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Abstract

We discuss the front propagation in the A + B → 2A reaction under subdiffusion which is

described by continuous time random walks with a heavy-tailed power law waiting time probability

density function. Using a crossover argument, we discuss the two scaling regimes of the front

propagation: an intermediate asymptotic regime given by the front solution of the corresponding

continuous equation, and the final asymptotics, which is fluctuation-dominated and therefore lays

out of reach of the continuous scheme. We moreover show that the continuous reaction subdiffusion

equation indeed possesses a front solution that decelerates and becomes narrow in the course of

time. This continuous description breaks down for larger times when the front gets atomically

sharp. We show that the velocity of such fronts decays in time faster than in the continuous

regime.
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I. INTRODUCTION

Reactions under subdiffusion have attracted much attention in recent years due to their

growing relevance for description of processes taking place in porous media such as certain

geological formations or gels, in the crowded cell interiors and in many other strongly in-

homogeneous environments including modern drug delivery systems. We focus here on the

autocatalytic conversion A + B → 2A, a reaction that exhibits travelling front solutions

if the initial conditions are chosen appropriately, i.e. if A and B are initially separated in

space [1, 2].

We concentrate on situations when subdiffusion can be modelled within the CTRW

scheme with a waiting time probability density function (pdf) decaying according to a power

law, ψ(t) ∝ t−1−α. The continuous description of the A+B → 2A reaction under subdiffu-

sion, following locally the mass action law corresponding to the FKPP equation, was derived

in [3] and is given by a partial integro-differential equation with a kernel depending on the

particle concentrations at all times.

In that preceding work we have shown analytically that the resultant minimal front

velocity goes to zero under the assumption of a constant front shape, which was interpreted as

propagation failure. In a following paper [4], numerical simulations corroborated this picture,

while two different regimes of front propagation were identified. In the fluctuation dominated

regime, pertinent to large reaction rates, the front velocity was found to decay as v(t) ∝ tα−1,

whereas in the regime of small reaction rates, for which the continuous description applies,

the front velocity was observed to go as v(t) ∝ t
α−1

2 . Longer simulation runs of the continuous

case (small reaction rates) revealed that after an intermediate regime that ranged over less

than two orders of magnitude in time where v(t) ∝ t
α−1

2 applies, the exponent sets in to

decay [5]. Hence the alleged exponent conjectured from the continuous picture was not the

final one. Up to now, there has not been any physically sound interpretation of the front

velocities found in these simulations.

In this work we attempt to fill this gap by giving a crossover argument that is used to

construct an Ansatz for the solution of the reaction subdiffusion equation at the leading

edge. We found that in order to maintain a front velocity that goes as v(t) ∝ t
α−1

2 , the

additional assumption of the width of the front going as t
α−1

2 has to be made, so that

the front does not maintain a constant form in the course of its propagation. Since the
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front’s width decreases with time, any real (or simulated) subdiffusive FKPP system will

sooner or later undergo a change of regime: the front will get atomically narrow and the

continuous scheme breaks down. Physically this has to do with the fact that at large times

the jump rate always becomes small compared to the reaction rate, so that the fluctuation

dominated regime sets in. Since the particles react before they are able to leave the site,

the front becomes atomically sharp. We suggest that the findings in [5] (decay of the

exponent characterizing the time dependence of the front velocity) can be interpreted in

the sense of a transition from the intermediate asymptotics of the reaction described by

the continuous reaction-subdiffusion scheme to the final asymptotics corresponding to the

fluctuation dominated regime. We start by presenting simple physical arguments in favor

of this picture. We then show that the intermediate asymptotics with v(t) ∝ t
α−1

2 indeed

appears as a possible solution of the corresponding integro-differential reaction-subdiffusion

equation. Physical arguments show however that this asymptotics cannot be the final one,

and that the final regime is fluctuation-dominated. We then turn to a numerical investigation

of this fluctuation-dominated regime and show that the subdiffusive nature of the motion

leads to additional fluctuation effects absent in the normal diffusive case.

II. CROSSOVER ARGUMENTS

Under normal diffusion and with the overall particle concentration A+B = c being locally

conserved, the A + B → 2A reaction is described by the Fisher-Kolmogorov-Petrovskii-

Piscounov (FKPP) equation

∂A(x, t)

∂t
= D∆A(x, t) + k(c−A)A

that has been extensively studied in the past. According to its classical solution [1, 2], fronts

propagating with velocities v ≥
√
2kcD are possible, and it is moreover known that for step-

like initial condition the solution with minimum speed, v =
√
2kcD, is the one which is

really achieved at long times.

In order to gain intuition about the front behavior under subdiffusion, we make use of

the following idea: for any waiting time pdf ψ with finite mean 〈t〉, the behavior at very long

times t ≫ 〈t〉 corresponds to normal diffusion, so that the behavior pertinent to reaction-

diffusion schemes is recovered only if time t is large enough. On the other hand, if the
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initial domain of the pdf can be approximated by a power-law, ψ(t) ∝ t−1−α up to some

truncation time T , the behavior at short times should correspond to the one in subdiffusion,

and there must be a smooth crossover from one regime to the other. We therefore consider

the truncated power-law waiting time distribution with truncation parameter T ,

ψT (t) =
(t0 + T )α

(t0 + T )α − tα0

αtα0
(t0 + t)1+α

Θ(T − t), (1)

with mean value

〈t〉 =
αTtα0 + t0 (t

α
0 − (T + t0)

α)

(α− 1) (tα0 − (T + t0)α)
. (2)

For T ≫ t0, 〈t〉 ≈ α
1−α

tα0T
1−α.

For small times t ≪ T , when the system does not feel the cutoff, the behavior of the

velocity will be similar to that in subdiffusion, whereas for large times the behavior will be

the classical one with a constant minimal velocity. The crossover between the two regimes

must thus take place at some crossover time tcr. We assume that in the anomalous domain

v ∝ tβ , and that after this a crossover to normal behavior sets in. In the case when the

normal behavior is described by the FKPP scheme this corresponds to v = const. ∼
√
ckD,

with D = a2/2〈t〉, where a is the step’s length of the corresponding random walk process (an

irrelevant microscopical variable), and the time behavior of the velocity in the anomalous

regime is given by the equation

tβcr ≃
[

ck
a2

2〈t(tcr)〉

]1/2

(3)

In order to determine the crossover time we concentrate on the most basic quantity that

is known in the normal as well as in the anomalous case, i.e. the number of performed steps,

a measure of mobility, which is given by

nD(t) =
t

〈t〉 (4)

in the normal regime t≫ tcr, and

nSD(t) =
tα

Γ[1 + α]tα0
(5)

in the subdiffusive regime t≪ tcr.

By enforcing nSD(tcr) = nD(tcr) we find

1− α

α

tcr
tα0T

1−α
=

tαcr
Γ(1 + α)tα0

; (6)
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and hence tcr ∝ T (more precisely t1−α
cr = α

Γ(1+α)(1−α)
T 1−α). Obviously, the larger we choose

the cutoff-parameter T , the larger becomes the crossover time. At the time the crossover

takes place, the quantities characterizing the behavior of the system, such as the number of

performed steps, the front velocities etc. have to match for the two regimes. Tuning T we

get the respective values of the quantities of interest at tcr, for example the mean waiting

time 〈t〉 ∝ t1−α
cr for the normal case in terms of tcr. From Eq.(3) we then get

v(t < tcr) ∝ t
α−1

2 (7)

in the subdiffusive regime. Correspondingly we can define other time-dependent effective

characteristics in the anomalous regime, e.g. an effective mean waiting time, 〈t〉eff ∝ t1−α

(the parameter tcr is changed to t) which yields an effective, time dependent diffusion

coefficient Deff ∝ 1/t1−α, from which Eq.(7) can be obtained via the classical formula

v =
√

2ckDeff . This discussion elucidates the source of the anomalous front velocity in the

regime of small reaction rates, as found numerically in [4].

We note that even the case for normal diffusion is not simple at all, especially when

the one-dimensional situation is considered, the one especially prone to fluctuation effects.

To understand the situation we first recall that the FKPP equation, if it holds, has the

same form in whatever spatial dimension, and provides us not only with the velocity of

the front, but also with the front’s width. Since in any spatial dimension d the dimensions

of the concentration [c] = L−d and that of the reaction rate [k] = T−1[c]−1 are connected

to each other, so that [kc] always has the dimension of the inverse time, the combination
√
Dkc always has the dimension of velocity, and the combination w =

√

D/kc always has

the dimension of length. The characteristic width of the front is thus proportional to our

parameter w, see [2] for a quantitative discussion. The velocity of the front and its width w

are connected by a simple relation

v ∼ w/τ = D/w (8)

where τ = w2/D is of the order of the time which it takes a particle to diffuse through the

front’s width.

Here it is important to note, that the width w is the only relevant parameter of the

dimension of length in the continuous theory, but going to the particle picture, another

characteristic length, the interparticle distance l = c−1/d emerges, and an additional dimen-

sionless parameter Π = w/l appears. The parameter Π gives us the front width measured
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in the units of the interparticle distance, and quantifies the strengths of fluctuation effects

in the A+B → 2B reaction.

According to the Buckingham’s Π-theorem, the velocity v, [v] = LT−1 has to depend on

the parameters of the problem as

v =
√
kcDf(Π) =

√
kcDf

(

√

D/kc1/d−1/2
)

,

with f being a yet unknown function of a dimensionless parameter, and the prefactor of

f reproducing the classical FKPP behavior of the velocity. The prefactor of f has the

same form in any spatial dimension, while the dimensionless argument of the function f has

different form in spaces of different dimension. Evidently, the continuous description only

works if w ≫ l, i.e., in the classical case where
√

D/ck ≫ c−1/d: for large concentrations

and diffusion coefficients and for small reaction rates. In this case there are many particles

within the front region, and the continuous description does hold. For Π ∼ 1 corresponding

to the atomically sharp front, the number of particles across the region fluctuates strongly,

and therefore front propagation is fluctuation dominated.

Let us now concentrate on the one-dimensional case, as discussed in [4] and [5]. The

fluctuation dominated regime in 1d corresponds to v ∝ Dc [6], which can be easily under-

stood within Eq.(8) by assuming the width of atomically sharp front to correspond to the

interparticle distance, w ≃ l = c−1. Repeating the same crossover arguments, as in the

previous case, this kind of behavior under normal diffusion is mirrored onto the form

v(t) ∝ tα−1 (9)

for the velocity time dependence in the subdiffusive case.

The same crossover arguments as applied to the velocity, can be also extended to the

width of the front. Since the front width w ∝ D
1/2
eff is a decaying function of time in the

subdiffusive case, the condition for continuous description to hold breaks down for times

long enough, and the transition from the intermediate “classical” asymptotics, Eq.(7), to

the final fluctuation-dominated asymptotics Eq.(9) inevitably takes place.

In what follows we first show that the “classical” asymptotics, Eq.(7), indeed appears as

a possible solution of the reaction subdiffusion equation, and then we change to investigating

the far asymptotic regime, when the reaction-subdiffusion equation breaks down. This is

done by use of extensive numerical simulations.
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III. CONTINUOUS REACTION-SUBDIFFUSION REGIME

Let us assume the front to behave in accordance with our crossover arguments, namely

to have the velocity and the width going as t
α−1

2 (i.e. with position x(t) ∝ v0t
1+α
2 ). The

overall form of the front will be assumed exponential at its leading edge x→ ∞. Thus, the

following Ansatz is made:

A(x, t) = A0 exp
[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

= A0 exp
[

−λ0t
1−α
2 z

]

, (10)

where z = x − v0t
1+α
2 is the comoving variable. (The exponential Ansatz is due to the

fact that we will anyhow linearize the equations at the front’s far edge, and we know from

elsewhere [8] that the (stationary) solutions of linear reaction-subdiffusion equations are

exponentials.)

The equation for the concentration of A-particles A(x, t), with c being the overall particle

concentration, is (cf. [3])

∂A(x, t)

∂t
= k(c−A(x, t))A(x, t) +

a2

2
∆

∫ t

0

M(t− t′)

×(A(x, t′)− c) exp

[

−
∫ t

t′
kA(x, t′′)dt′′

]

dt′. (11)

We note that A(x, t) becomes small at the leading edge x → ∞, and

exp
[

−
∫ t

t′
kA(x, t′′)dt′′

]

≈ 1, so that

∂A(x, t)

∂t
=

a2

2

∫ t

0

∆

{

M(t− t′)(A(x, t′)− c) exp

[

−k
∫ t

t′
A(x, t′′) dt′′

]}

dt′

+k(c− A(x, t))A(x, t) (12)

≈ a2

2

∫ t

0

M(t− t′)

[

∆A(x, t′)− 2∇A(x, t′)
∫ t

t′
k∇A(x, t′′) dt′′

+(c− A(x, t′))

∫ t

t′
k∆A(x, t′′) dt′′ − (c−A(x, t′))

(

∫ t

t′
k∇A(x, t′′) dt′′

)2
]

dt′

+k(c− A(x, t))A(x, t) (13)

In particular, with Ansatz (10) and taking into account that the term t−
1+α
2 is negligible for
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large t, we have

∂A(x, t)

∂t
= A0 exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

×
[

v0λ0t
1−α
2 t

α−1

2

α + 1

2
− λ0t

−
1+α
2

1− α

2

(

x− v0t
1+α
2

)

]

= A0 exp
[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

×
[

v0λ0 −
1− α

2
λ0xt

−
1+α
2

]

≈ A0 exp
[

−λ0t
1−α
2 (x− v0t

α+1

2 )
]

v0λ0 (14)

∇A(x, t) = −A0λ0t
1−α
2 exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

∆A(x, t) = A0λ
2
0t

1−α exp
[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

.

Proceeding as in [3] we have to first order in concentration for the A-particles:

∂A(x, t)

∂t
≈ a2

2

∫ t

0

M(t− t′)∆A0 exp
[

−λ0t′
1−α
2 (x− v0t

′
α+1

2 )
]

dt′

+
a2

2

∫ t

0

M(t− t′)ck

∫ t

t′
∆A0 exp

[

−λ0t′′
1−α
2

(

x− v0t
′′
1+α
2

)]

dt′′ dt′

+ckA(x, t), (15)

i.e.

A0 exp
[

−λ0t
1−α
2 (x− v0t

α+1

2 )
]

v0λ0

≈ a2

2

∫ t

0

M(t− t′)A0λ
2
0t

′1−α exp
[

−λ0t′
1−α
2 (x− v0t

′
α+1

2 )
]

dt′

+
a2

2

∫ t

0

M(t − t′)ckA0λ
2
0

∫ t

t′
t′′

1−α
exp

[

−λ0t′′
1−α
2

(

x− v0t
′′
1+α
2

)]

dt′′ dt′

+ckA0 exp
[

−λ0t
1−α
2 (x− v0t

α+1

2 )
]

, (16)

with the kernel

M̃(u) =
uψ̃(u)

1− ψ̃(u)

in Laplace domain (which corresponds to the Riemann-Liouville fractional derivative of order

1− α in the subdiffusive case, 1
Γ(α)

d
dt

∫ t

0
1

(t−t′)1−α (·)dt′).
We note that in the following we assume ψ(t) ∝ ταt−1−α so that the new parameter τ

and the old one t0 from the original waiting time distribution ψ(t) =
αtα

0

(t+t0)1+α (i.e. the ψ we

truncated for the crossover argumentation in the preceding section cp. (1)) turn out to be

the same, τ = t0.
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Altogether we have then for z = x− v0t
1+α
2 and t large:

λ0v0 exp
[

−λ0t
1−α
2 z

]

= exp
[

−λ0t
1−α
2 z

]

[

a2

2Γ(α)Γ(1− α)τα

[

Bλ20 +
ckλ0
v0

[1−B]

]

+ ck

]

, (17)

where B is a constant that originates from the estimation of the involved integrals, see

Appendix A, with B(α, 2 − α) ≥ B ≥ 0 and B(ν, µ) being the Beta-function. This yields

the dispersion relation for λ0:

0 = λ20 +

ckK∗

α

v0
[1−B]− v0

K∗

αB
λ0 +

ck

K∗

αB
(18)

with a2

2Γ(α)Γ(1−α)τα
= K∗

α = Kα

Γ(α)
, where Kα is the generalized diffusion constant. From

λ01,2 = −
ckK∗

α

v0
[1− B]− v0

2K∗

αB
±

√

( ckK
∗

α

v0
[1−B]− v0)2

4K∗2
α B

2
− ck

K∗

αB
(19)

we find the restriction

(
ckK∗

α

v0
[1− B]− v0)

2 ≥ 4ckK∗

αB, (20)

a quartic equation in v0 which yields

v20 = K∗

αck
[

1 +B ± 2
√
B
]

(21)

Note that in the normal case B = 1, the minimal front velocity vmin = ±2
√
cDk is repro-

duced; the other solution is a double one at v = 0 for which there is no front. Recall again

that B(α, 2 − α) ≥ B ≥ 0, therefore eq.(21) always has real roots (B(α, 2 − α) > 1 for all

α < 1).

This analysis shows that there exists a set of (nonzero) parameters λ0 and v0 for which

Ansatz (10) yields a solution to the linearized reaction subdiffusion equation (13), although

the integrals appearing in the calculations can only be estimated approximately. We note

that neither an Ansatz taking a front velocity going as v(t) ∝ tα−1 nor an Ansatz with v(t) ∝
t
α−1

2 and a constant front width yield an asymptotic solution of the reaction-subdiffusion

equation, and therefore such types of behavior are impossible within the continuous scheme.

In our previous simulations we were not able to detect the changes in the front shape,

presumably due to our averaging procedure over several runs, and hence did not conjecture

any change of regime in [4]. On the other hand, our simulations were not carried out for long
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enough times to detect the change of regime in the velocity variable. Since such transitions

take place only very slowly, much longer runs of the simulation were really necessary, as the

more extensive simulations of [5] showed. This suggests that indeed the continuous regime

as considered above does not describe the final behavior of the front. Now we can interpret

the findings of Ref. [5] as the setting in of a slow transition to the fluctuation dominated

regime.

IV. FAILURE OF THE CONTINUOUS DESCRIPTION: ATOMICALLY SHARP

FRONTS IN SIMULATIONS FOR LARGE TIMES

Since the subdiffusive front is slowing down and becoming steeper in the course of time,

any system will sooner or later enter a regime already discussed in [4] for subdiffusion and

in [6, 7] for normal diffusion. This regime is a fluctuation dominated one and is no longer

described by continuous approaches. Since the integral kernelM(t) of the linearized reaction-

subdiffusion equations decays and determines the mean density of steps in time, the waiting

times for particles at a site become so large in the course of time that the motion of the

front is governed by the first A-particle entering a new site. All B-particles at the same

site have enough time to react with A before the next jump from the site takes place, the

reaction rate dependence disappears, and the behavior of the front gets to be the same as

in the reaction on the first contact.

Under such a condition the velocity of the front’s motion can be estimated using the fol-

lowing argument (adapted from [9, 10] for our sequential updating scheme). Let us consider

the front position as fixed by the rightmost A-particle(s), and concentrate on the next jump

of the front particle. If the A-particle is alone at its front position, this next jump takes place

with probability 1/2 by an amount ±a, so that the net front displacement after such a step

is zero on average. On the contrary, if there is more than one particle at the front position

(the probability of which is ac if the concentration is defined as a number of particles per

unit length) the front moves by a to the right, if the particle makes a step forward (which

happens with probability 1/2), and does not move, if it jumps backwards, since then there

is at least one other particle, which keeps the front position where it was. Therefore, at a

step of a front particle, the front moves on average by a distance a2c/2. Since the rate at

which the particle moves is defined by the time-integral of the memory kernel M , the front’s
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velocity is given by

v ≈ a2c

2

∫ t

0

M(t− t′)dt′. (22)

Let us first derive the asymptotic jump rate of the particles. Consider the generic waiting

time pdfs with the asymptotic behavior

ψ(t) ∝ ταt−1−α. (23)

The (cumulative) probability to make a step until t, for t large is then

Ψ(t) ≃ 1− ταt−α; (24)

or in Laplace domain, using the Tauberian theorem

Ψ̃(u) ≃ 1

u
− Γ(1− α)ταu−1+α, (25)

so that the pdf

ψ̃(u) ≃ 1− Γ(1− α)ταuα. (26)

The rate for a particle to jump is
∫ t

0
M(t− t′)dt′ or in Laplace domain

M̃(u)

u
=

ψ̃(u)

1− ψ̃(u)
≃ 1

ταΓ(1− α)
u−α (27)

for u→ 0 so that we have an expression for the velocity in the Laplace domain given by

L{v(t)} =
ca2

2

1

ταΓ(1− α)
u−α. (28)

Transforming back to the time domain yields

v(t) =
a2

2Γ(1− α)τα
c

Γ(α)
tα−1 = Kα

c

Γ(α)
tα−1 = cK∗

αt
α−1. (29)

With 1
Γ(α)Γ(1−α)

= sin(απ)
π

the front velocity is better expressed as

v(t) =
a2

τα
c

2

sin (απ)

π
tα−1 (30)

which corresponds to the position of the front going as

x(t) =
NA

c
=

∫ t

0

v(t)dt =
a2

2τα
sin (απ)

απ
ctα. (31)

(NA is the total amount of A-particles).
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Note that the definition of the characteristic waiting time τ adopted here does not allow

for simply taking α = 1 to perform the limiting transition to normal diffusion, as found e.g.

for the exponential distribution of waiting times, ψ(t) = 〈t〉−1 exp(−t/〈t〉). This is due to the
presence of the divergent Γ(1−α) in Eq.(26): the case α = 1 corresponds, strictly speaking

to still (logarithmically) divergent mean waiting times. For the normal case with converging

mean Eq.(26) reads ψ̃(u) ≃ 1−〈t〉u, and, after performing the same steps as above, the front

velocity of the normal fluctuation dominated regime, vfluct = cD, with D being the diffusion

constant, is recovered [6]. Fig. 1 shows the total number of particles in the simulation for

the fluctuation dominated regime, i.e. reaction on contact, for a concentration c = 0.3. In

these simulations we had 7 runs for α = 0.9, 18 for α = 0.8, 41 for α = 0.75, 13 for α = 0.7

and 18 for α = 0.6.

1´104 2´104 5´104 1´105 2´105 5´105 1´106 2´106

100

200

500

1000

2000

t

N
A

FIG. 1: Front position for α = 0.9, 0.8, 0.75, 0.7, 0.6 (upper to lower graphs), c = 0.3.

Red lines denote fits of the large time behavior.

Table I shows the exponents of the long time fits NA = Ftβ which coincide well with α.

α 0.6 0.7 0.75 0.8 0.9

β 0.603 ± 0.004 0.708 ± 0.004 0.750 ± 0.001 0.775 ± 0.002 0.890 ± 0.009

TABLE I: Exponents for the fit NA = Ftβ for different α.

The values of the prefactor F found from the simulations turned out to be however

larger than the predicted ones in (31) by around 30 − 40%. In order to find out about

the origin of this difference, we performed simultaneous simulations of subdiffusion and of

subdiffusion with randomized particles, i.e. in the situation when the particles lost their
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individual memory and were chosen randomly to jump when a jumping time was reached.

This variant of the reaction closely mimics the behavior assumed to derive Eq.(22), namely

the assumption that the rate at which the steps of the rightmost A particle are made is

equal to the mean jump rate of all particles at time t: we fully disregard the fact that the

rightmost A is a very special particle, with its special prehistory.
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FIG. 2: Time dependence of the total amount of A-particles NA for the subdiffusive case

(squares) and subdiffusion with randomized particles (circles). The black line denotes the

theoretical curve according to (31). The inset shows the situation for an exponential

waiting time pdf (with mean 1), t goes from 10 to 5× 104, NA goes from 6 to 2000. The

black line denotes again the theory, NA = Dc2t; c = 0.3.

Fig. 2 shows the time dependence of the overall amount of A-particles for α = 0.75.

The theoretical curve (31) lies much closer to the simulation results of subdiffusion with

randomized particles. The remaining difference between the simulation of the randomized

particles and the theoretical result is presumably due to the fact that convergence to the

asymptotic behavior in subdiffusion is very slow. Apparently, the full subdiffusive picture

implies an additional fluctuation effect. For a better interpretation of the results, we also

simulated the case of normal diffusion. The inset of the figure shows the situation for an

exponential waiting time pdf with mean 1, where the simulated front behavior converges to

the predicted behavior indicated by the black line, NA = Dc2t. We note that Warren et

al. [9] detected a fluctuation effect in the normal case that occurs at small concentrations.

However, as the inset shows, due to the sequential update in our simulations, this effect

does not come into play here and our theoretical approach is sufficient to explain the front

13



behavior in the normal case.
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FIG. 3: Total amount of A-particles NA for the normal case (triangles), the subdiffusive

case (squares) and subdiffusion with randomized jumps (circles), both α = 0.75, depending

on the total number of performed steps; c = 0.3.

Fig. 3 shows the dependence of the overall amount of A-particles on the total amount

of steps performed for α = 0.75. Comparing the two subdiffusive prescriptions (original

and randomized) as well as the normal diffusion reveals that the randomized version of

subdiffusive front behavior is more akin to the normal diffusive front behavior than the full

subdiffusive version: If we interpret the number of steps n as the internal, operational time of

the process, the randomized subdiffusive setting and the normal diffusive one have the same

asymptotics, whereas the full original subdiffusive front position differs by a certain factor.

Fig. 4 shows the quotient of the original subdiffusive front position and the randomized one,

which can be used to quantify this effect that turns out to be around at least 20− 30%.

Obviously, the additional fluctuation effect of the front behavior is genuinely due to

subdiffusion. This effect cannot be explained within the mean-field description of the front

behavior, but comes into play through the interaction of the particles at the front: The rate

at which a front particle performs a jump is higher than the average jump rate of a single

particle in the system. If the particle at the edge of the front is subject to a very long waiting

time (which happens not often, but occasionally), other particles will outpace that particle

and take the lead. Hence, the impact of very long waiting times in single particle dynamics

on the front motion is considerably reduced.
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FIG. 4: Quotient of total amount of A-particles for the subdiffusive case and subdiffusion

with randomized particles
NA,SD

NA,RCP
as a function of time.

V. CONCLUSIONS

We discussed the front motion in the A+B → 2A reaction under subdiffusion described

by continuous time random walks where the reaction is governed by the mass action law

on a microscopic scale. We have shown that at intermediate times, as long as the process

can be described within a continuous picture, the front velocity goes as v(t) ∝ t
α−1

2 . The

decay of the front velocity goes along with a decay of the width of the front, which at longer

times therefore gets atomically sharp. At such times the continuous picture, implied by

the description within the reaction-subdiffusion equations scheme, inevitably breaks down.

The typical time scale of diffusion becomes very large compared to the typical time scale of

reaction, and a crossover to the fluctuation dominated regime takes place where the front

velocity decays faster, v(t) ∝ tα−1. This fluctuation dominated regime is the same as in the

reaction on the first contact, and is characterized by additional fluctuation effects compared

to the case of normal diffusion.
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Appendix A: Evaluation of Integrals

We investigate the integrals in expression (16) term by term, from left to right and take

into account that the constant A0 cancels.

I1 =

∫ t

0

M(t− t′)λ20t
′1−α exp

[

−λ0t′
1−α
2 (x− v0t

′
α+1

2 )
]

dt′

=
λ20

Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

×

1

Γ(α)

d

dt

∫ t

0

1

(t− t′)1−α
t′1−α exp

[

−λ0t′
1−α
2

(

x− v0t
′
1+α
2

)

+ λ0t
1−α
2

(

x− v0t
1+α
2

)]

dt′.

(A1)

This expression can be estimated from above since t′ ≤ t:

I1 ≤
λ20

Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)] 1

Γ(α)

d

dt

∫ t

0

1

(t− t′)1−α
t′1−αdt′

=
λ20

Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)] 1

Γ(α)

d

dt
t

∫ 1

0

1

(1− t′)1−α
t′1−αdt′

=
λ20

Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)] 1

Γ(α)
B (α, 2− α) (A2)

the integral in (A1) is monotonic, i.e. it must tend to a constant value B ≤ B (α, 2− α) for

large times (B = 1 for the normal diffusive case, in particular).

We used here the definition of the Beta-function B(µ, ν) = Γ(µ)Γ(ν)
Γ(µ+ν)

.

I2 =

∫ t

0

M(t − t′)ckλ20

∫ t

t′
t′′

1−α
exp

[

−λ0t′′
1−α
2

(

x− v0t
′′
1+α
2

)]

dt′′ dt′ (A3)

At the far edge of the front, our comoving variable z = x − v0t
1+α
2 is very large. The

transition to large z can be achieved by introducing a large parameter γ, so that the integral

appearing in the integrand of (A3) obtains the form of a Laplace integral which allows for

an asymptotic estimation for γ → ∞:

lim

γ→∞

λ20
Γ(1− α)τα

∫ t

0

t′′1−α exp
[

−λ0t′′
1−α
2 γ

(

x− v0t
′′
1+α
2

)]

dt′′

=
λ0

v0Γ(1− α)τα
t1−α exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

, (A4)
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that means that for large γ the value of the above integral is asymptotically determined by

the points where the exponent in the integrand attains its maximum, see e.g. [11].

Hence, (A3) becomes

λ0
v0

exp
[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

×
[

t1−α

∫ t

0

M(t − t′) dt′ −

∫ t

0

M(t− t′)t′1−α exp
[

−λ0t′
1−α
2

(

x− v0t
′
1+α
2

)

+ λ0t
1−α
2

(

x− v0t
1+α
2

)]

dt′

]

=
λ0

v0Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

×

[ t1−α 1

Γ(α)

d

dt

∫ t

0

1

(t− t′)1−α
dt′ −

1

Γ(α)

d

dt

∫ t

0

1

(t− t′)1−α
t′1−α dt′ exp

[

−λ0t′
1−α
2

(

x− v0t
′
1+α
2

)

+ λ0t
1−α
2

(

x− v0t
1+α
2

)]

]

=
λ0

v0Γ(1− α)τα
exp

[

−λ0t
1−α
2

(

x− v0t
1+α
2

)]

× 1

Γ(α)
[1− B] , (A5)

with B ≤ B(α, 2− α), cf. (A2).
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