ≤ R0. We define the vector-valued function
b : BR → Rn by

b(x) = −(2 − σ)

∫

B1

y(Λχµ>0 + λχµ≤0)

|y|n+σ dy.

Then this function b is well defined for 0 < σ < 1 and there exists some
x1 ∈ BR so that |C+(u, Γ,BR; b)| ≥ |C(u, Γ,BR)|/2 where b = b(x1).

Take any x ∈ C+(u, Γ,BR; b). We now have that

M+
L

u(x;∇Γ) = (2 − σ)

∫

Rn

Λµ+(u, x, y;∇Γ) − λµ−(u, x, y;∇Γ)
|y|n+σ dy.

Set µR(u, x, y;∇Γ) = u(x+ y)−u(x)− (∇Γ(x) · y)χBR(y) and then define µ±
R

and
M±
L,R

u(x;∇Γ) by replacing µ by µR in the definitionM±
L

u(x;∇Γ). We set

bR(x) = (2 − σ)

∫

B1\BR

y(Λχµ>0 + λχµ≤0)

|y|n+σ dy.

Then we easily obtain that

|bR(x) − b| ≤ |bR(x) − b(x)| + |b(x) − b| ≤ (2 − σ)CR1−σ.

Then we have that

M+
L

u(x;∇Γ) =M+
L,Ru(x;∇Γ) + (2 − σ)

∫

B1\BR

Λ(µ+ − µ+
R

) − λ(µ− − µ−
R

)

|y|n+σ dy

≤ M+
L,Ru(x;∇Γ) − bR(x) · ∇Γ(x)

≤ M+
L,Ru(x;∇Γ) − b · ∇Γ(x) + (2 − σ)CR1−σ|∇Γ(x)|

≤ M+
L,Ru(x;∇Γ) + (2 − σ)CR1−σ|∇Γ(x)|

= (2 − σ)

∫

Rn

−λµ−
R

(u, x, y;∇Γ)
|y|n+σ dy + (2 − σ)CR1−σ|∇Γ(x)|

because b · ∇Γ(x) ≥ 0 from the assumption and µR(u, x, · ; Γ) ≤ 0 on BR. The
conclusion comes from similar arguments as Lemma 2.1.1. �

Now we have the following Corollary as Section (2.1).

Corollary 2.2.2. Let u and Γ be functions as in Lemma 2.2.1 and 0 < σ < 1. Then
there exist a finite family {Q j}mj=1

of open cubes Q j with diameters d j such that

(a) Any two cubes Qi and Q j do not intersect, (b) C+(u, Γ,BR; b) ⊂ ⋃m
j=1 Q j,

(c) C+(u, Γ,BR; b) ∩Q j , φ for any Q j, (d) d j ≤ ̺02−
1

2−σ R for ̺0 = 1/(16
√

n),

(e)
∫
C+(u,Γ,BR;b)∩Q j

gη(∇Γ(y)) det(D2Γ(y))− dy ≤ C(sup
Q j

(R−n
+η−nRn(σ−2)| f |n)|Q j|,
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( f ) |{y ∈ C+(u, Γ,BR; b)∩4
√

n Q j : u(y) ≥ Γ(y)−C(sup
Q j

(R(σ−2) f +R−1|∇Γ|)d2
j }|

≥ η0|C+(u, Γ,BR; b) ∩Q j|,
where the constants C > 0 and η0 > 0 depend on n,Λ and λ ( but not on σ) and
and b is some vector depending on n, λ, Λ and σ.

2.3. A-B-P estimate for Linear Equation: 0 < σ < 2.

Lemma 2.3.1. Let 0 < σ < 1 and 0 < R ≤ R0. Let u ≤ 0 in Rn \ BR and let Γ be
its concave envelope in B2R. If u ∈ B(Rn) is a viscosity subsolution to Lu = − f
on BR where f : Rn → R is a function with f > 0 on C(u, Γ,BR), then there exist
constants C > 0 depending only on n, λ and Λ (but not on σ) , and a vector b
depending on n, λ,Λ and σ such that for any x ∈ C+(u, Γ,BR; bR) and M > 0 there
is some k ∈N ∪ {0} such that

(2.3.1)
∣∣∣Rk(x)

∣∣∣ ≤ C
Rσ−2 f (x)

M
|Rk(x)|

where bR = (2 − σ)
∫

B1\BR
y K(y) dy, Rk(x) = {y ∈ Rk(x) : µ−(u, x, y;∇Γ) ≥M0r2

k
}

and Rk(x) = Brk
(x)\Brk+1

(x) for rk = ̺02−
1

2−σ−kR and ̺0 = 1/(16
√

n). Here, ∇Γ(x)
denotes any element of the superdifferential ∂Γ(x) of Γ at x.

Proof. Take any x ∈ C+(u, Γ,BR; bR). By Lemma 2.1.1 and Lemma 2.2.1 we
have that

Lu(x;∇Γ) = LRu(x;∇Γ) − bR · ∇Γ(x)

whereLR is the operator replaced µ by µR in the definition of L and

bR = (2 − σ)

∫

B1\BR

y K(y) dy.

If bR = 0, then we doesn’t have the error term R1−σ|∇Γ(x)|. If bR , 0, then
Lu(x;∇Γ) ≤ LRu(x;∇Γ). Hence we conclude that

Lu(x;∇Γ) ≤ LRu(x;∇Γ)
for any x ∈ C+(u, Γ,BR; bR). The same argument as Lemma 2.2.1 gives us the
conclusion. �

Now we have the following Corollary as Section 2.1, 2.2.

Corollary 2.3.2. Let u and Γ be functions as in Lemma 2.3.1. Then there exist a
finite family {Q j}mj=1

of open cubes Q j with diameters d j such that

(a) Any two cubes Qi and Q j do not intersect, (b) C+(u, Γ,BR; bR) ⊂
⋃m

j=1 Q j,

(c) C+(u, Γ,BR; bR)∩Q j , φ for any Q j, (d) d j ≤ ̺02−
1

2−σ R for ̺0 = 1/(16
√

n),

(e)
∫

Q j
gη(∇Γ(y)) det[D2Γ(y)]− dy ≤ CRn(σ−2) sup

Q j
| f |n|Q j|,

( f ) |{y ∈ 4
√

n Q j : u(y) ≥ Γ(y) − CR(σ−2)(sup
Q j

f )d2
j
}| ≥ η0|Q j|,

where the constants C > 0 and η0 > 0 depend on n,Λ and λ ( but not on σ).
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2.4. Discussion of A-B-P estimates. At this subsection, we are going to
discuss motivations and differences of the A-B-P estimates at previous sub-
sections.

Remark 2.4.1.
(1) Key setp in the A-B-P estimate is the control of the volume of the gradient

image, |∇Γ(BR)|, in terms of M0

R for M0 = supBR
u. From the concavity

Γ(x), we have B M0
R

⊂ ∇Γ(BR) = ∇Γ(C(u, Γ,BR)) and then ωn

(
M0

R

)n
≤

|∇Γ(C(u, Γ,BR; bR))| (see Lemma 9.2, [GT]). Similarly for a fixed vector
bR , 0, we have {z ∈ B M0

R

: z · bR ≥ 0} ⊂ ∇Γ(C+(u, Γ,BR; bR)) and

then 1
2ωn

(
M0

R

)n
≤ |∇Γ(C+(u, Γ,BR; bR))| This estimate depends only on

the existence of a fixed nonzero vector q for a given ball BR and it is
independent of the size or direction of bR. If bR = 0, it recover the result at
[GT].

(2) The different A-B-P estimates have been considered to control the effect of
the gradient term∇Γ(x) caused by the fact that the Kernel is not symmetric.
And they will be used at Lemma 3.2.1 to prove the decay estimate of the
upper level set of super-solutions. When we apply A-B-P estimate with
blow-up rate, we have an extra term (Rσ−2 Jσ)n|BR| ≈ 1 (for 1 < σ < 2),
− log(R) (for σ = 1), and Rσ−1 (for 0 < σ < 1) caused by ∇Γ(x). It is
bounded only at 1 < σ < 2. This is the main reason that we consider the
other two A-B-P estimates.

(3) For 0 < σ < 1, the extra term R−1|∇Γ(x)| looks optimal since the extra
term at Lemma 3.2.1 at this case will become (R−1 Jσ)n|BR| < C < ∞ even
for 0 < σ < 1.

(4) For σ = 1, we can not find a suitable A-B-P estimate for the fully nonlinear
equation since we doesn’t know how to control − log(R)|∇Γ(x)|, which
shows up even after a direction b is chosen in BR.

(5) For the linear case, the linearity of the equation creates only bR = (2 −
σ)

∫
B1\BR

y K(y) dy which depends only on R, not the position x. Therefore

bR · ∇Γ(x) is the only error caused by the fact that the Kernel is not
symmetric. But if bR · ∇Γ(x) ≥ 0 (or, x ∈ C+(u, Γ,BR; bR)), then bR · ∇Γ(x)
goes away during the computation. And if the kernel is homogeneous of

degree −(n + σ), bR = (2 − σ)Jσ(R)
∫
∂B1
θK(θ) dσθ for θ = x

|x| which has a

fixed direction for 0 < R ≤ 1. As we observed at (1), the lower bound of the
volume of the gradient image |∇Γ(C+(u, Γ,BR; bR))| is independent of the
choice of bR. The main question is the control of the error term, Rσ−2|∇Γ(x)|
or R−1|∇Γ(x)| after the choice of bR, which will be possible for 1 < σ < 2 or
0 < σ < 1 respectively, Lemma 3.2.1.

3. Decay Estimate of Upper Level Sets

In this section, we are going to show the geometric decay rate of the
upper level set of nonnegative solution u. The key Lemma 3.2.1 says that if
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a nonnegative function u has a value smaller than one in QR then the lower
level set {x : u ≤ M} has uniformly positive amount of measure ν|QR|which
will be proven through ABP estimate. But the assumption of ABP estimate
on a subsolution requires its special shape: it should be negative out side
of QR and positive at some interior point. So we are going to construct a
special functionΨ so thatΨ − u meets the requirement of ABP estimate.

3.1. Special functions. The construction of the special function is based on
the idea in [CS, KL]. Nontrivial finer computation has been done to take
care of the influence of the gradient term and the lack of scaling.

Lemma 3.1.1. There exist some σ∗ ∈ (0, 2) and p > 0 such that the function

f (x) = min{2pR−p, |x|−p}

is a subsolution toM−
L0

f (x) ≥ 0 for any σ ∈ (σ∗, 2) and x ∈ Bc
R

.

Proof. It is enough to show that there is some σ∗ ∈ (1, 2) so that

(3.1.1) M−
L0

f (x) ≥ 0

for x = R1en = (0, 0, · · · , 0,R1) ∈ Rn; for every other x with |x| = R1 ≥ R, the
above inequality follows by rotation. In order to prove (3.1.1), we use the
following elementary inequality that holds for any a > b > 0 and p > 0;

(a + b)−p ≥ a−p
(
1 − p

b

a
+

p(p + 1)

2!

(b

a

)2
−

p(p + 1)(p + 2)

3!

(b

a

)3
)
.

Using this inequality and µ( f,R1en, y) = R
−p

1
µ
(

f, en, y
)

for y = y/R1, we have
that

µ( f, en, y) = |en + y|−p − 1 + p yn = (1 + |y|2 + 2yn)−p/2 − 1 + p yn

≥ −
(p

2
+ 1

)
|y|2 +

p(p + 2)

2
yn|y|2 +

|y|2

(1 + |y|2)p/2+1

+
p(p + 2)

2

y2
n

(1 + |y|2)p/2+2
−

p(p + 2)(p + 4)

6

y3
n

(1 + |y|2)p/2+3

(3.1.2)

for any y ∈ B 1
2 R. We choose some sufficiently large p > 0 so that

(3.1.3)
p(p + 2)

2(1 + r2)p/2+2

∫

Sn−1

θ2
n dσ(θ) +

ωn

(1 + r2)p/2+1
−

(p

2
+ 1

)
ωn = δ0(r) > 0
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for any sufficiently small r > 0. Since
∫

Sn−1 θn dσ(θ) =
∫

Sn−1 θ
3
n dσ(θ) = 0, it

follows from (1.1.3), (1.1.4), (3.1.2) and (3.1.3) that

M−
L0

f (en)

≥ (2 − σ)R
−p

1

(∫

Rn

λµ+( f, en, y/R1)

|y|n+σ dy −
∫

Rn

Λµ−( f, en, y/R1)

|y|n+σ dy
)

≥ (2 − σ)R
−p−σ
1

(
λ

∫

Br

µ( f, en, y)

|y|n+σ dy −Λ
∫

Rn\Br

µ−( f, en, y)

|y|n+σ dy
)

≥ (2 − σ)R
−p−σ
1

(
λδ0(r)

2 − σ − (2p
+ 1 + p)Λ

∫

Rn\Br

1

|y|n+σ dy
)

= R
−p−σ
1

(
λδ0(r) − (2p

+ 1 + p)Λωn
2 − σ
σ

r−σ
)

for r ∈ (0, 1
2R), where ωn denotes the surface measure of Sn−1. Thus we

may take some sufficiently small r ∈ (0, 1/2) and take some σ∗ ∈ (1, 2) close
enough to 2 in the above so that

M−
L0

f (en) ≥ 0

for any σ ∈ (σ∗, 2). Hence we complete the proof. �

Now we have the following Corollary as Corollary 4.1.2, [KL]. The only
difference is that the influence of non-symmetry of the kernel is p|y|χB1

(y),
not p|y| in the proof since authors considered a larger class of operators for
1 < σ < 2 at [KL].

Corollary 3.1.2. Given any σ0 ∈ (0, 2), there exist some δ > 0 and p > 0 such
that the function

f (x) = min{δ−pR−p, |x|−p}
is a subsolution toM−

L0
f (x) ≥ 0 for any σ ∈ (σ0, 2) and x ∈ Bc

R
.

Lemma 3.1.3. Given any σ0 ∈ (0, 2), there exists a functionΨ ∈ B(Rn) such that
(a)Ψ is continuous on Rn, (b)Ψ = 0 on Bc√

nR
,

(c)Ψ > 2 on QR, (d)M−
L0
Ψ is continuous on B√nR ,

(e)M−
L0
Ψ > −ψ/Rσ onRn where ψ is a positive bounded function onRn which

is supported in BR/4 , for any σ ∈ (σ0, 2).

Proof. We consider the functionΨ given by

Ψ = c



0 in Rn \ B√nR,

|x|−p − (
√

n)−p in B√nR \ BR/2,

P in BR/2,

where P is a quadratic paraboloid chosen so that Ψ is C1,1 across ∂BR/2.
We now choose the constant c so that Ψ(x) > 2 for x ∈ QR (recall that
QR ⊂ Q2R ⊂ B√nR ⊂ B2

√
nR). Since Ψ ∈ C1,1(B√nR), M−

L0
Ψ is continuous
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on B√nR. Also by Lemma 3.1.1 we see thatM−
L0
Ψ ≥ 0 on Bc

R/4
. Hence this

completes the proof. �

3.2. Estimates in measure. The main tool that shall be useful in proving
Hölder estimates is a lemma that connects a pointwise estimate with an
estimate in measure. The corresponding lemma in our context is the fol-
lowing.

Lemma 3.2.1. Let σ0 ∈ (0, 2). If σ ∈ (σ0, 2) and R ∈ (0,R0], then there exist
some constants ε0 > 0, ν ∈ (0, 1) and M > 1 (depending only on σ0, λ,Λ and the
dimension n) for which if u ∈ B(Rn) is a viscosity supersolution toM−

L0
u ≤ ε0/Rσ

with σ , 1 or Lu ≤ ε0/Rσ with σ ∈ (σ0, 2) on B2
√

nR such that u ≥ 0 on Rn and

infQR
u ≤ 1, then |{u ≤M} ∩QR| ≥ ν|QR|

Remark. We denote by Qr(x) an open cube {y ∈ Rn : |y − x|∞ ≤ r/2} and
Qr = Qr(0). If we set Q = Qr(x), then we denote by sQ = Qsr(x) for s > 0.

[Proof of Lemma 3.2.1]
(Case 1: 1 < σ < 2). We consider the function v := Ψ − u where Ψ is

the special function constructed in Lemma 3.1.3. Then we easily see that

v is upper semicontinuous on B2
√

nR and v is not positive on Rn \ B√nR.

Moreover, v is a viscosity subsolution toM+
L0

v ≥ M−
L0
Ψ −M−

L0
u ≥ −(ψ +

ε0)/Rσ on B2
√

nR. So we want to apply Theorem 2.1.4 (rescaled) to v. Let Γ be

the concave envelope of v in B4
√

nR. Since infQR
u ≤ 1, infQR

Ψ > 2 and QR ⊂
B2
√

nR, we easily see that M0 := supB2
√

nR
v = v(x0) > 1 for some x0 ∈ B2

√
nR.

We consider the function g whose graph is the cone in Rn ×R with vertex

(x0,M0) and base ∂B6
√

nR(x0) × {0}. For any ξ ∈ Rn with |ξ| < M0/6
√

nR, the

hyperplane

H = {(x, xn+1) ∈ Rn ×R : xn+1 = L(x) :=M0 + ξ · (x − x0)}

is a supporting hyperplane for g at x0 in B6
√

nR(x0). Then H has a parallel

hyperplane H′ which is a supporting hyperplane for v in B4
√

nR at some

point x1 ∈ B2
√

nR. By the definition of concave envelope, we see that H′ is

also the hyperplane tangent to the graph of Γ at x1, so that ξ = ∇Γ(x1). This
implies that BM0/6

√
nR(0) ⊂ ∇Γ(B2

√
nR). Thus we have that

(3.2.1) C(n) log

(
(M0/R)n

ηn

)
≤

∫

C(u,Γ,BR)

gη(∇Γ(y)) det[D2
Γ(y)]− dy,

where gη is the function given in Corollary 2.1.3. We also observe as shown
in [CC] that

(3.2.2)
∣∣∣∇Γ

(
B2
√

nR \ C(v, Γ,B2
√

nR)
)∣∣∣ = 0.
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Let {Q j} be the finite family of cubes given by Theorem 2.1.4 (rescaled on
B2
√

nR). Then it follows from (3.2.1), (3.2.2) and Theorem 2.1.4 that

ln
( [(supB2

√
nR

v)/R]n

ηn
+ 1

)
≤ C

∫

C(u,Γ,BR)

gη(∇Γ(y)) det[D2
Γ(y)]− dy

≤ C
(∑

j

sup
Q j

(
(Rσ−2Jσ(R))n

+ η−n(R(σ−2)(ψ + ε0)/Rσ
)n
|Q j|

)

≤ C
(
(Rσ−2Jσ(R))n

∑

j

|Q j| + η−n
∑

j

sup
Q j

((ψ + ε0)/R2)n|Q j|
)

≤ C
(
(Rσ−1Jσ(R))n

+ η−n
∑

j

sup
Q j

((ψ + ε0)/R2)n|Q j|
)
.

(3.2.3)

Here we note that KR := Exp((Rσ−1 Jσ(R))n) ≤ C < ∞ for 1 < σ < 2 and R < 1.

If we set η =
(∑

j sup
Q j

((ψ + ε0)/R2)n|Q j|
)1/n

in (3.2.3), then we have that

sup
B2
√

nR

v ≤ CR
(∑

j

sup
Q j

((ψ + ε0)/R2)n|Q j|
)1/n

≤ Cε0 + CR
(∑

j

(
(sup

Q j

ψ)/R2
)n
|Q j|

)1/n

.

(3.2.4)

Since infQR
u ≤ 1 and infQR

Ψ > 2, we see that supB2
√

nR
v > 1. If we choose

ε0 small enough, the above inequality (3.2.4) implies that

1

21/n
R ≤ C

(∑

j

(
sup

Q j

ψ
)n
|Q j|

)1/n

.

We recall from the proof of Lemma 3.1.3 that ψ is supported on BR/4 and
bounded on Rn. Thus the above inequality becomes

1

2
|QR| ≤ C

( ∑

Q j∩BR/4,φ

|Q j|
)
,

which provides a lower bound for the sum of the volumes of the cubes Q j

intersecting BR/4 as follows;

(3.2.5)
∑

Q j∩BR/4,φ

|Q j| ≥ c|QR|.

Since diam(Q j) ≤ ρ02−
1

2−σ R ≤ ρ0R for any σ ∈ (σ0, 2), the cube 4
√

nQ j is
contained in BR/2 for any Q j with Q j ∩ BR/4 , φ. Set M1 = supBR/2

(Ψ − Γ).
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Then by Theorem 2.1.4 we have that
(3.2.6)∣∣∣{y ∈ 4

√
nQ j : v(x) ≥ Γ(y) − CRσ−2 sup

Q j

((ψ + ε0)/Rσ + Jσ(R)|∇Γ|)d2
j }
∣∣∣ ≥ η0|Q j|

and d2
j
≤ ρ2

0
R2. Then the family F = {4

√
nQ j : Q j ∩ BR/4 , φ} is an open

covering of the union

D :=
⋃

Q j∩BR/4,φ

Q j.

Now we may take a subcovering of F with finite overlapping number
(depending only on the dimension n) which covers the set D. Thus it
follows from (3.2.5) and (3.2.6) that

∣∣∣{x ∈ BR/2 : v(x) ≥ Γ(x) − Cρ2
0}
∣∣∣ ≥ cη0|QR|,

because Rσ−2 sup
Q j

((ψ+ε0)/Rσ+ Jσ(R)|∇Γ|)d2
j
≤ ρ2

0
sup

Q j
((ψ+ε0)+|∇Γ|) ≤ Cρ2

0

for any R ∈ (0,R0]. So we have that
∣∣∣{x ∈ BR/2 : u(x) ≤M1 + Cρ2

0}
∣∣∣ ≥ cη0|QR|.

Taking M = M1 + Cρ2
0
> 1, we conclude that |{u ≤ M} ∩ QR| ≥ ν|QR| where

ν = cη0, because BR/2 ⊂ QR.
(Case 2: 0 < σ < 1) Now we are going to apply A-B-P estimate (Corollary

2.2.2). We can observe
∫

C+(u,Γ,BR;b)

gη(∇Γ(y)) det[D2
Γ(y)]− dy ≥

∫

BM̃∩{b·x≥0}
g

≥ 1

2

∫

BM̃

g ≥ ln c0

( [(supB2
√

nR
v)/R]n

ηn
+ 1

)

for M̃ = supB2
√

nR
v)/R. Then we have

( [(supB2
√

nR
v)/R]n

ηn
+ 1

)
≤ C

(
(R−1)n

∑

j

|Q j| + η−n
∑

j

sup
Q j

((ψ + ε0)/R2)n|Q j|
)

≤ C
(
1 + η−n

∑

j

sup
Q j

((ψ + ε0)/R2)n|Q j|
)

If we follow the same argument as in (Case1), we have the conclusion.
(Case 3: Linear equations with 0 < σ < 2) If apply A-B-P estimate

(Corollary 2.3.2) and follow the exactly same argument as (Case 2) with
bR instead b, we have the conclusion. �

We split QR into 2n cubes of half side. We do the same splitting step
with each one of these 2n cubes and we continue this process. The cubes
obtained in this way are called dyadic cubes. If Q is a dyadic cube different
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from QR, then we say that Q̃ is the predecessor of Q if Q is one of 2n cubes

obtained from splitting Q̃.

Lemma 3.2.2. [CC] Let A,B be measurable sets with A ⊂ B ⊂ QR. If δ ∈ (0, 1)

is some number such that (a) |A| ≤ δ and (b) Q̃ ⊂ B for any dyadic cube Q with
|A ∩Q| > δ|Q|, then |A| ≤ δ|B|.

The following lemma is a consequence of Lemma 3.2.1 and Lemma 3.2.2.

Lemma 3.2.3. Given σ0 ∈ (0, 2), let σ ∈ (σ0, 2) and R ∈ (0,R0]. Let ε0 > 0
be the constant in Lemma 3.2.1. If u ∈ B(Rn) is a viscosity supersolution to
M−
L0

u ≤ ε0/Rσ with σ , 1 or Lu ≤ ε0/Rσ with σ ∈ (σ0, 2) on B2
√

nR such that

u ≥ 0 on Rn and infQR
u ≤ 1, then there are universal constants C > 0 and ε∗ > 0

such that ∣∣∣{u > t} ∩QR

∣∣∣ ≤ C t−ε∗ |QR|, ∀ t > 0.

Remark 3.2.4. We note that BR/2 ⊂ QR ⊂ Q3R ⊂ B3
√

nR/2 ⊂ B2
√

nR.

Proof. First, we shall prove that

(3.2.7)
∣∣∣{u > Mk} ∩QR

∣∣∣ ≤ (1 − ν)k|QR|, ∀ k ∈N,
where ν > 0 is the constant as in Lemma 3.2.1 and M > 1 is the constant
chosen in Lemma 3.2.1

If k = 1, then it has been done in Lemma 3.2.1. Assume that the result
(3.2.7) holds for k − 1 (k ≥ 2) and let

A = {u > Mk} ∩QR and B = {u > Mk−1} ∩QR.

If we can show that |A| ≤ (1−ν)|B|, then (3.2.7) can be obtained for k. To show
this, we apply Lemma 3.2.3. By Lemma 3.2.1, it is clear that A ⊂ B ⊂ QR

and |A| ≤ |{u > M} ∩ QR| ≤ (1 − ν)|QR|. So it remain only to prove (b) of
Lemma 3.2.2; that is, we need to show that if Q = Q2−iR(x0) is a dyadic cube
satisfying

(3.2.8) |A ∩Q| > (1 − ν)|Q|
then Q̃ ⊂ B. Indeed, we suppose that Q̃ 1 B and take x∗ ∈ Q̃ such that

(3.2.9) u(x∗) ≤Mk−1.

We now consider the transformation x = x0+y, y ∈ Q2−iR, x ∈ Q = Q2−iR(x0)

and the function v(y) = u(x)/Mk−1. If we can show that v satisfies the

hypothesis of Lemma 3.2.1, then we have that ν|Q| < |{u(x) ≤Mk} ∩Q|, and
thus |Q \ A| > ν|Q| which contradicts (3.2.8).

To complete the proof, we consider once again the transformation

x = x0 + z, z ∈ B √
n

2i R
, x ∈ B √

n

2i−1 R
(x0) ⊂ B2

√
nR

and the function v(z) = u(x)/Mk−1. It now remains to show that v satisfies
the hypothesis of Lemma 3.2.1. We now take any ϕ ∈ C2

2
√

n2−iR
(v; z)−. If we
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set ψ =Mk−1ϕ( · − x0), then we observe that

ϕ ∈ C2
B

2
√

n2−iR
(v; z)− ⇔ ψ ∈ C2

B
2
√

n2−iR
(x0)(u; x0 + z)−.

Since B2
√

n2−iR(x0) ⊂ B2
√

nR, we have that

M−
L0

v(z;∇ϕ) ≤ Lv(z;∇ϕ)

=
1

Mk−1

∫

Rn

µ(u, x0 + z, y;∇ψ)K(y) dy

:=
1

Mk−1
Lu(x0 + z;∇ψ)

for any L ∈ L. Taking the infimum of the right-hand side in the above
inequality, we obtain that

M−
L0

v(z;∇ϕ) ≤ 1

Mk−1
M−
L0

u(x0 + z;∇ψ).

Thus we have that

M−
L0

v(z;∇ϕ) ≤ ε0

(2−iR)σ
,

becauseM−
L0

u ≤ ε0

Rσ on B2
√

nR . Also it is obvious that v ≥ 0 on Rn and we

see from (3.2.9) that infQ v ≤ 1. Finally the result follows immediately from

(3.2.7) by taking C = (1 − ν)−1 and ε∗ > 0 so that 1 − ν = M−ε∗ . Hence we
complete the proof. �

By a standard covering argument we obtain the following theorem.

Theorem 3.2.5. For any σ0 ∈ (0, 2), let σ ∈ (σ0, 2) be given. If u ∈ B(Rn) is a
viscosity supersolution toM−

L0
u ≤ ε0

Rσ with σ , 1 orLu ≤ ε0/Rσ with σ ∈ (σ0, 2)

on B2R such that u ≥ 0 on Rn and u(0) ≤ 1 where ε0 is the constant given in
Lemma 3.2.1, then there are universal constants C > 0 and ε∗ > 0 such that

∣∣∣{u > t} ∩ BR

∣∣∣ ≤ C t−ε∗ |BR|, ∀ t > 0.

In contrast to symmetric cases, we note that we can not obtain the fol-
lowing theorem by rescaling the above theorem because our cases are not
scaling invariant. We note that Theorem 3.2.6 on r ∈ (0, 1) shall be applied
to obtain a Harnack inequality, and also Theorem 3.2.6 on r ∈ [R, 2R] will

be used to prove Hölder estimates and an interior C1,α-regularity.

Theorem 3.2.6. For any σ0 ∈ (0, 2), let σ ∈ (σ0, 2) be given, and let x ∈ Rn and
r ∈ (0, 2]. If u ∈ B(Rn) is a viscosity supersolution to M−

L0
u ≤ c0 with σ , 1

or Lu ≤ ε0/Rσ with σ ∈ (σ0, 2) on B2r(x) such that u ≥ 0 on Rn, then there are
universal constants ε∗ > 0 and C > 0 such that

∣∣∣{u > t} ∩ Br(x)
∣∣∣ ≤ C rn

(
u(x) + c0Rσ rσ

)ε∗
t−ε∗ , ∀ t > 0.
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Proof. Let x ∈ Rn and set v(z) = u(z+x)/q for z ∈ B2r where q = u(x)+ c0rσ/ε0.
Take any ϕ ∈ C2

B2r
(v; z)−. If we set ψ = qϕ( · − x), then we see that ψ ∈

C2
B2r(x)(u; z + x). Thus by the change of variables we have that

M−
L0

v(z;∇ϕ) ≤ Lv(z;∇ϕ)

=
1

q

∫

Rn

µ(z + x, y;∇ψ) K(y) dy

:=
1

q
Lu(z + x;∇ψ)

for any L ∈ L0. Taking the infimum of the right-hand side in the above
inequality, we get that

M−
L0

v(z;∇ϕ) ≤ 1

q
M−
L0

u(rz + x;∇ψ) ≤ ε0

r2
.

Thus we have that M−
L0

v ≤ ε0

r2 on B2r. Applying Theorem 3.2.5 to the

function v, we complete the proof. �

4. Regularity Theory

4.1. Harnack inequality.

Theorem 4.1.1. For a given σ0 ∈ (0, 2), let σ0 < σ < 2. If u ∈ B(Rn) is a positive
function such that

M−
L0

u ≤ C0

Rσ
and M+

L0
u ≥ −C0

Rσ
with σ , 1 on B2R

or

Lu ≤ C0

Rσ
and Lu ≥ −C0

Rσ
with σ0 < σ < 2 on B2R

in the viscosity sense, then there is some constant C > 0 depending only on λ,Λ, n
and σ0 such that

sup
BR/2

u ≤ C
(

inf
BR/2

u + C0

)
.

Proof. Let x̂ ∈ BR/2 be a point so that infBR/2
u = u(x̂). Then it is enough to

show that

sup
BR/2

u ≤ C
(
u(x̂) + C0

)
.

Without loss of generality, we may assume that u(x̂) ≤ 1 and C0 = 1 by
dividing u by u(x̂)+C0. Let ε∗ > 0 be the number given in Theorem 3.2.6 and
let β = n/ε∗. We now set s0 = inf{s > 0 : u(x) ≤ s(1− |x|/R)−β, ∀ x ∈ BR}. Then
we see that s0 > 0 because u is positive on Rn. Also there is some x0 ∈ BR

such that u(x0) = s0(1 − |x0|/R)−β = s0

(
d0

R

)−β
where d0 = d(x0, ∂BR) ≤ R.

To finish the proof, we have only to show that s0 can not be too large
because u(x) ≤ C1(1−|x|/R)−β ≤ C for any x ∈ BR/2 if C1 > 0 is some constant
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with s0 ≤ C1. Assume that s0 is very large. Then by Theorem 3.2.5 we have
that

∣∣∣{u ≥ u(x0)/2} ∩ BR}
∣∣∣ ≤

∣∣∣∣∣
2

u(x0)

∣∣∣∣∣
ε∗
|BR| ≤ Cs−ε∗

0
dn

0 .

Since |Br| = Cdn
0 for r = d0/2 < R, we easily obtain that

(4.1.1)
∣∣∣{u ≥ u(x0)/2} ∩ Br(x0)}

∣∣∣ ≤
∣∣∣∣∣

2

u(x0)

∣∣∣∣∣
ε∗
≤ Cs−ε∗

0
|Br|.

In order to get a contradiction, we estimate |{u ≤ u(x0)/2}∩Bδr(x0)| for some
very small δ > 0 (to be determined later). For any x ∈ B2δr(x0), we have that
u(x) ≤ s0(d0 − δd0/R)−β ≤ u(x0)(1 − δ)−β for δ > 0 so that (1 − δ)−β is close to
1. We consider the function

v(x) = (1 − δ)−βu(x0) − u(x).

Then we see that v ≥ 0 on B2δr(x0), and alsoM−
L0

v ≤ 1
Rσ on Bδr(x0) because

M+
L0

u ≥ − 1
Rσ on Bδr(x0). We now want to apply Theorem 3.2.6 to v. However

v is not positive on Rn but only on Bδr(x0). To apply Theorem 3.2.6, we
consider w = v+ instead of v. Since w = v+v−, we have thatM−

L0
w ≤ M−

L0
v+

M+
L0

v− ≤ 1
Rσ +M+L0

v− on Bδr(x0). Since v− ≡ 0 on B2δr(x0), if x ∈ Bδr(x0) then

we have that µ(v−, x, y;∇ϕ) = v−(x + y), y ∈ Bδr(x0) and ϕ ∈ C2
Bδr(x0)(v

−; x)+.

Take any ϕ ∈ C2
Bδr(x0)(v

−; x)+ and any x ∈ Bδr(x0). Since x + Bδr ⊂ B2δr(x0), we

thus have that

M−
L0

w(x;∇ϕ)

≤ 1

R2
+ (2 − σ)

∫

Rn

Λµ+(v−, x, y;∇ϕ) − λµ−(v−, x, y;∇ϕ)

|y|n+σ dy

≤ 1

Rσ
+ (2 − σ)

∫

{y∈Rn :v(x+y)<0}

−Λ v(x + y)

|y|n+σ dy

≤ 1

Rσ
+ (2 − σ)Λ

∫

Rn\Bδr

(
u(x + y) − (1 − δ)−βu(x0)

)
+

|y|n+σ dy.

(4.1.2)

We consider the function hc(x) = c(1 − |x|2/R2)+ for c > 0 and we set

c1 = sup{c > 0 : u(x) ≥ hc(x), ∀ x ∈ Rn}.
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Then there is some x1 ∈ BR such that u(x1) = c1(1− |x1|2/R2) and we see that

c1 ≤ 4/3 because u(x̂) ≤ 1. Since ∇hc1
(x) = − 2c1x

R2 , we have that

(2 − σ)

∫

Rn

µ−(u, x1, y;∇hc1
)

|y|n+σ dy

≤ (2 − σ)

∫

Rn

(
hc1

(x1 + y) − hc1
(x1) − y · ∇hc1

(x1)χB1
(y)

)
−

|y|n+σ dy

≤ C(2 − σ)

∫

BR

|y|2/R2

|y|n+σ dy + C(2 − σ)

∫

B1\BR

|y|/R
|y|n+σ dy

≤ C(2 − σ0)

Rσ

(4.1.3)

for some constant C > 0 which is independent of σ, and so we have that

Λ(2 − σ)

∫

Rn

µ−(u, x1, y;∇hc1
)

|y|n+σ dy ≤ C

Rσ
.

SinceM−
L0

u(x1) ≤ 1
Rσ on B2R, by (4.1.3) we have that

1

Rσ
≥ M−

L0
u(x1;∇hc1

)

≥ λ(2 − σ)

∫

Rn

µ+(u, x1, y;∇hc1
)

|y|n+σ dy

−Λ(2 − σ)

∫

Rn

µ−(u, x1, y;∇hc1
)

|y|n+σ dy.

Thus we obtain that (2 − σ)

∫

Rn

µ+(u, x1, y;∇hc1
)

|y|n+σ dy ≤ C

Rσ
for a constant

C > 0 which is independent of σ. We may assume that (1 − δ)−βu(x0) =
(1−δ)−βs0(1− |x0 |/R)−β ≥ 4 because s0 was very large and (1−δ)−β was close
to 1/R. Since δr < R, by the change of variables we have that

(2 − σ)Λ

∫

Bc
δr

(
u(x + y) − (1 − δ)−βu(x0)

)
+

|y|n+σ dy

≤ C(2 − σ)Λ

∫

Rn

(
u(x1 + y) − 4/R

)
+

|y|n+σ dx

≤ (2 − σ)

∫

Rn

µ+(u, x1, y;∇hc1
)

|y|n+σ dy ≤ C

Rσ

for any x ∈ Bδr(x0). Thus by (4.1.2) we obtain that

M−
L0

w(x) ≤ C

Rσ
≤ C

(δr)σ
on Bδr(x0) .
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Since u(x0) = s0(d0/R)−β = 2−βs0(r/R)−β and βε∗ = n, applying Theorem 3.2.6
we have that∣∣∣{u ≤ u(x0)/2} ∩ Bδr/2(x0)

∣∣∣ =
∣∣∣{w ≥ u(x0)((1 − δ)−β − 1/2)} ∩ Bδr/2(x0)

∣∣∣

≤ C(δr)n
[
((1 − δ)−β − 1)u(x0) + C(δr)−n−σ(δr)σ

]ε∗[
u(x0)((1 − δ)−β − 1/2)

]−ε∗

≤ C(δr)n
[
((1 − δ)−β − 1)ε∗ + δ−nε∗s−ε∗

0

]
.

We now choose δ > 0 so small enough that C(δr)n((1 − δ)−β − 1)ε∗ ≤
|Bδr/2(x0)|/4. Since δ was chosen independently of s0, if s0 is large enough
for such fixed δ then we get that C(δr)nδ−nε∗s−ε∗

0
≤ |Bδr/2(x0)|/4. Therefore we

obtain that
∣∣∣{u ≤ u(x0)/2} ∩ Bδr/2(x0)

∣∣∣ ≤ |Bδr/2(x0)|/2. Thus we conclude that
∣∣∣{u ≥ u(x0)/2} ∩ Br(x0)

∣∣∣ ≥
∣∣∣{u ≥ u(x0)/2} ∩ Bδr/2(x0)

∣∣∣
≥

∣∣∣{u > u(x0)/2} ∩ Bδr/2(x0)
∣∣∣

≥
∣∣∣Bδr/2(x0)

∣∣∣ −
∣∣∣Bδr/2(x0)

∣∣∣/2
=

∣∣∣Bδr/2(x0)
∣∣∣/2 = C|Br|,

which contradicts (4.1.1) if s0 is large enough. Thus we complete the proof.
�

4.2. Hölder estimates. In this subsection, we obtain Hölder regularity re-
sult. The following technical lemma is very useful in proving it. As in
[CS, KL], its proof can be derived from Theorem 3.2.6.

Lemma 4.2.1. For σ0 ∈ (1, 2), let σ ∈ (σ0, 2) be given. If u is a bounded function
with |u| ≤ 1/2 on Rn such that

M−
L0

u ≤ C0

Rσ
and M+

L0
u ≥ −C0

Rσ
with σ , 1 on B2R

or

Lu ≤ C0

Rσ
and Lu ≥ −C0

Rσ
with σ0 < σ < 2 on B2R

in the viscosity sense where ε0 > 0 is some sufficiently small constant, then there
is some universal constant α > 0 (depending only on λ,Λ, n and σ0) such that
u ∈ Cα at the origin. More precisely,

|u(x) − u(0)| ≤ C
|x|α
Rα

for some universal constant C > 0 depending only on α.

Lemma 4.2.1 and a simple rescaling argument give the following theorem
as in [CS, KL].

Theorem 4.2.2. For any σ0 ∈ (0, 2), let σ ∈ (σ0, 2) be given. If u is a bounded
function on Rn such that

M−
L0

u ≤ C0

Rσ
and M+

L0
u ≥ −C0

Rσ
with σ , 1 on B2R
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or

Lu ≤ C0

Rσ
and Lu ≥ −C0

Rσ
with σ0 < σ < 2 on B2R

in the viscosity sense, then there is some constant α > 0 (depending only on λ,Λ, n
and σ0) such that

‖u‖Cα(BR/2) ≤
C

Rα

(
‖u‖L∞(Rn) + C0

)

where C > 0 is some universal constant depending only on α.

4.3. C1,α-estimates. If we apply Theorem 4.2.2 on the Hölder difference
quotients which satifies the same class of operators as the solution, we will
have the following interior C1,α-estimate as in [CS, CC]. For R ∈ (0,R0], we
set ‖u‖∗

C1,α(BR)
= ‖u‖L∞(BR) + R‖Du‖L∞(BR) + R1+α‖Du‖Cα(BR).

Theorem 4.3.1. For σ0 ∈ (0, 2), let σ ∈ (σ0, 2) be given. Then there is some
̺1 > 0 (depending on λ,Λ, σ0 and the dimension n) so that if I is a nonlocal
elliptic operator with respect to L1

0
in the sense of Definition 3.1 and u ∈ B(Rn) is

a viscosity solution to Iu = 0 with σ , 1 or Lu = 0 with 0 < σ < 2 on B1, then
there is a universal constant α > 0 (depending only on λ,Λ, σ0 and the dimension
n) such that

‖u‖∗
C1,α(BR/2)

≤ C
(
‖u‖L∞(Rn) + Rσ|J0|

)

for some constant C > 0 depending on λ,Λ, σ0, n and the constant given in (10.1)
(where we denote by J0 the value we obtain when we apply I with σ , 1 or L
with 0 < σ < 2 to the constant function that is equal to zero).
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respect to operators of variable order, Comm. Partial Differential Equations 30(7-9), 2005,
1249–1259.



FULLY NONLINEAR INTEGRO-DIFFERENTIAL OPERATORS 25

[BL] Richard F. Bass and David A. Levin, Harnack inequalities for jump processes, Potential
Anal. 17(4), 2002, 375–388.

[C] Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann.
of Math. (2) 130(1), 1989, 189–213.

[CS] Luis A. Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-
differential equations, Comm. Pure Appl. Math. 62(5), 2009, 597–638.
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