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Abstract

We study the integration and approximation problems for monotone and convex
bounded functions that depend on d variables, where d can be arbitrarily large. We
consider the worst case error for algorithms that use finitely many function values. We
prove that these problems suffer from the curse of dimensionality. That is, one needs
exponentially many (in d) function values to achieve an error ε.
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1 Introduction

Many multivariate problems suffer from the curse of dimensionality. A partial list of such
problems can be found in e.g., [6, 7]. The phrase curse of dimensionality was coined by Bell-
man already in 1957 and means that the complexity1 of a d-variate problem is an exponential
function in d. This is usually proved for multivariate problems defined on the unit balls of
normed linear spaces. We stress that the curse of dimensionality may hold independently of
the smoothness of functions and may hold even for analytic functions.

The choice of the unit ball as the domain of a multivariate problem is not essential and
can be slightly generalized. What is important and heavily used in the proof is that the
domain Fd of the d variate problem is balanced (f ∈ Fd implies −f ∈ Fd) and convex
(f1, f2 ∈ Fd and t ∈ [0, 1] imply that tf1 + (1 − t)f1 ∈ Fd). It is not clear if the curse of
dimensionality may hold for domains Fd being not balanced or not convex.

In this paper we study classes of monotone and convex d-variate bounded functions.
Such classes are obviously not balanced and the previous analysis to prove the curse of
dimensionality does not apply. We study the integration problem and the approximation
problem in the Lp norm with p ∈ [1,∞]. We consider the worst case setting and algorithms
that use finitely many function values. In particular, we ask what is the minimal number of
d-variate function values that is needed to achieve an error ε.

It turns out that the approximation problem in the Lp norm for both monotone and
convex functions is no easier than the integration problem. This means that lower error
bounds for integration also hold for approximation. Hence, it is enough to prove the curse
of dimensionality for the integration problem.

The integration problem for monotone functions has been studied by Papageorgiou [8],
and for convex functions by Katscher, Novak and Petras [4]. They proved the optimal rate
of convergence and provided lower and upper bounds on the nth minimal error. From these
bounds we can conclude the lack of some tractability properties defined later, but cannot
conclude whether the curse of dimensionality holds.

In this paper we prove that for both monotone and convex functions, the curse of dimen-
sionality holds for the integration problem and therefore also holds for the approximation
problem in the Lp norm. The proof relies on identifying “fooling” functions f− and f+

which are both monotone or both convex, which share the same n function values used by
an algorithm, and whose integrals differ as much as possible. Here “as much as possible”
means that the error is at most ε only if n is exponentially large in d. The fooling functions

1By complexity we mean the minimal cost of computing an ε-approximation. The complexity is bounded
from below by the information complexity which is defined as the minimal number of function values needed
to compute an ε-approximation. In this paper we prove that even the information complexity suffers from
the curse of dimensionality.
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for the monotone class take only values 0 or 1 depending on the points used by an algo-
rithm. The fooling functions for the convex class are f− = 0 and f+ is chosen such that it
vanishes at n points used by an algorithm, and its integral is maximized. Using the results
of Elekes [1] and Dyer, Füredi and McDiarmid [2] on random volumes of cubes, we prove
that the integral of f+ is of order 1 for large d, if n is smaller than, say, (12/11)d.

Restricting the algorithms for the integration problem to use only function values is
quite natural. However, for the approximation problem it would be also interesting to
consider algorithms that use finitely many arbitrary linear functionals. We believe that
the Lp approximation problem still suffers from the curse of dimensionality for this general
information, and pose this question as an open problem. The paper by Gilewicz, Konovalov
and Leviatan [3] may be relevant in this case. This paper presents the order of convergence
for the approximation problem for s-monotone functions (in one variable).

We finally add a comment on the worst case setting used in this paper. Since integration
for monotone and convex classes suffers from the curse of dimensionality in the worst case
setting, it seems natural to switch to the randomized setting where algorithms can use
function values at randomized sample points. Now we can use the classical Monte Carlo
algorithm. Since all monotone and convex integrands are bounded by one, the error bound
of Monte Carlo is n−1/2, without any additional constant. Hence, ε−2 function values at
randomized sample points are enough to guarantee a randomized error ε. This means that
the integration problem for both monotone and convex functions is strongly polynomially

tractable2 in the randomized setting. The exponent 2 of ε−1 is optimal since the optimal
orders of convergence for randomized algorithms are n−1/2−1/d for monotone functions, see
[8], and n−1/2−2/d for convex functions, see [4]. Hence, for large d we cannot guarantee a
randomized error ε with ε−p function values with p < 2. This proves that the switch for
the worst case setting to the randomized setting breaks the curse of dimensionality for the
integration problem defined for monotone and convex functions.

Not much seems to be known about the Lp approximation problem in the randomized
setting for monotone or convex functions. It is not clear if we still have the curse of dimen-
sionality in the randomized setting. We pose this as another open problem.

2 Integration

We mainly study the integration problem, i.e., we want to approximate

INTd(f) =

∫

[0,1]d
f(x) dx,

2This means that (3) holds with q = 0. In this case we can choose C = 1 and p = 2.
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for bounded functions f : [0, 1]d → [0, 1] that are monotone (more precisely, non-decreasing
in each variable xj if the other variables are fixed) or convex. Hence, we consider the classes

F mon
d = {f : [0, 1]d → [0, 1] | f is monotone}

and
F con
d = {f : [0, 1]d → [0, 1] | f is convex}.

We approximate the integral INTd(f) by algorithms An that use information about f given
by n function values. Hence, An has the form

An(f) = φn(f(t1), f(t2), . . . , f(tn)), (1)

where n is a nonnegative integer, φn : Rn → R is an arbitrary mapping, and the choice of
arbitrary sample points tj ∈ [0, 1]d can be adaptive. That is, tj may depend on the already
computed values f(t1), f(t2), . . . , f(tj−1). For n = 0, the mapping An is a constant real
number. More details can be found in e.g., [5, 6, 7, 9].

We define the nth minimal error of such approximations in the worst case setting as

eintn (Fd) = inf
An

sup
f∈Fd

|INTd(f)−An(f)| for Fd ∈ {F mon
d , F con

d }.

For n = 0, it is easy to see that the best algorithm is A0 =
1
2
for the two classes considered

in this paper, and we obtain

eint0 (F mon
d ) = eint0 (F con

d ) = 1
2

for all d ∈ N.

Hence, the integration problems are well scaled and it is enough to study the absolute
error. The information complexity is the inverse function of eintn (Fd) given by

nint(Fd, ε) = min{n | eintn (Fd) ≤ ε} for Fd ∈ {F mon
d , F con

d }.

It is trivial that nint(F mon
d , ε) = nint(F con

d , ε) = 0 for all ε ≥ 1
2
.

3 Known and new results

The integration problems for monotone and for convex functions were studied before, we
refer to the paper by Papageorgiou [8] for monotone functions, and to the paper by Katscher,
Novak and Petras [4] for convex functions. Here we mention some of the known results and
indicate our new results concerning the curse of dimensionality.
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For the class F mon
d of monotone functions it was proved by Papageorgiou [8] that

eintn (F mon
d ) = Θ(n−1/d).

Hence, the optimal order of convergence is n−1/d. More precisely, it is proved in [8] that
there are some positive numbers c, C independent of n and d such that for all d, n ∈ N we
have

c d−1 n−1/d ≤ eintn (F mon
d ) ≤ C dn−1/d. (2)

It is interesting to note that the ratio between the upper and the lower bound is of the
order d 2 , i.e., it is polynomial in d, not exponential as it is the case for many other spaces.

The bound (2) yields

⌈

( c

d ε

)d
⌉

≤ nint(F mon
d , ε) ≤

⌈

(

C d

ε

)d
⌉

.

From this we conclude that polynomial tractability and even weak tractability do not hold.
That is, it is not true that there are non-negative C, q, p such that for all d ∈ N and ε ∈ (0, 1

2
)

we have
nint(F mon

d , ε) ≤ C d qε−p (polynomial tractability), (3)

as well as it is not true that

lim
ε−1+d→∞

ln nint(F mon
d , ε)

ε−1 + d
= 0 (weak tractability).

Nevertheless, the lower bound on nint(F mon
d , ε) is useless for a fixed ε > 0 and large d, since

for d ≥ c/ε we do not obtain a bound better than nint(F mon
d , ε) ≥ 1. Thus, it is not clear

whether the information complexity nint(F mon
d , ε) is exponential in d for a fixed ε ∈ (0, 1

2
).

In this paper we will prove that

nint(F mon
d , ε) ≥ 2d (1− 2ε) for all d ∈ N, ε ∈ (0, 1

2
).

This means that nint(F mon
d , ε) is indeed exponential in d, that is the integration problem

suffers from the curse of dimensionality.

We now turn to the class F con
d of convex functions. It was proved by Katscher, Novak

and Petras [4] that
eintn (F con

d ) = Θ(n−2/d).

5



Again, the optimal order of convergence is known, now it is n−2/d. More precisely, it was
proved in [4] that there are some positive numbers cd, C, with cd being exponentially small
in d whereas C is independent of d, such that we have for all n ∈ N

cd n
−2/d ≤ eintn (F con

d ) ≤ C dn−2/d. (4)

The bound (4) yields

⌈

(cd
ε

)d/2
⌉

≤ nint(F con
d , ε) ≤

⌈

(

C d

ε

)d/2
⌉

.

From this we conclude that polynomial tractability does not hold. The lower bound in (4) is
useless for a fixed ε > 0 and large d, and therefore it is not clear if we have weak tractability
or the curse of dimensionality. In this paper we will prove that there exists ε0 ∈ (0, 1/4)
such that

nint(F con
d , ε) ≥

1

2(d+ 1)

(

11

10

)d

for all d ∈ N, ε ∈ (0, ε0].

Hence, the integration problem also suffers from the curse of dimensionality for convex
functions.

4 The class of monotone functions

We consider integration for monotone functions. Assume that An is an arbitrary (possibly
adaptive) algorithm for the class F mon

d . For x = [x1, x2, . . . , xd] ∈ [0, 1]d, consider the
“fooling” function

f ∗(x) =

{

0 if
∑d

k=1 xk < d/2,

1 if
∑d

k=1 xk ≥ d/2.

Obviously, f ∗ ∈ F mon
d and therefore the algorithm An will use function values

f ∗(t1), f
∗(t2), . . . , f

∗(tn)

for some sample points tj ∈ [0, 1]d. Since the algorithm An can only use the computed
function values, we obtain

An(f) = An(f
∗)

for all f ∈ F mon
d if f(tk) = f ∗(tk) for k = 1, 2, . . . , n.
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Take first the case n = 1. Suppose first that f ∗(t1) = 0, i.e.,
∑d

j=1 t1,j < d/2 for
t1 = [t1,1, t1,2, . . . , t1,d]. Define f− = 0 and the function

f+(x) =

{

0 if x ≤ t1 (in every coordinate),

1 otherwise.

Then f−, f+ ∈ F mon
d and they yield the same information as f ∗, i.e.,

f−(t1) = f+(t1) = f ∗(t1) = 0.

Using the standard proof technique it can be checked that

max
y∈[0,1]d,

∑d
j=1 yj≤d/2

d
∏

j=1

yj = max
y∈[0,1]d,

∑d
j=1 yj≥d/2

d
∏

j=1

(1− yj) = 2−d.

Then

INTd(f
+) = 1− INTd(1− f+) = 1−

∫

x≤t1

dx = 1−
d
∏

j=1

t1,j .

This implies that
INTd(f

+)− INTd(f
−) ≥ 1− 2−d. (5)

The case with f ∗(t1) = 1 is similar. Now take f+ = 1 and

f−(x) =

{

1 if x ≥ t1,

0 otherwise.

Again f+ and f− are from F mon
d and they yield the same information as f ∗. We also

obtain (5). We estimate the error of A1 on the whole class F mon
d by

sup
f∈F mon

d

|INTd(f)− An(f)| ≥ max
(

|INTd(f
+)− An(f

∗)|, |INTd(f
−)− An(f

∗)|
)

≥ 1
2

(

INTd(f
+)− INTd(f

−)|
)

≥ 1
2

(

1− 2−d
)

.

Since this holds for all algorithms, we conclude that

e1(F
mon
d , ε) ≥ 1

2

(

1− 2−d
)

.
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The general case with n ∈ N is similar. Assume that ℓ of the function values yield
f ∗(tk) = 0 while n− ℓ function values yield f ∗(tk) = 1. Without loss of generality, we may
assume that

f ∗(tj) = 0 for j = 1, 2, . . . , ℓ,

f ∗(tj) = 1 for j = ℓ+ 1, ℓ+ 2, . . . , n.

Define the two functions,

f+(x) =

{

0 if x ≤ t1 or x ≤ t2 or . . . or x ≤ tℓ,

1 otherwise.

and

f−(x) =

{

1 if x ≥ tℓ+1 or x ≥ tℓ+2 or . . . or x ≥ tn,

0 otherwise.

Then f+, f− ∈ F mon
d with

f+(tk) = f−(tk) = f ∗(tk) for all k = 1, 2, . . . , n.

Furthermore, we have

INTd(f
−) ≤

n−ℓ
∑

j=1

∫

x≥tℓ+j

1 dx ≤ (n− ℓ)2−d.

Similarly it is easy to show that INTd(f
+) ≥ 1− 2−d · ℓ, so that

INTd(f
+)− INTd(f

−) ≥ 1− 2−d · n.

Therefore the worst case error of An is at least 1
2
(1−2−dn). Since this holds for an arbitrary

An we also have
en(F

mon
d ) ≥ 1

2

(

1− 2−dn
)

.

This leads to the following theorem.

Theorem 1. For each fixed ε ∈ (0, 1
2
), the information complexity is at least

nint(F mon
d , ε) ≥ 2d (1− 2ε) for all d ∈ N.

Thus, the integration problem for monotone functions suffers from the curse of dimension-
ality.
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5 The class of convex functions

We now consider integration for convex function and prove the curse of dimensionality.

Theorem 2. There exists ε0 ∈ (0, 1
2
) such that for each fixed ε ∈ (0, ε0) the information

complexity is at least

nint(F con
d , ε) ≥

1

d+ 1

(

11

10

)d(

1−
ε

ε0

)

for all d ∈ N.

Thus, the integration problem of convex functions suffers from the curse of dimensionality.

The idea of the proof is as follows. Assume again that we have an arbitrary (possibly
adaptive) algorithm An for the class F con

d . For the zero function f− = 0 the algorithm An

uses function values at certain sample points x1, x2, . . . , xn. This implies that An uses the
same sample points x1, x2, . . . , xn for any function f from F con

d with

f(x1) = f(x2) = · · · = f(xn) = 0.

In particular, let f+ be the largest such function,

f+(x) = sup{f(x) | f(xj) = 0, j = 1, 2, . . . , n, f ∈ F con
d }.

Clearly, f+ ∈ F con
d , f+(xj) = 0 for j = 1, 2, . . . , n, f(x) ≥ 0 for all x ∈ [0, 1]d, and f+

has the maximal value of the integral among such functions. The integral INTd(f
+) is the

volume of the subset under the graph of the function f+. This subset under the graph is the
complement in [0, 1]d+1 of the convex hull of the points (x1, 0), (x2, 0), . . . , (xn, 0) ∈ [0, 1]d+1

and [0, 1]d × {1} ⊂ [0, 1]d+1. Denoting this convex hull by C, we obtain

INTd(f
+) = 1− vold+1(C).

Since the algorithm An computes the same result for the functions f− and f+ but
INTd(f

−) = 0 we conclude that An has error at least

1
2

(

1− vold+1(C)
)

on one of these functions. Theorem 2 now follows directly from the next theorem which gives
an estimate of the volume of the set C by setting ε0 = t0/2.

Theorem 3. Let P be an n-point set in [0, 1]d × {0}. Then the (d+ 1)-dimensional volume
of the convex hull C of P ∪

(

[0, 1]d × {1}
)

is at most

vold+1(C) ≤ (1− t0) + (d+ 1)n t0

(

10

11

)d

for some t0 ∈ (0, 1) independent of d and n.

9



Proof. Let Q = [0, 1]d and Qt = [0, 1]d×{t} ⊂ R
d+1 for t ∈ [0, 1]. Let P ⊂ Q0 be an n-point

set and let C be the convex hull of P ∪Q1. We want to show that

vold+1(C) ≤ (1− t0) + (d+ 1)n t0

(

10

11

)d

.

Let Ct = C ∩ Qt be the slice of C at height t. For a point z = (z1, z2, . . . , zd, zd+1) ∈ R
d+1

let z = (z1, z2, . . . , zd) be its projection onto the first d coordinates. Similarly, for a set
M ⊂ R

d+1, let M be the set of all points z with z ∈ M .
Since

vold+1(C) =

∫ 1

0

vold(Ct) dt =

∫ 1

0

vold(Ct) dt ≤ (1− t0) +

∫ t0

0

vold(Ct) dt,

it is enough to prove that

vold(Ct) ≤ (d+ 1)n

(

10

11

)d

for all t ∈ [0, t0].

Carathéodory’s theorem states that any point in the convex hull of a set M in R
d is

already contained in the convex hull of a subset of M consisting of at most d + 1 points.
Hence, every point of P is contained in the convex hull of d + 1 vertices of Q0. It follows
that it is enough to show that

vold(Ct) ≤ n

(

10

11

)d

(6)

whenever P is an n-point set of such vertices of Q0. So we assume now that P is such a set.
Let

wt = ((1 + t)/2, (1 + t)/2, . . . , (1 + t)/2, t) ∈ Qt.

For each vertex v ∈ P , let Bv ⊂ Q0 be the intersection of the ball with center 1
2
(w0 + v)

and radius 1
2
‖w0 − v‖ with Q0. Observe that C0 is the convex hull of P . By Elekes’ result

from [1],

C0 ⊂
⋃

v∈P

Bv.

It follows that
C = conv(P ∪Q1) ⊂

⋃

v∈P

conv(Bv ∪Q1)
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since each point in this convex hull lies on a segment between a point in some Bv and a point
in Q1. Since all sets conv(Bv ∪ Q1) are congruent, the inequality (6) immediately follows if
we show that

vold(Dt) ≤

(

10

11

)d

for all t ∈ [0, t0], (7)

where Dt = conv(Bv ∪ Q1) ∩ Qt is the section of the convex hull at height t. We can now
restrict ourselves to the case that v is a fixed vertex in P , say v = (0, 0, . . . , 0, 0).

Let O be the origin in R
d. Let Et ⊂ Q be the intersection of the ball with center 1

2
wt

and diameter ‖wt‖ with Q. Then Dt ⊂ Et, so (7) is proved once we show

vold(Et) ≤

(

10

11

)d

for all t ∈ [0, t0]. (8)

To this end we follow the approach from [2]. Set 2s = 1
2
(1 + t). Then

vold(Et) = P

(

d
∑

j=1

(Xj − s)2 ≤ ds2
)

where X1, X2, . . . , Xd are independent uniformly distributed in [0, 1]. We now use Markov’s
inequality

P(|Y | ≥ a) ≤
E(|Y |)

a
,

which holds for all real random variables Y and all a > 0. We take a = 1 and

Y = exp

(

α
(

ds2 −

d
∑

j=1

(Xj − s)2
)

)

,

and conclude that vold(Et) is smaller than

E exp

(

α
(

ds2 −

d
∑

j=1

(Xj − s)2
)

)

=
(

E exp
(

α(2sX −X2)
)

)d

where X is uniformly distributed in [0, 1] and α > 0 is arbitrary. This implies

vold(Et) ≤
(

inf
α>0

g(s, α)
)d

where

g(s, α) =

∫ 1

0

exp(α(2sx− x2)) dx.

11



By continuity and the proof in [2] we find a positive t0, and for each t ∈ [0, t0], we find some
positive α such that

g(s, α) <
10

11
,

where 2s = 1
2
(1 + t). Now (8) follows and the proof is completed.

6 Lp approximation

The Lp approximation problem is defined by

APPd : Fd → Lp([0, 1]
d) with APPd(f) = f

for Fd ∈ {F mon
d , F con

d } and the standard Lp([0, 1]
d) space.

The algorithms An are now given by (1) with φn : Rn → Lp([0, 1]
d). The nth minimal

error for the Lp approximation problem in the worst case setting is defined by

eappn (Fd) = inf
An

sup
f∈Fd

‖APPd(f)−An(f)‖Lp([0,1]d).

For n = 0, the initial error is again 1
2
. The information complexity is now

napp(Fd, ε) = min{n | eappn (Fd) ≤ ε}.

Note that lower bounds for integration also hold for Lp approximation. Indeed, take an
arbitrary algorithm An for the Lp approximation problem, and let

Aint
n (f) =

∫

[0,1]d
An(f)(x) dx.

Then Aint
n approximates the integral of f and we have

INTd(f)− Aint
n (f) =

∫

[0,1]d

(

f(x)− An(f)(x)
)

dx.

This yields

∣

∣INTd(f)− Aint
n (f)

∣

∣ ≤

∫

[0,1]d
|f(x)−An(f)(x)| dx ≤

(
∫

[0,1]d
|f(x)−An(f)(x)|

p dx

)1/p

.

Since this holds for all algorithms An, we have

eintn (Fd) ≤ eappn (Fd) and nint(Fd, ε) ≤ napp(Fd, ε),

as claimed. In particular, the curse of dimensionality also holds for the Lp approximation
problem for both classes F mon

d and F con
d .
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[2] M. E. Dyer, Z. Füredi, C. McDiarmid, Random volumes in the n-cube. In: Polyhedral
combinatorics (Morristown 1989), DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
vol. 1, 33–38, Amer. Math. Soc., Providence 1990.

[3] J. Gilewicz, V. N. Konovalov, D. Leviatan, Widths and shape-preserving widths of
Sobolev-type classes of s-monotone functions. J. Approx. Th. 140, 101–126.

[4] C. Katscher, E. Novak and K. Petras, Quadrature formulas for multivariate convex
functions, J. Complexity 12, 5–16, 1996.

[5] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, LNiM
1349, Springer-Verlag, Berlin, 1988.
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