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CORE COMPACTNESS AND DIAGONALITY IN
SPACES OF OPEN SETS

FRANCIS JORDAN AND FREDERIC MYNARD

1. INTRODUCTION

Definitions and notations concerning convergence structures follow
[1] and are gathered as an appendix at the end of these notes. If X is a
topological space, we denote by Ox the set of its open subsets. Ordered
by inclusion, it is a complete lattice in which the Scott convergence (in
the sense of, for instance, [9]) is given by

(1.1) Uelim]-"<:>U§Uint<ﬂO>,

FeF OcF

where F is a filter on Ox; and its topological modification, the Scott
topology, has open sets composed of compact families (ﬂ) Ox can be
identified with the set C'(X,$) of continuous functions from X to the
Sierpinski space $ because the indicator function of A C X is contin-
uous if and only if A is open. Via this identification, the convergence
(LI) coincides with the continuous convergence [X,$] on C(X,$), and
its topological modification T'[X, $] coincides with the Scott topology.

On the other hand, for a general convergence space X, the underly-
ing set of [X,$] can still be identified with the collection O of open
subsets of X (or TX ), but the characterization (ILI) of convergence in
[X, §] (when interpreted as a convergence on Oy ) needs to be modified.
Recall that a family S of subsets of a convergence space X is a cover
if every convergent filter on X contains an element of the family S. In
general, U € limx g F if the family {(,cr O : F' € F} is a cover of U
(for the induced convergence).

Given a convergence space X, it is known (e.g., [19], [6]) that the
following are equivalent:

(1.2) VY, T(X xY)< X xTY;
(1.3) T(X x [X,3]) < X xT[X,§];
(1.4) [X,$] = T[X, 9.

ISee the Appendix for definitions
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Let us call a convergence space X satisfying this condition 7T-dual. In
the case where X is topological, the latter is well-known to be equiva-
lent to core compactness of X (e.g., [11], [18]). Recall that a topological
space X is core compact if for every x and O € O(z), thereis U € O(x)
such that every open cover of O has a finite subfamily that covers U. In
[6], a convergence space is called core compact if whenever x € lim F,
there is G < F with x € limG and for every G € G there is G' € G
such that G’ is compact at G. A convergence space is called T-core
compact if whenever x € lim F and U € Orx(z), there is F' € F that
is compact at U. It is shown in [6] that

(1.5)

X is core compact = X is T-dual = X is T-core compact.

The three notions clearly coincide if X is topological. However, so far,
it was not known whether they do in general. At the end of the paper,
we provide an example (Example 22]) of a convergence space that is
T-dual but not core compact.

It was observed in [10] that if X is topological, then so is [[X, $], $].
Therefore [X, $] is then T-core compact, which makes [X, §] for X topo-
logical but not core compact a natural candidate to distinguish core-
compactness from T-core compactness. This however fails, in view of
Proposition [ below. In the next section, we also investigate under
what condition T'[X,$] (that is Ox with the Scott topology) is core
compact. This question, while natural in itself, is motivated by its
connection with the (now recently solved) problem [7, Problem 1.2] of
finding a completely regular infraconsonant topological space that is
not consonant (see section 3 for definitions). We observe in Section
3 that X is infraconsonant whenever T[X,$] is core compact and we
prove more generally that X is infraconsonant if and only if the Scott
topology on Ox x Ox for the product order coincides with the product
of the Scott topologies at the point (X, X) (Theorem [I3)). Infracon-
sonance was introduced while studying the Isbell topology on the set
of real-valued continuous functions over a topological space. In fact
a completely regular space X is infraconsonant if and only if the Is-
bell topology on the set of real-valued continuous functions on X is a
group topology [5, Corollary 4.6]. On the other hand, the fact that the
Scott topology on the product does not coincide in general with the
product of the Scott topologies has been at the origin of a number of
problems and errors (e.g., [9, p.197|). Therefore, Theorem [I3 provides
new motivations to investigate infraconsonance.

In section 4, we show that, for a topological space X, despite the fact
that [X, §] is topological whenever it is pretopological, [ X, $] does not
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need to be diagonal in general. Diagonality of [X,$] is characterized
in terms of a variant of core-compactness that do not need to coincide
with core-compactness.

2. CORE-COMPACTNESS OF Ox

As [X, §] can be identified with Oy for any convergence space X, the
space [[X,$],$] has as underlying set the set of Scott-open subsets of
Ox, that is, if X is topological, the set k(X) of openly isotone compact
families on X. Note that the family

(U ={Aekr(X):Uec A :UeOx

forms a subbase for a topology on (X)), called Stone topology.
As observed in [8, Proposition 5.2], when X is topological, the con-
vergence [X, §] is based in filters of the form

(2.1) OYP) := {O(P) : P € P},
where P is an ideal subbase of open subsets of X, that is, such that
there is P € P with Uer0 @ C P whenever P, is a finite subfamily
of P. More precisely, for every filter F on [X,$] with U € limx g F
there is an open cover P of U that forms an ideal subbase, such that
Ue lim[X,$] Ou(,P) and OH(P) < F.

Note also that

(2.2) ACB= A€ lim[[x7$},$]{B}T,

for every A and B in x(X). In particular if O is [[ X, §], $§]-open, A € O
and A C B € k(X) then B € O.

Proposition 1. If X is topological, then [X,$] is core compact, so that
[[X,8],9] is topological. More specifically, [[X,$],$] can be identified
with the space k(X)) with the Stone topology.

Proof. Let U € lim(x g O%P) for an ideal subbase P of open subsets
of X. Then for each P € P, the set O(P) is a compact subset of [X, 3]
because P € limjx g O(P). Indeed, P = int <mon(P) O).

UT is [[X,9],$]-open for each U € Ox. Indeed, if A € U N
lim(x g5 F then {(\gepB:F € F} is a cover of A (in the sense of
convergence) so that there is F € F with (g B € {U}' because
U € limxg{U}" N A. In other words, F CU", so that U € F.

Conversely, if O is [[X,$], $]-open and A € O, there is U € A such
that UT CO. Otherwise, for each U € A, there is B € x(X) with
UeBand B¢ O. In that case, U = {B € r(X):U e B,B¢& O} £
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for all U € A. Note also that in view of 2.2, By N By € UNV whenever
By € U and By € V. Therefore {ﬂig IZ U, e A:card < oo} is a

filter-base generating a filter F. This filter converges to A in [[X, $], $].
To show that, we need to see that {5 B : U € A} is a cover of A for
(X, $]. In view of the form 2.1 of a base for [X, §], it is enough to show
that if Uy € A and P is an ideal subbase of open subsets of X covering
Uy, then there is A € A with ;5B € O%P). Because Uy € Upcp P
and A is a compact family, there is a finite subfamily Py of P such that
Upep, P € A. Since P is an ideal subbase, there is P € PN .A. Then
O(P) € (\gep B, which concludes the proof that A € limx g ¢ F. On
the other hand, O ¢ F, which contradicts the fact that O is open for
[[X,9],$]. O

In order to investigate when T'[X,$], that is, Ox with the Scott
topology, is core-compact, we will need notions and results from [6].
The concrete endofunctor Epi, of the category of convergence spaces
(and continuous maps) is defined (on objects) by

Epip X = i [T[X,$], $]

where i : X — [[X,$], 8] is defined by i(z)(f) = f(z). In view of [6]
Theorem 3.1|

(2.3) W > Epip X < T[X,$] > [W,$],

where X > W have the same underlying set. In particular, X is 7-dual
if and only if X > Epip, X. A convergence space X is epitopological
if i : X — [[X,$],$] is initial (in the category Conv of convergence
spaces and continuous maps). Epitopologies form a reflective subcat-
egory Epi of Conv and the (concrete) reflector is given (on objects)
by Epi X = i7[[X,$],9$]. Because [Epi X,$] = [X,$], we assume from
now on that every space is epitopological. Observe that a topological
space is epitopological. Note that if [X, $] is T-dual, then Epi X = X
is topological. Therefore, in contrast to Proposition [ [X,$] is not
T-dual if X is not topological.

Proposition 2. Let X be an epitopological space. Then X s topological
if and only if [X,$] is T-dual.

Note also that Epi X < Epip X and that EpipoEpi = Epip, so
that Epi, restricts to an expansive endofunctor of Epi. By iterat-
ing this functor, we obtain the coreflector on T-dual epitopologies.
More precisely, if F' is an expansive concrete endofunctor of C, we
define the transfinite sequence of functors F® by F'' = F and F°X =
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F (V6<a FBX). For each epitopological space X, there is a(X) such
that
Epla(X) X = EplOl(X)Jrl X =drX.

Proposition 3. The class of T'-dual epitopologies is concretely core-
flective in Epi and the coreflector is dr.

Proof. The class of T-dual convergences is closed under infima because

[/\XZ-,Z =[x, Z].

iel el

Indeed, if each X; is T-dual, then

[Ax%]:mes \/ TX:, 9] < (va0:T<

i€l iel iel iel

)

and A,;c; X; is T-dual. The functor Epiy is expansive on Epi and
therefore, so is dy. Moreover, dp X is T-dual for each epitopological
space X because

[drX,$] = [Epis™ ™ X, §] < T[Epis™ X, §] = T[dr X, $].

Therefore, for each epitopological space X, there exists the coarsest
T-dual convergence X finer than X. By definition X < X < dpX.
Then [X,$] < [X,$] and [X, §] is topological, so that [X,$] < T[X, $].
But Epi; X is the coarsest convergence with this property. Therefore
Epip X < X = EpiTY and dr X < X. O

Proposition 4. If X is a core compact topological space, so is T[X,$].

Proof. Under these assumptions, [X,$] = T'[X,$] and [X,$] is T-dual
by Proposition [Il. Therefore T'[X, $] is a core compact topology. O

However, if X is a non-topological T-dual convergence space (E), then
(X, 8] = T[X,$] is not core compact, by Proposition 2l In other words,
we have:

Proposition 5. If X is T-dual then X s topological if and only if
(X, 8] = T[X,$] is core compact.

In particular, drX is topological if and only if [dr X, §] is core com-
pact.

2Such convergences exist: take for a instance a non-locally compact Hausdorff
regular topological k-space. Then X = TK;X but X < KpX so that KX is
non-topological.
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Theorem 6. If X > TdrX then T[X,$] is core compact if and only if
X is a core compact topological space.

Proof. We already know that if X is a core compact topological space
then [X,$] = T'[X, $] and that [X, §] is core compact by Proposition [l
Conversely, if T'[X,§] is core compact then [T[X,$],$] is topological,
so that Epip X is topological. Under our assumptions, we have

X > TdrX > TEpiy X = Epiy X,

so that X is T-dual. Therefore [X,$] = T[X,$§] is core compact and,
in view of Proposition 2l X is topological, and T-dual, hence a core
compact topological space. 0

Note that, at least among Hausdorff topological spaces, Theorem
generalizes [16, Corollary 3.6] that states that if X is first countable,
then X is core compact if and only if T'[X, $] is core compact. Indeed,
the locally compact coreflection K X of a Hausdorff topological space
is T-dual so that dr X < KX. Hence if X is a Hausdorff topological
k-space, that is X = TK X, (in particular a first-countable space) then
X > TdpX. We will see in the next section that similarly, if X is a
consonant topological space, then T'[X, $] is core compact if and only
if X is locally compact.

Problem 7. Are there completely regular non locally compact topo-
logical spaces X such that T[X,$] is core compact?

Of course, in view of the observations above, such a space cannot be
a k-space or consonant.

3. CORE COMPACT DUAL, CONSONANCE, AND INFRACONSONANCE

A topological space is consonant [4] if every Scott open subset A of
Oy is compactly generated, that is, there are compact subsets (K;);cr of
X such that A = J,.; O(K;). A space is infraconsonant [7] if for every
Scott open subset A of Oy there is a Scott open set C such that CVC C
A, where CVC :={CND:C,D € C}. The notion’s importance stems
from Theorem B below. If the set C'(X,Y’) of continuous functions
from X to Y is equipped with the Isbell topology (H), we denote it
Co(X,Y), while Cy(X,Y) denotes C(X,Y') endowed with the compact-
open topology. Note that C,(X,$) = T[X, $].

3whose sub-basic open sets are given by
[AU] = {f € C(X,Y): 3A € A, f(A) C U},

where A ranges over openly isotone compact families on X and U ranges over open
subsets of Y.
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Theorem 8. [5| Let X be a completely regular topological space. The
following are equivalent:

(1) X is infraconsonant;

(2) addition is jointly continuous at the zero function in Cy(X,R);
(3) Cu(X,R) is a topological vector space;

(4) N:TIX, 3] x TX,$] = T[X,$] is jointly continuous.

On the other hand, if X is consonant then C,(X,R) = Cy(X,R) so
that consonance provides an obvious sufficient condition for Cy(X,R)
to be a topological vector space. Hence Theorem 8 becomes truly inter-
esting if completely regular examples of infraconsonant non consonant
spaces can be provided [7, Problem 1.2|. The first author recently ob-
tained the first example of this kind. The following results show that
a space answering positively Problem [7] would necessarily be infracon-
sonant and non-consonant and might provide an avenue to construct
new examples.

Theorem 9. If X is topological and T[X,$)] is core compact then X is
infraconsonant.

Proof. |7, Lemma 3.3] shows the equivalence between (1) and (4) in
Theorem [§ and that the implication (4)==-(1) does not require any
separation. Therefore, it is enough to show that N : T[X, $]xT[X, $] —
T[X,$] is continuous. Since X is topological, [ X, $] is T-dual by Propo-
sition [Il In view of (L2

T(1X, 8] x [X, 8]) < [X, 8] x T[X, 3]
so that T([X,$] x [X,$]) < T([X,$] x T :
compact, hence T—dual then T([ 8] x T1X,8]) <T[X,8$] x T[X,$] so
that
(3.1) T((X.8] x [X.8]) < T[X. 8]  T[X.5].
Therefore the continuity of N : [X, ] x [X,$] — [X, §] implies that of
N:T(X,$] x [X,$]) = T[X,$] because T is a functor, and in view of
1), that of N : T'[X, $] x T[X, 8] = T[X, $]. O

Theorem 10. Let X be a topological space. If C(X,$) is core compact
then X 1is locally compact.

Proof. If X is not locally compact, then Cy(X,$) # [X,9] (e.g., [18,
2.19]) so that there is Uy € Ox with Uy ¢ limx g Ny (Up). Therefore,
there is xy € Up such that xy ¢ int (ﬂVEO(K) V) whenever K is a

compact subset of X with K C Uy. In other words, for each such
K and for each U € O(xg) there is Vi € O(K) and xy € U \ V.
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Then Ck(X,$) is not core compact at Uy. Indeed, there is Uy € O(x)
such that for every compact set K with K C Uy, the k-open set O(K)
is not relatively compact in O(xy). To see that, consider the cover
S :={O0(zy) : U € O(xg)} of O(xp). No finite subfamily of S covers
O(K) because for any finite choice of Uy,...,U, in O(xg), we have
W :=NZiVy, € O(K) but W ¢ UiZrO(xy,). O

Note that a Hausdorff topological space X is locally compact if and
only if it is core compact, and that the Scott open filter topology on
O(X) then coincides with Ci(X,$) (e.g., [9, Lemma I1.1.19]). Hence
Theorem [I0 could also be deduced (for the Hausdorff case) from [16,
Corollary 3.6].

Corollary 11. If X is a consonant topological space such that T[X, $]
15 core compact, then X is locally compact.

4. SCOTT TOPOLOGY OF THE PRODUCT VERSUS PRODUCT OF
SCOTT TOPOLOGIES

We now turn to a new characterization of infraconsonance, which
motivates further the systematic investigation of the notion.

Proposition 12. T([X, $]?) is the Scott topology on Ox x Ox.

Theorem 13. A space X 1is infraconsonant if and only if the prod-
uct (T[X,$])* of the Scott topologies on Ox and the Scott topology
T([X,$]?) on the product Ox x Ox coincide at (X, X).
Lemma 14. A subset S of Ox x Ox is [X, $]*-open if and only if
(1) S = 8, that is, if (U,V) € S and U C U, V C V' then
U,V es;

(2) S is coordinatewise compact, that is,

(Uoi,UvJ) €S =3y e I]< Je[J]“: (U o, | v;-) €S

iel jed icly j€Jdo

Proof. Assume S is [X,$]?-open and let (U,V) € S and U C U/,
V C V. Then (U, V) € limxg{(U’,V')}" so that (U, V') € S.

Assume now that (Uie[ O0i,Ujes Vj) € S. Then {O (U;cpOi) : F €
[1]=>°} is a filter-base for a filter v on Ox such that |J,.; O; € lim(x gy
and {O (UjeD VJ> : D € [J]<*} is a filter-base for a filter n on Ox

such that (J,., V; € limpxgn. Hence S € vy x 5 because S is [X, $]*
open. Therefore, there are finite subsets Iy of I and Jy of J such that

O (Uier, 0) x 0 (Ujes, Vi) € 8, 50 that (Use, O Ujey, Vi) €S,
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Conversely, assume that S satisfies the two conditions of the Lemma
and (U,V) € SN limxgez(y x ). Since U C Jge, int (Neeg G)
and V' C [y, int (Npey H), we have, by the first condition, that

(Ugew int (Neeg G) s Upe, int (Naex H)) € S. By the second condi-
tion, there are Gy,...,Gr € v and Hy, ..., H, € n such that

k n
Uint<ﬂ G),Uint N H|]e€s.
i=1 Geg; j=1

HeH;

Therefore (int (mGeﬂlegi G) ,int (mHeﬂylej H)) € S so that

k n
i=1 j=1

and § € v x 1. O

Proof of Proposition[12. In view of Lemma [I4] every [X, $]*-open sub-
set of Ox x Ox is Scott open. Conversely, consider a Scott open
subset S of Ox x Ox. We only have to check that S statisfies the
second condition in Lemma [[4 Let (U;c; Oi,U;c; Vi) € S. The set

D= {(Uier, 0 Ujen, Vi) + Io € [115, Jo € [J]} s a directed subset

of Ox x Ox (for the coordinatewise inclusion order) whose supremum
is (Uier OisUjes Vi)- As S is Scott-open, there are finite subsets o of

I and Jy of J such that (UZEIO Oi,Uje s, Vj) €Ss. O
Lemma 15. If A € k(X) thenSq = {(U,V) € OxxOx : UNV € A}'
is [ X, $]*-open.
Proof. Let (U;c; Oi, U e Vi) € Sa. Then

JoonUv= U onvea

iel jeJ (i,9)eIxJ

By compactness of A, there is a finite subset Iy of I and a finite subset
Jo of J such that U, ;e x5, OsNV; € A, s0 that (U;cp, Oi Ujes, Vi) €
S4. In view of Lemma [[4, Sy is [X, $]>-open. O

Lemma 16. If S is [X, $]>-open, then
18 =0x{UuVvV:(UYV)eS}

1s a compact family on X.



10 FRANCIS JORDAN AND FREDERIC MYNARD

Proof. I1UUV C J,; O; for some (U, V) € S then (U,c; Oi, Ui Oi) €
S so that, in view of Lemma [I4] there is a finite subset Iy of I such
that (U;eq, OiUiey, Oi) € S. Hence ¢, O €1 S. O

Proof of Theorem[13. Suppose that X is infraconsonant. Note that
(T[X,$])? < T([X,$]?) is always true, so that we only have to prove
the reverse inequality at (X, X). Consider an [X, $]?-open neighbor-
hood § of (X, X). By Lemma [I6, the family | S is compact. By
infraconsonance, there is C € (X)) with C VC C| S. Note that

CxCCS,

because if (C1,Cy) € C x C then C1NCy €] S so that C1NCy, DU UV
for some (U, V) € S, and therefore (C,Cy) € S.

Conversely, assume that Nx g2 (X, X) = Npxg2(X, X) and let A €
#(X). By Lemma I3, Sa € Nxg2(X, X) so that Sy € Ny g2(X, X).
In other words, there are families B and C in k(X ) such that BxC C S4.
In particular D := BNC belongs to x(X) and satisfies D x D CS4. By
definition of S4, we have that DV D C A and X is infraconsonant. [

5. TOPOLOGICITY, PRETOPOLOGICITY AND DIAGONALITY OF [X, §]

A convergence space X is diagonal if for every selection S[-| : X —
FX with z € limx S[z] for all z € X and every filter F with zy €
limy F the filter

(5.1) SIF = () Sl]
FeF zeF

converges to xg. If this property only holds when F is additionally
principal, we say that X is Fi-diagonal. Of course, every topology is
diagonal. In fact a convergence is topological if and only if it is both
pretopological and diagonal (e.g., [3]).

In order to compare our condition for diagonality of [ X, $] with core-
compactness, we first rephrase the condition of core-compactness.

Lemma 17. A topological space is core compact if and only if for every
x € X, every U € O(x) and every family H of filters on X, we have

(5.2) VHeH:adhHNU =0= z¢adh /\ H.
HeH

Proof. If X is core compact, then there is V' € O(z) which is rel-
atively compact in U. If adhH N U = () for every H € H, then
U C Uyey(clH)® so that, by relative compactness of V' in U there
is, for each H € H, a set Hy € H with V NclHy = (. Then
Unen Hu € Nyen M but Uye Hx NV = 0 so that = ¢ adh A,y H.
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Conversely, if (5.2)) is true, consider the family H = {# € FX :
adhH NU = 0}. In view of (5.2), » ¢ adh A,y H so that there is

V € O(z) such that V' & (Asen H)# Now V is relatively compact
in U because any filter than meshes with V' cannot be in H and has
therefore adherence point in U. 0

Recall that [X,$] = P[X,$] if and only if X is T-core compact, and
that, if X is topological, [X,$] is topological whenever it is pretopo-
logical. While the latest follows for instance from the results of [6], it
seems difficult to find an elementary argument in the literature, which
is why we include the following proposition, which also illustrates the
usefulness of Lemma (I7).

Proposition 18. If X is topological and [X,$] is pretopological, then
(X, 8] is topological.

Proof. We will show that under these assumptions, X satisfies (5.2).
Let + € X and U € O(x). Let H be a family of filters satisfying
the hypothesis of (5.2)). Let H € H. Consider the filter base H* :=
{O(X \ cl(H)): H € H} on [X,$]. Since adh(H)NU = 0, it follows
that U € lim#H*. Since [X,§] is pretopological, U € lim \;,cy H*. In
particular, there exist, for each H € H, a Hy € H such that

x € int <ﬂ U O(X\cl(HH))> = int <ﬂ (X\Cl(HH))>

HeH HeH
= int (X \ (H{a@@))
c x\e(|J ;IH).

Thus, 2 ¢ adh(/A;cy)- - 0

In other words, if [X,$] is pretopological it is also diagonal, pro-
vided that X is topological. We will see that even if X is topological,
[X, §] is not always diagonal. Moreover it can be diagonal without be-
ing pretopological. On the other hand, we do not know if [X, §] can
be pretopological but not diagonal (equivalently, if X can be T-core
compact but not 7-dual).

We call a topological space injectively core compact if for every x € X
and U € O(x) the conclusion of (5.2) holds for every family H of filters
such that there is an injection 6 : HH — O(U) satisfying adh HNO(H) =
() for each H € H. As such a family H clearly satisfies the premise of
(5:2), every core compact space is in particular injectively core compact.
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Theorem 19. Let X be a topological space. The following are equiva-
lent:

(1) X is injectively core compact;

(2) [X,$] is diagonal;

(3) [X,$] is Fi-diagonal.

Proof. (1)==(2): Let S[.] : Ox — FOx be a selection for [ X, $] and let
U € limxg F. If v € U, there is I € F such that x € int (ﬂOeF O) =
V. Note that F* C O(V). For each O € F, consider the filter Hp on X
generated by {cly (Uycs W¢) : S € S[O]}. Because O € limx g S[O],
we have that adhx Ho NO = (). Because X is injectively core compact
and H := {Ho : O € F'} satisfies the required condition (with 6(Heo) =
O ), we conclude that = ¢ adhx A\y.pHo. In other words, there is
H € Npcr Ho such that o ¢ clx H, that is, » € intx H°. Therefore,
for each O € F there is Sp € S[O] such that

xGint(ﬂint(ﬂW))Qint ﬂ w

OeF WeSo Weloer So

In other words, there is F' € F and M € A,.rS[O] such that x €
int x (ﬂWGM W), that is, U € lim(x g S[F].

(2)==(3) is clear. (3)==-(1): Suppose X is not injectively core com-
pact. Then there is x € X, U € O(z) and a family H of filters on X
with an injective map 6: H — O(U) such that (H) Nadhy H = 0
for each H € H but 2 € adhx A\;cgH. Define a relation ~ on
H by H; ~ H, provided that the collections {cl(H): H € #H;} and
{cl(H): H € Hs} both generate the same filter. Clearly, ~ is an equiv-
alance relation. Let H* C H be such that H* contains exactly one
element of each equivalance class of ~. For each H € H* let H* be the
filter with base {cl(H): H € H}. Let J = {H*: H € H*}.

Define 6*: J — O(U) so that 6*(J) = 0(H), where H € H* is
such that J = H*. It is easily checked that 6* is injective. Since
adh(H*) = adh(H) for every H € H*, we have 6*(J)Nadh(J) = 0. Tt
is also easy to check that x € adh (/\JEJ j).

For each J € J, the filter J generated on Ox by the filter-base
{Ox(X\J): J € J} converges to 6*(J). Consider now the subset
6*(J) of O(U) C Ox and the selection S[i] : Ox — FOx defined by
SO(T)] = J for each J € J and S[0] = {O}" for O ¢ 6*(J). This is
indeed a well-defined selection because 6* is injective.

Notice that U € limxg 6*(J) because 6*(J) € O(U). Let L €
S[6*(J)]. We may pick from each J € J a closed set J; € J such that
Usey O (X \ J7) € L. Let V be an open neighborhood of x. Since
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v € adhx A\ ;.;J and U ¢y J7 € Njep T, there is an Jy € J such
that VN Jgz #0. Since VEZ X\ Jz and X\ J7 € Ox(X \ Jy,) C L,
VZNOx(X\ Jgz). Since Ox(X \ Jz) C L, V € (L. Since V was
an arbitrary neighborhood of z, ¢ int((\L). Thus, U ¢ S[¢*(J)].
Therefore, [ X, $] is not F;-diagonal. O

A cardinal number k is regular if a union of less than x-many sets
of cardinality less than x has cardinality less than x. A strong limit
cardinal k is a cardinal for which card(24) < s whenever card(A4) <
k. A strongly inaccessible cardinal is a regular strong limit cardinal.
Uncountable strongly inaccessible cardinals cannot be proved to exist
within ZFC, though their existence is not known to be inconsistent
with ZFC. Let us denote by (*) the assumption that such a cardinal
exist.

Example 20 (A Hausdorff space X such that [X,$] is diagonal but
not pretopological under (*)). Assume that x is a (uncountable) strong
limit cardinal. Let X be the subspace of KU{x} endowed with the order
topology, obtained by removing all the limit ordinals but x. Since
X is a non locally compact Hausdorff topological space, [X,$] is not
pretopological. To show that X is injectively core compact, we only
need to consider x = k and U € O(k) in the definition, because x is
the only non-isolated point of X. Let H be a family of filters on X
admitting an injective map 6 : H — O(U) such that adh HNEO(H) = 0
for each ‘H € H. Let 8 be the least element of U. For each H € H
there is Hy € H such that § ¢ Hy so that card(H) < . Moreover,
card H < card O(U) = 2°. Since « is a strong limit cardinal, card H <
k. Since r is regular, |y Hy < & so that & ¢ adh Ay, .y H.

We do not know if the existence of large cardinals is necessary for the
construction of a Hausdorft space X such that [X, 3] is diagonal and
not pretopological. However, we can construct in ZFC a Ty space X
such that [X,$] is diagonal and not pretopological.

Example 21 (A Tj space X such that [X,$] is diagonal but not pre-
topological.). Let Z stand for integers, ¢ be the cardinality of the con-
tinuum, and ¢t be the cardinal successor of ¢. Let oo be a point that is
not in ¢t x Z and X = {oo} U (¢ x Z). For each (a,n) € ¢ x Z
define S,,, = {(8,k): a < fandn < k}. For each o € ¢, let
T, = {(B,k): a« < fand k € Z} U {oo}. Topologize X by declar-
ing all sets of the form 7, and S, to be sub-basic open sets.

We show that X is not core compact at co. Let U be a neighborhood
of co. There is an a such that T,, C U. Notice that T}, ;1U{Sp,: n € Z}
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is a cover of X but no finite subcollection covers T,. Thus, X is not
core compact at co. In particular, [X,$] is not pretopological.

Let (a,n) € X \ {oo}. Let U be an open neighborhood of (a,n).
Since (a,n) € U it follows from the way we chose our sub-base that
Ton € U. Since (a,n) has a minimal open neighborhood, X is core
compact at («,n).

Let V' be an open neighborhood of co. There is an a such that
T, C V. Let U C X be an open superset of V. For every n € Z
UnN(ct x {n}) # 0. For each n € Z define o, = min{s: (8,n) € U.
Notice that {8: a,, < 8} x {n} = U N (¢* x {n}) and a,, < . Since
each open superset of V' will determine a unique sequence (ay,)ne,, it
follows that the open supersets of V' can injectively be mapped into
the countable sequences on {5: 8 < a} X Z. Since {f: f < a} X Z has
cardinality at most ¢, {5: 8 < a} x Z has at most ¢-many countable
sequences. Thus, V' has most ¢-many supersets.

Let V be an open neighborhood of oo, H be a collection of filters,
and 6: H — Ox(V) be an injection such that adh(H) N O(H) = 0
for every H € H. Since V has at most ¢-many open supersets, |H| <
c. Let H € H. Since oo ¢ adhH, there is an az € ¢* such that
adh(H) NT,,, = 0. Let a = (supyegan) + 1 < ¢*. It is easy to check
that, adh (/\HEH H) N T, = (. Thus, X is injectively core compact at
00.

Since X is injectively core compact at each point, [X, $] is diagonal,
by Theorem

Example 22 (A T-dual convergence space that is not core compact).
Consider a partition {A,, : n € w} of the set w* of free ultrafilters on w
satisfying the condition that for every infinite subset S of w and every
n € w, there isU € A, with S € U. Let M := {m,, : n € w} be disjoint
from w and let X := w U M. Define on X the finest convergence in
which lim{m,}T = M for all n € w, and each free ultrafilter & on w
converges to m,, (and m,, only), where n is defined by U € A,,.

Claim. X is not core compact.

Proof. Let m, € M and U € A,,. Pick S Cw, S €U, and k # n. For
every U € U there is W € A, such that U € W. But im W = {m;} is
disjoint from S. U

Claim. X is T-core compact, and therefore [ X, $] is pretopological.

Proof. For each m,, € M, the set M is included in every open set
containing m,, because m, € (e, lim{m}". If ¢ is a non-trivial con-
vergent ultrafilter in X then lim8 = {m,} for some n € w. For any
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S €U, SNw is infinite and any free ultrafilter VW on S Nw belongs to
one of the element Ay, of the partition, so that lim W = {m} intersects
M, and therefore any open set containing m,,. U

Claim. [X,$] is diagonal.

Proof. Let S[.] : Ox — FOx be a selection for [X,$] and let U €
limx g F. Now, {|F: F' € F} is a (convergence) cover of U.

Let x € U and D be a filter on X such that x € limD. There is an
F e FandaD e Dsuch that D C (N F:=V.

Assume z € w, in which case D = {x}!. In particular, z € O for
every O € F. Forevery O € F thereisaTp € S[O] such that x € () Tp.
Now, © € NNoer To € S[F]. So, NNoer To € {z}T =D.

Assume x € M. In this case, M N O # () for all O € F and, by
definition of the convergence on X, M C O for all O € F. Since
O € limx 4 S[O] and M C O, there is S € S[O] such that € (S,
and, since each element of S is open, M C () S. If there isno S € S[O]
such that O C (1S then the filter H generated by {(O Nw)\ S :
S € S[0],S C Sp} is non degenerate. Notice that it is not free, for
otherwise there would be ann € w and U € A,, with U > H. But
my, € limU N O, and there would be S € S[0] such that (S € U,
which is not possible. Therefore there is y € g\ g0 (O \ [1S5) which
contradicts O € lim(x g S[O]. Hence, there is Sy € S[O] such that O C
N So. Now, D C (" F € Npep()So. In particular, (xS0 € D.

Thus, {()J: J € S[F]} is a cover of U, and [X,$] is diagonal. O

Therefore [X,$] is pretopological and diagonal, hence topological,
and X is T-dual.

6. APPENDIX: CONVERGENCE SPACES

A family A of subsets of a set X is called isotone if B € A whenever
A€ Aand A C B. We denote by A" the smallest isotone family
containing A, that is, the collection of subsets of X that contain an
element of A. If A and B are two families of subsets of X we say
that B is finer than A, in symbols A < B, if for every A € A there
is B € B such that B C A. Of course, if A and B are isotone, then
A< B < A C B. This defines a partial order on isotone families,
in particular on the set FX of filters on X. Every family (F,)aes of
filters on X admits an infimum

N\ Fa ZZH}"@:{UFQ:FQEJEQ}T.

acl ael ael
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On the other hand the supremum even of a pair of filters may fail
to exist. We call grill of A the collection A#* := {H C X : VA €
A, HN A # 0}. Tt is easy to see that A = A## if and only if A is
isotone. In particular F = F## C F# if F is a filter. We say that two
families A and B of subsets of X mesh, in symbols A#B, if A C B#,
equivalently if B# C A. The supremum of two filters F and G exists if
and only if they mesh, in which case FVG = {F NG : F € F,G € G}'.
An infinite family (F,)qer of filters has a supremum \/ ., F, if pairwise
suprema exist and for every «, § € I thereis v € I with F, > F,V Fp.

A convergence £ on a set X is a relation between X and the set FX
of filters on X, denoted x € lim; 7 whenever x and F are in relation,
satisfying that @ € limg{z}" for every € X, and lim¢ F C lim¢ G
whenever F < G. The pair (X,¢) is called a convergence space. A
function f : (X,€&) — (Y, 0) between two convergence space is contin-
uous if

x € lim¢ F = f(x) € lim, f(F),
where f(F) is the filter {f(F): F € F}"T on Y. If £ and 7 are two

convergences on the same set X, we say that & is finer than 7, in
symbols £ > 7, if lim¢ F C lim, F for every F € FX. This defines a
partial order on the set of convergence structures on X, which defines
a complete lattice for which supremum V;c;&; and infimum A& of a
family {&; : i € I} of convergences are defined by

1imVieI§i JF= ﬂ hmfl ‘F>

el

lim,, ¢, F = Jlime, 7.
iel

Every topology can be identified with a convergence, in which x €
lim F if F > N(x), where N (z) is the neighborhood filter of x for
this topology. A convergence obtained this way is called topological.
Moreover, a function f : X — Y between two topological spaces is
continuous in the usual topological sense if and only if it is continuous
in the sense of convergence. On the other hand, every convergence
determines a topology in the following way: A subset C' of a conver-
gence space (X, €) is closed if lim¢ F C C for every filter F on X with
C € F. A subset O is open if its complement is closed, that is, if
O € F whenever lim¢ F N O # . The collection of open subsets for a
convergence £ is a topology T'¢€ on X, called topological modification of

&. The topology T¢ is the finest topological convergence coarser than
I fi (X, — (Y,7) is continuous, so is f : (X, 7€) — (Y,T'7).
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In other words, T is a concrete endofunctor of the category Conv of
convergence spaces and continuous maps.

Continuity induces canonical notions of subspace convergence, prod-
uct convergence, and quotient convergence. Namely, if f: X — Y and
Y carries a convergence 7, there is the coarsest convergence on X mak-
ing f continuous (to (Y,7)). It is denoted f~7 and called initial con-
vergence for f and 7. For instance if S C X and (X, §) is a convergence
space, the induced convergence by & on S is by definition ¢:~¢ where @ is
the inclusion map of S into X. Similarly, if {(X;,&;) : ¢ € [} is a family
of convergence space, then the product convergence Il &; on the carte-
sian product IT;c; X; is the coarsest convergence making each projection
pj : et X; — X continuous. In other words, Il;cr§ = Vierp; &i- In
the case of a product of two factors (X, &) and (Y, 7), we write & X 7
for the product convergence on X x Y.

Dually, if f : X — Y and (X, &) is a convergence space, there is
the finest convergence on Y making f continuous (from (X, ¢)). It is
denoted f¢ and called final convergence for f and €. If f: (X, &) =Y
is a surjection, the associated quotient convergence on Y is f&. Note
that if £ is a topology, the quotient topology is not f& but T'f€.

The functor 7T is a reflector. In other words, the subcategory Top
of Conv formed by topological spaces and continuous maps is closed
under initial constructions. Note however that the functor T does not
commute with initial constructions. In particular T¢ x Tt < T'(§ X 7)
but the reverse inequality is genrally not true. Similarly, if ¢ : S —
(X, &) is an inclusion map, i~ (7€) < T'(i"&) but the reverse inequal-
ity may not hold. A convergence & is pretopological or a pretopology
if ime A\oe; Fa = [Naeslime Fo. Of course, every topology is a pre-
topology, but not conversely. For any convergence £ there is the finest
pretopology P& coarser than . Moreover, z € limpe F if and only
if 7 > Ve(x) where Ve(z) = A gy, 7 F 18 called vicinity filter of
x. The subcategory PrTop of Conv formed by pretopological spaces
and continuous maps is reflective (closed under initial constructions).
Moreover, in contrast with topologies, the reflector P commutes with
subspaces. However, like T, it does not commute with products.

The adherence adhe F of a filter F on a convergence space (X, §) is
by definition

adhe 7 := | J limeH = | limet,
HH#F UEU(F)

where UX denotes the set of ultrafilters on X and U(F) denotes the
set of ultrafilters on X finer than the filter 7. We write adhs A for
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adhe{A}T. Note that in a convergence space adhg may not be idempo-
tent on subsets of A. In fact a pretopology is a topology if and only if
adh is idempotent on subsets. We reserve the notations cl and int to
topological closure and interior operators.

A family A of subsets of X is compact at a family B for £ if

F#A = adh, F#B.

We call a family compact if it is compact at itself. In particular, a
subset A of X is compact if {A} is compact, and compact at B C X if
{A} is compact at {B}.

Given a class D of filters, a convergence is called based in D or D-based
if for every convergent filter F, say x € lim F, there is a filter D € D
with D < F and = € limD. A convergence is called locally compact if
every convergent filter contains a compact set, and hereditarily locally
compact if it is based in filters with a filter-base composed of compact
sets. For every convergence, there is the coarsest locally compact con-
vergence K¢ that is finer than £ and the coarsest hereditarily locally
compact convergence K& that is finer than £. Both K and Kj are
concrete endofunctors of Conv that are also coreflectors.

If AC X and (X,¢) is a convergence space, then O(A) denotes the
collection of open subsets of X that contain A and if A is a family
of subsets of X then O(A) := [J,c4 O(A). A family is called openly
isotone if A = O(A). Note that in a topological space X, an openly
isotone family A of open subsets of X is compact if and only if, when-
ever | J;.; O; € A and each O; is open, there is a finite subset J of I
such that J,., O; € A.

If (X,€) and (Y, 0) are two convergence spaces, C'(X,Y) or C(&, o)
deonte the set of continuous maps from X to Y. The coarsest conver-
gence on C'(X,Y) making the evaluation map e : X x C(X,Y) — Y,
e(z, f) = f(x), jointly continuous is called continuous convergence and
denoted [X, Y] or [¢, o]. Explicitely,

felimxy) F <= VeexVoerxwelimeg f(2) € limye (G x F).

REFERENCES

[1] S. Dolecki, An initiation into convergence theory, in Beyond Topology, Con-
temporary Mathematics 486, Mynard and Pearl (eds), AMS, 2009, 115-161.

[2] S. Dolecki, Properties transfer between topologies on function spaces, hyper-
spaces and underlying spaces, Mathematica Pannonica, 19(2) (2008), 243-262.

[3] S. Dolecki and G. Greco. Topologically mazimal pretopologies. Studia Math.
77 (1984), no. 3, 265-281.

[4] S. Dolecki, G. H. Greco, and A. Lechicki, When do the upper Kuratowski topol-
ogy (homeomorphically, Scott topology) and the cocompact topology coincide?,
Trans. Amer. Math. Soc. 347 (1995), 2869-2884.



CORE-COMPACTNESS 19

[5] S. Dolecki, F. Jordan and F. Mynard. Group topologies coarser than the Isbell
topology to appear in Topology and its Applications.

[6] S. Dolecki and F. Mynard, Convergence-theoretic mechanisms behind product
theorems, Topology Appl., 104(2000): 67-99.

[7] S.Dolecki and F. Mynard, When is the Isbell topology a group topology?, Topol-
ogy Appl. 157(8):1370-1378, 2010.

[8] S. Dolecki and F. Mynard. A unified theory of function spaces and hyperspaces:
local properties, submitted.

[9] Gierz, Hofmann, Keimel, Lawson, Mislove and Scott, Continuous lattices and
domains, Encyclopedia of mathematics and its applications 93, Cambridge
University Press, 2003.

[10] R. Heckmann. A non-topological view of dcpos as convergence spaces. Theoret.
Comput. Sci. 305 (2003), no. 1-3, 159-186.

[11] K. H. Hofmann and J. D. Lawson. The spectral theory of distributive continuous
lattices. Trans. Amer. Math. Soc., 246:285-309, 1978.

[12] J.R. Isbell, Function spaces and adjoints, Math. Scandinavica 36 (1975), 317
339.

[13] J.R. Isbell, Meet-continuous lattices, Symposia Mathematica 16 (1975), 41-54.

[14] F. Jordan, Coincidence of function space topologies, Top. Appl., 157(2), 336—
351, 2010

[15] F. Jordan, Coincidence of the Isbell and fine Isbell topologies, to appear in Top.
Appl.

[16] X. Lin and S. Yujin, On core compactness of semilattices and frames with the
Scott open filter topology, Q. and A. in Gen. Top., 15:189-194, 1997.

[17] Elliot Pearl (ed.), Open problems in topology II, Elsevier, 2007.

[18] F. Schwarz. Powers and exponential objects in initially structured categories
and application to categories of limits spaces. Quaest. Math., 6:227-254, 1983.

[19] F. Schwarz. Product compatible reflectors and exponentiability. Categorical
topology (Toledo, Ohio, 1983), 505-522, Sigma Ser. Pure Math., 5, Helder-
mann, Berlin, 1984.

E-mail address: fmynard@georgiasouthern.edu
E-mail address: fejordGhotmail.com



	1. Introduction
	2. core-compactness of OX
	3. Core compact dual, Consonance, and infraconsonance
	4. Scott topology of the product versus product of Scott topologies
	5. Topologicity, pretopologicity and diagonality of [X,$]
	6. Appendix: convergence spaces
	References

