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Special and exceptional Jordan dialgebras

Vasily Voronin∗

Abstract

In this paper, we study the class of Jordan dialgebras. We develop an approach for
reducing problems on dialgebras to the case of ordinary algebras. It is shown that straight-
forward generalizations of the classical Cohn’s, Shirshov’s, and Macdonald’s Theorems do
not hold for dialgebras. However, we prove dialgebraic analogues of these statements.
Also, we study polylinear special identities which hold in all special Jordan algebras and
do not hold in all Jordan algebras. We find a natural correspondence between special
identities for ordinary algebras and dialgebras.

INTRODUCTION

One of the most important classes of nonassociative algebras is the class of Lie algebras defined
by the anti-commutativity and Jacobi identities x2 = 0, (xy)z + (zx)y + (yz)x = 0. This is
well-known that every associative algebra A turns into a Lie algebra with respect to the new
product [a, b] = ab − ba, a, b ∈ A. The Lie algebra obtained is denoted by A(−). The classical
Poincaré—Birkhoff—Witt Theorem implies every Lie algebra to be embedded into A(−) for an
appropriate associative algebra A.

Leibniz algebras introduced in [1] are the most popular non-commutative analogues of Lie
algebras. An algebra (L, [·, ·]) is said to be a (right) Leibniz algebra if the product [·, ·] : L×L→
L satisfies the following (right) Leibniz identity:

[[x, y], z] = [[x, z], y] + [x, [y, z]]. (1)

To get an analogue of the Poincaré—Birkhoff—Witt Theorem for Leibniz algebras, the
notion of an associative dialgebra was introduced in [2]. Namely, an associative dialgebra is a
linear space D with two bilinear operations ⊢,⊣ : D ×D → D satisfying certain axioms. The
new product [x, y] = x ⊣ y−y ⊢ x, x, y ∈ D, satisfies (1), so D is a Leibniz algebra with respect
to this new product. The Leibniz algebra obtained is denoted by D(−). As it was shown in [3, 4],
every Leibniz algebra can be embeddable into D(−) for an appropriate associative dialgebra D.

Another important class of nonassociative algebras is the class of Jordan algebras defined
by the commutativity and Jordan identity (x2y)x = x2(yx). This is well-known that if A is an
associative algebra over a field on characteristic 6= 2 then A with respect to the new product
a ◦ b = 1

2
(ab + ba) is a Jordan algebra denoted by A(+). For Jordan algebras, the analogue of

the Poincaré—Birkhoff—Witt theorem is not true: There exist Jordan algebras that can not
be embedded into A(+) for any associative algebra A. Therefore, the following notion makes
sense: If a Jordan algebra J is a subalgebra of A(+) for some associative algebra A then it is
said to be a special Jordan algebra.

The notion of a Jordan dialgebra was introduced in [5] as a particular example of a general
algebraic definition of what is a variety of dialgebras. This general operadic approach leads
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to three identities defining the variety of Jordan dialgebras. Independently, the notion of
quasi-Jordan algebra emerged in [6] as the variety of non-commutative analogues of Jordan
algebras. Namely, if one considers an associative dialgebra D with respect to a new product
x ◦ y = 1

2
(x ⊣ y + y ⊢ x), x, y ∈ D, then the algebra obtained is a quasi-Jordan algebra. In [6],

two identities were stated to define the variety of quasi-Jordan algebras. Later in [7], the third
(missing) one was noticed, so the notions of quasi-Jordan algebras and Jordan dialgebras went
to coincidence.

In [8], the natural notions of a special Jordan dialgebra and of a special identity (s-identity,
for sort) were introduced. An s-identity of Jordan dialgebras is an identity which holds in all
special Jordan dialgebras but does not hold in some Jordan dialgebra. In this note, we show
the correspondence between polylinear s-identities of Jordan algebras and Jordan dialgebras
(Theorem 20). In particular, one of the main results of [8] follows from this theorem.

Also, several natural problems were posed in [8]: How to generalize the classical statements
known for Jordan algebras to the case of dialgebras. This paper is devoted to the solution of
all these problems. We prove the analogues of the following theorems:

• The Cohn’s Theorem [9] on the characterization of elements of free special Jordan algebra
as symmetric elements of free associative algebra.

• The Cohn’s example [9] of the exceptional Jordan algebra which is the homomorphic
image of the two-generated special Jordan algebra. It follows from this example that the
class of special Jordan algebras is not a variety.

• The Shirshov’s Theorem [10] on the speciality of two-generated Jordan algebra.

• The Macdonald’s Theorem [10] on special identities in three variables.

The main method of study is the following. Given a Jordan dialgebra J , we build two
Jordan algebras J̄ and Ĵ as described in [11]. The classical theorems hold for these Jordan
algebras, and their properties allow to make conclusions about the dialgebra J . Moreover, the
theory of conformal algebras [12] is deeply involved into considerations.

1 PRELIMINARIES

1.1 Dialgebras

A linear space D with two bilinear operations of a product ⊢,⊣ : D × D → D is called a
dialgebra. The base field is denoted by k. A dialgebra is associative if it satisfies the identities

(x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z, x ⊣ (y ⊢ z) = x ⊣ (y ⊣ z) (2)

and
(x, y, z)⊢ := (x ⊢ y) ⊢ z − x ⊢ (y ⊢ z) = 0,

(x, y, z)⊣ := (x ⊣ y) ⊣ z − x ⊣ (y ⊣ z) = 0,

(x, y, z)× := (x ⊢ y) ⊣ z − x ⊢ (y ⊣ z) = 0.

(3)

This class of dialgebras is well investigated in [3].
A dialgebra that meets the identities (2), is called a 0-dialgebra. If D is a 0-dialgebra then

the subspace D0 = Span{a ⊢ b − a ⊣ b | a, b ∈ D} is an ideal of D and the quotient dialgebra
D̄ = D/D0 can be identified with an ordinary algebra. The space D may be endowed with left
and right actions of D̄:

ā · x = a ⊢ x, x · ā = x ⊣ a, x, a ∈ D,
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where ā denotes the image of a in D̄.
Let A be an algebra that acts on a linear space M via some operations ◦ : A×M →M and

◦ : M × A → M . In this case, we can define the algebra (A ⊕M, ◦), where the product ◦ is
given by the formula (a+m) ◦ (b+ n) = ab+ (a ◦ n+m ◦ b), that is, M ◦M = 0. The algebra
obtained is called the split null extension of A by means of M .

We have seen before that we can define actions of the algebra D̄ on the dialgebra D, so the
split null extension D̄ ⊕D is defined. We will denote it by D̂.

In any dialgebra D a dimonomial is an expression of the form w = (a1 . . . an), where
a1, . . . , an ∈ D and parentheses indicate some placement of parentheses with some choice of
operations. By induction we can define the central letter c(w) of a dimonomial: if w ∈ D,
then c(w) = w, otherwise c(w1 ⊢ w2) = c(w2) and c(w1 ⊣ w2) = c(w1). Let c(w) = ak. If D is
0-dialgebra, then w = (a1 ⊢ . . .⊢ ak−1 ⊢ ak ⊣ ak+1 ⊣ . . .⊣ an) for the same parenthesizing that in
(a1 . . . an). We will denote this w by (a1 . . . ak−1ȧkak+1 . . . an). In an associative dialgebra paren-
thesizing does not matter, so it is reasonable to use the notation w = a1 . . . ak−1ȧkak+1 . . . an,
where the dot indicates the central letter.

Let X be a set of generators. Obviously, that the basis of the free dialgebra DiAlg 〈X〉
generated by X consists of dimonomials with a free placement of parentheses and a free choice of
operations. It is clear that the basis of the free 0-dialgebra DiAlg0 〈X〉 is the set of dimonomials
(a1 . . . ak−1ȧkak+1 . . . an) where k = 1, . . . , n and a1, . . . , an ∈ X . At last, the basis of the free
associative dialgebra DiAs 〈X〉 consists of dimonomials a1 . . . ak−1ȧkak+1 . . . an (see [3]).

If X = {x1, . . . , xn} then every dipolynomial f ∈ DiAs 〈X〉 can be presented as a sum
f = f1+. . .+fn, where each fi collects all those dimonomials with central letter xi, i = 1, . . . , n.

1.2 Jordan dialgebras

Let us consider the class of Jordan dialgebras over a field k such that char k 6= 2, 3. In this
case, the variety of Jordan algebras Jord over the field k is defined by the following polylinear
identities

x1x2 = x2x1, J(x1, x2, x3, x4) = 0,

where

J(x1, x2, x3, x4) = x1(x2(x3x4)) + (x2(x1x3))x4 + x3(x2(x1x4))

−(x1x2)(x3x4)− (x1x3)(x2x4)− (x3x2)(x1x4)

is the Jordan identity in a polylinear form [10].
Hence using the general definition of a variety of dialgebras [5] we obtain that the class of

Jordan dialgebras is defined by two 0-identities (2) and the following identities

x1 ⊢ x2 = x2 ⊣ x1,

J(ẋ1, x2, x3, x4) = 0, J(x1, ẋ2, x3, x4) = 0,

J(x1, x2, ẋ3, x4) = 0, J(x1, x2, x3, ẋ4) = 0.

(4)

The variety of Jordan dialgebras is denoted DiJord. We can express both operations in a
Jordan dialgebra through one operation: a⊢b = ab, a⊣b = ba. Then an ordinary algebra arises
that is a noncommutative analogue of a Jordan algebra. The corresponding variety is defined
by the system of identities

[x1x2]x3 = 0, (x21, x2, x3) = 2(x1, x2, x1x3), x1(x
2
1x2) = x21(x1x2),

that is equivalent to identities (4).
Such algebras are investigated in [7, 8, 13].
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1.3 Conformal algebras

The notion of a conformal algebra over a field of zero characteristic was introduced by V. G. Kac
[12] as a tool of the conformal field theory in mathematical physics. Over a field of an arbitrary
characteristic, it is reasonable to use the following equivalent definition [5]: a conformal algebra

is a linear space C endowed with a linear mapping T : C → C and a set of bilinear operations
(n-products) (· (n) ·) : C × C → C. For all a, b ∈ C there exist just a finite number of elements
n ∈ Z

+ such that a (n) b 6= 0 (locality property). In addition, these operations satisfy the
following properties:

Ta (n) b = a (n−1) b, n ≥ 1, Ta (0) b = 0,

T (a (n) b) = a (n) Tb+ Ta (n) b, n ≥ 0,

for all a, b ∈ C.
Let Var be a variety of ordinary algebras. It was defined in [14] what is the corresponding

variety of conformal algebras. In [15] this notion was rephrased in terms of pseudo-algebras, that
works for nonzero characteristic of k. Since we use the term ”conformal algebra” for a pseudo-
algebra over k[T ] in this paper, it is possible to define the class of these objects corresponding
to the variety Var of ordinary algebras. This class is not a real variety of algebras, but we will
also denote it by Var.

It was also observed in [5] that if C is a conformal algebra of a variety Var, then the space
C can be endowed with a structure of a dialgebra by means of

a ⊢ b = a (0) b, a ⊣ b =
∑

s≥0

T s(a (s) b).

The dialgebra obtained is denoted by C(0), it belongs to the variety DiVar.
The simplest example of a conformal algebra can be constructed as follows. Let A be an

ordinary algebra, then a conformal product is uniquely defined on k[T ] ⊗ A by the following
formulas for a, b ∈ A:

a (n) b =

{
ab, n = 0,

0, n > 0.

The conformal algebra obtained is denoted by CurA and is called a current conformal
algebra. If an algebra A belongs to a variety Var, then CurA is a conformal algebra of the same
variety. In the language of category theory, we can say that Cur is a functor from the category
of algebras to the category of conformal algebras. If ϕ : A→ B is a homomorphism of algebras,
then the mapping Curϕ : CurA→ CurB acting by the rule Curϕ(f(T )⊗ a) = f(T )⊗ϕ(a) is
a morphism of conformal algebras.

In [13] it was proved that an arbitrary dialgebraD is embedded into the dialgebra (Cur D̂)(0).

1.4 Notation for varieties of algebras and dialgebras

An arbitrary variety of ordinary algebras we denote Var, the free algebra in this variety gen-
erated by a set X is denoted by Var 〈X〉. The corresponding variety of dialgebras is denoted
by DiVar, the free dialgebra is denoted by DiVar 〈X〉. The denotation for concrete varieties is
analogous, for example, Jord is the variety of Jordan algebras, DiJord 〈X〉 is the free Jordan
dialgebra.

2 SPECIAL JORDAN DIALGEBRAS

In this section char k 6= 2. This is necessary to define the Jordan product correctly.
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2.1 Special and exceptional Jordan dialgebras

Let D be an associative dialgebra. If we define on the set D new operations

a (⊢) b =
1

2
(a ⊢ b+ b ⊣ a), a (⊣) b =

1

2
(a ⊣ b+ b ⊢ a) (5)

then we obtain a new dialgebra which is denoted by D(+). It is easy to check that this dialgebra
is Jordan [7].

A dialgebra J is called special, if J →֒ D(+) for some associative dialgebra D. Jordan
dialgebras that are not special we call exceptional. Further, we will denote the operations in a
special Jordan dialgebra through (⊢) and (⊣). These operations are expressed through associative
operations by the formula (5).

The definition of special Jordan dialgebras has been introduced by the analogy with ordinary
algebras, where a Jordan algebra J is called special, if J →֒ A(+) for some associative algebra
A and the product in A(+) is given by the formula

a ◦ b =
1

2
(ab+ ba). (6)

Let now D be an associative dialgebra. The mapping ∗ : D → D is called an involution

(involution of the second type [11]) of the dialgebra D, if ∗ is linear and

(a∗)∗ = a, (a ⊢ b)∗ = b∗ ⊣ a∗, (a ⊣ b)∗ = b∗ ⊢ a∗ (7)

for all a, b ∈ D.
The set H(D, ∗) = {x ∈ D | x = x∗} of symmetric elements with respect to ∗ is closed

relative to operations (5). This set is a subalgebra of the algebra D(+). So, H(D, ∗) is a special
Jordan dialgebra.

Construct the example of an exceptional Jordan dialgebra. Prove the next

Proposition 1. Let (J, ◦) be an exceptional Jordan algebra and suppose the condition x◦J = 0,
x ∈ J , implies x = 0. Then J as a dialgebra with equal operations x(⊢)y := x◦y and x(⊣)y := x◦y
is an exceptional Jordan dialgebra.

Proof. Assume the opposite. Let J →֒ D(+) where (D,⊢,⊣) is an associative dialgebra and the
product in D(+) is given by the formula (5). Consider I = Span{a ⊢ b − a ⊣ b | a, b ∈ D} that
is an ideal of D. Then D̄ = D/I is an ordinary associative algebra and ϕ : D(+) → D̄(+) is the
natural homomorphism of a Jordan dialgebra on its quotient algebra. The composition of the
embedding →֒ and ϕ is a homomorphism too, we denote this homomorphism through ψ. It is
clear that K := kerψ is an ideal of J . Since ψ is a restriction ϕ on J so K = kerψ ⊆ kerϕ = I.
We have I ⊢ J = J ⊣ I = 0, this is a consequence of the 0-identity. Hence I ◦ J = I (⊢) J =
1
2
(I ⊢ J + J ⊣ I) = 0, from conditions of the proposition we obtain I = 0 therefore and K = 0.

So ψ is an embedding and J →֒ D̄(+), i. e., J is exceptional.

Let C be the Cayley-Dickson algebra over the field k, char k 6= 2. Consider an algebra
H(C3) of those 3 × 3 matrices over C that are symmetric relative the involution in C. This
is so called Albert algebra. It is well-known that J = H(C3) is a simple exceptional Jordan
algebra, so J satisfies the conditions of Proposition 1. Therefore, H(C3) is an exceptional
Jordan dialgebra.

2.2 Analogue of the Cohn’s Theorem for dialgebras

Let Alg 〈X〉 be a free non-associative algebra generated by X , As 〈X〉 be a free associative
algebra, DiAlg 〈X〉 be a free non-associative dialgebra, DiAs 〈X〉 be a free associative dialgebra
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[3]. Products in Alg 〈X〉 and As 〈X〉, also in DiAlg 〈X〉 and DiAs 〈X〉 are denoted identically.
There is no confusion because by the origin of elements it is clear which the product we mean.
Fix z ∈ X and introduce the following mappings.

A mapping J : Alg 〈X〉 → As 〈X〉 is defined by linearity, on non-associative words it is
defined by induction on a length: if x ∈ X then J (x) = x; if uv ∈ Alg 〈X〉 then J (uv) =
1
2
(J (u)J (v) +J (v)J (u)). So, the value of J on a non-associative polynomial f is equal to an

associative polynomial obtained from f by means of rewriting all products in f as Jordan ones
by the formula (6). By analogy, in the case of dialgebras a mapping JDi : DiAlg 〈X〉 → DiAs 〈X〉
is defined. It is linear, it acts identically on x ∈ X and JDi(u⊢v) =

1
2
(JDi(u)⊢JDi(v)+JDi(v)⊣

JDi(u)), JDi(u ⊣ v) =
1
2
(JDi(u) ⊣ JDi(v) + JDi(v) ⊢ JDi(u)).

Introduce the following notation

Algz 〈X〉 = {Φ ∈ Alg 〈X〉 | Φ =
∑

fi, fi — monomials, degz fi = 1},

DiAlgz 〈X〉 = {Φ ∈ DiAlg 〈X〉 | Φ =
∑

fi, fi — dimonomials, degz fi = 1, c(fi) = z},

where c(fi) stands for the central letter of a dimonomial fi. A mapping Ψz
Alg : Algz 〈X〉 →

DiAlgz 〈X〉 places signs of dialgebraic operations in a non-associative polynomial in such a
way that every sign points to z. By induction it can be defined as follows: Ψz

Alg(z) = z; if z is

contained by u then Ψz
Alg(uv) = Ψz

Alg(u)⊣v
⊣; if z is contained by v then Ψz

Alg(uv) = u⊢⊢Ψz
Alg(v).

There we introduce two mappings ⊢, ⊣ : Alg 〈X〉 → DiAlg 〈X〉. The first mapping maps a word
u to u⊢ where the word u⊢ has the same multipliers as u and all signs of operations point to
the right. In v⊣ all signs of operations point to the left respectively. Further in Lemmas 2 and
3 we use mappings ⊢, ⊣ : As 〈X〉 → DiAs 〈X〉 which are defined and denoted in a similar way.

Analogously, we may define the sets Asz 〈X〉, DiAsz 〈X〉 and a mapping Ψz
As : Asz 〈X〉 →

DiAsz 〈X〉.
Define the following sets:

SJ 〈X〉 = J (Alg 〈X〉),

DiSJ 〈X〉 = JDi(DiAlg 〈X〉).

From the definition of the mapping J it is clear that SJ 〈X〉 is a subalgebra in As 〈X〉(+)

generated by the set X . Similarly, DiSJ 〈X〉 →֒ DiAs 〈X〉(+).
An element from As 〈X〉 is called a Jordan polynomial if it belongs to SJ 〈X〉. By analogy,

an element from DiAs 〈X〉 is called a Jordan dipolynomial if it belongs to DiSJ 〈X〉.

Lemma 2. For arbitrary u ∈ DiAs 〈X〉, v ∈ Alg 〈X〉 we have

u ⊣ J (v)⊣ = u ⊣ JDi(v
⊣) = u ⊣ JDi(v

⊢),

J (v)⊢ ⊢ u = JDi(v
⊢) ⊢ u = JDi(v

⊣) ⊢ u.

Proof. Use an induction on the length of the word v. A base is evident. Let v = v1v2. Then

u ⊣ J (v)⊣ = u ⊣ J (v1v2)
⊣ =

1

2
u ⊣ (J (v1)

⊣ ⊣ J (v2)
⊣ + J (v2)

⊣ ⊣ J (v1)
⊣)

=
1

2
u ⊣ (JDi(v

⊣
1 ) ⊣ JDi(v

⊣
2 ) + JDi(v

⊣
2 ) ⊢ JDi(v

⊣
1 )) = u ⊣ JDi(v

⊣
1 ⊣ v

⊣
2 ) = u ⊣ JDi(v

⊣).

All remaining equalities are proved in the same way.

Lemma 3. For all Φ ∈ Algz 〈X〉 we have

Ψz
As(J (Φ)) = JDi(Ψ

z
Alg(Φ)).
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Proof. Since all mappings are linear, it is enough to prove the statement for the case when Φ
is a word. If Φ = z then the claim is evident. If Φ = uv then z can belong to either u or v. Let
z belongs to u. Then using Lemma 2 we obtain

Ψz
As(J (Φ)) = Ψz

As(
1

2
[J (u)J (v) + J (v)J (u)])

=
1

2
[Ψz

As(J (u)) ⊣ J (v)
⊣ + J (v)⊢ ⊢Ψz

As(J (u))]

=
1

2
[JDi(Ψ

z
Alg(u)) ⊣ JDi(v

⊣) + JDi(v
⊣) ⊢ JDi(Ψ

z
Alg(u))]

= JDi(Ψ
z
Alg(u) ⊣ v

⊣) = JDi(Ψ
z
Alg(Φ)).

The case when z belongs to v is proved similarly.

Remind about the quotient that has been defined in Section 1.1. This quotient compares
every 0-dialgebra with an ordinary algebra. The quotient of a dialgebra generated by a set
X = {xi | i ∈ I} is an algebra generated by the set X̄ = {x̄i | i ∈ I}. Further we will identify
elements from X with elements from X̄ . Following this agreement we obtain, for example,
DiAs 〈X〉 = As 〈X〉.

Proposition 4. Let f ∈ DiAsz 〈X〉. Then

f ∈ DiSJ 〈X〉 ⇔ f̄ ∈ SJ 〈X〉.

Proof. ”⇒”. Let f ∈ DiSJ 〈X〉 that is f = JDi(Φ) for some Φ ∈ DiAlg 〈X〉. Then f̄ =
JDi(Φ) = J (Φ̄), so f̄ ∈ SJ 〈X〉. There we have used the equality JDi(Φ) = J (Φ̄) which is easy
to prove by induction on the length of Φ.

”⇐”. Let f̄ ∈ SJ 〈X〉 that is f̄ = J (Φ) for some Φ ∈ Alg 〈X〉. Since the degrees on
variables do not change when we apply J , we obtain Φ ∈ Algz 〈X〉. Thereby, Φ ∈ Algz 〈X〉.
By Lemma 3 we obtain JDi(Ψ

z
Alg(Φ)) = Ψz

As(J (Φ)) = Ψz
As(f̄) = f , the last equality in the

sequence is true because f ∈ DiAsz 〈X〉. So, f ∈ DiSJ 〈X〉.

Consider the dialgebra
ΛX = DiAs 〈X〉/I,

where I is the ideal of DiAs 〈X〉 generated by the set {fx,y = x ⊣ y + y ⊢ x | x, y ∈ X}. This
dialgebra is the analogue of the exterior algebra (Grassmann algebra). Further we will identify
the set X and its image X̄ ⊆ ΛX . Following this agreement we suppose that ΛX is generated
by the set X .

Theorem 5. Let X be a linearly ordered set. Then the basis of the algebra ΛX consists of

words ẋ1x2 . . . xk, k ≥ 1, xi ∈ X, x2 < x3 < · · · < xk.

Proof. Use the theory of Gröbner-Shirshov bases for associative dialgebras developed in [16].
Let S0 = {fx,y | x, y ∈ X} be the initial set of defining relations. Compositions of left product
z ⊣ fx,y belong to the ideal I as well as compositions of right product fx,y ⊢ z, x, y, z ∈ X . The
set of defining relations obtained

x⊣ y+ y ⊢ x; x⊣ y ⊣ z+ x⊣ z ⊣ y, y > z; x⊢ y ⊢ z + y ⊢ x⊢ z, x > y; x⊢ x⊢ y; x⊣ y ⊣ y

is a Gröbner-Shirshov basis. Reduced words are of the form

ẋ1x2 . . . xk, k ≥ 1, x2 < x3 < · · · < xk,

and the set of all reduced words by [16] is a linear basis of the algebra ΛX .
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Define an involution ∗ on DiAs 〈X〉 in the following way:

(xi1 . . . ẋik . . . xin)
∗ = xin . . . ẋik . . . xi1 ,

and extend to dipolynomials by linearity. This mapping reverses words and signs of dialgebraic
operations. It is easy to check that the mapping ∗ satisfies properties of an involution (7).
Through DiH 〈X〉 we denote the Jordan dialgebra H(DiAs 〈X〉, ∗) of symmetric elements from
DiAs 〈X〉 with respect to ∗ with the product (5).

Further {u} denotes u+ u∗ where u is a basic word from DiAs 〈X〉. Note that {u} = {u∗}.
An analogous involution on As 〈X〉 we denote by ∗ too. It acts like as

(xi1 . . . xik . . . xin)
∗ = xin . . . xik . . . xi1 ,

on monomials and extends to polynomials by linearity.
The next theorem is an analogue of the classical Cohn’s Theorem [10] that describes Jordan

polynomials from ≤ 3 variables as symmetric elements of the free associative algebra.

Theorem 6. For any set X we have DiSJ 〈X〉 ⊆ DiH 〈X〉. If |X| ≤ 2 then there is an equality,

if |X| > 2 then there is a strict inclusion.

Proof. ”⊆” follows from the equality JDi(Φ)
∗ = JDi(Φ) which holds for all Φ ∈ DiAlg 〈X〉. As

before, this equality can be proved by induction on the length of Φ considering cases Φ = u⊢ v
and Φ = u ⊣ v.

Let |X| = 2. In order to prove the equality, consider an arbitrary f ∈ DiH 〈x, y〉, i. e.,
f ∈ DiAs 〈x, y〉 and f = f ∗. We need to show that f ∈ DiSJ 〈x, y〉. The dipolynomial f is
equal to a sum of dimonomials f =

∑
fi. Further, f = 1

2
(f + f ∗) = 1

2

∑
(fi + f ∗

i ). Without
loss of generality we may assume f = a + a∗ where a is a dimonomial. Suppose x is the
central letter on a. So f can be written in a form f = uẋv + v∗ẋu∗ where u, v ∈ DiAs 〈x, y〉
or equal to empty words. Consider g(x, y, z) = użv + v∗żu∗ ∈ DiAs 〈x, y, z〉. Since ḡ = ḡ∗

then ḡ ∈ SJ 〈x, y, z〉 by the classical Cohn’s Theorem. In addition, g ∈ DiAsz 〈x, y, z〉 hence
Proposition 4 implies g ∈ DiSJ 〈x, y, z〉. It means that there exists a dipolynomial Φ(x, y, z) such
that g = JDi(Φ(x, y, z)). Substituting z := x in the last equality we obtain f = JDi(Φ(x, y, x)).
Therefore, f ∈ DiSJ 〈x, y〉. We have proved the equality for |X| = 2 and thus for |X| = 1.

Let |X| > 2. In order to prove the strict inclusion consider the dipolynomial {yẋxz} =
yẋxz + zxẋy ∈ DiH 〈X〉 where x, y, z ∈ X . There exists a homomorphism σ : DiAs 〈x, y, z〉 →
DiΛ 〈x, y, z〉 such that σ(x) = x, σ(y) = y, σ(z) = z. All Jordan dipolynomials of degree greater
that 1 map to zero by this homomorphism. Using the basis of DiΛ 〈x, y, z〉 from Theorem 5 we
obtain

σ({yẋxz}) = 2ẋxyz 6= 0.

(When we use Theorem 5 we suppose that x < y < z.) So, the dipolynomial {yẋxz} does not
belong to DiSJ 〈X〉.

2.3 Homomorphic images of special Jordan dialgebras

In this section we construct the example of an exceptional two-generated Jordan dialgebra
which is a homomorphic image of a special Jordan dialgebra.

Theorem 7. Consider the special Jordan dialgebra DiSJ 〈x, y〉, and let I be its ideal generated

by the element k = 1
2
(ẋx+ xẋ)− 1

2
(ẏy + yẏ). Then the quotient dialgebra J = DiSJ 〈x, y〉/I is

exceptional.

Proof. Denote by Î the ideal of DiAs 〈x, y〉 generated by the set I.

It is evident that J is special if and only if Î ∩ DiSJ 〈x, y〉 = I (this is an analogue of the
Cohn’s Lemma, see [10]).
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Consider f = kxẋy + yẋxk ∈ Î. Since

f = {x3ẋy} − {y2xẋy} ∈ DiH 〈x, y〉,

then f ∈ DiSJ 〈x, y〉 by Theorem 6. It remains to show that f /∈ I.
Assume f ∈ I. Then there exists a dipolynomial

ϕ(x, y, z) ∈ DiSJ 〈x, y, z〉 ⊂ DiH 〈x, y, z〉

such that ϕ(x, y, k) = f . In addition, every summand from ϕ contains at most one entry of z.
Write

ϕ(x, y, z) = ϕ1(x, y, z) + ϕ2(x, y, z) + . . . , degz ϕn = n.

The total degree of f (with respect to all variables) is equal to 5, hence ϕn = 0 when n ≥ 3.
Therefore ϕ(x, y, z) = ϕ1(x, y, z) + ϕ2(x, y, z).

Suppose ϕ1 := ϕ1,0 + ϕ1,1 + ϕ1,2 + ϕ1,3, where degx ϕ1,0 = 0, degx ϕ1,1 = 1, degx ϕ1,2 = 2,
degx ϕ1,3 = 3; ϕ2 := ϕ2,0 + ϕ2,1, where degx ϕ2,0 = 0, degx ϕ2,1 = 1.

After the substitution z = k all summands in ϕ1,1, ϕ1,3 and ϕ2,1 have degree 1, 3 or 5 in x.
All summands from ϕ1,0, ϕ1,2 and ϕ2,0 have degree 0, 2 or 4 in x. Since f contains summands
of only 2-nd and 4-th degree in x, we have ϕ1,1 + ϕ1,3 + ϕ2,1 = 0.

Therefore, ϕ = ϕ1,0 + ϕ1,2 + ϕ2,0.
Since x is the central letter of the dipolynomial f , central letters of dimonomials from ϕ

can be variables x and z. Every dipolynomial from DiH 〈x, y, z〉 with this property is equal to
a linear combination of the next dipolynomials:

{ẋyxz}, {xyẋz}, {xyxż}, {yẋxz}, {yxẋz}, {yxxż},

{ẋxyz}, {xẋyz}, {xxyż}, {ẋyzx}, {xyzẋ}, {xyżx},

{yzẋx}, {yzxẋ}, {yżxx}, {yẋzx}, {yxzẋ}, {yxżx},

{żyyy}, {yżyy}, {żzy}, {zży}, {żyz}.

Consequently ϕ(x, y, z) has the form

α1{ẋyxz}+ α2{yẋxz} + α3{ẋxyz}+ α4{ẋyzx}+ α5{yzẋx}+ α6{yẋzx}

+β1{xyẋz} + β2{yxẋz} + β3{xẋyz}+ β4{xyzẋ}+ β5{yzxẋ}+ β6{yxzẋ}

+2γ1{xyxż}+ 2γ2{yxxż}+ 2γ3{xxyż}+ 2γ4{xyżx}+ 2γ5{yżxx} + 2γ6{yxżx}

+2δ1{żyyy}+ 2δ2{yżyy}+ 2δ3{żzy}+ 2δ4{zży}+ 2δ5{żyz}.

Substituting z = k and using the equalities

2żz = (ẋx+ xẋ− ẏy − yẏ) ⊣ (xx− yy)

= ẋx3 + xẋx2 − ẏyx2 − yẏx2 − ẋxy2 − xẋy2 + ẏy3 + yẏy2,

2zż = (xx− yy) ⊢ (ẋx+ xẋ− ẏy − yẏ)

= x2ẋx+ x3ẋ− x2ẏy − x2yẏ − y2ẋx− y2xẋ+ y2ẏy + y3ẏ,

we obtain ϕ(x, y, k) is equal to

α1{ẋyx
3}+ α2{yẋx

3}+ α3{ẋxyx
2}+ α4{ẋyx

3}+ α5{yx
2ẋx} + α6{yẋx

3}

−α1{ẋyxy
2} − α2{yẋxy

2} − α3{ẋxy
3} − α4{ẋy

3x} − α5{y
3ẋx} − α6{yẋy

2x}

+β1{xyẋx
2}+ β2{yxẋx

2}+ β3{xẋyx
2}+ β4{xyx

2ẋ}+ β5{yx
3ẋ}+ β6{yx

3ẋ}

−β1{xyẋy
2} − β2{yxẋy

2} − β3{xẋy
3} − β4{xy

3ẋ} − β5{y
3xẋ} − β6{yxy

2ẋ}

+γ1{xyxẋx}+ γ2{yx
2ẋx} + γ3{x

2yẋx} + γ4{xyẋx
2}+ γ5{yẋx

3}+ γ6{yxẋx
2}

+γ1{xyx
2ẋ}+ γ2{yx

3ẋ}+ γ3{x
2yxẋ}+ γ4{xyxẋx} + γ5{yxẋx

2}+ γ6{yx
2ẋx}

−γ1{xyxẏy} − γ2{yx
2ẏy} − γ3{x

2yẏy} − γ4{xyẏyx} − γ5{yẏyx
2} − γ6{yxẏyx}

−γ1{xyxyẏ} − γ2{yx
2yẏ} − γ3{x

2y2ẏ} − γ4{xy
2ẏx} − γ5{y

2ẏx2} − γ6{yxyẏx}
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+δ1{ẋxy
3}+ δ1{xẋy

3} − δ1{ẏy
4} − δ1{yẏy

3}

+δ2{yẋxy
2}+ δ2{yxẋy

2} − δ2{yẏy
3} − δ2{y

2ẏy2}

+δ3{ẋx
3y}+ δ3{xẋx

2y} − δ3{ẏyx
2y} − δ3{yẏx

2y}

−δ3{ẋxy
3} − δ3{xẋy

3}+ δ3{ẏy
4}+ δ3{yẏy

3}

+δ4{x
2ẋxy}+ δ4{x

3ẋy} − δ4{x
2ẏy2} − δ4{x

2yẏy}

−δ4{y
2ẋxy} − δ4{y

2xẋy}+ δ4{y
2ẏy2}+ δ4{y

3ẏy}

+δ5{ẋxyx
2}+ δ5{xẋyx

2} − δ5{ẏy
2x2} − δ5{yẏyx

2}

−δ5{ẋxy
3} − δ5{xẋy

3}+ δ5{ẏy
4}+ δ5{yẏy

3}.

This expression must coincide with f = {x3ẋy} − {y2xẋy}. In particular, a sum of all
dimonomials with the central letter y must be equal to zero:

0 = γ1{yẏxyx}+ (γ2 + δ3){yẏx
2y}+ (γ3 + γ5 + δ4 + δ5){yẏyx

2}

+γ4{xyẏyx}+ γ6{xyẏxy}+ γ1{ẏyxyx}+ (γ2 + δ3){ẏyx
2y}+ (γ3 + δ5){ẏy

2x2}

+γ4{xẏy
2x}+ (γ5 + δ4){x

2ẏy2}+ γ6{xẏyxy}+ (δ1 − δ3 − δ5){ẏy
4}

+(δ1 + δ2 − δ3 − δ4 − δ5){yẏy
3}+ (δ2 − δ4){y

2ẏy2}.

All coefficients in this sum have to be zero. Solving the obtained system we have γ2 = −δ3,
γ3 = −δ5, γ5 = −δ4, δ1 = δ3 + δ5, δ2 = δ4, γ1 = γ4 = γ6 = 0.

Substitute the obtained relations to ϕ(x, y, k) we get that all summands with coefficients γ
and δ are eliminated.

Further, consider the remaining summands (we divide them into two groups by degy):

(α1 + α4){ẋyx
3}+ (α2 + α6){yẋx

3}+ α3{ẋxyx
2}+ α5{yx

2ẋx}

+β1{xyẋx
2}+ β2{yxẋx

2}+ β3{xẋyx
2}+ β4{xyx

2ẋ}+ (β5 + β6){yx
3ẋ}

= {x3ẋy},

α1{ẋyxy
2}+ α2{yẋxy

2}+ α3{ẋxy
3}+ α5{y

3ẋx} + α6{yẋy
2x}

+β1{xyẋy
2}+ β2{yxẋy

2}+ β3{xẋy
3}+ (α4 + β4){ẋy

3x} + β5{y
3xẋ}+ β6{yxy

2ẋ}

= {y2xẋy}.

The last two equalities imply α2 = 1 and other coefficients are equal to zero. Therefore,

ϕ(x, y, z) = {yẋxz} − 2δ3{yxxż} − 2δ5{xxyż} − 2δ4{yżxx}

+2(δ3 + δ5){żyyy}+ 2δ4{yżyy}+ 2δ3{żzy}+ 2δ4{zży}+ 2δ5{żyz}.

By assumption this dipolynomial is Jordan. When we expand Jordan products then the
central letter is preserved, hence the dipolynomials consisting of dimonomials from ϕ(x, y, z)
with the fixed central letter must be Jordan. In particular, if we choose the central letter x
then the dipolynomial {yẋxz} must be Jordan, but this is not true by the proof of Theorem 6.

The contradiction obtained proves that f /∈ I.

3 S-IDENTITIES

In this section char k = 0, so we can perform the process of full linearization of identities and
varieties of algebras are always defined by polylinear identities.
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3.1 Equality of varieties HDiSJ and DiHSJ

Consider a class of special Jordan dialgebras SJ. The class SJ is not a variety because it is not
close relative the taking of homomorphic images. Consider the operator H acting on classes of
algebraic systems

H(K) = {A | A = ϕ(B) for B ∈ K,ϕ : B → A is a homomorphism}.

It is well-known that H(SJ) is a variety of algebras which we denote HSJ.
Remind (see Section 1.1) that if D ∈ DiAlg0 then D can be endowed with left and right

actions of the algebra D̄ by the rules x̄y = x ⊢ y, yx̄ = y ⊣ x, where x, y ∈ D. Let Var be
a variety of ordinary algebras. In the paper [11] it is shown that D ∈ DiVar if and only if
D̄ ∈ Var and D is a Var-bimodule over D̄ in the sense of Eilenberg, i. e., the split null extension
D̂ = D̄ ⊕D belongs to the variety Var.

In this way we can define a variety of dialgebras DiHSJ by a variety HSJ.
Let DiSJ be the class of special Jordan dialgebras. Consider the closure H(DiSJ) of this

class relative to the operator H. The variety obtained we denote by HDiSJ.
The purpose of this section is to show that HDiSJ = DiHSJ.

Lemma 8. DiSJ 〈X〉 is a free algebra in the variety HDiSJ.

Proof. Let J ′ ∈ HDiSJ be a homomorphic image of J ∈ DiSJ, D be an associative dialgebra
such that J →֒ D(+). We have the following commutative diagram

J ′ ←−−− J
⊆
−−−→ Dx

x
x

X
⊆
−−−→ DiSJ〈X〉

⊆
−−−→ DiAs〈X〉

By the universal property of DiAs〈X〉 there exists an unique homomorphism DiAs〈X〉 → D
such that its restriction to DiSJ〈X〉 is the homomorphism DiSJ〈X〉 → J . The last homo-
morphism in a composition with the mapping J → J ′ gives the required homomorphism
DiSJ〈X〉 → J ′.

A bar-unit of a 0-dialgebra D is an element e ∈ D such that x ⊣ e = e ⊢ x = x for every
x ∈ D and e belongs to the associative center of D that is

(x, e, y)× = (e, x, y)⊣ = (x, y, e)⊢ = 0

for all x, y ∈ D.

Proposition 9 (Pozhidaev [11, Theorem 2.2]). For every associative dialgebra D there exists

an associative dialgebra De with the bar-unit e such that D →֒ De.

Lemma 10. Let J be a special Jordan dialgebra. Then there exists a special Jordan dialgebra

Je such that J →֒ Je and ē is a unit in the algebra J̄e.

Proof. By the defintion of a special Jordan dialgebra it follows that J = (J, (⊢), (⊣)) is embedded
into D(+) for some associative dialgebra D = (D,⊢,⊣). By Proposition 9 we have an embedding

D(+) →֒ D
(+)
e where e is a bar-unit in De. Therefore, Je = D

(+)
e is the required dialgebra.

Further, e⊢x = x⊣e = x holds for every x ∈ De, so in Je we have e(⊢)x = 1
2
(e⊢x+x⊣e) = x,

x (⊣) e = x. Hence ēx̄ = x̄ē = x̄ in the quotient algebra J̄e, so ē is a unit in J̄e.

Lemma 11. Let J be a special Jordan dialgebra and such that J̄ contains a unit. Then J̄ is

special.
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Proof. Let D be an associative dialgebra such that J →֒ D(+). Denote 〈D,D〉 := Span{a ⊢
b − a ⊣ b | a, b ∈ D}, [J, J ] := Span{a (⊢) b − a (⊣) b | a, b ∈ J}. As before D̄ = D/〈D,D〉
is an associative algebra. Since J ⊆ D we have [J, J ] ⊆ 〈D,D〉. Then the homomorphism
ϕ : J̄ → D̄(+) is well-defined by the rule x+ [J, J ] 7→ x+ 〈D,D〉.

J
⊆
−−−→ Dy

y

J̄
ϕ

−−−→ D̄
It is evident that ϕ is injective if and only if 〈D,D〉 ∩ J = [J, J ].
Let x ∈ 〈D,D〉∩J . Then x⊢y = y⊣x = 0 for every y ∈ D, hence x(⊢)y = 1

2
(x⊢y+y⊣x) = 0

in J and x̄ȳ = 0̄ in J̄ . Take ȳ = 1 ∈ J̄ and obtain x̄ = 0̄, i. e., x ∈ [J, J ]. So, ϕ is injective and
J̄ is special.

Let J be a Jordan algebra, A be an associative algebra with a unit, then a homomorphism
from J to A(+) is called an associative specialization σ : J → A. This is a linear mapping such
that

σ(ab) =
1

2
(σ(a)σ(b) + σ(b)σ(a))

for all a, b ∈ J .
Two associative specializations are called commuting if [σ1(a), σ2(b)] = 0 for all a, b ∈ J .
A bimodule M over J is special if there exists an embedding of M into a bimodule N such

that if v ∈ N , a ∈ J then

a · v =
1

2
(σ1(a)v + σ2(a)v), (8)

where σ1, σ2 are commuting associative specializations of J into Hom(N,N).

Theorem 12 (Jacobson [17, theorem II.17]). Let J be a special Jordan algebra,M be a bimodule

over J . Then the bimodule M is special if and only if the split null extension J⊕M is a special

Jordan algebra.

Lemma 13. Let J be a special Jordan dialgebra and J̄ be a special Jordan algebra. Then

Ĵ = J̄ ⊕ J is special too.

Proof. Since J = (J, (⊢), (⊣)) is special, we have J →֒ D(+) where D = (D,⊢,⊣) is an associative
dialgebra. The dialgebra J is a J̄-bimodule: ā · v = a (⊢) v = v (⊣) a = v · ā, where ā ∈ J̄ , v ∈ J .

Prove that the bimodule J over the special Jordan algebra J̄ is special. The bimodule J
is embedded into D and D is a J̄-bimodule too. Consider mappings σ1, σ2 : J̄ → Hom(D,D)
defined by the rule

σ1(ā) : d 7→ a ⊢ d ∈ D, σ2(ā) : d 7→ d ⊣ a ∈ D, d ∈ D, a ∈ J ⊆ D.

These mappings are defined correctly. Show that they are associative specializations. Indeed
for every ā, b̄ ∈ J̄ , d ∈ D

σ1(āb̄)(d) = σ1(a (⊢) b)(d) =
1

2
(a ⊢ b+ b ⊣ a) ⊢ d =

1

2
(b ⊢ a ⊢ d+ a ⊢ b ⊢ d) =

1

2
(σ1(ā)σ1(b̄) + σ1(b̄)σ1(ā))(d).

(We write a composition of mappings as fg(x) = g(f(x)).) Analogously, one may check
that σ2 is an associative specialization.

The relation (8) follows from the definition of the operation in our bimodule.
Moreover, σ1 and σ2 are commuting because

[σ1(ā), σ2(b̄)](d) = (σ1(ā)σ2(b̄) + σ2(b̄)σ1(ā))(d) = (a ⊢ d) ⊣ b− a ⊢ (d ⊣ b) = 0.

So, J is a special J̄-bimodule and by Theorem 12 we obtain that Ĵ is special.
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In papers [5, 15] conformal algebras were investigated and the following fact was proved.

Proposition 14. If an algebra A belongs to a variety Var then a dialgebra (CurA)(0) belongs
to a variety DiVar.

Prove an auxiliary statement.

Lemma 15. If Ĵ ∈ HSJ then J ∈ HDiSJ.

Proof. Use conformal algebras. Let the algebra Ĵ generated by a set X belongs to the variety
HSJ. Since SJ 〈X〉 is a free algebra of the variety HSJ, there exists a surjective homomorphism

ϕ : SJ 〈X〉 → Ĵ . Then Curϕ : Cur SJ 〈X〉 → Cur Ĵ is a morphism of conformal algebras and

particulary dialgebras. It is known [13] that J →֒ (Cur Ĵ)(0). So (Curϕ)−1[J ] is a subdialgebra
in (Cur SJ 〈X〉)(0). The algebra SJ 〈X〉 ∈ SJ so by the definition of SJ there exists an associative
algebra A such that SJ 〈X〉 →֒ A(+), hence Cur SJ 〈X〉 →֒ CurA(+) and (Cur SJ 〈X〉)(0) ∈ DiSJ.
To complete the proof we need to note that J = Curϕ((Curϕ)−1[J ]), where (Curϕ)−1[J ] →֒
(Cur SJ 〈X〉)0 ∈ DiSJ and so J ∈ HDiSJ.

Now we can prove the following theorem.

Theorem 16. HDiSJ = DiHSJ.

Proof. To prove the inclusion ”⊆” consider a free algebra DiSJ 〈X〉 in the variety HDiSJ.
By Lemma 10 we have DiSJ〈X〉 →֒ Je, Je is special and 1 ∈ J̄e. Then by Lemma 11 J̄e
is special, hence by Lemma 13 Ĵe is a special Jordan algebra and Je ∈ DiHSJ. Therefore,
DiSJ〈X〉 ∈ DiHSJ. Since the free algebra of the variety HDiSJ belongs to the variety DiHSJ,
the variety HDiSJ is embedded into DiHSJ.

Prove the inclusion ”⊇”. Let J ∈ DiHSJ. By the definition of a variety of dialgebras in the
sense of Eilenberg it means that Ĵ ∈ HSJ, hence by Lemma 15 we obtain J ∈ HDiSJ.

3.2 s-identities in dialgebras

Let Var be a variety of algebras, X = {x1, x2, . . .} be a countable set. Consider a mapping
ϕVar : Alg 〈X〉 → Var 〈X〉 which maps xi 7→ xi. Let T0(Var) be a set of polylinear polynomials
from kerϕVar, these are exactly all polylinear identities of Var. We suppose that the variety is
defined by polylinear identities that is Var = {A | A � T0(Var)}. There we use the denotation
A � f which means that the identity f(x1, . . . , xn) = 0 holds on the algebra A.

Further, let DiAlg0 〈X〉 be a free 0-dialgebra, ϕDiVar : DiAlg0 〈X〉 → DiVar 〈X〉, T0(DiVar)
be a set of polylinear dipolynomials from kerϕDiVar, i. e., all polylinear identities from DiVar.

In paper [11] the following theorem was proved.

Theorem 17 (Pozhidaev [11, Theorem 3.2]). Let D ∈ DiAlg0. Then the following conditions

are equivalent:

1. D ∈ DiVar;

2. D̂ = D̄ ⊕D ∈ Var (the definition in the sense of Eilenberg);

3. D � Ψxi

Alg f for every f ∈ T0(Var), deg f = n, i = 1, . . . , n (the definition in the sense of

[5]).

Prove the following

Proposition 18. Let f = f(x1, . . . , xn) ∈ DiAlg0 〈X〉 be polylinear, f = Ψ
xj

Alg f̄ for some j.
Then

f ∈ T0(DiVar)⇔ f̄ ∈ T0(Var).
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Proof. Since evidently Var ⊆ DiVar, the statement ”⇒” is trivial.
To prove ”⇐” consider an identity f̄ ∈ T0(Var). By Theorem 17 for arbitrary D ∈ DiVar

we have D � Ψxi

Alg f̄ for all i = 1, . . . , n, but Ψ
xj

Alg f̄ = f and so f ∈ T0(DiVar).

Proposition 19. Let f = f(x1, . . . , xn) ∈ DiAlg0 〈X〉 be polylinear, f = f1 + . . .+ fn where fi
consists of all dimonomials in f with a central letter xi. Then

f ∈ T0(DiVar)⇔ fi ∈ T0(DiVar) for all i = 1, . . . , n.

Proof. ”⇐” is evident.
Prove ”⇒”. Let f ∈ T0(DiVar), consider an arbitrary algebra A ∈ Var. Then by Proposition

14 we obtain (CurA)(0) ∈ DiVar, hence (CurA)(0) � f , where f = f(x1, . . . , xn). Fix i =
1, . . . , n and assign the following values to variables: xi := Tai, ai ∈ A, xj := aj for all j 6= i,
aj ∈ A. The properties of a conformal product imply

0 = f(a1, . . . , Tai, . . . , an) = T f̄i(a1, . . . , an).

From the last equality we obtain f̄i(a1, . . . , an) = 0, so A � f̄i and f̄i ∈ T0(Var). By the
previous proposition fi ∈ T0(DiVar).

Remind that f is called a polylinear s-identity (in the case of ordinary algebras) if

f ∈ T0(HSJ) \ T0(Jord) := SId.

A similar notion can be introduced for dialgebras [8]

f ∈ T0(HDiSJ) \ T0(DiJord) := DiSId.

Theorem 20 (about the correspondence of polylinear s-identities). 1. Let g = g(x1, . . . , xn) ∈
SId. Then Ψxi

Alg g ∈ DiSId for all i = 1, . . . , n.

2. Let f = f(x1, . . . , xn) ∈ DiSId, f = f1 + . . .+ fn (by a central letter). Then there exists

j ∈ {1, . . . , n} such that f̄j ∈ SId.

Proof. Prove the statement 1. Let g ∈ SId, hence by the definition SId we have g ∈ T0(HSJ)
and g 6∈ T0(Jord). Proposition 18 implies Ψxi

Alg g ∈ T0(DiHSJ), Ψxi

Alg g 6∈ T0(DiJord). It follows
from the equality of varieties HDiSJ = DiHSJ that Ψxi

Alg g ∈ DiSId.
For proving the statement 2 consider f ∈ DiSId. By the definition of DiSId and Theorem

16 we have f ∈ T0(HDiSJ) = T0(DiHSJ) and f 6∈ T0(DiJord). It follows from f ∈ T0(DiHSJ)
by Proposition 19 that fi ∈ T0(DiHSJ) for all i. It follows from f 6∈ T0(DiJord) that j exists
such that fj 6∈ T0(DiJord). Further, by Proposition 18, f̄i ∈ T0(HSJ) and f̄j 6∈ T0(DiJord),
hence by the definition SId we obtain f̄j ∈ SId.

Now we can easily prove the following corollary which was proved in [8] by computer algebra
methods.

Corollary 21. There are no s-identities for Jordan dialgebras of degree ≤ 7 and there exists a

polylinear s-identity of a degree 8.

Proof. Let f be a s-identity for Jordan dialgebras, deg f = k ≤ 7. After a full linearization of
f we can suppose that f is polylinear that is f ∈ DiSId and f = f1+ . . .+ fk by central letters.
It follows from Theorem 20 about the corresponding of polylinear s-identities that f̄i ∈ SId for
some i, deg f̄i ≤ k, but Glennie proved [18] that such an identity does not exist.

It is known [19] that there exists f which is a s-identity for Jordan algebras, deg f = 8.
Again we can suppose that f is polylinear. Then Theorem 20 implies Ψxi

Algf is a required
polylinear s-identity for all i = 1, . . . , 8.
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3.3 Analogues for dialgebras of Shirshov’s and Macdonald’s Theo-

rems

After the generalization of the Cohn’s Theorem to the case of dialgebras a question appears
about a generalization of the Shirshov’s Theorem for special Jordan algebras, notably is it true
that every Jordan dialgebra with two generators is special? The answer to this questions is
negative, it follows from Theorem 7. However, the following analogue of the Shirshov’s Theorem
holds for dialgebras.

Theorem 22. Let J be a one-generated dialgebra. Then J is special.

Proof. We have J ∈ DiJord. Then by the definition a variety of dialgebras in the sense of
Eilenberg J̄ ∈ Jord, Ĵ = J̄ ⊕ J ∈ Jord. Let x be the generative element of J . Then Ĵ = 〈x̄, x〉,

so Ĵ is a two-generated Jordan algebra. By the Shirshov’s Theorem we obtain that Ĵ is special.
We have J →֒ (Cur Ĵ)(0) and so J is special too.

Consider the particular case when two-generated dialgebra is free.

Theorem 23. Let J = DiJord 〈x, y〉 be the free Jordan dialgebra generated by x, y. Then J is

special.

Proof. We need to show that J ∈ DiSJ. First, prove J ∈ HDiSJ. Assume the converse, i. e.,
J 6∈ HDiSJ. By Lemma 15 we obtain Ĵ = J̄ ⊕ J 6∈ HSJ. Since Ĵ ∈ Jord \ HSJ, there exists a

polylinear s-identity f(x1, . . . , xn) of Jordan algebras such that SJ � f but Ĵ 2 f . Therefore,

we may find u1, . . . , un ∈ Ĵ such that f(u1, . . . , un) 6= 0. Since the polynomial f is polylinear,
we can suppose that either ui ∈ J̄ or ui ∈ J for all i. A quantity of elements ui ∈ J does not
exceed one otherwise, f(u1, . . . , un) = 0 because J · J = 0. Consider two possible cases. The
first case is when all ui ∈ J̄ . Then J̄ 2 f , which is impossible since J̄ ∈ SJ and f is an s-identity.
The second case is when u1, . . . , un−1 ∈ J̄ , un ∈ J . The algebra J̄ is generated by x̄ and ȳ,
so ui = ui(x̄, ȳ), i = 1, . . . , n. Then denote g(x̄, ȳ, un) := f(u1(x̄, ȳ), . . . , un−1(x̄, ȳ), un) 6= 0.

Note that g does not hold on Ĵ . The polynomial g(x, y, z) vanishes in SJ, degz g = 1, hence
by the Macdonald’s Theorem we obtain g = 0 in Jord. The contradiction obtained proves that
J ∈ HDiSJ.

Prove that J ∈ DiSJ. We know that J is a homomorphic image of some special Jordan
algebra J0 under some mapping ϕ : J0 → J . Let x0 and y0 are preimages of x and y with respect
to ϕ. Consider a subdialgebra U in J0 generated by x0 and y0. Since the dialgebra J0 is special,
subdialgebra U is special too. The dialgebra J = DiJord 〈x, y〉 is free in the variety of Jordan
dialgebras, hence every mapping of x and y to U extends to a homomorphism. Map x and y
to x0 and y0 respectively. Since x0 and y0 generate U , we obtain a surjective homomorphism
inverse to a homomorphism ϕ|U . Therefore, J ⋍ U is a special Jordan dialgebra.

Corollary 24. If an identity f(x, y) in two variables holds in all special Jordan dialgebras then

it holds in all Jordan dialgebras.

Proof. Consider f(x, y) as an element of the free Jordan dialgebra DiJord 〈x, y〉. By the previous
theorem DiJord 〈x, y〉 is a special Jordan dialgebra, therefore DiJord � f .

In the paper [8] the s-identity of dialgebras was found which depends on three variables and
is linear by one of variables. So the naive generalization of the Macdonald’s Theorem to the
case of dialgebras is not true. But if an identity is linear in the central letter then the following
theorem is true which is an analogue of the Macdonald’s Theorem.

Theorem 25. Let f = f(x, y, ż) be a dipolynomial which is linear in z. If DiSJ � f then

DiJord � f .
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Proof. Let DiSJ � f , then HDiSJ � f . Consider a Jordan algebra J̄ ∈ HSJ as a dialgebra
J with equal left and right products. Then J̄ ∈ HSJ and Ĵ = J̄ ⊕ J = J̄ ⊕ J̄ ∈ HSJ, so
J ∈ DiHSJ = HDiSJ. We obtain J � f , hence J̄ � f̄ . Therefore, HSJ � f̄ = f(x, y, z), so by
the classical Macdonald’s Theorem we have Jord � f̄ .

It remains to note that if f = f(x, y, ż) is a polylinear dipolynomial such that Jord � f̄ =
f(x, y, z) then DiJord � f : It follows immediately from the definition [5] of what is a variety
of dialgebras. The polynomial f(x, y, z) can be nonlinear in x and y. Suppose degx f = n,
degy f = m. Consider the full linearization

g(x1, . . . , xn, y1, . . . , ym, z) = Ln
xL

m
y f(x, y, z)

of the identity f(x, y, z) (notations from [10, ch. 1]). Then Jord � g(x1, . . . , xn, y1, . . . , ym, z)
and so DiJord � g(x1, . . . , xn, y1, . . . , ym, ż).

If we now identify variables, then

g(x, . . . , x, y, . . . , y, ż) = n!m!f(x, y, ż).

In this section the characteristic of the basic field is equal to zero, so we can divide by n!m!
and hence f(x, y, ż) is an identity on DiJord.

In the end of paper the author thanks Kolesnikov P. S., Pozhidaev A. P. and Gubarev V. Yu.
for helpful discussions and valuable comments.
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