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Abstract

Consider a probability distribution subordinate to a sytmential distribution with finite
mean. In this paper, we discuss the second order tail bahafvibe subordinated distribution
within a rather general framework in which we do not requneéxistence of density functions.
For this aim, the so-called second order subexponentitililition is proposed and some re-
lated properties of its are established. Our results ungmetimproved some classical results.
Keywords: Second order tail behaviour; heavy-tailed distributiagexponential distribution;
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1. Introduction

Let N be a non-negative integer valued random variable withiligion {p,}.-0 and Xy,
Xo, - -+ be a sequence of non-negative i.i.d. random variablesparient ofN. The common
distribution ofX;’s is denoted byF. Define forn > 1,

n
Sni= Y X (1.1)
k=1

andS, = 0. In many fields of applied probability, one has to invegtghe tail behavior o8y,
whose distribution is equal to

G() = > paF™ (9, (1.2)
n=0

whereF*0 is the unit mass at zero and for> 1, F*" denotes the-fold convolution of distribu-

tion F. Obviously,G is a probability distribution subordinate Fowith subordinatof pp}nso-
Denote the tail of distributio® by G(x) = G(x, o) = 1 — G(X). A first order approximation

to G(X) asx — oo has been considered by Chistyakov [7], in which he introdbeeso-called
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subexponential distribution clasg. By definition, a distributior on [0, «) is said to belong
to the class? if for n = 2 (hence for alh > 2),

Ere
jim ) _ (1.3)
= F(x)
Chistyakov[[7] states that F € .« andE(Z") is analytic az = 1, then
GO ~ QO NPF(), x— o, (1.4)
n=0

where, here and throughout the paper, we waftg ~ b(x), x — oo to denote
. a(x
im G5 =1

Many papers have been devoted to investigating the conveegeate in[(1.4); See Omey
and Willekens[[1B][14], Omeyi [15], Baltrunas and Omigyi4B]Baltr unas et al._[5], Geluk
and Pakes |9], and Geluk [10][11], among others. In thesensaghe precise convergence rate
as well as the O-type results has been considered. Genspafking, the results about the
convergence rate ih (1.4) would befdrent according to whether or not the distributfoinas
a finite mean.

Denote the mean of by u. In this paper, we assume < o and focus on the precise
convergence rate in (1.4). Most of the related results lisassume the existence of the density
of F. For example, a result from Omey [14] requife$o have a subexponential densityBy
definition, the densityf is said to be a subexponential density, denoted bySd, if

im TX+Y)

im =69 1, VyeR, (1.5)
and

) f(x-y)dy

lim o = (1.6)

The first part of Theorem 2.2(ii) in Omey and Willekensl[14$iated as follows.

Theorem 1.1(Omey and Willeken§ [14]) SupposézE) is analytic at z= 1, f € Sd, and

F2:(X) — 2F(X) ~ 2uf(x), X — oo, 1.7)

then - .
GO) = QO NPIF) ~ () - p} f(0), X — . (1.8)

n=0 n=0



Efforts have been taken by Omeéy [15] to remove the condition o$ities in Theorern 111,
See Theorem 6.1 of Omey [15]. However the condition impoBetktrequire§ to belong to a
subclass of the distributions with both dominatedly vagytiails and long tails (see Omey [15]
for details).

In this paper, we aim to generalize Theorlen 1.1 to the caseevthe density of does not
necessarily exist. One main result of ours (see Thebremugifigs Theorern 1]1 and the related
resultin Omeyl([15]. The appropriate condition for our régiexpressed in terms of some class
of distributions, which we call the second order subexptiakdistribution class. Its definition
and properties are also stated in section 2 as main resthiésprbofs are given in section 3.

2. Main results

Lett € (0, o] and writeA(t) = (0, 1],
X+ A(t) = (X, X+ 1]
and
F(X+ A(t)) = F(x, x+ 1] = F(x+1t) - F(X).

The so-called local subexponential class as well as thé loieg-tailed class is introduced by
Asmussen et al.[ [1]. By definition, a distributidghon [0, o) is said to belong to the local
long-tailed classZy, if the relation

F(X+y+A(t) ~ F(x+ A(t)), X— o (2.1)

holds uniformly iny € [0, 1] and hence, it holds uniformly on any finite intervalyofFurther-
more,F is said to belong to the local subexponential cl&&g), if F € £, and

F2(x+ A(t) ~ 2F(X+ A(t)), X — oo. (2.2)

Definition 2.1. We say a distribution F o[0, o) with finite mearnu belongs to the second order
subexponential class, if for all t € (0, o), F € %) and

F2(X) — 2F(X) ~ 2uF (X, X+ 1], X — oo. (2.3)
Proposition 2.1.(1) Assume Fe ., then for all n> 2,
F™(X) — nF(X) ~ n(n — LuF(x, X+ 1], X — oo. (2.4)
(2) Assume for Fe Zyy all t € (0,00), u < oo and Ez(x) = o(F(x, x + 1]) (it means that

lim Ez(x)/F(x, x+ 1] = 0). If for some n> 2, the relation [2.4) holds, then E .%5.
X—00
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An uniform bound for[(2.4) is given as follows.

Proposition 2.2. Assume Fe .%5, then for every fixed > 0, there exist constants A, K 0,
which are independent of n, such that for atkr?,

F™(X) — nF(X)

P F(x, x+ 1]

x=A

<K@+ e (2.5)

Our next result investigates the second order tail behaabG.

Theorem 2.1.(1) If F € .5 and EZ") is analytic at z= 1, then
GO~ (3 NPIF() ~ (u ) n(n = DpolF(x x+ 1], x> co. (2.6)
n=0 n=0

(2) Suppose F Zy for all t € (0, 00), i < 0o andF-(x) = o(F (x, x + 1]). If the relation [25)
holds and there exists some I2 such that p> O, then Fe .%5.

Remark 2.1. As has been shown by Asmussen etlél. [1], if F has a densityS#l, then for
all't € (0, ), F € #51. Hence Theorem 2.1 improves Theorem 2.2(ii) of Omey aneRafis
[14]. By Corollary[2.1 (see below), we know that Theotem 2sb amproves Theorem 6.1 of
Omey [15] in the casg < .

Next we present a result on tail equivalences.

Proposition 2.3.Let F and H be two distributions. If E .%, and there exist constants K 0,

¢ € R such that _ _
H(X) — KF(X)

F(X X+ 1] -6 X (2.7)

then He .%.

Remark 2.2. From Propositior 2.3, we know thdt (2.7) defines a class dfilligion that is
equivalent to F. In this equivalent class, there must exdis&ribution that satisfies (2.7) and
has a subexponential density. To see this, let K/ fol F(s)ds and define

h(X) := KF(x,x+ 1], ¥x> 0. (2.8)

Assume Fe .7 for all t € (0, ). In view of Lemm&a 211 below, we have Sd. Denote the

distribution function oﬁ(x) by H. Itis easy to see

foo F(s s+ 1]ds= fmf(s)ds: flf(x+z)dz (2.9)
X X 0



Since Fe %, for all t € (0, ), then it follows from Lemmla_3.1 below and the dominated
convergence theorem that

1
H(X) - KF(x) —K f (F(x) - F(x + 2))dz
0

¢

1
—KF(X, X + 1][ zdz
0

—%F(x,x+ 1], (2.10)
i.e., H satisfied (2]7) with e —K/2.

Remark 2.3. It follows from Propositiofn 2]1(1) that in Proposition 2 @.7) implies that[(2]7)
holds with H and F (in the numerator) replaced by*tand F* and c replaced by ne K(uy —
mn(n - 1), wherewy = [~ H(x)dx < oo.

The following lemma about local subexponential distribo§, which is cited by Remalrk 2.2,
might be of independent interest.

Lemma 2.1.Let te (0, o) be fixed, then Fe %,y if and only if KK + A(t)) € Sd, where K as

a positive constant, is defined as
1
|, F(9)ds

Finally, we give some dfticient conditions foilF € .. A distributionF on [0, o) is said to
belong to.* (see Kluppelberg [12]), if

fo F(Y)F(x—y)dy ~ 2uF(x), X — co. (2.12)

It is well known thaty* c .. Denoteh(x) = F(x, X + 1] andg(x) = h(x)/F(X).

Proposition 2.4.Suppose Fe %, forallt € (0, o), u < 00, F € 7%, EZ(X/Z) = o(F(x, x+1])
and for all y> 0,

Iirlsmup% < o0, (2.13)

Then Fe .%.

Remark 2.4.In view of Proposition 2]1(1), we know that Proposition 2aproves Proposition
3.5(iii) of Baltr unas([2].



Corollary 2.1. Suppose Fe %, forall't € (0, 00), u < oo, EZ(X/Z) = o(F(x, x + 1]) and for
ally > 0,

limsup h(( 3;) ) (2.14)

Then Fe .%.

Some typical subexponential distributions including theg®o, lognormal and Weibull (with
parameter between 0 and 1) distributions all belong’zpwhich is shown in the following.
For the Pareto distributioR, i.e., F(X) = cx®, wherec > 0 anda > 1, it is easy to obtain

for every fixedt € (0, =),
F(x X+1] ~ catx @D x - oo, (2.15)

and hence by Corollafy 2.1, it is easy to $ee ..

Let F be the lognormal distribution with the densifyx) = e (™12 /x\2xo2. Let @
be the standard normal distribution with the dengityThen by using the relation between the
lognormal and normal distributions, and the following wiellown relation

1-d(X) ~ %(¢(x), X — 00, (2.16)

it is easy to obtain

InX — u o Inx—pu

F(x) = 1 - ~ 9

), X — oo. (2.17)

On the other hand, it is easy to see for every fikedO0, ),

F(x X +1] ~ tf(x) = i¢('”x K

), X— oo (2.18)
Thus,
()~|n—x-ai, X — oo, (2.19)

By Proposition 2.1, it is easy to s€ee ..
For the Weibull distributiorF, i.e.,F(x) = e, 8 € (0, 1), we have for every fixetle (0, ),

F(x, x+t] = gt e, x— oo. (2.20)
Hence
q(¥) ~ B, x— oo (2.21)

By Proposition 2.1, it is easy to s€ee ..
A distribution, which belongs to#, but does not have a density, is presented in the following

example.



Example 2.1.Define for n> 2,
F(X) = c(1+ %)x‘“, P <x<(n+1p, (2.22)
where ¢c> 0, @ > 1 andg € (1, 2). Since
(n+1)5—rﬁ:n3[(1+%)ﬂ—1]~ﬁn3—1—>oo, n — oo, (2.23)

then for any fixed € (0, o) and sifficiently large x, there only exist two caseg: 4x < X+t <
(n+1Porn <x<(n+1f < x+t< (n+ 2y for some n. In either case, through some simple
calculations, it is to easy see that the relatibn (2.15) atevholds. From this and in view of

F(X) ~cx®,  Xx— oo, (2.24)

it is easy to see that the conditions of Corollaryl2.1 ared&d, and thus, F€ .%. However,
since F is not continuous, it does not have a density.

3. Proofs

In the sequel, all limit relations between two functiapgx) and g,(x) of one variablex,
unless explicitly stated otherwise, are for— oo. If g; or g, is a function of two variablex
andA, then the limit relations between them, unless explicithted otherwise, are fot —» o
and thenA — oo, the meaning of which is specified as follows:

0: = 0(g,) denotes

/Lim limsup|g:/g.| = 0;

X—00

01 ~ 0> denotes
Jim limsupig,/gz - 1 = 0;

X—o00

01 < gz denotes
lim suplim supg: /g, < o;

A—oco X—00

01 = g2 denotes
IirAninf IiE(ninf 0:1/9, > 0.



Lemma 3.1.Assume Fe Z for all t € (0, o). Then for all te (0, o),

F(x+ A(t))

Fooxs 1] -t X—- oo (3.1)

Proof. For anyé € (0, min{t, 1}), there exist positive integeks n such that
ké <t < (k+1)s, né <1< (n+1)o. (3.2)
Obviously, whers — 0+,
1
k~—, ~ =, 3.3
n~< (3.3)

Obviously,

k k+1
DR (i - 16, x+ 6] < F(x+ A®) < DT F(x+ (i - 1)8, x+id],

i=1 i=1

n n+1
DUROCH (i - 18 x+i6] < FOOx+1] < ) F(x+ (i = 1)6, X + i6]. (3.4)
i=1 i=1

Let o be fixed, then forali = 1, 2,---, maxk, n},

F(x+ (i —1)5, X+ i8] ~ F(X,x+ 4], (3.5)
and hence
k .. F(x+A@®) . F(x+A(t)) k+1
n+1 = |II;(TLLI;]f F(x, x+ 1] = “Tjou F(x, x+ 1] = n -’ (3.6)

Lets — 0+ in [3.6) and in view of[(3.3), we obtaif (3.1).

Lemma 3.2.For any te (0, ), the following three assertions are equivalent:
(1) Fe yA(t)u
(2) Fe gA(t) and

f ey + AD)IF) ~ Fx+ AQ). (3.7)
0
(3) Fe gA(t) and

X—A
fA F(x—y + AM)AF(Y) = o(F (X + A(t))). (3.8)

Proof. The proof of this lemma is similar to that of Proposition 2 afrAussen et al._[1], so we
omit it.



Lemma 3.3. Assume Fe %,y forallt € (0,0) andu < co. Then the relation[(2]3) is

equivalent to .
fA (F(x—y) - FQIAF(y) — F-(X) = o(F (%, x + 1]). (3.9)
Proof. AssumeF € %)) for all t € (0, o) andu < co. Notice that
F2:(x) — 2F(X) = f ' {F(x-y) — F(X)}dF(y) - Ez(x). (3.10)
0

By Lemmd 3.1, it is obvious that

A )
fc; (F(x—-y) — F(X)}dF(y) ~ fo ydF(y) - F(x, X + 1] = uF(x, x + 1]. (3.11)

By integrating by parts, we obtain

f (F(x-y) - FIdF()

-A

A
_ fo (F(x—y) ~ FOOIIF@) + (F(x— A) - FOIF(® ~F()L  (3.12)

hence by Lemm@3.1 and in view of the fact that IR (A) = 0, we have

f {Flx=y) ~FOOIdF) ~ P x+ 1), (3.13)

By (3.10), [3.11) and(3.13), we obtain the desired result.

Lemma 3.4. Assume Fe %, for all t € (0, o) andfz(x) = o(F(x, X + 1]). Then the relation
(2.3) implies Fe .7y for all t € (0, c0).

Proof. Assume the relatiof (2.3) holds. Sirﬁé(x) = o(F(x, x+1]), from Lemma3.1 it follows
that

X—A
fA {F(x—-Y) — F(X)}dF(y) = o(F(x, X + 1]). (3.14)

Hence forx > 2A andA > t,

IA

X—A
[ o=y -Fooaro)
o(F (%, X+ 1]) = o(F(x + A(t))). (3.15)

X—A
fA Fx—y+ A®)dF()

Thus by lemma@a 312, we prove € ..
Proof of Proposition[2.1(1).We argue by induction. First the relatidn (2.4) is triviat fo= 2.

Furthermore, assumie (2.4) holds for samel > 2, i.e.,
FO-D+(x) — (n = 1)F(X) ~ (n = 1)(n — 2)uF(x, x + 1]. (3.16)

9



Then it sufices to provel(Z]4) fon. Note that

F™(x) — nF(X)
- [ FEx-y) - (- DFx- yidF)
+(n = {F>(X) — 2F(x)}
= 41, (3.17)
Obviously,
I, ~2(n - DuF(x X+ 1]. (3.18)
Forx> A >0,

X—A _
L - fo (F(x— y) - (n - DF(x - y)IdF(y)

. f FED(x— y) - (= DF(x - Y)JdF(y)
X—A
= i+ (3.19)

SinceF € .%jq), it follows from Lemmd&_3.R that the relation (8.7) holds for 1. Hence by
(3.16), we obtain

X—A
Lo~ (n—l)(n—Z)ufo F(x—y. x—y+ 1]dF(y)
~ (n=1)(n - 2WF(x x + 1] (3.20)

For J,, by integrating by parts, we obtain
A A
o= [ Ry - FOEe ) - (1-1) [ (Foc-y) - FO9IeF)

+HFO-D(A) — (n - HF(AHF(x - A) = F(X)}
= Ki =Ky +Ks. (321)

By Lemmd 3.1, it follows that

Ky ~ f ) ydF™ D (y) - F(x, x + 1] = (N = LuF(x, x + 1], (3.22)
0
Ky~ (n-1) foo ydF(y) - F(x, X+ 1] = (n = LuF(x, x + 1], (3.23)
0
and
Ks ~ (FO-D(A) — (n — 1)F(A)}A - F(x, X + 1] = o(F(x, X + 1]). (3.24)

10



Then we have

Jo = o(F(x, x + 1]), (3.25)
and hence
F"(x) —nE(X) ~ (n—1)(n— 2uF(x x+ 1]
+2(n = DuF(x x+ 1] = n(n = LuF (%, x + 1, (3.26)
as required.

The proof of Proposition 211(2) needs the following Lemma.

Lemma 3.5.Assume Fe %y for all t € (0, o), u < oo andfz(x) = o(F(x, x+ 1]), then for all

n> 2,

I X+ 1] >n(n-1)u. (3.27)

Proof. We still argue by induction. In the following, we use the samogations {4, I, - --) as
in the proof of Proposition 2/ 1(1). From (3]111) and (3.18jpilows that forx > 2A,

fo (F(x-y) - FOIdF()

A X
> f F(x—y) - FOAF() + f F(x—y) - FQIF()
0 X—A
~ 2uF(x, x+1]. (3.28)

Then, in view of [[3.1D) and the conditid?lz(x) = o(F(x, x + 1]), we prove[(3.2]7) fon = 2.
Assumel(3.27) holds for sonme- 1 > 2, i.e.,

fmint T 09~ (0~ DFCY

myr F(x X+ 1] 2 (n-1)(n -2 (3.29)

Then forx > 2A, we have

X—A
3 > (n—1)(n—2)uf0 F(x—y,x—y+ 1]JdF(y)

\%

A
(n—l)(n—2)uf0 F(x—y.x—y + 1]dF()
~ (n=21)(n-2uF(x, x+1]. (3.30)

From the proof of Proposition2.1(1), we hale (3.25). Moexpthe relation[(3.27) holds for
n=2,i.e.
I, = (N— L){F2(X) — 2F(X)} > 2(n — L)uF(x x + 1]. (3.31)

11



Hence we have

F™(x) -nF(Y) 2 (n—1)(n-2)uF(x x+1]
+2(n— LuF(x, x+ 1] = n(n — L)uF(x, x + 1]. (3.32)

Proof of Proposition[2.1(2). If the relation [Z.4) holds fon = 2, the result is obvious. Thus,
we assume the relation (2.4) holds for samte 3. From the proof of Lemma 3.5, we know that
the relations from(3.29) t¢ (3.81) still hold. However tiedation [2.4) implies

Ji+ Db+ ~2n(n-LuF(x x+ 1], (3.33)
hencel(3.30) and (3.B1) necessarily hold with the gigeplaced by~. In particular, we have
o ~2(n—uF(x x+ 1], (3.34)

which is equivalent td(2]3). From this and Lemimd 3.4, we fawe.7,, for all t € (0, o0) and
hence, the proof is completed.
Proof of Proposition[2.2. Without loss of generality, we assumae& (0, 1). By Lemmd3.2, we

know there exist sficiently large constants, A such thatA > A" > 0 and

x—A
sup{f F(X-y,X-y+ 1]dF(y)/F(x,x+ 1]} <l+eg/d (3.35)
xX=A 0
and
sup{\ﬁ(x) ~ FW|[Foex+ 1]} <3u (3.36)
x=A
Obviously,
X—A x—A
f F(x-y,x-y+ 1]dF(y) sf F(x-y,x—y+ 1]dF(y), (3.37)
0 0

Hence by[(3.35), we know that

sup{fox_A F(X-y,Xx-y+ 1]dF(y)/F(x, X + 1]} <1l+eg/4 (3.38)

xX>A
SinceF(log x, log x+1] is a slowly varying function, so is/F(log x, log x+1], hence by Lemma
1.3.2 of Bingham et al_[6], the aboyecan be chosen such that the functigk flog x, log x+1]
is locally bounded ondf*, ), i.e., I/F(x, x+ 1] is locally bounded on4, «). Hence by Lemma
3.1, we know there exists affigiently large constar > A such that

sup{{f(x - A - E(x)}/F(x, X + 1]} < o, (3.39)

x>B
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and

sup {{f(x— A) - E(x)}/F(x, X + 1]} < sup {I/F(x, x+ 1]} < co. (3.40)

A<x<B A<x<B

Thus, there exists a positive constdhtwhich is independent of, such that both the left-hand
sides of[[3.39) and (3.40) do not exceddd On the other hand, by the definition &, it is easy
to see

[J2l < n{F(x-A) - F(»)}. (3.41)

Hence we have

sup{|Ll/F(x, x+ 1]} < nsup{{f(x - A) - f(x)}/F(x, X + 1]}
xX=A x=A
< Mn< . (3.42)
Denote
F™(x) — nF(X)
0= R FOox+ 1] (3:43)
By (3.38), we have
sup{|Jul/F(x, X + 1]}
xX>A
X—A
< an_lsup{f F(X-y,X-y+ 1]dF(y)/F(x,x+ 1]}
x=>A 0
< (1+¢/4)an1 (3.44)
From (3.36),[(3.42) and (3.44) it follows that
an < (1+e/B)an1+3un-1)+ Mn< (1 +¢e/ban1 +Cin, (3.45)
whereC; = 3u + M. By induction and in view ofr; = 0, we obtain
n-2 _
an < Cy Z (n—i)(1+e/4) < Cin?(1 + &/4)", (3.46)
i=0

It is easy to see that the right-hand sidelof (B.46) does rutesl (1 + £)" for an appropriately
chosen constard and hence, the proof is completed.
Let

_ . F™(X) = nF(X)
Bo=Inf F(x, x+1] (347

13



Lemma 3.6.Assume F is a distribution df, ) satisfyingfz(x) = o(F(x, x+ 1]). Then there
exists a constant A O, which is independent of n, such that for albre,

Bn > -1, (3.48)

Proof. By Bonfferoni’s inequality, we have

F™(X) P (S, > X)

P(maxXk > x)

1<k<n

\%

n
> > PX>X- > P(X>xX>X
k=1 1<i<j<n
> nE(X) - nF(X), (3.49)

Sincefz(x) = o(F(x, x + 1]), there exists a gficiently large constarh > 0 such that

sup{fz(x)/F(x, X + 1]} <1 (3.50)

xX=A

Combining [3:4P) and (3.50) gives (3148).
Proof of Theorem[2.1. (1) By Propositio 211(1), Propositign 2.2 and the domidatenver-

gence theorem, we obtain the desired result.

(2) Obviously,

IA

G- (SnmF) S FT R
lmo F(x, x+ 1] _“gy«gf F(x, x+1]
oo o % {F™(X) — nF(x)}pn
,unzzc;n(n— 1)pn - IlrerLDf Fooxs 1] : (3.51)

By Lemmal3.6, we know that Fatou’s Lemma (cf. p. 94 of Chow aaither [8] ) can be

applied to the second term above, which gives

> {F™(X) — nF(X)}pn

n#l

“Emo?f F(x, x+ 1]
. [F™(X) = nF(X)
= IlrerLDf{ F(x, x+ 1] } "
n#l
> ) n(n-1)pn (3.52)

n=l
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where in the last step, LemmaB.5 has been applied. Comh(@ibd) and[(3.52) gives

. F(x) - IF(x) >
P ||T_>500Upm < u ; n(n— 1)pn — nzi; n(n - 1)ps

= pl(l - . (3.53)
From this and Lemmla_3.5 it follows that

im F(x) - IF(x)

m o =0 e (3.54)

Hence by Proposition 2.1(2), we obtdine ..
Proof of Proposition[2.3. Notice that

H(x + A(t)) _HMX-K-F(®) HXx+t)-K-F(x+1)
K-F(x+A{t) ~  K-F(x+A®t)  K-F(x+AQ)

(3.55)
and
F(x+t+ A1) ~ F(x+ A(Y)). (3.56)
Hence by[[ZJ7) and Lemnia3.1, we know that the right-handafig&53) tends to zero, i.e.,
H(x+ AD) ~ K - F(x+ A(1)). (3.57)
Hence by Lemma 1 of Asmussen et l. [1], we have
H e S (3.58)
By 2.7),
A (%) - K2- () = (AX) - K-FQHAX + K-F} = oF(x x+1]).  (3.59)
Notice that
[ oy - Fmyaro)
-k 7 Fix-y) - Fooudro) + | - y) - K Fix- 9IdFo)
- fA ! {H(X) — K - F(x)}dF(y). (3.60)
By (27), we have

f o (H(X) = K - F(X)}dF(y) < {H(X) —= K - F(X)}F(A) = o(F(x, X + 1]) (3.61)
A
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and
X—A _ _
fA (FA(x—y) - K- F(x- y)IdF )

. f By X y+ 1dFO) = ofF (x X + 1]). (3.62)
A

where in the second step, Lemmal3.2 is applied sihee¥,q. Substituting[(3.61) and (3.52)
into (3.60), we obtain

X—A _ _ X—A _ _
fA (F(x—y) - AOIF(y) = KfA (F(x—y) - FOIdF()
+o(F(x, x + 1]). (3.63)

For the same reason, in view 6f (3157) and (B.58), we obtain

X—A _ _ X—A _ _
fA (H(x—y) - AMIdHE) = KfA (F(x—y) - FOOIdH()
+0o(F (X, X + 1]). (3.64)

By integrating by parts, we have
x-A _
[ Fex-y - Foaro)
A

X—A
_ f (F(x—y) - AGIF() + (F(x - A) - FOONF(A) - Ax - A)
—{H(x-A) — HXHF(A) - F(x- A)}, (3.65)

hence by[(3.57) and LemrfiaB.1, we obtain
! ' Fi-y) - FolaHe)
= fA o {H(x - y) — HX)}dF(y) + o(F(x, x + 1]). (3.66)
Then from [3.68),(3.684)(3:66) and (3/59) it follows that
[ " Fx - y) - FOIdHO) - F0
= K? { fA o {F(x-y) — F(X)}dF(y) - Ez(x)} + o(F (X, X + 1]). (3.67)

Thus by Lemm&313 and (3.57), we conclude tHat ..
Proof of Lemmal[2.1. Firstly, it is easy to see

foF(s,s+t]ds:foF(s)ds—fx F(s)ds (3.68)
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Let x — o in (3.68), we obtain

fm F(s s+t]dt= ftf(s)ds< oo, (3.69)
0 0

and thuskKF(- + A(t)) is a density function. From Proposition 2, the proof of lteenl of
Asmussen et al[[1], it is easy to see tRat ., is equivalent to thalF € %)) and for every
functionl(x) such that(x) — oo andl(x) < x/2, the following relation holds:

x—1(X)
f F(x—y+AM)dF(y) = o(F(x+ A(t))), X — oo. (3.70)
1(X)

Note that if [3.7D) holds with(x) replaced by somé(x) such thatl;(x) < I(x), then [3.7D)
itself holds. Hence without loss of generality, we assumiigides exactlyx — 2I(x) and denote
n(x) = (x— 21(x))/t. AssumeF € Z,y. Then we have

X—I(X)
f.( ROy AR

N Al(x)+kt
> [ Ry Aw)IFY)

= J109+(k-1)t

~ Zn: F(X—1(x) — (k= Lt + A@)FI(X) + (k= 1)t + A(t)
k=1

18, ook
- 3 kz; fl( oy FOC Y AOF(+ Ay
1 x—I(X)
_ 1 f F(x—y+AD)F(y + AD)dy, X — oo. (3.71)
1)

Thus, by Proposition 6 of Asmussen et al. [1], we prove théreesesult.
Proof of Proposition[2.4. Note that

y
fh(x—t—l)dt
-1
y+1_ 0_
fy F(x—t)dt—[lF(x—t)dt

F(x-y) - F(), (3.72)

v

hence,

X/2
fA (F(x-y) - FOIAF()

X/2 Y
fA f 1 h(x - t — 1)dtdF(y)

< F(A fA h(x -t — 1)dt + fX/z h(x — t — 1)F(t)dt
-1 A
Vi + Vo, (3.73)

IA
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where in the second step, Fubini’s theorem is applied toéhenge the order of integration. It
is easy to see

V,; ~ AF(A)h(X) = o(h(x)). (3.74)
Since
X X/2
f F(x-tF(t)dt=2 f F(x - t)F(t)dt, (3.75)
0 0
itis easy to see thd& € . implies
f . F(x - t)F(t)dt = o(F(X)). (3.76)
A

By Theorem 2.0.8 in Bingham et al.|[6],_(2]13) holds localhjfarmly in (0, o). Hence

Vo, ~ f . h(x — t)F(t)dt
A

f . q(x — t)F(x — t)F(t)dt
A

X/2
< qx f E(X — t)E(t)dt = o(h(x)). (3.77)
A
Combining [3:74) and(3.77) gives
X/2
&ﬁ (F(x—y) - FOIdF(y) = o(h(x)). (3.78)

Hence by integrating by parts and usﬁf:(x/Z) = o(h(x)), we have

X—A X/2
f (F(x-y) — F(Q}dF(y) = f {F(x=y) = FO)IdF(y) + o(h(x)). (3.79)

/2 A

From this and[(3.48), it follows that
X—A
LL (F(x—y) - FOIAF(y) = ofh(x). (3.80)

Note thatF (x) < F (x/2) = o(h(x)), hence by LemmA 3.3, we prove (2.3). From this and
Lemmd 3.4, it follows thaF € .7, for all t > 0 and hence, the proof is completed.
Proof of Corollary 2.1l By (3.72) and[(2.14), we have

X/2 _ _
”ﬁ (F(x-y) - FOIdF()

X/2 Y
fA f 1 h(x -t — 1)dtdF(y)

X/2
S h(®) ydF(y) = o(h(x)), (3.81)

A

IA
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i.e. the relation[(3.418) holds. The remaining proof is santb that of Proposition 2.4 and we

omit it.
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