MULTI-POINT GREEN'S FUNCTIONS FOR SLE AND AN ESTIMATE OF BEFFARA

GREGORY F. LAWLER AND BRENT M. WERNESS

Abstract

In this paper we define and prove of the existence of the multipoint Green's function for $S L E-$ a normalized limit of the probability that an $S L E_{\kappa}$ curve passes near to a pair of marked points in the interior of a domain. When $\kappa<8$ this probability is non-trivial, and an expression can be written in terms two-sided radial $S L E$. One of the main components to our proof is a refinement of a bound first provided by Beffara in [3. This work contains a proof of this bound independent from the original.

Contents

1. Introduction 1
2. Preliminaries 4
2.1. Notation 4
2.2. Schramm-Loewner evolution 9
2.3. Radial parametrization 10
2.4. Two-sided radial $S L E$ 13
3. Multi-point Green's function 15
4. Proof of Beffara's estimate and Lemma 3.1 20
4.1. An excursion measure estimate 21
4.2. Topological lemmas 23
4.3. Main $S L E$ estimates 26
4.4. Combinatorial estimates 30
Appendix A. The existence of the I_{t} 35
References 37

1. Introduction

The Schramm-Loewner evolution ($S L E$) is a random process first introduced by Oded Schramm in [12] as a candidate for scaling limits of models from statistical physics which are believed to be conformally invariant. Since its introduction, $S L E$ has been rigorously established as the scaling limit for a number of these processes, including the loop-erased random walk 9], the

[^0]percolation exploration process [14], and the interface of the Gaussian free field [13]. For a general introduction to $S L E$ see, for example, [6, 7, 15].

Chordal $S L E_{\kappa}$ for $\kappa>0$ in the upper half-plane (\mathbb{H}) is a one-parameter family of non-crossing random curves $\gamma:[0, \infty) \rightarrow \overline{\bar{H}}$ with $\gamma(0)=0$ and $\gamma\left(\infty^{-}\right)=\infty$. Depending on κ, the geometry of the curve has several different phases. When $0<\kappa \leq 4$, the curves are simple (no self intersections). When $\kappa>4$, the curves are no longer simple, but they remain non-crossing. When $\kappa \geq 8$, the curve is spacefilling, passing through every point in $\overline{\mathbb{H}}$.

Due to the strong dependence on the history of the curve forced by the curves being non-crossing and the measure being conformally invariant, the process $\gamma(t)$ is highly non-Markovian. This makes estimating the probability that the process passes close to a series of marked points in \mathbb{H} difficult when $\kappa<8$, as is required, for example, in the proof of the almost sure Hausdorff dimension of $S L E_{\kappa}$ given by Beffara in [3].

When trying to understand the probability that $S L E_{\kappa}$ gets near to some point $z \in \mathbb{H}$ it is convenient to consider the conformal radius of z in $H_{t}:=$ $\mathbb{H} \backslash \gamma[0, t]$, which we denote by $\Upsilon_{t}(z)$, instead of the Euclidean distance (see Section 2.1 for the definition). This change does little to the geometry of the problem being considered since the conformal radius differs from the Euclidean distance by at most a universal multiplicative constant.

The Green's function for $S L E_{\kappa}$ from 0 to ∞ in \mathbb{H} for $\kappa<8$ is a form of normalized probability of passing near to a point in \mathbb{H}. It is defined by

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{d-2} \mathbb{P}\left\{\Upsilon_{\infty}(z)<\varepsilon\right\}=c_{*} G_{\mathbb{H}}(z ; 0, \infty)
$$

where $d:=1+\kappa / 8$ is the Hausdorff dimension of the $S L E_{\kappa}$ and c_{*} is some known constant depending on κ. The Green's function was first computed in [11] (although they neither used this name nor definition), and the exact formula found there is given in Section 2.1. The existence of the limit requires some argument, and a form of it is proven in Lemma 2.10.

We wish to show that analogously that

$$
\lim _{\varepsilon, \delta \rightarrow 0} \varepsilon^{d-2} \delta^{d-2} \mathbb{P}\left\{\Upsilon_{\infty}(z)<\varepsilon ; \Upsilon_{\infty}(w)<\delta\right\}
$$

exists and can be written as

$$
c_{*}^{2} G_{\mathbb{H}}(z ; 0, \infty) \mathbb{E}_{z}^{*}\left[G_{H_{T_{z}}}(w ; z, \infty)\right]+c_{*}^{2} G_{\mathbb{H}}(w ; 0, \infty) \mathbb{E}_{w}^{*}\left[G_{H_{T_{w}}}(z ; w, \infty)\right]
$$

where \mathbb{E}_{z}^{*} is the expectation of a particular form of $S L E$ called two-sided radial $S L E$, which can be understood as chordal $S L E$ conditioned to pass though the point z, and $G_{H_{T_{z}}}$ is the Green's function for $S L E$ in the domain remaining at the time it does so. The form of the limit as the sum of two similar terms comes from the two possible orders that the curve can pass through z and w, and each term individually can be thought of as an ordered Green's function.

Figure 1. We wish to show that curves that get near z then near w concentrates on curves like those in the left image. Estimating the probability of such curves is easy by repeated application of the Green's function. However, such simple estimation gives the same order of magnitude to curves like those in the center image. This issue can be overcome as long as getting near to w before z decreases the probability that the $S L E$ gets even closer to w later on. This is often the case, however the right image shows an example where it is not. In this case, once the curve gets near to z, it is essentially guaranteed to pass near w. Controlling for these issues forms the bulk of this work.

To prove this result, we will use techniques similar to those used in [3], where Beffara (in slightly different notation) established the estimate that there exists some $c>0$ such that for any two points $z, w \in \mathbb{H}$ with $|z|,|w| \geq 1$

$$
\mathbb{P}\left\{\Upsilon_{\infty}(z)<\varepsilon ; \Upsilon_{\infty}(w)<\varepsilon\right\}<c \varepsilon^{2(d-2)}|z-w|^{2-d}
$$

The reason that similar techniques are relevant to this problem comes from the fact that the difficulty in both of these propositions lies in proving a rigorous version of the following heuristic statement: an $S L E$ curve that first passes through z and then through w will do so directly, which is to say by getting near to z without becoming very near w and then heading to w. Figure \square demonstrates some of the issues which can occur which make this a tricky statement to make rigorous.

In the process of proving the existence of the multi-point Green's function for $S L E$, we also obtain an independent proof of a mild generalization of Beffara's estimate - that there exists a $c>0$ such that for any $z, w \in \mathbb{H}$ with $|z|,|w| \geq 1$

$$
\mathbb{P}\left\{\Upsilon_{\infty}(z)<\varepsilon ; \Upsilon_{\infty}(w)<\delta\right\}<c \varepsilon^{d-2} \delta^{d-2}|z-w|^{2-d}
$$

While it may be possible to derive some of the lemmas we require directly from the proof in [3], we include a complete proof of them, along with Beffara's original estimate, so that the proof of our main result is completely self contained.

It is worth noting that Beffara's estimate itself immediately yields an upper bound on the multi-point Green's function. For a lower bound, and an application of the multi-point Green's function to the proof of the existence of the "natural parametrization" of $S L E$, a parametrization of $S L E$ by what can be thought of as a form d-dimensional arc length, see [10].

The paper is structured as follows. Section 2.1 begins by establishing the notation used throughout the paper, and to provide a few simple deterministic and random bounds required in the proofs that follow. Section 2.4 then gives a brief introduction to two-sided radial SLE and collects the facts about this process that we require to show the existence of the multi-point Green's function. Section 3 provides a proof of the existence of the multi-point Green's function assuming an estimate derived from our proof of Beffara's estimate. The rest of the paper is then dedicated to our independent proof of Beffara's estimate where the various bounds required are split into topological lemmas, probabilistic lemmas, and the combinatorial lemma required to assemble the complete result. The proof of one of the topological lemmas is left to the appendix as the result is intuitive and the formal proof of it does little to aid the understanding of our main results.

Throughout this paper we fix $\kappa<8$ and constants implicitly depend on κ.

2. Preliminaries

2.1. Notation. We set

$$
\begin{gathered}
a=\frac{2}{\kappa}, \quad d=1+\frac{\kappa}{8}=1+\frac{1}{4 a}, \\
\beta=\frac{\kappa}{8}+\frac{8}{\kappa}-2=4 a+\frac{1}{4 a}-2>0, \\
\lambda=\frac{8}{\kappa}-1=4 a-1>0 .
\end{gathered}
$$

The Green's function for chordal $S L E_{\kappa}$ (from 0 to ∞ in \mathbb{H}) is

$$
G(x+i y)=G\left(r e^{i \theta}\right)=r^{d-2} \sin ^{\lambda} \theta=y^{d-2} \sin ^{\beta} \theta
$$

The Green's function can be defined for other simply connected domains as we now demonstrate. If D is a simply connected domain, z_{1}, z_{2} are distinct boundary points, let $\Phi_{D}: D \rightarrow \mathbb{H}$ be a conformal transformation with $\Phi_{D}\left(z_{1}\right)=0, \Phi_{D}\left(z_{2}\right)=\infty$. This is unique up to a final dilation. If $w \in D$, we define

$$
S_{D}\left(w ; z_{1}, z_{2}\right)=\sin \arg \Phi_{D}(w)
$$

which is independent of the choice of Φ_{D} and gives a conformal invariant. We let $\Upsilon_{D}(w)$ be (twice the) conformal radius of w in D, that is, if $f: \mathbb{D} \rightarrow D$ is a conformal transformation with $f(0)=w$, then $\Upsilon_{D}(w)=2\left|f^{\prime}(0)\right|$. This satisfies the scaling rule

$$
\Upsilon_{f(D)}(f(w))=\left|f^{\prime}(w)\right| \Upsilon_{D}(w)
$$

It is easy to check that $\Upsilon_{\mathbb{H}}(x+i y)=y$, and, more generally,

$$
\Upsilon_{D}(w)=\frac{\operatorname{Im}\left(\Phi_{D}(w)\right)}{\left|\Phi_{D}^{\prime}(w)\right|}
$$

The Green's function for $S L E_{\kappa}$ from z_{1} to z_{2} in D is defined by

$$
G_{D}\left(w ; z_{1}, z_{2}\right)=\Upsilon(w)^{d-2} S\left(w ; z_{1}, z_{2}\right)^{\beta}
$$

It satisfies the scaling rule

$$
G_{D}\left(w ; z_{1}, z_{2}\right)=\left|f^{\prime}(w)\right|^{2-d} G_{f(D)}\left(f(w) ; f\left(z_{1}\right), f\left(z_{2}\right)\right)
$$

For a sketch of a proof that the Green's function so defined satisfies the limit claimed in the introduction, see Lemma 2.10.

Let $\operatorname{inrad}_{D}(w)=\operatorname{dist}(w, \partial D)$ denote the inradius. Using the Koebe 1/4theorem, we know that

$$
\begin{equation*}
\frac{1}{2} \operatorname{inrad}_{D}(w) \leq \Upsilon_{D}(w) \leq 2 \operatorname{inrad}_{D}(w) \tag{1}
\end{equation*}
$$

Therefore,

$$
G_{D}\left(w ; z_{1}, z_{2}\right) \asymp \operatorname{inrad}_{D}(w)^{d-2} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta},
$$

where we write $f_{1} \asymp f_{2}$ if there exists some constant c such that $f_{1} \leq c f_{2}$ and $f_{2} \leq c f_{1}$. We write

$$
\partial D=\partial_{1} D \cup \partial_{2} D \cup\left\{z_{1}, z_{2}\right\}
$$

where $\partial_{1} D, \partial_{2} D$ denote the two open arcs of ∂D with endpoints z_{1}, z_{2}. Let $\hat{S}_{D}\left(w ; z_{1}, z_{2}\right)$ be the minimum of the harmonic measures of $\partial_{1} D, \partial_{2} D$ from w. This is a conformal invariant, and a simple computation in \mathbb{H} shows that

$$
\hat{S}_{D}\left(w ; z_{1}, z_{2}\right)=\frac{1}{\pi} \min \left\{\arg \Phi_{D}(w), \pi-\arg \Phi_{D}(w)\right\}
$$

and hence

$$
\hat{S}_{D}\left(w ; z_{1}, z_{2}\right) \asymp S_{D}\left(w ; z_{1}, z_{2}\right)
$$

and

$$
G_{D}\left(w ; z_{1}, z_{2}\right) \asymp \operatorname{inrad}_{D}(w)^{d-2} \hat{S}_{D}\left(w ; z_{1}, z_{2}\right)^{\beta} .
$$

To bound the harmonic measure, it is often useful to use the Beurling estimate. We recall it here; for a proof see, for example, [2, Chapter V]. Let B_{t} be a standard Brownian motion and τ_{D} denote the first exit time of some domain D for this Brownian motion.

Proposition 2.1 (Beurling Estimate). There is a constant $c>0$ such that if $z \in \mathbb{D}$ and K is a connected compact subset of $\overline{\mathbb{D}}$ with $0 \in K$ and $K \cap \partial \mathbb{D} \neq \emptyset$, then

$$
\mathbb{P}^{z}\left\{B\left[0, \tau_{\mathbb{D}}\right] \cap K=\emptyset\right\} \leq c|z|^{1 / 2}
$$

We may derive from this the following consequence.
Proposition 2.2. There is a constant $c>0$ such that if K is a connected compact subset of $\overline{\mathbb{H}}$ with $K \cap \mathbb{R} \neq \emptyset$ and $z_{0} \in \mathbb{H}, \varepsilon>0$ are such that $B_{\varepsilon}\left(z_{0}\right) \cap K \neq \emptyset$ then for $w \in \mathbb{H}$,

$$
\mathbb{P}^{w}\left\{B\left[0, \tau_{\mathrm{H} \backslash K}\right] \cap B_{\varepsilon}\left(z_{0}\right) \neq \emptyset\right\} \leq c\left[\frac{\varepsilon}{\left|z_{0}-w\right|}\right]^{1 / 2}
$$

Proof. Consider the map

$$
g(z):=\frac{\varepsilon}{z-z_{0}}, \quad g: \mathbb{C} \backslash B_{\varepsilon}\left(z_{0}\right) \rightarrow \mathbb{D} .
$$

Let $K^{\prime}=g\left([\mathbb{C} \backslash \mathbb{H}] \cup\left[K \backslash B_{\varepsilon}\left(z_{0}\right)\right]\right)$, and note that K^{\prime} is a connected compact subset of \mathbb{D} with $0 \in K^{\prime}$ and $K^{\prime} \cap \partial \mathbb{D} \neq \emptyset$. Thus by Proposition 2.1 we know

$$
\mathbb{P}^{g(w)}\left\{B\left[0, \tau_{\mathbb{D}}\right] \cap K^{\prime}=\emptyset\right\} \leq c|g(w)|^{1 / 2}
$$

which by the conformal invariance of Brownian motion, and the definition of g is the desired statement.

If $j=1,2$, let $\Delta_{D, j}\left(w ; z_{1}, z_{2}\right)$ be the infimum of all s such that there exists a curve $\eta:[0,1) \rightarrow D$ contained in the disk of radius s about w with $\eta(0)=$ $w, \eta\left(1^{-}\right) \in \partial_{j} D$. Note that

$$
\operatorname{inrad}_{D}(w)=\min \left\{\Delta_{D, 1}\left(w ; z_{1}, z_{2}\right), \Delta_{D, 2}\left(w ; z_{1}, z_{2}\right)\right\}
$$

We let

$$
\Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)=\max \left\{\Delta_{D, 1}\left(w ; z_{1}, z_{2}\right), \Delta_{D, 2}\left(w ; z_{1}, z_{2}\right)\right\} .
$$

The Beurling estimate implies that there is a $c<\infty$ such that the probability a Brownian motion starting at w reaches distance $\Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)$ before leaving D is bounded above by

$$
c\left[\frac{\operatorname{inrad}_{D}(w)}{\Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)}\right]^{1 / 2}
$$

Therefore,

$$
\begin{equation*}
S_{D}\left(w ; z_{1}, z_{2}\right) \asymp \hat{S}_{D}\left(w ; z_{1}, z_{2}\right) \leq c\left[\frac{\operatorname{inrad}_{D}(w)}{\Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

which gives us the upper bound

$$
G_{D}\left(w ; z_{1}, z_{2}\right) \leq c \operatorname{inrad}_{D}(w)^{d-2+\frac{\beta}{2}} \Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)^{-\frac{\beta}{2}}
$$

We will also need a fact which is a form of continuity of the Green's function under a small perturbation of the domain. First consider the following two lemmas on the conformal radius.

Lemma 2.3. Let \mathcal{B}_{r} denote the closed disk of radius e^{-r} about the origin. Suppose D is a simply connected subdomain of \mathbb{D} containing the origin and $e^{-r}<\operatorname{inrad}_{D}(0)$. Suppose B_{t} is a Brownian motion starting at the origin and let

$$
\tau_{D}=\inf \left\{t: B_{t} \notin D\right\}, \quad \tau_{\mathbb{D}}=\inf \left\{t: B_{t} \notin \mathbb{D}\right\}, \quad \sigma_{r, D}=\inf \left\{t \geq \tau_{D}: B_{t} \in \mathcal{B}_{r}\right\}
$$

Then,

$$
\mathbb{P}\left\{\tau_{D}<\sigma_{r, D}<\tau_{\mathbb{D}}\right\}=-r \log \Upsilon_{D}(0)
$$

Proof. Let $f: D \rightarrow \mathbb{D}$ be the conformal transformation with $f^{\prime}(0)>0$ fixing 0 ; then $-\log \Upsilon_{D}(0)=\log f^{\prime}(0)$. Let $g(z)=\log [|f(z)| /|z|]$ which is a bounded harmonic function on D, and hence

$$
\log f^{\prime}(0)=g(0)=\mathbb{E}\left[g\left(B_{\tau_{D}}\right)\right]=-\mathbb{E}\left[\log \left|B_{\tau_{D}}\right|\right]
$$

For $e^{-r} \leq|w|<1,-\frac{1}{r} \log |w|$ is the probability that a Brownian motion starting at w hits \mathcal{B}_{r} before leaving the \mathbb{D}. Thus,

$$
\mathbb{P}\left\{\tau_{D}<\sigma_{r, D}<\tau_{\mathbb{D}}\right\}=r \mathbb{E}\left[-\frac{1}{r} \log \left|B_{\tau_{D}}\right|\right]=r \log f^{\prime}(0)=-r \log \Upsilon_{D}(0)
$$

Lemma 2.4. There exists a $c>0$ such that for any two simply connected domains $D_{1} \subseteq D_{2}$ and a point $w \in D_{1} \cap D_{2}$ then

$$
0 \leq \Upsilon_{D_{2}}(w)-\Upsilon_{D_{1}}(w) \leq c \operatorname{diam}\left(D_{2} \backslash D_{1}\right)
$$

Proof. Without loss of generality, we assume $\operatorname{inrad}\left(D_{2}\right)=1$. If $\operatorname{inrad}\left(D_{1}\right) \leq$ $7 / 8$, then $\operatorname{diam}\left(D_{2} \backslash D_{1}\right) \geq 1 / 8$, and we can use the estimate inrad $(D) \asymp \Upsilon(D)$. if $\operatorname{inrad}\left(D_{1}\right) \geq 7 / 8$, then we can use the previous lemma, conformal invariance, and the Koebe- $(1 / 4)$ theorem to see $\Upsilon_{D_{2}}(w)-\Upsilon_{D_{1}}(w)$ is comparable to the probability that a Brownian motion starting at w hits $D_{2} \backslash D_{1}$ and returns to $\mathcal{B}=B_{1 / 16}(w)$, the disk of radius $1 / 16$ about w without leaving D_{2}. Using the Beurling estimate, we see the probability of hitting $D_{2} \backslash D_{1}$ is bounded above by $c \operatorname{diam}\left(D_{2} \backslash D_{1}\right)^{1 / 2}$ and using it again the probability of getting back to \mathcal{B} before leaving D is bounded by $c \operatorname{diam}\left(D_{2} \backslash D_{1}\right)^{1 / 2}$.

We will need some notion of closeness of two nested domains before we can state our lemma.

Definition. Given two simply connected domains $D_{1} \subseteq D_{2} \subseteq \mathbb{H}$ with marked boundary points $z_{1} \in \partial D_{1}$ and $z_{2} \in \partial D_{2}$, we say $\left(D_{1}, z_{1}\right)$ and $\left(D_{2}, z_{2}\right)$ are R close near z if the following holds. Let $B_{R}^{(i)}(z)$ denote the connected component of $B_{R}(z) \cap D_{i}$ which contains z. Then,

- $z_{1} \in \partial B_{R}^{(1)}(z)$,
- $z_{2} \in \partial B_{R}^{(2)}(z)$, and
- $D_{2} \backslash D_{1} \subseteq B_{R}(z)$.

Lemma 2.5. There exists $c>0$ such that the following holds. Suppose $z, w \in$ $\mathbb{H}, D_{1} \subseteq D_{2} \subseteq \mathbb{H}$ are simply connected domains, and $z_{1} \in \partial D_{1}, z_{2} \in \partial D_{2}$. If

- $z, w \in D_{1} \cap D_{2}$,
- $\left(D_{1}, z_{1}\right)$ and $\left(D_{2}, z_{2}\right)$ are R-close near z for $R \leq \operatorname{inrad}_{D_{1}}(w) \wedge \frac{1}{2}|z-w|$,
- $\infty \in \partial D_{1} \cap \partial D_{2}$,
then

$$
\left|G_{D_{1}}\left(w ; z_{1}, \infty\right)-G_{D_{2}}\left(w ; z_{2}, \infty\right)\right| \leq c \operatorname{inrad}_{D_{1}}(w)^{d-2-\frac{\beta \wedge 1}{2}} R^{\frac{\beta \wedge 1}{2}}
$$

Proof. Recall that

$$
G_{D}\left(w ; z_{1}, z_{2}\right)=\Upsilon_{D}(w)^{d-2} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta}
$$

where $S\left(w ; z_{1}, z_{2}\right)$ is the sine of the argument of w after applying the unique (up to scaling) conformal map, Φ_{D}, that sends D to \mathbb{H} while sending z_{1} to 0 and z_{2} to ∞. Writing, as before,

$$
\partial D=\partial_{1} D \cup\left\{z_{1}\right\} \cup \partial_{2} D \cup\left\{z_{2}\right\}
$$

where the union is written in counter-clockwise order, this argument is a conformally invariant and can be computed by

$$
\arg \Phi_{D}(w)=\pi \cdot \mathbb{P}^{w}\left\{B_{\tau} \in \partial_{2} D\right\} \quad \text { where } \quad \tau=\inf \left\{t: B_{t} \in \partial D\right\}
$$

where \mathbb{P}^{w} is the probability for a standard Brownian motion started at w.
Consider our case. Write

$$
\partial D_{1}=\partial_{1} D_{1} \cup\left\{z_{1}\right\} \cup \partial_{2} D_{1} \cup\{\infty\} \text { and } \partial D_{2}=\partial_{1} D_{2} \cup\left\{z_{2}\right\} \cup \partial_{2} D_{2} \cup\{\infty\}
$$

again with the union written in counter-clockwise order. Note that the condition that $\left(D_{1}, z_{1}\right)$ and $\left(D_{2}, z_{2}\right)$ are R-close near z implies that

$$
\begin{equation*}
\partial_{1} D_{1} \backslash B_{R}(z)=\partial_{1} D_{2} \backslash B_{R}(z) \text { and } \partial_{2} D_{1} \backslash B_{R}(z)=\partial_{2} D_{2} \backslash B_{R}(z) \tag{3}
\end{equation*}
$$

Define

$$
\tau_{1}=\inf \left\{t: B_{t} \in \partial D_{1}\right\} \text { and } \tau_{2}=\inf \left\{t: B_{t} \in \partial D_{2}\right\}
$$

and note that $\tau_{1} \leq \tau_{2}$.
We may write that

$$
\begin{aligned}
\left|\arg \Phi_{D_{1}}(w)-\arg \Phi_{D_{2}}(w)\right| & =\left|\pi \cdot \mathbb{P}^{w}\left\{B_{\tau_{1}} \in \partial_{2} D_{1}\right\}-\pi \cdot \mathbb{P}^{w}\left\{B_{\tau_{2}} \in \partial_{2} D_{2}\right\}\right| \\
& \leq 2 \pi \cdot \mathbb{P}^{w}\left\{B_{t} \in B_{R}(z) \text { for some } t \leq \tau_{2}\right\} .
\end{aligned}
$$

where the last line follows since, if considered path-wise, the Brownian motion must enter $B_{R}(z)$ if it is to hit a different side of the boundary in D_{1} versus D_{2} by equation (3). By the Beurling estimate (Proposition (2.2),

$$
\left|\arg \Phi_{D_{1}}(w)-\arg \Phi_{D_{2}}(w)\right| \leq c\left(\frac{R}{|z-w|}\right)^{1 / 2}
$$

By noting that $\operatorname{inrad}_{D_{1}}(w) \leq c|z-w|$ by the choice of R and the definition of R-close, and splitting into the cases when $\beta \geq 1$ versus $\beta<1$ we see

$$
\left|S_{D_{1}}\left(w ; z_{1}, \infty\right)^{\beta}-S_{D_{2}}\left(w ; z_{2}, \infty\right)^{\beta}\right| \leq c\left(\frac{R}{\operatorname{inrad}_{D_{1}}(w)}\right)^{(\beta \wedge 1) / 2}
$$

Consider the term involving the conformal radius. By using Lemma 2.4 and recalling that $d-2<0$ and $\Upsilon_{D_{1}}(w) \leq \Upsilon_{D_{2}}(w)$, we see

$$
\begin{aligned}
\left|\Upsilon_{D_{2}}(w)^{d-2}-\Upsilon_{D_{1}}(w)^{d-2}\right| & \leq(d-2) \Upsilon_{D_{1}}(w)^{d-3}\left|\Upsilon_{D_{2}}(w)-\Upsilon_{D_{1}}(w)\right| \\
& \leq c \Upsilon_{D_{1}}(w)^{d-2}\left(\frac{R}{\operatorname{inrad}_{D_{1}}(w)}\right) .
\end{aligned}
$$

Combining these, noting that $R<\operatorname{inrad}_{D_{1}}(w)$, gives

$$
\begin{aligned}
&\left|G_{D_{1}}\left(w ; z_{1}, \infty\right)-G_{D_{2}}\left(w ; z_{2}, \infty\right)\right| \\
& \quad \leq\left|\Upsilon_{D_{1}}(w)^{d-2} S_{D_{1}}\left(w ; z_{1}, \infty\right)^{\beta}-\Upsilon_{D_{1}}(w)^{d-2} S_{D_{2}}\left(w ; z_{2}, \infty\right)^{\beta}\right| \\
&+\left|\Upsilon_{D_{1}}(w)^{d-2} S_{D_{2}}\left(w ; z_{2}, \infty\right)^{\beta}-\Upsilon_{D_{2}}(w)^{d-2} S_{D_{2}}\left(w ; z_{2}, \infty\right)^{\beta}\right| \\
& \quad \leq c \Upsilon_{D_{1}}(w)^{d-2}\left(\frac{R}{\operatorname{inrad}_{D_{1}}(w)}\right)^{(\beta \wedge 1) / 2}+c \Upsilon_{D_{1}}(w)^{d-2}\left(\frac{R}{\operatorname{inrad}_{D_{1}}(w)}\right) \\
& \quad \leq c \operatorname{inrad}_{D_{1}}(w)^{d-2-\frac{\beta \wedge 1}{2}} R^{\frac{\beta \wedge 1}{2}} .
\end{aligned}
$$

as desired.
2.2. Schramm-Loewner evolution. The chordal Schramm-Loewner evolution with parameter κ (from 0 to ∞ in \mathbb{H} parametrized so that the half-plane capacity grows at rate $a=2 / \kappa)$ is the random curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$ satisfying the following. Let H_{t} denote the unbounded component of $\mathbb{H} \backslash \gamma(0, t]$, and let g_{t} be the unique conformal transformation of H_{t} onto \mathbb{H} with $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$. Then g_{t} satisfies the Loewner differential equation

$$
\begin{equation*}
\partial_{t} g_{t}(z)=\frac{a}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z, \tag{4}
\end{equation*}
$$

where $U_{t}=-B_{t}$ is a standard Brownian motion. For $z \in \overline{\mathbb{H}} \backslash\{0\}$, the solution of this initial value problem exists up to time $T_{z} \in(0, \infty]$.

Suppose $z \in \mathbb{H}$ and let

$$
Z_{t}=Z_{t}(z)=X_{t}+i Y_{t}=g_{t}(z)-U_{t} .
$$

Then the Loewner differential equation becomes the SDE

$$
d Z_{t}=\frac{a}{Z_{t}} d t+d B_{t}
$$

Let

$$
\begin{gathered}
S_{t}=S_{t}(z)=S_{H_{t}}(z ; \gamma(t), \infty)=\sin \arg Z_{t} \\
\Upsilon_{t}=\Upsilon_{t}(z)=\Upsilon_{H_{t}}(z ; \gamma(t), \infty)=\frac{Y_{t}}{\left|g_{t}^{\prime}(z)\right|} \\
M_{t}=M_{t}(z)=G_{H_{t}}(z ; \gamma(t), \infty)=\Upsilon_{t}^{d-2} S_{t}^{\beta}
\end{gathered}
$$

Either by direct computation or by using the Schwarz lemma, we can see that Υ_{t} decreases in t and hence we can define $\Upsilon=\Upsilon_{T_{z}-}$. If $0<\kappa \leq 4$, the $S L E$ paths are simple and with probability one $T_{z}=\infty$. If $4<\kappa<8, T_{z}<\infty$ and by (1) we know

$$
\begin{equation*}
\Upsilon \asymp \operatorname{dist}\left[z, \gamma\left(0, T_{z}\right] \cup \mathbb{R}\right]=\operatorname{dist}[z, \gamma(0, \infty) \cup \mathbb{R}] \tag{5}
\end{equation*}
$$

Using Itô's formula, we can see that M_{t} is a local martingale satisfying

$$
d M_{t}=\frac{a X_{t}}{X_{t}^{2}+Y_{t}^{2}} M_{t} d B_{t}
$$

We will need the following estimate for $S L E$; see [1] for a proof. By a crosscut in D we will mean a simple curve $\eta:(0,1) \rightarrow D$ with $\eta\left(0^{+}\right), \eta\left(1^{-}\right) \in$ ∂D. We call $\eta\left(0^{+}\right), \eta\left(1^{-}\right)$the endpoints of the crosscut.

Proposition 2.6. There exists $c<\infty$ such that if η is a crosscut in \mathbb{H} with $-\infty<\eta\left(1^{-}\right) \leq \eta\left(0^{+}\right)=-1$, then the probability that an $S L E_{\kappa}$ curve from 0 to ∞ intersects η is bounded above by $c \operatorname{diam}(\eta)^{\lambda}$ where λ is as defined in Section 2.1.
2.3. Radial parametrization. In order to prove the existence of multi-point Green's functions, we will need to study the behavior of the $S L E$ curve from the perspective of $z \in \mathbb{H}$. To do so, it is useful to parametrize the curve so that the conformal radius seen from z decays deterministically. We fix $z \in \mathbb{H}$ and let

$$
\sigma(t)=\inf \left\{s: \Upsilon_{s}=e^{-2 a t}\right\}
$$

Under this parametrization, the total lifetime of the curve is $\log \left(\Upsilon_{0} / \Upsilon\right) / 2 a$. Let $\Theta_{t}=\arg Z_{\sigma(t)}(z), \hat{S}_{t}=S_{\sigma(t)}(z)=\sin \Theta_{t}$. Using Itô's formula one can see that Θ_{t} satisfies

$$
d \Theta_{t}=(1-2 a) \cot \Theta_{t} d t+d \hat{W}_{t},
$$

where \hat{W}_{t} is a standard Brownian motion. Since $a>1 / 4$, comparison to a Bessel process shows that solutions to this process leave $(0, \pi)$ in finite time. This reflects that fact that chordal $S L E_{\kappa}$ does not reach z for $\kappa<8$ and hence $\Upsilon>0$. Let

$$
\hat{M}_{t}=M_{\sigma(t)}(z)=e^{-2 a s(d-2)} \hat{S}_{t}^{\beta}=e^{-\left(2 a-\frac{1}{2}\right) t} \hat{S}_{t} .
$$

This is a time change of a local martingale and hence is a local martingale; indeed, Itô's formula gives

$$
d \hat{M}_{t}=(4 a-1) \cot \Theta_{t} d \hat{W}_{t} .
$$

Using Girsanov's theorem, see for example [4], we can define a new probability measure \mathbb{P}^{*} which corresponds to paths "weighted locally by the local martingale $\hat{M}_{t}{ }^{\prime \prime}$. For the time being, we treat this as an arbitrary change of measure, however in Section 2.4 we will see that is precisely the change of measure which gives two-sided radial $S L E$. Intuitively, \hat{M}_{t} weights more heavily those paths whose continuations are likely to get much closer to z. For more examples of the application of Girsanov's theorem to the study of $S L E$, and a general outline of the way Girsanov's theorem is used below, see 8].

In this weighting,

$$
d \hat{W}_{t}=(4 a-1) \cot \Theta_{t} d t+d W_{t},
$$

where W_{t} is a standard Brownian motion with respect to \mathbb{P}^{*}. In particular,

$$
\begin{equation*}
d \Theta_{t}=2 a \cot \Theta_{t} d t+d W_{t} \tag{6}
\end{equation*}
$$

Since $2 a>1 / 2$, we can see by comparison with a Bessel process that with respect to \mathbb{P}^{*}, the process stays in $(0, \pi)$ for all times. Using this we can show that \hat{M}_{t} is actually a martingale, and the measure \mathbb{P}^{*} can be defined by

$$
\mathbb{P}^{*}[V]=\hat{M}_{0}^{-1} \mathbb{E}\left[\hat{M}_{t} 1_{V}\right] \text { for } V \in \mathcal{F}_{t}
$$

where \mathcal{F}_{t} denotes the σ-algebra generated by $\left\{\hat{W}_{s}: 0 \leq s \leq t\right\}$. Much of the analysis of $S L E_{\kappa}$ as it gets close to z uses properties of the simple SDE (6). Recall that we assume that $a>1 / 4$ and all constants can depend on a.

Lemma 2.7. There exists $c<\infty$ such that if Θ_{t} satisfies (6) with $\Theta_{0}=x \in$ $(0, \pi / 2)$, then if $0<y<1$ and

$$
\tau=\inf \left\{t: \Theta_{t} \in\{y, \pi / 2\}\right\}
$$

then

$$
\mathbb{P}^{*}\left\{\Theta_{\tau}=y\right\} \leq c(y / x)^{1-4 a}
$$

Proof. Itô's formula shows that $F\left(\Theta_{t \wedge \tau}\right)$ is a \mathbb{P}^{*}-martingale where

$$
F(s)=\int_{s}^{\pi / 2}(\sin u)^{-4 a} d u, \quad \frac{F^{\prime \prime}(s)}{F^{\prime}(s)}=-4 a \cot s
$$

Note that $F(\pi / 2)=0$ and

$$
F(s) \sim \frac{s^{1-4 a}}{1-4 a}, \quad s \rightarrow 0^{+}
$$

The optional sampling theorem implies that

$$
F(x)=\mathbb{P}^{*}\left\{\Theta_{\tau}=y\right\} F(y) .
$$

Lemma 2.8. The invariant density for the SDE (6) is

$$
\begin{equation*}
f(x)=C_{4 a} \sin ^{4 a} x, \quad 0<x<\pi, \quad C_{4 a}:=\left[\int_{0}^{\pi} \sin ^{4 a} x\right]^{-1} . \tag{7}
\end{equation*}
$$

Proof. This can be quickly verified and is left to the reader.
One can use standard techniques for one-dimensional diffusions to discuss the rate of convergence to the equilibrium distribution. We will state the one result that we need; see [10] for more details. If F is a nonnegative function on $(0, \pi)$. let

$$
I_{F}:=C_{4 a} \int_{0}^{\pi} F(x) \sin ^{4 a} x d x .
$$

An important fact is that the implicit constant in $O\left(e^{-u t}\right)$ is independent of the starting point x.

Lemma 2.9. There exists $u<\infty$ such that for every $t_{0}>0$ there exists $c<\infty$ such that if F is a nonnegative function with $I_{F}<\infty$ and $t \geq t_{0}$.

$$
\left|\mathbb{E}\left[F\left(\Theta_{t}\right)\right]-I_{F}\right| \leq c e^{-u t} I_{F} .
$$

An important case for us is $F(x)=[\sin x]^{-\beta}=\sin ^{2-4 a-\frac{1}{4 a}} x$. Let

$$
\begin{equation*}
c_{*}=I_{F}=\frac{C_{4 a}}{C_{2-\frac{1}{4 a}}}=\frac{\int_{0}^{\pi} \sin ^{1-\frac{1}{4 a}} x d x}{\int_{0}^{\pi} \sin ^{4 a} x d x} . \tag{8}
\end{equation*}
$$

We will take advantage of this uniform bound to give a concrete estimate on how well the Green's function approximates the probability of getting near a point.

Lemma 2.10. There exists $u>0$ such that if D is a simply connected domain and z_{1}, z_{2} are points in its boundary, $r \leq 3 / 4, \gamma$ is an $S L E_{\kappa}$ curve from z_{1} to $z_{2}, w \in D$, and D_{∞} denotes the connected component of $D \backslash \gamma(0, \infty)$ containing w, then

$$
\mathbb{P}\left\{\Upsilon_{D_{\infty}}(w) \leq r \cdot \Upsilon_{D}(w)\right\}=c_{*} r^{d-2} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta}\left[1+O\left(r^{u}\right)\right]
$$

where c_{*} is as defined in (8). In particular, there exists $c<\infty$ such that for all $r \leq 3 / 4$,

$$
\mathbb{P}\left\{\Upsilon_{D_{\infty}}(w) \leq r \cdot \Upsilon_{D}(w)\right\} \leq c r^{d-2} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta}
$$

Proof. By conformal invariance we may assume $\Upsilon_{D}(w)=1$ and define t by $r=e^{-2 a t}$. Let $\sigma=\inf \left\{s: \Upsilon_{s}=r\right\}$. Then,

$$
\begin{aligned}
\mathbb{P}\{\sigma<\infty\} & =\mathbb{E}[1\{\sigma<\infty\}] \\
& =r^{2-d} \mathbb{E}\left[\hat{M}_{t} \hat{S}_{t}^{-\beta}\right] \\
& =r^{2-d} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta} \mathbb{E}^{*}\left[\hat{S}_{t}^{-\beta}\right] \\
& =c_{*} r^{2-d} S_{D}\left(w ; z_{1}, z_{2}\right)^{\beta}\left[1+O\left(e^{-u r}\right)\right] .
\end{aligned}
$$

Using (11) and (2), we immediately get the following lemma which is in the form that we will use.

Lemma 2.11. There exists $C<\infty$, such that if D is a simply connected domain and z_{1}, z_{2} are points in its boundary, $r \leq 3 / 4$, and γ is an $S L E_{\kappa}$ curve from z_{1} to z_{2}, then

$$
\mathbb{P}\left\{\operatorname{dist}[w, \gamma[0, \infty)] \leq r \cdot \operatorname{inrad}_{D}(w)\right\} \leq C r^{d-2}\left[\frac{\operatorname{inrad}_{D}(w)}{\Delta_{D}^{*}\left(w ; z_{1}, z_{2}\right)}\right]^{\beta / 2}
$$

2.4. Two-sided radial $S L E$. We call $S L E_{\kappa}$ under the measure \mathbb{P}^{*} in the previous subsection two-sided radial $S L E_{\kappa}$ (from 0 to ∞ through z in \mathbb{H} stopped when it reaches z). Roughly speaking it is chordal $S L E_{\kappa}$ conditioned to go through z (stopped when it reaches z). Of course this is an event of probability zero, so we cannot define the process exactly this way. We may provide a direct definition by driving the Loewner equation by the process defined in equation (6) rather than a standard Brownian motion. This definition uses the radial parametrization. We could also just as well use the capacity parametrization, in which case with probability one $T_{z}<\infty$.

One may justify the definition above examining its relationship to $S L E_{\kappa}$ conditioned to get close to z. This next proposition is just a restatement of the definition of the measure \mathbb{P}^{*} when restricted to curves stopped at a particular stopping time.

Proposition 2.12. Suppose γ is a chordal $S L E_{\kappa}$ path from 0 to ∞ and $z \in \mathbb{H}$. For $\varepsilon \leq \operatorname{Im}(z)$, let $\rho_{\varepsilon}=\inf \left\{t: \Upsilon_{t}(z)=\varepsilon\right\}$. Let μ, μ_{1} be the two measures on $\left\{\gamma(t): 0 \leq t \leq \rho_{\varepsilon}\right\}$ corresponding to chordal $S L E_{\kappa}$ restricted to the event $\left\{\rho_{\varepsilon}<\infty\right\}$ and two-sided radial $S L E_{\kappa}$ through z. Then μ, μ_{1} are mutually absolutely continuous with respect to each other with Radon-Nikodym derivative

$$
\frac{d \mu_{1}}{d \mu}=\frac{G_{H_{\rho_{\varepsilon}}}\left(z ; \gamma\left(\rho_{\varepsilon}\right), \infty\right)}{G_{\mathbb{H}}(z ; 0, \infty)}=\frac{\varepsilon^{d-2} S_{\rho_{\varepsilon}}(z)^{\beta}}{G_{\mathbb{H}}(z ; 0, \infty)} .
$$

This proposition seems to indicate that there is a still a significant difference between two-sided radial $S L E_{\kappa}$ going though z and $S L E_{\kappa}$ conditioned to get
within a specific distance. However, by using the methods of Lemma 2.9 we get the following improvement.

Proposition 2.13. There exists $u>0, c<\infty$ such that the following is true. Suppose γ is a chordal $S L E_{\kappa}$ path from 0 to ∞ and $z \in \mathbb{H}$. For $\varepsilon \leq \operatorname{Im}(z)$, let $\rho_{\varepsilon}=\inf \left\{t: \Upsilon_{t}(z)=\varepsilon\right\}$. Suppose $\varepsilon^{\prime}<3 \varepsilon / 4$. Let μ_{1}, μ_{2} be the two probability measures on $\left\{\gamma(t): 0 \leq t \leq \rho_{\varepsilon}\right\}$ corresponding to chordal SLE κ conditioned on the event $\left\{\rho_{\varepsilon_{2}}<\infty\right\}$ and two-sided radial SLE κ through z. Then μ_{1}, μ_{2} are mutually absolutely continuous with respect to each other and the RadonNikodym derivative satisfies

$$
\left|\frac{d \mu_{2}}{d \mu_{1}}-1\right| \leq c\left(\varepsilon^{\prime} / \varepsilon\right)^{u}
$$

From the definition, it is easy to show that there is a subsequence $t_{n} \uparrow T_{z}$ with $\gamma\left(t_{n}\right) \rightarrow z$. Stronger than this is true and in [5] it is proven that, for $0<\kappa<8$, with probability one, two-sided radial gives a curve, by which we mean that with probability one $\gamma\left(T_{z}-\right)=z$. The following lemma, used in this proof, can be found in [5].

Lemma 2.14. Let $\rho_{\varepsilon}=\inf \left\{t: \Upsilon_{t}(z)=\varepsilon\right\}$. Fix $\eta<R$ and $z \in \mathbb{H}$, then there exists some $\alpha>0$ and c depending only on z such that

$$
\mathbb{P}^{*}\left\{\gamma\left[\xi_{\rho_{\varepsilon}}, T_{z}\right] \nsubseteq B_{R}(z)\right\} \leq c\left(\frac{\eta}{R}\right)^{\alpha}
$$

We will also need this bound in a conditional form. In order to prove the conditional form, we need the following lemma.

Lemma 2.15. Let $\rho_{\varepsilon}=\inf \left\{t: \Upsilon_{t}(z)=\varepsilon\right\}$. There exists $c<\infty$, such that if $z \in \mathbb{H}$ and $\varepsilon \leq \operatorname{Im}(z) / 2,0<\theta_{0} \leq \pi / 2$,

$$
\mathbb{P}\left\{S_{\rho_{\varepsilon}}(z)<\sin \left(\theta_{0}\right) \mid \rho_{\varepsilon}<\infty\right\} \leq c \theta_{0}^{1-\frac{\kappa}{8}}
$$

Proof. First note that by Lemma 2.12 and Lemma 2.10 we have that

$$
\mathbb{P}\left\{S_{\rho_{\varepsilon}}(z)<\sin \left(\theta_{0}\right) \mid \rho_{\varepsilon}<\infty\right\} \leq c \mathbb{E}^{*}\left[S_{\rho_{\varepsilon}}^{-\beta}(z) \mathbb{1}\left\{S_{\rho_{\varepsilon}}(z)<\sin \left(\theta_{0}\right)\right\}\right]
$$

By applying the techniques from Lemma 2.9 with the function

$$
F(\theta)=\sin (\theta)^{-\beta} \mathbb{1}\left\{\sin (\theta)<\sin \left(\theta_{0}\right)\right\}
$$

and noting that the integral is

$$
\int_{0}^{\pi} \sin (\theta)^{-\beta} \mathbb{1}\left\{\sin (\theta)<\sin \left(\theta_{0}\right)\right\} \sin ^{4 a} d \theta=2 \int_{0}^{\theta_{0}} \sin (\theta)^{2-\frac{\kappa}{8}}=O\left(\theta_{0}^{1-\frac{\kappa}{8}}\right)
$$

we get the result.

Lemma 2.16. Let $\rho_{\varepsilon}=\inf \left\{t: \Upsilon_{t}(z)=\varepsilon\right\}$. Fix $\varepsilon<\eta<R<1$ and $z \in \mathbb{H}$, then there exists some c depending only on z and $\alpha>0$ such that

$$
\mathbb{P}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z) \mid \rho_{\varepsilon}<\infty\right\} \leq c\left(\frac{\eta}{R}\right)^{\alpha}
$$

Proof. We apply Lemma 2.15 with the above to see that

$$
\begin{aligned}
& \mathbb{P}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z) \mid \rho_{\varepsilon}<\infty\right\} \\
& \quad=\mathbb{P}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z) ; S_{\rho_{\varepsilon}}(z) \geq \sin (\theta) \mid \rho_{\varepsilon}<\infty\right\} \\
& \quad+\mathbb{P}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z) ; S_{\rho_{\varepsilon}}(z)<\sin (\theta) \mid \rho_{\varepsilon}<\infty\right\} \\
& \quad \leq c \mathbb{E}^{*}\left[S_{\rho_{\varepsilon}}^{-\beta}(z) \mathbb{1}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z) ; S_{\rho_{\varepsilon}}(z) \geq \sin (\theta)\right\}\right]+c \theta^{1-\frac{\kappa}{8}} \\
& \quad \leq c \theta^{-\beta} \mathbb{P}^{*}\left\{\gamma\left[\rho_{\eta}, \rho_{\varepsilon}\right] \nsubseteq B_{R}(z)\right\}+c \theta^{1-\frac{\kappa}{8}} \\
& \quad \leq c \theta^{-\beta} \mathbb{P}^{*}\left\{\gamma\left[\rho_{\eta}, T_{z}\right] \nsubseteq B_{R}(z)\right\}+c \theta^{1-\frac{\kappa}{8}} \\
& \leq c \theta^{-\beta}(\eta / R)^{\alpha}+c \theta^{1-\frac{\kappa}{8}}
\end{aligned}
$$

where c is being used generically. Thus by an appropriate choice of θ, for example

$$
\theta=(\eta / R)^{\frac{\alpha}{2 \beta}},
$$

we get the desired bound.

3. Multi-point Green's function

In this subsection we consider two distinct points $z, w \in \mathbb{H}$. To simplify notation, we write

$$
\begin{gathered}
\xi=\xi_{\varepsilon}=\xi_{z, \varepsilon}=\inf \left\{t: \Upsilon_{t}(z) \leq \varepsilon\right\} \\
\chi=\chi_{\delta}=\xi_{w, \delta}=\inf \left\{t: \Upsilon_{t}(w) \leq \delta\right\}
\end{gathered}
$$

Although we will write ξ, χ, it is important to remember that these quantities depend on $z, \varepsilon, w, \delta$. We let \mathbb{P}, \mathbb{E} denote probabilities and expectations for $S L E_{\kappa}$ from 0 to ∞ in \mathbb{H} and $\mathbb{P}^{*}, \mathbb{E}^{*}$ for the corresponding quantities for twosided radial through z. The multi-point Green's function,

$$
G(z, w)=G_{\mathbb{H}}(z, w ; 0, \infty)
$$

roughly corresponds to the probability that $S L E$ in \mathbb{H} from 0 to ∞ goes through z and then through w. This quantity is not symmetric. Although we do not have a closed from for this quantity, we can define it precisely.

Definition. The multi-point Green's function $G(z, w)$ is defined by

$$
G(z, w)=G(z) \mathbb{E}^{*}\left[G_{H}(w ; z, \infty)\right]
$$

where H is the unbounded component of $\mathbb{H} \backslash \gamma\left(0, T_{z}\right]$.

In [11], the exact formula for $G_{\mathbb{H}}(z ; 0, \infty)$ was found by considering the martingale $G_{H_{t}}(z, \gamma(t), \infty)$ and then using Itô's formula and scaling to find the ODE that it satisfies, which could then be explicitly solved. When attempting the same technique here, a three variable PDE results, which does not immediately seem to admit a closed form solution.

The justification for this definition comes from the following theorem. Implicit in the statement, is that the limit can be taken along any sequence of ε, δ going to zero.

Theorem 1. If $z, w \in \mathbb{H}$, then

$$
\lim _{\varepsilon, \delta \rightarrow 0^{+}} \varepsilon^{d-2} \delta^{d-2} \mathbb{P}\{\xi<\chi<\infty\}=c_{*}^{2} G(z, w)
$$

where c_{*} is as defined in (8).
When

$$
d=\left(1+\frac{\kappa}{8}\right) \wedge 2
$$

is the dimension rather than simply $d=1+\kappa / 8$, this theorem still defines an interesting quantity for $\kappa \geq 8$. Since the curve is space filling for $\kappa \geq 8$, the limit is trivial and

$$
\lim _{\varepsilon, \delta \rightarrow 0^{+}} \varepsilon^{d-2} \delta^{d-2} \mathbb{P}\{\xi<\chi<\infty\}=\mathbb{P}\left\{\xi_{0}<\chi_{0}\right\}=c_{*} G(z, w)
$$

This agrees with the above definition of $G(z, w)$ since we may take two-sided radial through z for $\kappa \geq 8$ to be the measure on γ stopped at the time the curve passes through z and

$$
G_{D}\left(w ; z_{1}, z_{2}\right)=\mathbb{1}\{w \in D\} .
$$

Since this case requires no further work, we will continue to assume that $\kappa<8$.
We will need one lemma that will follow from our work on Beffara's estimate, which we will prove in Section 4.

Lemma 3.1. There exists $\alpha>0$, such that if $z, w \in \mathbb{H}$, then there exists $c=c_{z, w}<\infty$, such that for all $\varepsilon, \delta, r>0$,

$$
\mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w) \leq r\right\} \leq c \varepsilon^{2-d} \delta^{2-d} r^{\alpha}
$$

More precise results than this are obtained in this paper, but this is all that is required in this section. Before going through the details of the proof, we briefly sketch the argument. To estimate

$$
\mathbb{P}\{\xi<\chi<\infty\}
$$

we wish to show that this probability is carried mostly on curves which get within ε of z in conformal radius before decreasing the conformal radius of w much at all. To show that the curves which do not do this are negligible, we use Lemma 3.1, obtained from our proof of Beffara's estimate.

On the event that the curves stays bounded away from w, we know the Green's function for getting to w stays uniformly bounded, allowing us to use convergence of the conditioned measures $\mathbb{E}[\cdot \mid \xi<\infty]$ to $\mathbb{E}^{*}[\cdot]$, the two-sided radial measure, as measures on the $S L E$ curve up until some fixed conformal radius $\eta \gg \varepsilon$.

This would be everything if it were not for the fact that the tip of the curves (the portion very near z) under the conditioned measure versus the two-sided radial measure have very different distribution. To handle this, we use Lemmas 2.14 and 2.16 to show that under both measures the tip stays close z most of the time in Euclidean distance, and then Lemma [2.5 tells us that the Green's function for getting to w is insensitive to these changes.

To aid in the understanding of the proof, Figure 2 shows diagrammatically the various distances considered and the approximate shape of a curve in the main term.

Figure 2. A diagram of the proof of Theorem [1 Dotted circles represent conformal radii and solid circles refer to geometric radii. The bold curve gives an example of the approximate shape of a curve contributing to the leading order event.

Proof of Theorem 1 given Lemma 3.1. We first split according to how close we get to w before getting close to z. Fixing some $r<|z-w| / 2$, by Lemma 3.1 we see that for some $\alpha>0$

$$
\begin{aligned}
\mathbb{P}\{\xi<\chi<\infty\}= & \mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w)>r\right\} \\
& +\mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w)<r\right\} \\
= & \mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w)>r\right\}+O\left(\varepsilon^{2-d} \delta^{2-d} r^{\alpha}\right) .
\end{aligned}
$$

Let \mathcal{F}_{ξ} denote the σ-algebra generated by the stopping time ξ. By Lemma 2.10 we can see that if $\delta \leq r / 2$,

$$
\begin{aligned}
& \mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w)>r \mid \mathcal{F}_{\xi}\right\} \\
& \quad=\mathbb{1}\left\{\xi<\infty ; \operatorname{inrad}_{\xi}(w)>r\right\} c_{*} \delta^{2-d} G_{H_{\xi}}(w ; \gamma(\xi), \infty)\left[1+O\left((\delta / r)^{u}\right)\right]
\end{aligned}
$$

Using Lemma 2.10 again, this implies

$$
\begin{aligned}
& c_{*}^{-2} \varepsilon^{d-2} \delta^{d-2} G_{\mathbb{H}}(z ; 0, \infty)^{-1} \mathbb{P}\left\{\xi<\chi<\infty ; \operatorname{inrad}_{\xi}(w)>r\right\} \\
& \quad=\left[1+O\left(\varepsilon^{u}+(\delta / r)^{u}\right)\right] \mathbb{E}\left[G_{H_{\xi}}(w ; \gamma(\xi), \infty) \mathbb{1}\left\{\operatorname{inrad}_{\xi}(w)>r\right\} \mid \xi<\infty\right] .
\end{aligned}
$$

For simplicity of notation, for a stopping time τ, we let

$$
\mathbb{E}_{\tau}[\cdot]=\mathbb{E}[\cdot \mid \tau<\infty] \text { and } G_{\tau, r}=G_{H_{\tau}}(w ; \gamma(\tau), \infty) \mathbb{1}\left\{\operatorname{inrad}_{\tau}(w)>r\right\}
$$

and hence we may rewrite this as

$$
\begin{aligned}
\mathbb{P}\{\xi & \left.<\chi<\infty ; \operatorname{inrad}_{\xi}(w)>r\right\} \\
& =c_{*}^{2} \varepsilon^{2-d} \delta^{2-d} G_{\mathbb{H}}(z ; 0, \infty)\left[1+O\left(\varepsilon^{u}+(\delta / r)^{u}\right)\right] \mathbb{E}_{\xi}\left[G_{\xi, r}\right]
\end{aligned}
$$

We wish to transform this expression from the conditioned measure to the two-sided radial measure, and from considering the situation at time ξ (the time it first gets within conformal radius ε) to T_{z} (the time under the two-sided radial measure that z is first contained in the boundary of $H_{T_{z}}$). To do so we will pass through a series of steps.

Fix some η, R so that $\varepsilon<\eta<R<|z-w| / 2$. We wish to control the difference

$$
\begin{aligned}
\left|\mathbb{E}_{\xi}\left[G_{\xi, r}\right]-\mathbb{E}_{\xi}\left[G_{\xi_{\eta}, r}\right]\right| \leq & \mathbb{E}_{\xi}\left[\left|G_{\xi, r}-G_{\xi_{\eta}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, \xi\right] \subseteq B_{R}(z)\right\}\right] \\
& +\mathbb{E}_{\xi}\left[\left|G_{\xi, r}-G_{\xi_{\eta}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, \xi\right] \nsubseteq B_{R}(z)\right\}\right] .
\end{aligned}
$$

By Lemma 2.5 and the fact that the inradius about w cannot decrease between ξ_{η} and ξ if $\gamma\left[\xi_{\eta}, \xi\right] \subseteq B_{R}(z)$ we see that

$$
\mathbb{E}_{\xi}\left[\left|G_{\xi, r}-G_{\xi_{\eta}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, \xi\right] \subseteq B_{R}(z)\right\}\right]=O\left(r^{d-2-(\beta \wedge 1) / 2} R^{(\beta \wedge 1) / 2}\right)
$$

On the second term, the difference is no bigger than $O\left(r^{d-2}\right)$ on an event, which by Lemma 2.16 is $O\left((\eta / R)^{\alpha^{\prime}}\right)$ for some $\alpha^{\prime}>0$. Putting it all together yields

$$
\left|\mathbb{E}_{\xi}\left[G_{\xi, r}\right]-\mathbb{E}_{\xi}\left[G_{\xi_{\eta}, r}\right]\right|=O\left(r^{d-2-(\beta \wedge 1) / 2} R^{(\beta \wedge 1) / 2}+r^{d-2}(\eta / R)^{\alpha^{\prime}}\right)
$$

By Lemma 2.13, we know for events in $\mathcal{F}_{\xi_{\eta}}$ we have

$$
\left|\frac{\mathrm{d} \mathbb{P}^{*}}{\mathrm{dP}_{\xi}}-1\right|=O\left((\varepsilon / \eta)^{u}\right)
$$

and hence we have

$$
\left|\mathbb{E}_{\varepsilon}\left[G_{\xi_{\eta}, r}\right]-\mathbb{E}^{*}\left[G_{\xi_{\eta}, r}\right]\right|=O\left(r^{d-2}(\varepsilon / \eta)^{u}\right)
$$

Analogously to before, consider splitting the difference

$$
\begin{aligned}
\left|\mathbb{E}^{*}\left[G_{\xi_{\eta}, r}\right]-\mathbb{E}^{*}\left[G_{T_{z}, r}\right]\right| \leq & \mathbb{E}^{*}\left[\left|G_{\xi_{\eta}, r}-G_{T_{z}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, T_{z}\right] \subseteq B_{R}(z)\right\}\right] \\
& +\mathbb{E}^{*}\left[\left|G_{\xi_{\eta}, r}-G_{T_{z}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, T_{z}\right] \nsubseteq B_{R}(z)\right\}\right] .
\end{aligned}
$$

By Lemma 2.5 and the fact that the inradius about w cannot decrease between ξ_{η} and T_{z} if $\gamma\left[\xi_{\eta}, T_{z}\right] \subseteq B_{R}(z)$, we again see

$$
\mathbb{E}^{*}\left[\left|G_{\xi_{\eta}, r}-G_{T_{z}, r}\right| \mathbb{1}\left\{\gamma\left[\xi_{\eta}, T_{z}\right] \subseteq B_{R}(z)\right\}\right]=O\left(r^{d-2-(\beta \wedge 1) / 2} R^{(\beta \wedge 1) / 2}\right)
$$

The second term is on an event which is by Lemma 2.14 is $O\left((\eta / R)^{\alpha^{\prime}}\right)$, and hence we have again that

$$
\left|\mathbb{E}^{*}\left[G_{\xi_{\eta}, r}\right]-\mathbb{E}^{*}\left[G_{T_{z}, r}\right]\right|=O\left(r^{d-2-(\beta \wedge 1) / 2} R^{(\beta \wedge 1) / 2}+r^{d-2}(\eta / R)^{\alpha^{\prime}}\right)
$$

We may easily see that

$$
\mathbb{P}^{*}\left\{\operatorname{inrad}_{T_{z}}(w)=0\right\} \leq \sum_{k \geq 1} \mathbb{P}^{*}\left\{\operatorname{inrad}_{\xi_{1 / k}}(w)=0\right\}=0
$$

by the fact that \mathbb{P}^{*} is absolutely continuous with respect to \mathbb{P} until the stopping time $\xi_{1 / k}$ combined with that fact that two-sided radial $S L E$ generates a curve with probability one. Hence, since $G_{T_{z}}(w ; z, \infty) \geq 0$, we have that

$$
\mathbb{E}^{*}\left[G_{T_{z}}(w ; z, \infty) \mathbb{1}\left\{\operatorname{inrad}_{T_{z}}(w)>r\right\}\right] \rightarrow \mathbb{E}^{*}\left[G_{T_{z}}(w ; z, \infty)\right] \quad \text { as } \quad r \rightarrow 0
$$

Combining all these terms and by combining exponents, we see there exists some $b>0$ such that

$$
\begin{aligned}
\varepsilon^{d-2} \delta^{d-2} \mathbb{P}\{\xi<\chi<\infty\}= & c_{*}^{2} G_{\mathbb{H}}(z ; 0, \infty)\left[1+O\left(\varepsilon^{b}+(\delta / r)^{b}\right)\right] \mathbb{E}^{*}\left[G_{T_{z}, r}\right] \\
& +O\left(r^{b}+(R / r)^{b}+(R / r)^{b}(\eta / R)^{b}+(\varepsilon / r)^{b}(\varepsilon / \eta)^{b}\right) .
\end{aligned}
$$

Thus by choosing r, η, and R so that as $\varepsilon, \delta \rightarrow 0$ we also have

$$
r \rightarrow 0, \quad \delta / r \rightarrow 0, \quad \varepsilon / r \rightarrow 0, \quad R / r \rightarrow 0, \quad \eta / R \rightarrow 0, \quad \varepsilon / \eta \rightarrow 0
$$

we see that

$$
\varepsilon^{d-2} \delta^{d-2} \mathbb{P}\{\xi<\chi<\infty\} \rightarrow c_{*}^{2} G_{\mathbb{H}}(z ; 0, \infty) \mathbb{E}^{*}\left[G_{T_{z}}(w ; z, \infty)\right]
$$

as desired.
This same argument generalizes to show that we can define higher-order Green's functions of SLE as well (those that give normalized probabilities for passing through k marked points in the interior) and that the resulting multi-point Green's functions can be written in terms of expectations under the two-sided radial measure of lower order Green's functions, for instance

$$
\varepsilon_{1}^{d-2} \varepsilon_{2}^{d-2} \varepsilon_{3}^{d-2} \mathbb{P}\left\{\xi_{\varepsilon_{1}, z_{1}}<\xi_{\varepsilon_{2}, z_{2}}<\xi_{\varepsilon_{3}, z_{3}}\right\} \rightarrow c_{*}^{3} G_{\mathbb{H}}\left(z_{1} ; 0, \infty\right) \mathbb{E}^{*}\left[G_{H_{T_{z_{1}}}}\left(z_{2}, z_{3} ; z, \infty\right)\right]
$$

where \mathbb{E}^{*} is the two sided radial measure passing through z_{1}.

Note that we may obtain the multi-point Green's function as defined in the introduction by summing this over the case where it gets near to z then w and the case where it gets near to w then z.

The remainder of this paper is dedicated to provides a proof of Lemma 3.1 and a sharpened version of Beffara's estimate.

4. Proof of Beffara's estimate and Lemma 3.1

To complete our proof of the existence of multi-point Green's functions we require a proof of Lemma 3.1. We also wish to prove Befarra's estimate which is the following theorem.

Theorem 2 (Beffara's Estimate). There exists a $c>0$ such that for all $z, w \in$ \mathbb{H} with $|z|,|w| \geq 1$ we have that

$$
\begin{equation*}
\mathbb{P}\left\{\Upsilon_{\infty}(z)<\varepsilon, \Upsilon_{\infty}(w)<\delta\right\} \leq c \varepsilon^{2-d} \delta^{2-d}|z-w|^{d-2} \tag{9}
\end{equation*}
$$

The hard work will be establishing the result when z, w are far apart. We will prove the following. We use the notation introduced in Section [2.1. For later convenience, we write this proposition in terms of the usual radius rather than the conformal radius, but it is easy to convert to conformal radius using the Koebe-1/4 theorem.
Proposition 4.1. For every $0<\theta<\infty$, there exists $c<\infty$, such that if $z, w \in \mathbb{H}$ with

$$
|z|,|w| \geq \theta \quad \text { and } \quad|z-w| \geq \theta / 9
$$

then

$$
\mathbb{P}\left\{\Delta_{\infty}(z) \leq \varepsilon, \Delta_{\infty}(w) \leq \delta\right\} \leq c \varepsilon^{2-d} \delta^{2-d} .
$$

Proof of Theorem 圆 given Proposition 4.1. Note that if (9) holds for all ε, δ for (z, w) with constant c, then it also holds for all (ε, δ) for $(r z, r w)$ with constant $r^{d-2} c$. Hence by scaling and Proposition 4.1, it suffices to prove the estimate when $|z-w|=1 / 2,|z|,|w| \geq 9 / 2$ and $\varepsilon, \delta \leq 1 / 8$. We assume this. For a curve to get within ε of z or δ of w, it will first need to get within distance one of z. By Lemma [2.10, it does so with probability at most $c|z|^{d-2}$. Let $\tau=\inf \{t:|\gamma(t)-z| \leq 1\}$ be the first such time. Apply the map $f=b g_{\tau}$ to the entire picture where $g_{\tau}: H_{\tau} \rightarrow \mathbb{H}$ is the usual Loewner map and the constant $b>0$ is chosen so that $\left|f^{\prime}(z)\right|=1$. Using the distortion theorem, Koebe-1/4 theorem, and the growth theorem, we can find universal constants $c_{1}<c_{2}$ such that the following estimates holds:

$$
\begin{gathered}
c_{1} \leq\left|f^{\prime}(w)\right| \leq c_{2} \\
\operatorname{Im} f(z), \operatorname{Im} f(w) \geq c_{1} \\
|f(z)-f(w)| \geq c_{1} \\
\left|f(z)-f\left(z^{\prime}\right)\right| \leq c_{2} \varepsilon \quad \text { if }\left|z-z^{\prime}\right| \leq \varepsilon
\end{gathered}
$$

$$
\left|f(w)-f\left(w^{\prime}\right)\right| \leq c_{2} \delta \quad \text { if }\left|w-w^{\prime}\right| \leq \delta
$$

Hence, given $\tau<\infty$, the conditional probability that $\Delta_{\infty}(z) \leq \varepsilon, \Delta_{\infty}(w) \leq \delta$ is bounded above by the supremum of

$$
\mathbb{P}\left\{\Delta_{\infty}\left(z^{\prime}\right) \leq c_{2} \varepsilon, \Delta_{\infty}\left(w^{\prime}\right) \leq c_{2} \delta\right\}
$$

where the supremum is over all z^{\prime}, w^{\prime} satisfying

$$
\operatorname{Im}\left(z^{\prime}\right), \operatorname{Im}\left(w^{\prime}\right) \geq c_{1}, \quad|z-w| \geq c_{1}
$$

Proposition4.1 implies that this is bounded above by a constant time $\varepsilon^{2-d} \delta^{2-d}$.

By an analogous argument to how we obtained Theorem 2 from Proposition 4.1, we may obtain Lemma 3.1 from Proposition 4.2 ,

Proposition 4.2. For every $0<\theta<\infty$, there exists $c<\infty$ and $\alpha>0$ such that if $z, w \in \mathbb{H}$ with

$$
|z|,|w| \geq \theta \quad \text { and } \quad|z-w| \geq \theta / 9
$$

then for $\rho>\delta$

$$
\begin{equation*}
\mathbb{P}\left\{\Delta_{\infty}(z) \leq \varepsilon, \Delta_{\infty}(w) \leq \delta, \Delta_{\sigma}(w) \leq \rho\right\} \leq c \varepsilon^{2-d} \delta^{2-d} \rho^{\alpha} . \tag{10}
\end{equation*}
$$

where $\sigma=\inf \left\{t: \Delta_{t}(z) \leq \varepsilon\right.$ or $\left.\Delta_{t}(w) \leq \delta\right\}$.
This proposition will follow immediately from the work required to show Proposition 3.1.

To prove the proposition, we will show that there exists a $c<\infty$ such that (10) holds if $|z-w| \geq 2 \sqrt{2}$ and $|z|,|w| \geq 1$. By scaling one can easily deduce the result for all $\theta>0$ with a θ-dependent constant. We fix z, w with $|z-w| \geq 2 \sqrt{2}$ and $|z|,|w| \geq 1$, and denote by \mathcal{I} some fixed vertical or diagonal line such that

$$
\operatorname{dist}(z, \mathcal{I}), \operatorname{dist}(w, \mathcal{I}) \geq 1
$$

and z, w lie in different components of $\mathbb{H} \backslash \mathcal{I}$. We will further assume, without loss of generality, that z is in the component of $\mathbb{H} \backslash \mathcal{I}$ which contains arbitrarily large negative real numbers in it's boundary (more informally that z is in the left component).
4.1. An excursion measure estimate. Our main result will require an estimate of the "distance" between two boundary arcs in a simply connected domain. We will use excursion measure to gauge the distance; we could also use extremal distance, but we find excursion measure more convenient.

Suppose η is a crosscut in \mathbb{H} with $-\infty<\eta\left(1^{-}\right) \leq \eta\left(0^{+}\right) \leq-1$. Let H_{η} denote the unbounded component of $\mathbb{H} \backslash \eta$. Let $\mathcal{E}(\eta)=\mathcal{E}_{\mathbb{H}_{\eta}}(\eta,[0, \infty))$ denote the excursion measure between η and $[0, \infty)$ in H_{η}, the definition of which we now recall (see [6, Section 5.2] for more details). If $z \in H_{\eta}$, let $h_{\eta}(z)$ be the
probability that a Brownian motion starting at z exits H_{η} at η. For $x \geq 0$, let $\partial_{y} h_{\eta}(x)$ denote the partial derivative. Then

$$
\mathcal{E}(\eta)=\int_{0}^{\infty} \partial_{y} h_{\eta}(x) d x
$$

The excursion measure $\mathcal{E}_{D}\left(V_{1}, V_{2}\right)$ is defined for any domain and boundary $\operatorname{arcs} V_{1}, V_{2}$ in a similar way and is a conformal invariant. If V_{2} is smooth, then we can compute $\mathcal{E}_{D}\left(V_{1}, V_{2}\right)$ by a similar integral

$$
\mathcal{E}_{D}\left(V_{1}, V_{2}\right)=\int_{V_{2}} \partial_{\mathbf{n}} h_{V_{1}}(z)|d z|
$$

where \mathbf{n} denotes the inward normal. We need the following easy estimate.
Lemma 4.3. There exist c_{1}, c_{2} such that if η is as in Proposition 2.6 with $\operatorname{diam}(\eta) \leq 1 / 2$, then

$$
c_{1} \operatorname{diam}(\eta) \leq \mathcal{E}(\eta) \leq c_{2} \operatorname{diam}(\eta)
$$

Sketch of proof. In fact, we get an estimate

$$
\partial_{y} h_{\eta}(x) \asymp \frac{\operatorname{diam}(\eta)}{(x+1)^{2}} .
$$

The key estimate used here is the fact that that if $\operatorname{Re}(z) \geq 0$,

$$
h_{\eta}(z) \asymp \frac{\operatorname{Im}(z) \operatorname{diam}(\eta)}{(|z|+1)^{2}} .
$$

Lemma 4.4. There exists a $C<\infty$ such that the following is true. Suppose $H \subset \mathbb{C}$ is a half plane bounded by the line $L=\partial H, D$ is a simply connected subdomain of \mathbb{H} and $z \in \partial D$ with $d(z, L)>\frac{1}{2}$. Suppose I is a subinterval of $L \cap \partial D$. Then for every $\varepsilon<\frac{1}{2}$, the excursion measure between I and $V:=\partial D \cap\{w:|w-z| \leq \varepsilon\}$ is bounded above by $C \varepsilon^{1 / 2}$.
Proof. Without loss of generality we assume that $H=\mathbb{H}, z=i / 2$. Let $h(w)$ denote the probability that a Brownian motion starting at w exits D at V. Then the excursion measure is exactly

$$
\int_{I} \partial_{y} h(x) d x
$$

Hence it suffices to give an estimate

$$
\begin{equation*}
\partial_{y} h(x) \leq c \varepsilon^{1 / 2}\left[1 \wedge x^{-2}\right] . \tag{11}
\end{equation*}
$$

For $|x| \leq 4$, this follows from the Beurling estimate. For $|x| \geq 4$, we first consider the excursion "probability" to reach $\operatorname{Re}(w)=x / 2$. By the gambler's ruin estimate, this is bounded by $O\left(|x|^{-1}\right)$. Then we need to consider the
probability that a Brownian motion starting at z^{\prime} with $\operatorname{Re}\left(z^{\prime}\right)=x / 2$ reaches the disk of radius 1 about z without leaving D. By comparison with the same probability in the domain \mathbb{H}, we see that this is bounded above by $O\left(|x|^{-1}\right)$. Finally from there we need to hit V which contributes a factor of $O\left(\varepsilon^{1 / 2}\right)$ by the Beurling estimate. Combining these estimates gives (11).

Figure 3. The setup for Lemma 4.5,
Lemma 4.5. There exists $c>0$ such that the following holds. Let D be a simply connected domain, and let γ be a chordal SLE ${ }_{\kappa}$ path from z_{1} to z_{2} in D. Let $\eta:(0,1) \rightarrow D$ be a crosscut in D. Let $\xi:(0,1) \rightarrow D$ be another crosscut with $\xi\left(0^{+}\right)=z_{1}$, and let D_{1}, D_{2} denote the components of $D \backslash \xi$. Suppose $\eta \subset D_{1}$ and $z_{2} \in \partial D_{2}$. Then,

$$
\mathbb{P}\{\gamma(0, \infty) \cap \eta(0,1) \neq \emptyset\} \leq c \mathcal{E}_{D}(\eta, \xi)^{\lambda} .
$$

See Figure 3 for a diagram of the setup of this lemma.
Proof. By conformal invariance, we may assume that $D=\mathbb{H}, z_{1}=0, z_{2}=$ ∞, and it suffices to prove the result when $\mathcal{E}_{D}(\eta, \xi) \leq 1$ in which case the endpoints of η are nonzero. Without loss of generality we assume that they lie on the negative real axis with $\eta\left(1^{-}\right) \leq \eta\left(0^{+}\right)<0$,. Then monotonicity of the excursion measure implies that

$$
\mathcal{E}_{D}(\eta, \xi) \geq \mathcal{E}_{D}(\eta)
$$

Lemma 4.3 implies that $\mathcal{E}_{D}(\eta) \asymp \operatorname{diam}(\eta)$ if $\mathcal{E}_{D}(\eta) \leq 1$, and the result then follows from Proposition 2.6.
4.2. Topological lemmas. The most challenging portion of this proof is gaining simultaneous control of the distances to the near and far edges of the curve. Luckily, we may eliminate a number of hard cases of the computations that follow by purely topological means. For clarity of presentation, we have isolated these topological lemmas here in a separate section. Let z, w, \mathcal{I} be as in

Section 4. We call γ a non-crossing curve (from 0 to ∞ in \mathbb{H}) if is generated by the Loewner equation (4) with some driving function U_{t}, and, as before, we let H_{t} be the unbounded component of $\mathbb{H} \backslash \gamma(0, t]$ and $\partial_{1} H_{t}, \partial_{2} H_{t}$ be the preimages (considered as prime ends) under g_{t} of $\left(-\infty, U_{t}\right)$ and $\left(U_{t}, \infty\right)$. We call a simple curve $\omega:(0, \infty) \rightarrow H_{t}$ with $\omega\left(0^{+}\right)=\gamma(t)$ and $\omega(\infty)=\infty$ an infinite crosscut of H_{t}. Such curves can be obtained as preimages under g_{t} of simple curves from U_{t} to ∞ in \mathbb{H}. An important observation is that infinite crosscuts of H_{t} separate $\partial_{1} H_{t}$ from $\partial_{2} H_{t}$.

We now define a particular crosscut of H_{t} contained in \mathcal{I} that separates z from w.

Definition. Let γ be a non-crossing curve and let $\mathcal{I}_{t}=\mathcal{I} \backslash \gamma(0, t]$. We denote by $I_{t}=I_{t}(\mathcal{I}, z, w, \gamma)$ the unique open interval contained in \mathcal{I} such that the following four properties hold. For any $t \leq t^{\prime}$ we have:

- I_{t} is a connected component of \mathcal{I}_{t},
- $I_{t^{\prime}} \subseteq I_{t}$,
- $H_{t} \backslash I_{t}$ has exactly two connected components, one containing z and one containing w, and
- $I_{t}=I_{t^{\prime}}$ whenever $\gamma\left(t, t^{\prime}\right] \cap \mathcal{I}=\emptyset$.

We let H_{t}^{z}, H_{t}^{w} denote the components of $H_{t} \backslash I_{t}$ that contain z and w respectively.

Figure 4. A few steps showing the behavior of I_{t} for some times $0<t_{1}<t_{2}<t_{3}$.

Seeing that this notion is well defined is non-trivial, despite the intuitive nature what it should be (see Figure (4). To avoid breaking the flow of the document, the proof that it is well defined has been deferred to Appendix A.

Lemma 4.6. Suppose γ is a non-crossing curve with $z, w \notin \gamma(0, \infty)$ and $I_{t}=I_{t}(\mathcal{I}, z, w, \gamma)$ as above. Suppose $\gamma(t) \in \bar{I}_{t}$. If I_{t} is not bounded, then

$$
\Delta_{H_{t}}^{*}(z, \gamma(t), \infty) \geq 1, \quad \Delta_{H_{t}}^{*}(w, \gamma(t), \infty) \geq 1
$$

Proof. Suppose I_{t} is not bounded. Then I_{t} is an infinite crosscut of H_{t}. Suppose that $\Delta_{H_{t}}^{*}(z, \gamma(t), \infty)<1$. Then there is a crosscut η contained in a disc of radius strictly less than one centered on z which has one end point in $\partial_{1} H_{t}$ and one end point in $\partial_{2} H_{t}$. Hence η must intersect I_{t}. However, $\operatorname{dist}\left(z, I_{t}\right) \geq \operatorname{dist}(z, \mathcal{I}) \geq 1$ which is a contradiction. Therefore, I_{t} is bounded.

Lemma 4.7. Suppose γ is a non-crossing curve with $z, w \notin \gamma(0, \infty)$ and $I_{t}=I_{t}(\mathcal{I}, z, w, \gamma)$ as above. Suppose $\gamma(t) \in \overline{I_{t}}$. If I_{t} is bounded and H_{t}^{z} is bounded then

$$
\Delta_{H_{t}}^{*}(z, \gamma(t), \infty) \geq 1
$$

Proof. Suppose I_{t} is bounded, H_{t}^{z} is bounded, and $\Delta_{H_{t}}^{*}(z, \gamma(t), \infty)<1$. Then there is a crosscut η of H_{t}^{z} which has one end point in $\partial_{1} H_{t}$ and one end point in $\partial_{2} H_{t}$. Since H_{t}^{z} is bounded and $\gamma(t) \in \overline{I_{t}}$ we may find an infinite crosscut ω of H_{t} that never enters H_{t}^{z} (take a simple curve from ∞ in H_{t} until it first hits I_{t} and then continue the curve along I_{t} to reach $\gamma(t)$). Since η and ω do not intersect, we get a contradiction.

Given these simple observations, we can restrict the manner in which the various distances to the curve can be decreased.

Lemma 4.8. Suppose γ is a non-crossing curve with $z, w \notin \gamma(0, \infty)$ and $I_{t}=I_{t}(\mathcal{I}, z, w, \gamma)$ as above. Suppose t_{0} is a time so that $\gamma\left(t_{0}\right) \in \overline{I_{t_{0}}}$. Let $\zeta=\inf \left\{t>t_{0} \mid \gamma(t) \in I_{t^{-}}\right\}$. Then at most one of the following holds:

- $\Delta_{H_{\zeta}, 1}(z, \gamma(\zeta), \infty)<\Delta_{H_{t_{0}}, 1}\left(z, \gamma\left(t_{0}\right), \infty\right) \wedge 1$, or
- $\Delta_{H_{\zeta}, 2}(z, \gamma(\zeta), \infty)<\Delta_{H_{t_{0}, 2}}\left(z, \gamma\left(t_{0}\right), \infty\right) \wedge 1$.

Proof. If $\zeta=t_{0}$, the above statement follows immediately, so we may assume $\zeta>t_{0}$. Consider the non-crossing loop $\ell=\gamma\left[t_{0}, \zeta\right] \cup L$ where L is the line connecting $\gamma(\zeta)$ and $\gamma\left(t_{0}\right)$. Partition \mathbb{H} into two sets, the infinite component of $\mathbb{H} \backslash \ell$, which we will denote by A_{∞}, and the union of the finite components of $\mathbb{H} \backslash \ell$ which we will denote by A_{0}. The point z is either in A_{∞} or A_{0}. As the cases are similar, assume $z \in A_{\infty}$. Since ℓ is a non-crossing loop, we either have a curve $\eta:[0,1) \rightarrow A_{\infty}$ with $\eta(0)=z$ and $\eta\left(1^{-}\right) \in \partial_{1} H_{\zeta}$ or $\eta\left(1^{-}\right) \in \partial_{2} H_{\zeta}$, but not both. This yields that only one of the $\Delta_{H_{\zeta}, j}(z, \gamma(\zeta), \infty)$ could have decreased past the minimum of 1 and its previous value.

Lemma 4.9. Suppose γ is a non-crossing curve with $z, w \notin \gamma(0, \infty)$ and $I_{t}=I_{t}(\mathcal{I}, z, w, \gamma)$ as above. Suppose t_{0} is a time so that $\gamma\left(t_{0}\right) \in \overline{I_{0}}$, and let $\zeta=\inf \left\{t>t_{0} \mid \gamma(t) \in I_{t^{-}}\right\}$. Suppose for some $s<1$,

$$
\Delta_{\zeta}^{*}(z) \leq s<\Delta_{t_{0}}^{*}(z) .
$$

Then $\Delta_{t_{0}}(z) \leq s$, and $H_{t_{0}}^{w}$ and H_{ζ}^{w} are bounded.

Proof. By the previous lemma, we have that either $\Delta_{\zeta}^{1}(z) \geq \Delta_{t_{0}}^{1}(z) \wedge 1$ or $\Delta_{\zeta}^{2}(z) \geq \Delta_{t_{0}}^{2}(z) \wedge 1$. This implies that $\Delta_{\zeta}^{*}(z) \geq \Delta_{t_{0}}(z) \wedge 1$, and hence $\Delta_{t_{0}}(z) \wedge$ $1 \leq s$ which is the first assertion.

We now prove that H_{ζ}^{w} is bounded. Assume first that both H_{ζ}^{w} and H_{ζ}^{z} are unbounded. Then I_{ζ} is unbounded and by Lemma 4.6 we have that

$$
\Delta_{H_{\zeta}}^{*}(z, \gamma(t), \infty) \geq 1
$$

which is a contradiction. Thus one of H_{ζ}^{w} or H_{ζ}^{z} is bounded. If H_{ζ}^{z} is bounded, then by Lemma 4.7 we have

$$
\Delta_{H_{\zeta}}^{*}(z, \gamma(t), \infty) \geq 1
$$

which is again a contradiction. Thus H_{ζ}^{w} is bounded, as desired.
By the definition of ζ and I_{t}, we know $\gamma\left(t_{0}, \zeta\right)$ is contained in precisely one of $H_{t_{0}}^{z}$ or $H_{t_{0}}^{w}$. Since

$$
\Delta_{\zeta}^{*}(z)<1 \leq \Delta_{t_{0}}^{*}(z)
$$

by assumption, we know $\gamma\left(t_{0}, \zeta\right) \subseteq H_{t_{0}}^{z}$. Assume that $H_{t_{0}}^{w}$ were unbounded. Then there is a curve η from w to ∞ contained in $H_{t_{0}}^{w}$. Since H_{ζ}^{w} is bounded $\eta \cap \partial H_{\zeta}^{w}$ is non-empty. By definition,

$$
\partial H_{\zeta}^{w} \subseteq \gamma\left(0, t_{0}\right] \cup \gamma\left(t_{0}, \zeta\right] \cup I_{\zeta} .
$$

We now show η cannot intersect any of the three sets on the right. Since η is in $H_{t_{0}}^{w}$, we know $\eta \cap\left(\gamma\left(0, t_{0}\right] \cup I_{t_{0}}\right)=\emptyset$ and moreover, since $I_{\zeta} \subseteq I_{t_{0}}$, that $\eta \cap I_{\zeta}=\emptyset$. Since $\gamma\left(t_{0}, \zeta\right) \subseteq H_{t_{0}}^{z}$, we know $\eta \cap \gamma\left(t_{0}, \zeta\right)=\emptyset$. Thus we have a contradiction, and $H_{t_{0}}^{w}$ must be bounded, as desired.
4.3. Main $S L E$ estimates. We now use the above topological restrictions to help us establish the needed $S L E$ estimates. Let T_{z} (resp. T_{w}) denote the first time that z (resp. w) is not in H_{t} and let $T=T_{z} \wedge T_{w}$ denote the first time that one of z, w is not in H_{t}. Note that if the curve to approach z and w to within ε and δ as desired, it must occur before $T_{z} \vee T_{w}$. We also define the following recursive set of stopping times. Let $\tau_{0}=0$. Given $\tau_{j}<T$, define $\hat{\tau}_{j}$ as the infimum over times $t>\tau_{j}$ such that

$$
\Delta_{t}(z) \leq \frac{1}{2} \Delta_{\tau_{j}}(z) \text { or } \Delta_{t}(w) \leq \frac{1}{2} \Delta_{\tau_{j}}(w)
$$

Given this, let τ_{j+1} be the infimum over times $t>\hat{\tau}_{j}$ such that $\gamma(t) \in \overline{I_{\hat{\tau}_{j}}}$. These times are understood to be infinite when past T and hence at least one of the points can no longer be approached by the curve. The sequence of stopping times $\left\{\tau_{k}\right\}_{k \geq 0}$ are called renewal times. We let $R_{k+1}=0$ if $\tau_{k+1}<\infty$ and $\Delta_{\tau_{k+1}}(z) \leq \frac{1}{2} \Delta_{\tau_{k}}(z)$; in this case, we can see that $\Delta_{\tau_{k+1}}(w)>\frac{1}{2} \Delta_{\tau_{k}}(w)$. If $\tau_{k+1}<\infty$ and $\Delta_{\tau_{k+1}}(w) \leq \frac{1}{2} \Delta_{\tau_{k}}(w)$, we set $R_{k+1}=1$. We set $R_{k+1}=\infty$ if $\tau_{k+1}=\infty$. Let $\mathcal{F}_{k}=\mathcal{F}_{\tau_{k}}$.

Lemma 4.10. There exist $c<\infty, \alpha>0$ such that for all $k \geq 0, r \leq 1 / 2$,

$$
\begin{equation*}
\mathbb{P}\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}}(z) \leq r \Delta_{\tau_{k}}(z) \mid \mathcal{F}_{k}\right\} \leq c 1\left\{\tau_{k}<T\right\} \Delta_{\tau_{k}}(z)^{\alpha} r^{2-d} \tag{12}
\end{equation*}
$$

Proof. We assume $\tau_{k}<T$ and we write $\tau=\tau_{k}, \xi=\xi\left(z ; r \Delta_{\tau}(z)\right)$. First, consider the event that either I_{τ} is not bounded or both I_{τ} and H_{τ}^{z} are bounded. By Lemma 4.7 we have $\Delta^{*}(z) \geq 1$. Thus by Lemma 2.11, we get

$$
\mathbb{P}\left\{\xi<\infty \mid \mathcal{F}_{k}\right\} \leq c r^{2-d} \Delta_{\tau}(z)^{\beta / 2}
$$

Suppose that I_{τ} is bounded and H_{τ}^{w} is bounded. We split into two cases: $\Delta_{\tau}^{*}(z) \leq \sqrt{\Delta_{\tau}(z)}$ and $\Delta_{\tau}^{*}(z)>\sqrt{\Delta_{\tau}(z)}$. If $\Delta_{\tau}^{*}(z)>\sqrt{\Delta_{\tau}(z)}$, then Lemma 2.11 implies

$$
\mathbb{P}\left\{\xi<\infty \mid \mathcal{F}_{k}\right\} \leq c r^{2-d} \Delta_{\tau}(z)^{\beta / 4}
$$

Suppose $\Delta_{\tau}^{*}(z) \leq \sqrt{\Delta_{\tau}(z)}$. Then there exist simple curves $\eta_{1}, \eta_{2}:[0,1) \rightarrow$ H_{τ}^{z} contained in the disk of radius $2 \Delta_{\tau}^{*}(z)$ about z with $\eta^{j}(0)=z$ and $\eta^{j}(1+) \in$ $\partial_{j} H_{\tau}$. At the time ξ we can consider the line segment L from $\gamma(\xi)$ to z. There exists a crosscut of $H_{\xi}, \hat{\eta}$, contained in $L \cup \eta_{1}$ or in $L \cup \eta_{2}$, one of whose endpoints is $\gamma(\xi)$, that disconnects I_{ξ} from infinity. Using Lemma 4.4, we see that

$$
\mathcal{E}_{H_{\xi}}\left(\hat{\eta}, I_{\xi}\right) \leq c \Delta_{\tau}^{*}(z)^{1 / 2} \leq c \Delta_{\tau}(z)^{1 / 4}
$$

Thus, using Lemma 4.5 we see that

$$
\mathbb{P}\left\{\xi<\tau_{k+1}<\infty \mid \mathcal{F}\right\} \leq c \Delta_{\tau}(z)^{\lambda / 4} \mathbb{P}\{\xi<\infty \mid \mathcal{F}\} \leq c r^{2-d} \Delta_{\tau}(z)^{\lambda / 4}
$$

Remark. The proof of the last lemma was not difficult given the estimates we have derived. However, it is useful to summarize the basic idea. If $\Delta_{\tau}^{*}(z)$ is not too small, then it suffices to estimate

$$
\mathbb{P}\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}}(z) \leq r \Delta_{\tau_{k}}(z) \mid \mathcal{F}_{k}\right\}
$$

by

$$
\mathbb{P}\left\{\xi<\infty \mid \mathcal{F}_{k}\right\}
$$

However, if $\Delta_{\tau_{k}}^{*}(z)$ is not much bigger than $\Delta_{\tau_{k}}(z)$ this estimate is not sufficient. In this case, we need to use

$$
\mathbb{P}\left\{\xi<\infty \mid \mathcal{F}_{k}\right\} \mathbb{P}\left\{\tau_{k+1}<\infty \mid \mathcal{F}_{k}, \xi<\infty\right\}
$$

Now that we have a good bound on the probability that the near side gets closer, we must also provide a bound limiting the probability that the far side can get closer.
Lemma 4.11. There exists $c<\infty$ such that for all $k \geq 0, s \leq 1 / 4$, if

$$
\xi^{*}=\inf \left\{t>\tau_{k} \mid \Delta_{t}^{*}(z) \leq s\right\} \quad \text { and } \quad \eta^{*}=\inf \left\{t>\xi^{*} \mid \gamma(t) \in I_{t^{-}}\right\}
$$

then

$$
\mathbb{P}\left\{\eta^{*}<\infty, \Delta_{\eta^{*}}^{*}(z) \leq s \mid \Delta_{\tau_{k}}^{*}(z)>s, \mathcal{F}_{\tau_{k}}\right\} \leq c s^{\lambda / 2}
$$

Proof. Assume $\Delta_{\tau_{k}}^{*}(z)>s$. If $\eta^{*}<\infty$ we may define

$$
\varpi=\sup \left\{t<\eta^{*} \mid \gamma(t) \in I_{t^{-}}\right\}
$$

to be the previous time that γ crossed $I_{t^{-}}$before η^{*}. Note that $\tau_{k} \leq \varpi<\xi^{*}<$ η^{*} and $\Delta_{\varpi}^{*}(z)>s$. By considering the two times ϖ and η^{*} in Lemma 4.9 we see that H_{w}^{w} is bounded.

Consider the situation at time ξ^{*}. By the definition of the stopping times, there must be a curve $\nu:(0,1) \rightarrow H_{\xi^{*}}$ which contains z, is never more than distance $2 s$ from z, has $\nu\left(0^{+}\right) \in \partial_{1} H_{\xi^{*}}$ and $\nu\left(1^{-}\right) \in \partial_{2} H_{\xi^{*}}$ such that ν separates $I_{\xi^{*}}$ and hence w from infinity. Since ν is at least distance $1 / 2$ from $I_{\xi^{*}}$ we know from Lemma 4.4 that the excursion measure between ν and $I_{\xi^{*}}$ in $H_{\xi^{*}}$ is bounded above by $C s^{1 / 2}$. Then an application of Lemma 4.5 tells us that the probability of γ returning to $I_{\xi^{*}}$ is bounded above by $C s^{\lambda / 2}$ which gives the lemma.

The following two lemmas combine the methods of the above two bounds.
Lemma 4.12. There exist $c<\infty, \alpha>0$ such that for all $k \geq 0, r \leq 1 / 2$, $s \leq 1 / 4$,

$$
\begin{aligned}
& \mathbb{P}\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}}(z) \leq r \Delta_{\tau_{k}}(z) ; \Delta_{\tau_{k+1}}^{*}(w) \leq s \mid \mathcal{F}_{k}\right\} \\
& \quad \leq c 1\left\{\tau_{k}<T\right\} \Delta_{\tau_{k}}(z)^{\alpha}\left[s^{\alpha}+\mathbb{1}\left\{\Delta_{\tau_{k}}^{*}(w) \leq s\right\}\right] r^{2-d} .
\end{aligned}
$$

Proof. If $\Delta_{\tau_{k}}^{*}(w) \leq s$ then the desired statement reduces to Lemma 4.10. Thus, we may assume that $\Delta_{\tau_{k}}^{*}(w)>s$.

Let $\zeta^{*}=\zeta_{k}^{*}$ be the infimum over times $t>\tau_{k}$ so that $\Delta_{t}^{*}(w) \leq s$ and $\gamma(t) \in$ $I_{t^{-}}$. Let $\sigma=\sigma_{k}=\inf \left\{t>\tau_{k} \mid \Delta_{t}(z) \leq r \Delta_{\tau_{k}}(z)\right\}$. If $\Delta_{\tau_{k}}^{*}(w)>s, \Delta_{\tau_{k+1}}^{*}(w) \leq s$, and $\sigma<\infty$, then $\zeta^{*}<\sigma$ since the curve γ would need to intersect I_{σ} before approaching w and hence would force the renewal time τ_{k+1} before ζ_{k}.

By the same argument as in Lemma 4.11 we know if $\Delta_{\tau_{k}}^{*}(w)>s$ and $\zeta^{*}<\infty$, there is a time $\omega, \tau_{k} \leq \omega<\zeta^{*}$ for which there is a curve connecting $\partial_{1} H_{\omega}$ to $\partial_{2} H_{\omega}$ passing through $\gamma(\omega)$ contained in a disk of radius $2 s$ about w separating I_{κ} from infinity. Then, by Lemma 4.5, we have that

$$
\mathbb{P}\left\{\zeta^{*}<\infty \mid \Delta_{\tau_{k}}^{*}(z)>s, \mathcal{F}_{\tau_{k}}\right\} \leq c s^{\alpha} .
$$

By Lemma 4.9we know $H_{\zeta^{*}}^{z}$ is bounded. Lemma 4.7implies that $\Delta_{\zeta^{*}}^{*}(z)=1$, and hence by Lemma 4.4

$$
\mathbb{P}\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}} \leq r \Delta_{\tau_{k}}(z) \mid \mathcal{F}_{\zeta^{*}}, \zeta^{*}<\infty\right\} \leq c \mathbb{1}\left\{\tau_{k}<T\right\} \Delta_{\zeta^{*}}(z)^{\alpha} r^{2-d}
$$

Combining the above two bounds gives the desired result.

Lemma 4.13. There exist $c<\infty, \alpha>0$ such that for all $k \geq 0, r \leq 1 / 2$, $s>0$,

$$
\begin{aligned}
& \mathbb{P}\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}}(z) \leq r \Delta_{\tau_{k}}(z) ; \Delta_{\tau_{k+1}}^{*}(z) \leq s \mid \mathcal{F}_{k}\right\} \\
& \quad \leq c 1\left\{\tau_{k}<T\right\} \Delta_{\tau_{k}}(z)^{\alpha}\left[s^{\alpha}+\mathbb{1}\left\{\Delta_{\tau_{k}}^{*}(z) \leq s\right\}\right] r^{2-d}
\end{aligned}
$$

Proof. If $\Delta_{\tau_{k}}^{*}(z) \leq s$ or $s \geq 1 / 4$, the conclusion reduces to Lemma 4.10. Thus we may assume that $\Delta_{\tau_{k}}^{*}(z)>s, s \leq 1 / 4$. Let E denote the event

$$
E=\left\{R_{\tau_{k+1}}=0 ; \Delta_{\tau_{k+1}}(z) \leq r \Delta_{\tau_{k}}(z) ; \Delta_{\tau_{k+1}}^{*}(z) \leq s ; \Delta_{\tau_{k}}^{*}(z)>s\right\}
$$

Let

$$
\sigma=\inf \left\{t \mid \Delta_{t}(z) \leq r \Delta_{\tau_{k}}(z)\right\}
$$

and note that on the event E,

$$
\tau_{k+1}=\inf \left\{t>\sigma \mid \gamma(t) \in I_{t^{-}}\right\}
$$

Define ξ to be the infimum over times $t \geq \sigma$ such that there is a curve η : $(0,1) \rightarrow H_{t}$ with $\eta\left(0^{+}\right)=\gamma(t)$ and $\eta\left(1^{-}\right) \in \partial H_{t}$ with η contained entirely in the ball of radius $2 s$ about z, and η separating I_{t} from ∞.

We now claim that given \mathcal{F}_{σ} either $\xi<\tau_{k+1}$ or $\Delta_{\tau_{k+1}}^{*}(z)>s$. To see this, suppose neither holds. Since $\Delta_{\tau_{k+1}}^{*}(z) \leq s$, for every $s<s^{\prime} \leq 2 s \leq 1 / 2$, there is a crosscut η of $H_{\tau_{k+1}}$ going through z whose endpoints are in $\partial_{1} H_{\tau_{k+1}}, \partial_{2} H_{\tau_{k+1}}$, respectively and which is contained in the disk of radius s^{\prime} about z. By Lemma 4.9 we know η must disconnect $I_{\tau_{k+1}}$ from ∞ since $H_{\tau_{k+1}}^{w}$ must be bounded. We can choose such an η such that at least one end point of η is not in $\gamma\left[0, \tau_{k}\right]$, for otherwise all such η would be a crosscuts of $H_{\tau_{k}}$ separating w from infinity which would imply that $\Delta_{\tau_{k}}^{*}(z) \leq s$.

Let $\zeta=\sup \left\{t \leq \tau_{k+1} \mid \gamma(t) \in \bar{\eta}\right\}>\tau_{k}$ and note that $\tau_{k}<\zeta<\tau_{k+1}$. If $\zeta \geq \sigma$ we are done since this η demonstrates that $\xi<\tau_{k+1}$.

Thus assume $\zeta<\sigma$. In this case we will construct another curve which satisfies what we want at the time σ. Since $\zeta<\sigma$ we know the curve η defined above disconnects I_{σ} from infinity in H_{σ}. By the definition of σ as the first time that $\Delta_{\sigma}(z) \leq r \Delta_{\tau_{k}}(z)$, the straight open line segment, L, from $\gamma(\sigma)$ to z is contained in H_{σ}. Additionally, since $\Delta_{\sigma}(z) \leq \Delta_{\sigma}^{*}(z) \leq s$ we know $\eta(0,1) \cup L$ is contained entirely in the ball of radius $2 s$ about z. Thus we may find a curve $\hat{\eta}$ contained in $\eta(0,1) \cup L$ which separates I_{σ} from infinity in H_{σ} with $\eta\left(0^{+}\right)=\gamma(t)$ and $\eta\left(1^{-}\right) \in \partial H_{t}$ and with η contained entirely in the ball of radius $2 s$ about z, proving that $\xi=\sigma<\tau_{k+1}$. Thus we have reached a contradiction.

On the event E we know $\Delta_{\tau_{k+1}}^{*}(z) \leq s$ and thus the above argument tells us $\xi<\tau_{k+1}$. We have therefore shown that if $\Delta_{\tau_{k}}^{*}(z)>s, s \leq 1 / 4$, then

$$
\mathbb{P}\left(E \mid \mathcal{F}_{k}\right) \leq \mathbb{P}\left\{\sigma \leq \xi<\tau_{k+1}<\infty \mid \mathcal{F}_{k}\right\} .
$$

We now argue as in the second part of the proof of Lemma 4.10 that $\mathbb{P}\{\sigma<$ $\left.\infty \mid \mathcal{F}_{k}\right\} \leq c \Delta_{\tau_{k}}(z)^{\alpha}$ and $\mathbb{P}\left\{\tau_{k+1}<\infty \mid \mathcal{F}_{\xi}\right\} \leq c s^{\alpha}$.
4.4. Combinatorial estimates. We have now completed the bulk of the probabilistic estimates. Most of what remains is a combinatorial argument to sum up the bounds proven above across all possible ways that the $S L E$ curve may approach z and w in turn.

Without loss of generality, assume that $\delta=2^{-m}$ and $\varepsilon=2^{-n}$ and let

$$
\begin{gathered}
\xi_{z}=\xi_{z, \varepsilon}=\inf \left\{t: \Delta_{t}(z) \leq 2^{-n}\right\}, \quad \xi_{w}=\xi_{w, \delta}=\inf \left\{t: \Delta_{t}(w) \leq 2^{-m}\right\}, \\
\xi=\xi_{z} \vee \xi_{w}=\inf \left\{t: \Delta_{t}(z) \leq 2^{-n}, \Delta_{t}(w) \leq 2^{-m}\right\}
\end{gathered}
$$

Let σ be the minimal τ_{k} such that $\Delta_{\tau_{k}}(z)<2^{-n+1}$ or $\Delta_{\tau_{k}}(w)<2^{-m+1}$. Let k_{σ} be the index so that $\sigma=\tau_{k_{\sigma}}$. If such a renewal time does not exist, let $k_{\sigma}=\infty$ and $\sigma=\infty$. Let $\xi=\inf \left\{t \mid \Delta_{t}(z)<\varepsilon, \Delta_{t}(w)<\delta\right\}$. Note that if ξ is finite, then so is σ.

Let $V_{z, k}, V_{z}$ denote the events (and their indicator functions)

$$
V_{z, k}=\left\{k_{\sigma}=k, R_{\sigma}=0\right\}, V_{z}=\bigcup_{k=1}^{\infty} V_{z, k} .
$$

We define V_{w} analogously. By the definition of σ, on the event the event V_{z},

$$
\Delta_{\tau_{k_{\sigma-1}}}(z) \geq 2^{-n+1}, \quad \Delta_{\tau_{k_{\sigma}-1}}(w) \geq 2^{-n+1}, \quad \Delta_{\sigma}(z)<2^{-n+1}
$$

Also,

$$
\Delta_{\sigma}(w)>2^{-n}
$$

for if $\Delta_{\sigma}(w) \leq 2^{-n}$, there would have been a renewal time after $\tau_{k_{\sigma}-1}$ but before $\tau_{k}=\sigma$. Note that

$$
\{\xi<\infty\} \subset\left[V_{z} \cap\left\{\xi_{w}<\infty\right\}\right] \cup\left[V_{w} \cap\left\{\xi_{z}<\infty\right\}\right]
$$

We will concentrate on the event $V_{z} \cap\left\{\xi_{w}<\infty\right\}$; similar arguments handle the event $V_{w} \cap\left\{\xi_{z}<\infty\right\}$.

Define the integers $\left(i_{l}, j_{l}\right)$ by stating that at the renewal time τ_{l},

$$
2^{-i_{l}}<\Delta_{\tau_{l}}(z) \leq 2^{-i_{l}+1}, 2^{-j_{l}}<\Delta_{\tau_{l}}(w) \leq 2^{-j_{l}+1}
$$

If $\sigma<\infty$, we write $\left(i_{\sigma}, j_{\sigma}\right)=\left(i_{k_{\sigma}}, j_{k_{\sigma}}\right)$. On the event $k_{\sigma}=k, R_{\sigma}=0$, there is a finite sequence of ordered triples

$$
\begin{gathered}
\pi=\left[\left(i_{0}, j_{0}, 0\right),\left(i_{1}, j_{1}, R_{1}\right), \ldots,\left(i_{k-1}, j_{k-1}, R_{k-1}\right),\left(i_{k}, j_{k}, R_{k}\right)=\left(i_{\sigma}, j_{\sigma}, 0\right)\right] \\
i_{l}, j_{l} \in\{1,2,3, \ldots\}, \quad R_{l} \in\{0,1\} .
\end{gathered}
$$

We have the following properties for $0 \leq l \leq k-1$:

- If $R_{l+1}=0$, then $i_{l+1} \geq i_{l}+1$ and $j_{l} \leq j_{l+1} \leq j_{l}+1$.
- If $R_{l+1}=1$, then $i_{l} \leq i_{l+1} \leq i_{l}+1$ and $j_{l+1} \geq j_{l}+1$.

We call any sequence of triples satisfying these two properties a legal sequence of length k. For any i, j, k, let $\mathcal{S}_{k}(i, j)$ denote the collection of legal finite sequences of length k whose final triple is

$$
\left(i_{k}, j_{k}, R_{k}\right)=(i, j, 0)
$$

If π is a legal finite sequence of length k, let $V_{z, \pi}$ be the event that $k_{\sigma}=k, R_{\sigma}=$ 0 and the renewal times up to and including σ give the sequence π. Figure 5 illustrates this definition.

Figure 5. An example of a curve γ (shown in bold) in $V_{z, \pi}$ where $\pi=[(0,0,0),(0,1,1),(2,1,0),(3,1,0)]$.

Define K_{l} for $1 \leq l \leq k$ by

$$
K_{l}= \begin{cases}i_{l-1} & \text { if } R_{l}=0 \\ j_{l-1} & \text { if } R_{l}=1\end{cases}
$$

The next proposition gives the fundamental estimate.
Proposition 4.14. There exist c and an $\alpha>0$ such that the following holds. Let i, j, k be integers and let $\pi \in \mathcal{S}_{k}(i, j, 0)$. Then

$$
\mathbb{P}\left[V_{z, \pi} \cap\left\{\xi_{w}<\infty\right\}\right] \leq c^{k} 2^{(m+n)(d-2)} e^{-\alpha(i+j-n)} \prod_{l=1}^{k} e^{-\alpha K_{l}} .
$$

Proof. Note that on the event V_{z} we may say by Lemma 2.11 that

$$
\mathbb{P}\left\{\xi_{w}<\infty \mid \mathcal{F}_{k}\right\} \leq c\left[\frac{2^{-j}}{\Delta_{k}^{*}(w)}\right]^{\beta / 2} 2^{(m-j)(d-2)}
$$

We will proceed by splitting the event $V_{z, \pi}$ into the case where $\Delta_{k}^{*}(w) \geq 2^{-j}$ and the case where it is not.

First note

$$
\begin{aligned}
\mathbb{P}\left[V_{z, \pi}\right. & \left.\cap\left\{\Delta_{k}^{*}(w) \geq 2^{-j / 2}\right\} \cap\left\{\xi_{w}<\infty\right\}\right] \\
& \leq c \mathbb{P}\left[V_{z, \pi} \cap\left\{\Delta_{k}^{*}(w) \geq 2^{-j}\right\}\right] 2^{-\beta j / 4} 2^{(m-j)(d-2)} \\
\quad & \leq c \mathbb{P}\left[V_{z, \pi}\right] 2^{-\beta j / 4} 2^{(m-j)(d-2)} \\
& \leq c^{k} 2^{-\beta j / 4} 2^{(m-j)(d-2)} 2^{(i+j)(d-2)} \prod_{l=1}^{k} e^{-\alpha K_{l}} \\
& =c^{k} 2^{-\beta j / 4} 2^{(m+n)(d-2)} 2^{(i-n)(d-2)} \prod_{l=1}^{k} e^{-\alpha K_{l}} \\
& \leq c^{k} 2^{(m+n)(d-2)} 2^{-\mu(i+j-n)} \prod_{l=1}^{k} e^{-\alpha K_{l}}
\end{aligned}
$$

for some choice of μ by repeated applications of Lemma 4.10.
Thus we need only understand the event

$$
\mathbb{P}\left[V_{z, \pi} \cap\left\{\Delta_{k}^{*}(w)<2^{-j / 2}\right\} \cap\left\{\xi_{w}<\infty\right\}\right] \leq c \mathbb{P}\left[V_{z, \pi} \cap\left\{\Delta_{k}^{*}(w)<2^{-j / 2}\right\}\right] 2^{(m-j)(d-2)} .
$$

For the event $\left\{\Delta_{k}^{*}(w)<2^{-j / 2}\right\}$ there must be at least one l such that $\Delta_{l}^{*}(w) \geq$ $2^{-j / 2}$ and $\Delta_{l+1}^{*}(w)<2^{-j / 2}$. By using Lemma 4.12 for that single step if $R_{l}=1$ or Lemma 4.13 if $R_{l}=0$ and 4.10 for all other steps we have that

$$
\begin{aligned}
\mathbb{P}\left[V_{z, \pi}\right. & \left.\cap\left\{\Delta_{k}^{*}(w)<2^{-j / 2}\right\}\right] \\
& \leq \sum_{l=0}^{k-1} \mathbb{P}\left[V_{z, \pi} \cap\left\{\Delta_{l}^{*}(w) \geq 2^{-j / 2} ; \Delta_{l+1}^{*}(w)<2^{-j / 2}\right\}\right] \\
& \leq k c^{k} 2^{-\alpha j / 2} 2^{(i+j)(d-2)} \prod_{l=1}^{k} e^{-\alpha K_{l}}
\end{aligned}
$$

By combining this with the above event we see that

$$
\begin{aligned}
\mathbb{P}\left[V_{z, \pi}\right. & \left.\cap\left\{\Delta_{k}^{*}(w)<2^{-j / 2}\right\} \cap\left\{\xi_{w}<\infty\right\}\right] \\
& \leq k c^{k} 2^{(m-j)(d-2)} 2^{-\alpha j / 2} 2^{(i+j)(d-2)} \prod_{l=1}^{k} e^{-\alpha K_{l}} \\
& =c^{k} 2^{(m+n)(d-2)} 2^{-\mu(j+i-n)} \prod_{l=1}^{k} e^{-\alpha K_{l}} .
\end{aligned}
$$

where c is being used generically and for some choice of μ. Thus by choosing μ and α to be the same (which we can do by taking the minimum for both) we get the desired result.

We will now show how this proposition implies the main theorem. The proof rests upon the following combinatorial lemma.

Lemma 4.15. For every $\alpha>0$, there exist c and $a u>0$ such that for all k

$$
\sum_{\pi \in \mathcal{S}_{k}(i, j, 0)} 1\left\{K_{k} \geq r\right\} \prod_{l=1}^{k} e^{-\alpha K_{l}} \leq c e^{-u k^{2}} e^{-\alpha r}
$$

Proof. We fix α and allow all constants to depend on α. Let

$$
\Sigma_{k}=\sum_{[m]_{k}} \prod_{l=1}^{k} e^{-\alpha m_{l}}
$$

where the sum is over all strictly increasing finite sequences of positive integers, written as $[m]_{k}:=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$. We first claim that

$$
\Sigma_{k} \leq c_{1} e^{-\alpha k^{2} / 4}
$$

Consider the following recursive relation:

$$
\begin{aligned}
\Sigma_{k} & =\sum_{[m]_{k}} \prod_{l=1}^{k} e^{-\alpha m_{l}} \\
& \leq \sum_{[m]_{k-1}} \sum_{m_{k}=k}^{\infty} e^{-\alpha m_{k}} \prod_{l=1}^{k-1} e^{-\alpha m_{l}} \\
& =\Sigma_{k-1} \sum_{j=k}^{\infty} e^{-\alpha j} \\
& \leq c_{2} \Sigma_{k-1} e^{-\alpha k} .
\end{aligned}
$$

Applying this bound inductively to Σ_{k} yields

$$
\Sigma_{k} \leq c_{2}^{k} \exp \left\{-\alpha \sum_{i=1}^{k} i\right\} \leq c_{1} e^{-\alpha k^{2} / 4}
$$

as desired.
To choose a legal sequence in $\mathcal{S}_{k}(i, j, 0)$ there are 2^{k-1} ways to choose the values R_{1}, \ldots, R_{k-1}. Given the values of R_{1}, \ldots, R_{k-1} we choose the increases of the integers. If $R_{l}=0$, then $i_{l}>i_{l-1}$ and $j_{l}=j_{l-1}$ or $j_{l}=j_{l-1}+1$. The analogous inequalities hold of $R_{1}=1$. There are 2^{k} ways to choose whether $j_{l}=j_{l-1}$ or $j_{l}=j_{l-1}+1$ (or the corresponding jump for i_{l} if $R_{1}=1$). In the
other components we have to increase by an integer. We therefore get that the sum is bounded above by

$$
\begin{aligned}
2^{k-1} \max _{0 \leq l \leq k-1} 2^{l} \Sigma_{l} \cdot 2^{k-l-1} \Sigma_{k-l-1} & \leq c^{k} \max _{0 \leq l \leq k-1} e^{-\alpha l^{2} / 4} e^{-\alpha(k-l-1)^{2} / 4} \\
& \leq c e^{-u k^{2}}
\end{aligned}
$$

By combining Proposition 4.14 and Lemma 4.15, there exist c such that

$$
\sum_{k=1}^{\infty} \sum_{\pi \in \mathcal{S}_{k}(i, j, 0)} \mathbb{P}\left[V_{z, \pi} \cap\left\{\xi_{w}<\infty\right\}\right] \leq c 2^{(m+n)(d-2)} e^{-\alpha(j+i-n)}
$$

and hence by summing over $i \geq n-1, j \geq 0$ we get

$$
\begin{aligned}
\mathbb{P}\left[V_{z} \cap\{\xi<\infty\}\right] & \leq \mathbb{P}\left[V_{z} \cap\left\{\xi_{w}<\infty\right\}\right] \\
& =\sum_{i=n-1}^{\infty} \sum_{j=0}^{\infty} \sum_{k=1}^{\infty} \sum_{\pi \in \mathcal{S}_{k}(i, j, 0)} \mathbb{P}\left[V_{z, \pi} \cap\left\{\xi_{w}<\infty\right\}\right] \\
& \leq c 2^{(m+n)(d-2)}=c \varepsilon^{2-d} \delta^{2-d} .
\end{aligned}
$$

By the symmetry of z, w we have the bound

$$
\mathbb{P}\left[V_{w} \cap\{\xi<\infty\}\right] \leq c \varepsilon^{2-d} \delta^{2-d}
$$

and hence

$$
\mathbb{P}\left\{\Delta_{\infty}(z) \leq \varepsilon, \Delta_{\infty}(w) \leq \delta\right\}=\mathbb{P}\{\xi<\infty\} \leq c \varepsilon^{2-d} \delta^{2-d}
$$

as required to complete the proof of Proposition 4.1, and hence the proof of Beffara's estimate.

With the proof set up in this way, we may now rapidly complete our proof of the existence of the multi-point Green's function. By mirroring the proof above, we may conclude that for $\rho=2^{-\ell}$ (and hence for all ρ) that

$$
\begin{aligned}
\mathbb{P}\left[V_{z} \cap\left\{\xi<\infty, \Delta_{\sigma}(w) \leq \rho\right\}\right] & \leq \mathbb{P}\left[V_{z} \cap\left\{\xi_{w}<\infty, \Delta_{\sigma}(w) \leq \rho\right\}\right] \\
& =\sum_{i=n-1}^{\infty} \sum_{j=\ell}^{\infty} \sum_{k=1}^{\infty} \sum_{\pi \in \mathcal{S}_{k}(i, j, 0)} \mathbb{P}\left[V_{z, \pi} \cap\left\{\xi_{w}<\infty\right\}\right] \\
& \leq c 2^{(m+n)(d-2)} e^{-\alpha \ell}=c \varepsilon^{2-d} \delta^{2-d} \rho^{\alpha} .
\end{aligned}
$$

This proves the Proposition 4.2, and hence completes the proof of the existence of the multi-point Green's function.

Appendix A. The existence of the I_{t}
The aim of this appendix is to prove the existence of the separating set I_{t} desired above.

Definition. Let γ be a curve in the upper half plane and let z, w, \mathcal{I} be as above. Let $\mathcal{I}_{t}=\mathcal{I} \backslash \gamma(0, t]$. We will denote by I_{t} the unique open interval contained in \mathcal{I} such that the following four properties hold. For any $t \leq t^{\prime}$ we have:

- I_{t} is a connected component of \mathcal{I}_{t},
- the I_{t} are decreasing, which is to say $I_{t^{\prime}} \subseteq I_{t}$,
- $H_{t} \backslash I_{t}$ has exactly two connected components, one containing z and one containing w, and
- $I_{t}=I_{t^{\prime}}$ whenever $\gamma\left(t, t^{\prime}\right] \cap \mathcal{I}=\emptyset$.

It may, at first glance, seem simple to define such sets inductively. However, in general the set of times that a curve γ crosses \mathcal{I} may be uncountable and have no well defined notion of "the previous crossing." To avoid this issue and show this notion is well defined, we require a few topological lemmas.

Lemma A.1. Let U be a connected open set in \mathbb{C} separated by a smooth simple curve $\eta:[0,1] \rightarrow \bar{U}$. Let $V \subset U$ be a connected open subset. Then for any points $z, w \in V$, there exits a curve $\xi:[0,1] \rightarrow V$ from z to w which intersects η a finite number of times.

Proof. This proof mirrors the classic proof that a connected open set is path connected. Define an equivalence relation on V where points $z, w \in V$ are equivalent if z can be connected to w by a curve ξ which intersects η a finite number of times. This can readily be shown to satisfy the requirements of an equivalence relation. Let V_{α} denote the open connected components of $V \backslash \eta$.

If z, w are both in the same V_{α} then they may be connected by a curve which does not intersect η, hence each V_{α} is contained entirely in a single equivalence class.

Consider a disc, D, contained in V centered on a point $\eta\left(t_{0}\right)$ for some $t_{0} \in(0,1)$ with components V_{α} and V_{β} on either side of η near this point. Since η is smooth and simple, by choosing D sufficiently small we may find a diffeomorphism ϕ so that $\phi(D)=\mathbb{D}$ and $\phi(\eta \cap D)=\{$ it : $t \in(-1,1)\}$. Connect $-1 / 2$ to $1 / 2$ by the straight line between them, which only intersects the image of η once. Taking the image of this line under ϕ^{-1} gives a curve ξ satisfying the conditions of the equivalence relation connecting two points, one in V_{α} and one in V_{β}. Thus components of $V \backslash \eta$ which are directly separated by η are in the same equivalence class. Since V is connected, the only equivalence class is V itself.

Suppose U is a connected open set in \mathbb{C} separated by a curve $\eta:(0,1) \rightarrow U$ into two components U_{1}, U_{2} with points $z \in U_{1}$ and $w \in U_{2}$. Let V be a connected subset of U. Define $\mathcal{D}_{V}(z, w ; \eta)$ to be the the set of connected components of $V \cap \eta$ which disconnects z from w in V.

Corollary A.2. Let U be a connected open set in \mathbb{C} separated by a smooth simple curve $\eta:[0,1] \rightarrow \bar{U}$ into two components U_{1}, U_{2} with $z \in U_{1}$ and $w \in U_{2}$. Let $V \subset U$ be a connected open subset containing z and w. Then $\left|\mathcal{D}_{V}(z, w, \eta)\right|$ is finite and odd.

Proof. To see that the number is finite, take the curve ξ between z and w as in the above lemma and note that any η_{i} which separates z from w must intersect ξ.

To see that it is odd, consider the connected components of $V^{\prime}:=V \backslash$ $\bigcup_{\gamma \in \mathcal{D}_{V}(z, w ; \eta)} \gamma$. There are exactly $\left|\mathcal{D}_{V}(z, w ; \eta)\right|+1$ such components. η separates U into two components, and hence the components of V^{\prime} are alternately contained in U_{1} and U_{2}. Since the component containing z is in U_{1} and the component containing w is in U_{2} there must be an even number of components of V^{\prime}, which makes $\left|\mathcal{D}_{V}(z, w ; \eta)\right|$ odd.

This general topological lemma has the following consequence in our setting. To simplify notation, we will define $\mathcal{D}_{t}=\mathcal{D}_{H_{t}}(z, w, \mathcal{I})$.

Corollary A.3. Fix $0 \leq t^{\prime} \leq t<\infty$. Then a connected component I of $\mathcal{I}_{t^{\prime}}$ separates z from w in $H_{t^{\prime}}$ if and only if the number of elements of \mathcal{D}_{t} contained in I is odd.

Proof. The 'only if' direction is precisely Corollary A.2. Thus we wish to show that if the number of elements of \mathcal{D}_{t} contained in I is odd then I separates z from w.

Assume not, so the number of elements of \mathcal{D}_{t} contained in I is odd but I does not separate z from w. $H_{t^{\prime}} \backslash I$ has two components, one of which contains both z and w. Consider any curve η connecting z to w. Without loss of generality assume that η crosses each element of \mathcal{D}_{t} exactly once by simply removing any portion of the curve between the first and last times that it crosses each element of \mathcal{D}_{t}. Since η crosses each element of \mathcal{D}_{t} contained in I precisely once we know η crosses I an odd number of times and hence it must start and end in different components of $H_{t^{\prime}} \backslash I$ which contradicts the fact that it connects z to w.

We may now use this to prove that I_{t} is well defined.
Proof of well-definedness of I_{t}. For a component I of \mathcal{I}_{t} and $t^{\prime}<t$ let $C_{t^{\prime}}(I)$ denote the component of $\mathcal{I}_{t^{\prime}}$ which contains I. We claim there exists a unique component of \mathcal{I}_{t}, which we will denote I_{t}, such that for all $0 \leq t^{\prime} \leq t$ we have
$C_{t^{\prime}}\left(I_{t}\right) \in \mathcal{D}_{t^{\prime}}$. Note that such an I_{t} clearly satisfies all the conditions of the definition.

First we prove existence. Let $\left\{J_{i}\right\}_{i=1}^{\infty}$ be the connected components of \mathcal{I}_{t}. Assume that none satisfy the above condition, which is to say that for each i there exists a $t_{i} \leq t$ so that $C_{t_{i}}\left(J_{i}\right)$ does not separate z from w in $H_{t_{i}}$. Now $\left\{C_{t_{i}}\left(J_{i}\right)\right\}_{i=1}^{\infty}$ covers \mathcal{I}_{t} since the K_{i} did as well, and moreover since by construction the $C_{t_{i}}\left(J_{i}\right)$ are either contained in each other or disjoint we may find a sub-collection $\left\{C_{t_{i_{k}}}\left(J_{i_{k}}\right)\right\}_{k=1}^{\infty}$ which covers \mathcal{I}_{t} with all elements pairwise disjoint. By Corollary A. 3 there are an even number of elements of \mathcal{D}_{t} contained in $C_{t_{i_{k}}}\left(J_{i_{k}}\right)$ for each k. However, since they cover disjointly, this implies that $\left|\mathcal{D}_{t}\right|$ is even, which contradicts Corollary A. 2 completing the proof of existence.

Now we establish uniqueness. Let $I_{t}^{(1)}, I_{t}^{(2)}, \ldots I_{t}^{(\ell)}$ denote the components of \mathcal{I}_{t} such that for all $0 \leq t^{\prime} \leq t$ we have $C_{t^{\prime}}\left(I_{t}^{(i)}\right) \in \mathcal{D}_{t^{\prime}}$, and assume that $\ell>1$. Define

$$
t_{0}=\sup \left\{t^{\prime} \quad: \exists_{i \neq j} \text { s.t. } C_{t^{\prime}}\left(I_{t}^{(i)}\right)=C_{t^{\prime}}\left(I_{t}^{(j)}\right)\right\}
$$

By this definition, it is clear that $\gamma\left(t_{0}\right) \in \mathcal{I}$. Moreover, there exists a $t_{1}<t_{0}$ such that $\gamma\left[t_{1}, t_{0}\right) \cap \mathcal{I}=\emptyset$ since if there did not then $\gamma\left(t_{0}\right)$ is a limit point of $\gamma\left(0, t_{0}\right) \cap \mathcal{I}$ which implies that an earlier time would have separated all the $I_{t}^{(i)}$ from each other contradicting the choice of t_{0}. The components of $\mathcal{I}_{t_{0}}$ are precisely those of $\mathcal{I}_{t_{1}}$ except for a single component, call it J, which is split into J_{1}, J_{2} in $\mathcal{I}_{t_{0}}$ by $\gamma\left(t_{0}\right)$. By the choice of t_{0}, J is $C_{t_{1}}\left(I_{t}^{(i)}\right)$ for some i and both of J_{1}, J_{2} are $C_{t_{0}}\left(I_{t}^{(i)}\right)$ for some i. This is a contradiction since by Corollary A. 3 each of J, J_{1}, J_{2} must contain an odd number of elements of \mathcal{D}_{t}.

References

[1] T. Alberts and M. Kozdron. Intersection probabilities for a chordal SLE path and a semicircle. Electron. Commun. Probab., 13:448-460, 2008.
[2] R. Bass. Probabilistic techniques in analysis. Probability and its Applications (New York). Springer-Verlag, New York, 1995.
[3] V. Beffara. The dimension of the SLE curves. Ann. Probab., 36(4):1421-1452, 2008.
[4] I. Karatzas and S. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
[5] G Lawler. Some path properties of the Schramm-Loewner evolution. In preparation.
[6] G. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
[7] G. Lawler. Schramm-Loewner evolution (SLE). In Statistical mechanics, volume 16 of IAS/Park City Math. Ser., pages 231-295. Amer. Math. Soc., Providence, RI, 2009.
[8] G. Lawler. Fractal and multifractal properties of SLE, 2010. preprint.
[9] G. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32(1B):939-995, 2004.
[10] G. Lawler and W. Zhou. SLE curves and natural parametrization, 2010. preprint.
[11] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. (2), 161(2):883-924, 2005.
[12] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221-288, 2000.
[13] O. Schramm and S. Sheffield. Contour lines of the two-dimensional discrete Gaussian free field. Acta Math., 202(1):21-137, 2009.
[14] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239-244, 2001.
[15] W. Werner. Random planar curves and Schramm-Loewner evolutions. In Lectures on probability theory and statistics, volume 1840 of Lecture Notes in Math., pages 107-195. Springer, Berlin, 2004.

[^0]: Research of the first author supported by NSF grant DMS-0907143.

