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Abstract

In this paper we extend the holomorphic analytic torsion classes of Bismut
and Köhler to arbitrary projective morphisms between smooth algebraic
complex varieties. To this end, we propose an axiomatic definition and
give a classification of the theories of generalized holomorphic analytic
torsion classes for arbitrary projective morphisms.

For a proper formulation, we first introduce a formalism of hermitian
structures on objects of the bounded derived category of coherent sheaves
on a smooth complex variety. As a byproduct we build a category Sm∗/C

whose objects are smooth complex varieties and whose morphisms are
pairs (f, T f ) formed by a projective morphism and a hermitian structure
on its relative tangent complex Tf .

With this language, we study the theories of analytic torsion classes
for closed immersions and for projective spaces. A compatibility crite-
rion enables to combine both theories to produce analytic torsion classes
for arbitrary projective morphisms. Our main theorem sets a bijection
between theories of generalized analytic torsion classes and real additive
genera. The extension of the holomorphic analytic torsion classes of Bis-
mut and Köhler is obtained as the theory of generalized analytic torsion
classes associated to −R/2, R being the R-genus.

The relation with Grothendieck duality is explored, leading to the
notion of the dual analytic torsion theory and self-dual theories. We also
study the vanishing of the analytic torsion classes of de Rham complexes.
This gives a characterization of Bismut-Köhler higher analytic torsion
classes and a conceptual explanation of the R-genus.

We end by applying the theory developed so far to describe the singu-
larities of the analytic torsion for degenerating families of curves. By ele-
mentary geometric considerations and computations of Bott-Chern classes,
we recover the core result of the work of Bismut-Bost on the singularity
of the Quillen metric.
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1 Introduction

The aim of this paper is to extend the classes of analytic torsion forms introduced
by Bismut and Köhler to arbitrary projective morphisms between complex alge-
braic varieties. The main tool for this extension is an axiomatic characterization
of all the possible theories of holomorphic analytic torsion classes. Before stat-
ing precisely what we mean by a theory of holomorphic analytic torsion classes,
we briefly recall the origin of the analytic torsion.

The R-torsion is a topological invariant attached to certain euclidean flat
vector bundles on a finite CW-complex. This invariant was introduced by Rei-
demeister and generalized by Franz in order to distinguish non-homeomorphic
lens spaces that have the same homology and homotopy groups. Let W be a
connected CW-complex and let K be an orthogonal representation of π1(W ).
Then K defines a flat vector bundle with an euclidean inner product EK . As-
sume that the chain complex of W with values in EK is acyclic. Then the
R-torsion is the determinant of this complex with respect to a preferred basis.

Later, Ray and Singer introduced an analytic analogue of the R-torsion and
they conjectured that, for compact riemannian manifolds, this analytic torsion
agrees with the R-torsion. This conjecture was proved by Cheeger and Müller.
If W is a riemannian manifold and K is as before, then we have the de Rham
complex of W with values in EK at our disposal. The hypothesis on K implies
that (Ω∗(W,EK), d) is also acyclic. Then the analytic torsion is essentially the
determinant of the de Rham complex. Here the difficulty lies in that the vector
spaces Ωp(W,EK) are infinite dimensional and therefore the “determinant” has
to be defined using a zeta function regularization involving the laplacian. See the
paper of Ray and Singer [41] for more details on the construction of R-torsion
and analytic torsion.

Ray and Singer observed that, with the help of hermitian metrics, the acyclic-
ity condition can be removed. Moreover, their definition of analytic torsion can
be extended to any elliptic complex. In the paper [42], they introduced a holo-
morphic analogue of the analytic torsion as the determinant of the Dolbeault
complex. They also studied some of its properties and computed some examples.
In particular, they showed that this invariant depends on the complex structure
and they gave a hint that the holomorphic analytic torsion should be interesting
in number theory. This holomorphic analytic torsion and its generalizations are
the main object of study of the present paper. Since this is the only kind of
analytic torsion that we will consider, throughout the paper, by analytic torsion
we will mean holomorphic analytic torsion.

In the paper [40], Quillen, using the analytic torsion, associated to each
holomorphic hermitian vector bundle on a Riemann surface a hermitian metric
on the determinant of its cohomology. Furthermore, he showed that this metric
varies smoothly with the holomorphic structure on the vector bundle. He also
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computed the curvature of the hermitian line bundle on the space of all complex
structures obtained in this way.

Subsequently Bismut and Freed [7], [8] generalized the construction of Quillen
to families of Dirac operators on the fibers of a smooth fibration. They obtained
a smooth metric and a unitary connection on the determinant bundle associated
with the family of Dirac operators. Furthermore, they computed the curvature
of this connection, which agrees with the degree 2 part of the differential form
obtained by Bismut in his proof of the local index theorem [2]. Later, in a
series of papers [9], [10], [11], Bismut, Gillet and Soulé considered the case of a
holomorphic submersion endowed with a holomorphic hermitian vector bundle.
They defined a Quillen type metric on the determinant of the cohomology of the
holomorphic vector bundle. In the locally Kähler case, they showed the com-
patibility with the constructions of Bismut-Freed. In addition they described
the variation of the Quillen metric under change of the metric on the vertical
tangent bundle and on the hermitian vector bundle. The results of [9], [10],
[11] represent a rigidification of [7], [8]. All in all, these works explain the re-
lationship between analytic torsion and the Atiyah-Singer index theorem and,
in the algebraic case, with Grothendieck’s relative version of the Riemann-Roch
theorem.

In [20], Deligne, inspired by the Arakelov formalism, gave a formula for the
Quillen metric that can be seen as a very precise version of the degree one case
of the Riemann-Roch theorem for families of curves. This result is in the same
spirit as the arithmetic Riemann-Roch theorem of Faltings [23].

In the paper [29], Gillet and Soulé conjectured an arithmetic Riemann-Roch
formula that generalizes the results of Deligne and Faltings. Besides the analytic
torsion or its avatar, the Quillen metric, this Riemann-Roch formula involves a
mysterious new odd additive characteristic class, the R-genus, that they com-
puted with the help of Zagier.

In the work [14] Bismut and Lebeau studied the behavior of the analytic
torsion with respect to complex immersions. Their compatibility formula also
involved the R-genus. Later Bost [15] and Roessler [43] explained, using geomet-
ric arguments, why the same genus appears both in the arithmetic Riemann-
Roch formula and the Bismut-Lebeau compatibility formula. However these
geometric arguments do not characterize the R-genus.

In the article [30] Gillet and Soulé proved the degree one part of the arith-
metic Riemann-Roch theorem. A crucial ingredient of the proof is the compat-
ibility formula of Bismut-Lebeau.

In order to establish the arithmetic Riemann-Roch theorem in all degrees it
was necessary to generalize the analytic torsion to define higher analytic torsion
classes. In fact, it was clear from [30] that, once a suitable theory of higher
analytic torsion classes satisfying certain properties were developed, then the
arithmetic Riemann-Roch theorem would follow. A first definition of such forms
was given by Gillet and Soulé in [29], but they did not prove all the necessary
properties. A second equivalent definition was given in [13] by Bismut and
Köhler, where some of the needed properties are proved. The compatibility of
higher analytic torsion classes with complex immersions, i.e. the generalization
of Bismut-Lebeau compatibility formula, was proved in [3]. As a consequence, in
[25] Gillet, Soulé and Rössler extended the arithmetic Riemann-Roch theorem
to arbitrary degrees.

In the book [24], Faltings followed a similar strategy to define direct images
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of hermitian vector bundles and proved an arithmetic Riemann-Roch formula
up to a unique unknown odd genus.

The arithmetic Riemann-Roch theorems of Gillet-Soulé and Faltings deal
only with projective morphisms between arithmetic varieties such that, at the
level of complex points, define a submersion. By contrast, in his thesis [51]
Zha follows a completely different strategy to establish an arithmetic Riemann-
Roch theorem without analytic torsion. His formula does not involve the R-
genus. Moreover Zha’s theorem is valid for any projective morphism between
arithmetic varieties.

In [44], Soulé advocates for an axiomatic characterization of the analytic
torsion, similar to the axiomatic characterization of Bott-Chern classes given
by Bismut-Gillet-Soulé in [9]. Note that the R-torsion has also been generalized
to higher degrees giving rise to different higher torsion classes. In [33], Igusa
gives an axiomatic characterization of these higher torsion classes

We now explain more precisely what we mean by a theory of generalized
analytic torsion classes. The central point is the relationship between analytic
torsion and the Grothendieck-Riemann-Roch theorem.

Let π : X → Y be a smooth projective morphism of smooth complex vari-
eties. Let ω be a closed (1, 1) form on X that induces a Kähler metric on the
fibers of π. Let Tπ be the relative tangent bundle. Then ω induces a hermitian
metric on Tπ. The relative tangent bundle provided with this metric will be
denoted Tπ.

Let F = (F, hF ) be a hermitian vector bundle on X such that for every
i ≥ 0, Riπ∗F is locally free. We consider on Riπ∗F the L2 metric obtained
using Hodge theory on the fibers of π and denote the corresponding hermitian
vector bundle as Riπ∗F . To these data, Bismut and Köhler associate an analytic
torsion differential form τ that satisfies the differential equation

∗ ∂∂̄τ =
∑

(−1)i ch(Riπ∗F )− π∗(ch(F )Td(Tπ)), (1.1)

where ∗ is a normalization factor that is irrelevant here (see 3.7). Moreover, if
we consider the class of τ up to Im ∂+Im ∂̄, then τ behaves nicely with respect
to changes of metrics.

The Grothendieck-Riemann-Roch theorem in de Rham cohomology says that
the differential form on the right side of equation (1.1) is exact. Therefore, the
existence of the higher analytic torsion classes provides us an analytic proof of
this theorem.

Since the Grothendieck-Riemann-Roch theorem is valid with more gener-
ality, it is natural to generalize the notion of higher analytic torsion classes
as follows. By reasons that will be apparent later (see Remark 2.35) we will
restrict ourselves to the algebraic category. Let f : X → Y be a projective mor-
phism between smooth complex algebraic varieties. Let F be a hermitian vector
bundle on X . Now, the relative tangent complex Tf and the bounded derived
direct image f∗F are objects of the derived category of coherent sheaves on X
and Y respectively. Since X and Y are smooth, using resolutions by locally free
sheaves, we can choose hermitian structures on Tf and f∗F (see Section 2.2)
that we denote with an over-line. Hence we have characteristic forms ch(f∗F )
and Td(T f ). We will denote by f the morphism f together with the choice of
hermitian structure on Tf . Then the triple ξ = (f, F , f∗F ) will be called a rel-
ative hermitian vector bundle. This is a particular case of the relative metrized
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complexes of Section 3.1.
Then, a generalized analytic torsion class for ξ is the class modulo Im ∂+Im ∂̄

of a current that satisfies the differential equation

∗ ∂∂̄τ = ch(f∗F )− f∗(ch(F )Td(T f )). (1.2)

Note that such current τ always exists. Again, the Grothendieck-Riemann-Roch
theorem in de Rham cohomology implies that the right hand side of equation
(1.2) is an exact current. Thus, if Y is proper, the ddc-lemma implies the
existence of such a current. When Y is non-proper, a compactification argument
allow us to reduce to the proper case.

Of course, in each particular case, there are many choices for τ . We can
add to τ any closed current and obtain a new solution of equation (1.2). By a
theory of generalized analytic torsion classes we mean a coherent way of choosing
a solution of equation (1.2) for all possible relative hermitian vector bundles,
satisfying certain natural minimal set of properties.

Each possible theory of generalized analytic torsion classes gives rise to a
definition of direct images in arithmetic K-theory and therefore to an arithmetic
Riemann-Roch formula. In fact, the arithmetic Riemann-Roch theorems of
Gillet-Soulé and of Zha correspond to different choices of a theory of generalized
analytic torsion classes. We leave for a subsequent paper the discussion of the
relation with the arithmetic Riemann-Roch formula.

Since each projective morphism is the composition of a closed immersion
followed by the projection of a projective bundle, it is natural to study first the
analytic torsion classes for closed immersions and projective bundles and then
combine them in a global theory of analytic torsion classes.

In [18] the authors studied the case of closed immersions (see Section 3.2).
The generalized analytic torsion classes for closed immersions are called singular
Bott-Chern classes and we will use both terms interchangeably. The definition
of a theory of singular Bott-Chern classes is obtained by imposing axioms anal-
ogous to those defining the classical Bott-Chern classes [26]. Namely, a theory
of singular Bott-Chern classes is an assignment that, to each relative hermitian
vector bundle ξ = (f, F , f∗F ), with f a closed immersion, assigns the class of a
current T (ξ) on Y , satisfying the following properties:

(i) the differential equation (1.2);

(ii) functoriality for morphisms that are transverse to f ;

(iii) a normalization condition.

A crucial observation is that, unlike the classical situation, these axioms do not
uniquely characterize the singular Bott-Chern classes. Consequently there are
various non-equivalent theories of singular Bott-Chern classes. They are clas-
sified by an arbitrary characteristic class of F and Tf . If we further impose
the condition that the theory is transitive (that is, compatible with composi-
tion of closed immersions) and compatible with the projection formula then the
ambiguity is reduced to an arbitrary additive genus on Tf . The uniqueness
can be obtained by adding to the conditions (i)–(iii) an additional homogeneity
property. The theory obtained is transitive and compatible with the projection
formula and agrees (up to normalization) with the theory introduced in [12].
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Similarly, one can define a theory of analytic torsion classes for projective
spaces. This is an assignment that, to each relative hermitian vector bundle
ξ = (f, F , f∗F ), where f : Pn

Y → Y is the projection of a trivial projective
bundle, assigns the class of a current T (ξ) satisfying the properties

(i) differential equation (1.2);

(ii) functoriality;

(iii) an additivity and normalization condition;

(iv) compatibility with the projection formula.

The theories of analytic torsion classes for projective spaces are classified by
their values in the cases Y = SpecC, n ≥ 0, F = O(k), 0 ≤ k ≤ n and one
particular choice of metrics (see Theorem 3.53).

We say that a theory of analytic torsion classes for closed immersions and
one for projective spaces are compatible if they satisfy a compatibility equa-
tion similar to Bismut-Lebeau compatibility formula for the diagonal immersion
∆: Pn

C
→ Pn

C
× Pn

C
, n ≥ 0. Given a theory of singular Bott-Chern classes that

is transitive and compatible with the projection formula, there exists a unique
theory of analytic torsion classes for projective spaces that is compatible with
it (Theorem 3.88).

A central result of this paper is that, given a theory of singular Bott-Chern
classes and a compatible theory of analytic torsion classes for projective spaces,
they can be combined to produce a unique theory of generalized analytic torsion
classes (see Definition 3.108 and Theorem 3.114). In particular, the theories of
generalized analytic torsion classes are classified by additive genera.

A first consequence of Theorem 3.114 is that the classes of the analytic
torsion forms of Bismut-Köhler arise as the restriction to Kähler fibrations of
the theory of generalized analytic torsion classes associated to minus one half
of the R-genus (Theorem 3.133). In particular, we have succeeded to extend
Bismut-Köhler analytic torsion classes to arbitrary projective morphisms in the
algebraic category.

As corollaries of the axiomatic characterization of analytic torsion classes,
we obtain new proofs of two previously known results about analytic torsion.
First we reprove and generalize the theorems of Berthomieu-Bismut [1] and
Ma [35], [36] on the compatibility of analytic torsion with the composition of
submersions. Second we reprove a weak form of the theorem of Bismut-Bost on
the singularity of the Quillen metric for degenerating families of curves, whose
singular fibers have at most ordinary double points [6].

From the axiomatic point of view, the role played by the R-genus is myste-
rious. It would seem more natural to consider the generalized analytic torsion
classes associated to the trivial genus 0. This is the choice made implicitly by
Zha in his thesis [51]. In fact, with our point of view, one of the main results
of Zha’s thesis is the existence of a theory of analytic torsion classes associ-
ated to the trivial genus. This theory leads to an arithmetic Riemann-Roch
formula identical to the classical one without any correction term. Thus, one
is tempted to consider the R-genus as an artifact of the analytic definition of
the analytic torsion. Nevertheless, by the work of several authors, the R-genus
seems to have a deeper meaning. A paradigmatic example is the computation
by Bost and Kühn [34] of the arithmetic self-intersection of the line bundle of

6



modular forms on a modular curve, provided with the Petersson metric. This
formula gives an arithmetic meaning to the first term of the R-genus. Thus it
is important to characterize the R-genus from an axiomatic point of view and
to understand its role in the above computations.

From a theorem of Bismut [5] we know that the Bismut-Köhler analytic
torsion classes of the relative de Rham complex of a Kähler fibration vanish.
This result is important because one of the main difficulties to apply the arith-
metic Riemann-Roch theorem is precisely the estimation of the analytic torsion.
Moreover, this result explains why the terms of the R-genus appear in differ-
ent arithmetic computations. For instance, the equivariant version of this result
(due to Maillot and Roessler in degree 0 and to Bismut in general) allows Maillot
and Roessler [37] to prove some cases of a conjecture of Gross-Deligne.

The above vanishing property characterizes the analytic torsion classes of
Bismut and Köhler. Namely, in Theorem 3.162 we show that, if it exists, a the-
ory of analytic torsion classes that vanishes on the relative de Rham complexes
of Kähler fibrations is unique, hence it agrees with the one defined by Bismut
and Köhler. In fact, to characterize this theory, it is enough to assume the van-
ishing of the analytic torsion classes for Kähler fibrations of relative dimension
one.

When working with generalized analytic torsion classes for projective mor-
phisms one encounters several technical problems. First, the relative tangent
complex is not a vector bundle but a complex. Second, the direct images and
higher direct images of a vector bundle are not in general locally free. Finally,
when considering the composition of two morphism, one has to deal with reso-
lutions of resolutions, that lead to cumbersome notation. This is aggravated by
the second mentioned technical problem. All these issues are easily solved us-
ing hermitian structures on the bounded derived category of coherent sheaves,
and this is the point of view that we follow in this paper. Beyond allowing
us to work in complete generality and to simplify the presentation, the use of
hermitian structures on the derived category furnishes us a useful formalism
to explore the properties of analytic torsion: natural questions arise by anal-
ogy with algebraic geometric facts, such as the compatibility of analytic torsion
classes with Grothendieck duality. The extension of Bott-Chern classes to the
derived category is interesting in its own right and it is outlined below when we
detail the contents of the different sections.

A few words about notations. The normalizations of characteristic classes
and Bott-Chern classes in this paper differ from the ones used by Bismut, Gillet-
Soulé and other authors. The first difference is that they work with real valued
characteristic classes, while we use characteristic classes in Deligne cohomology,
that naturally include the algebro-geometric twist. The second difference is
a factor 1/2 in Bott-Chern classes, that explains the factor 1/2 that appears
in the characteristic class associated to the torsion classes of Bismut-Köhler.
This change of normalization appears already in [16] and its objective is to
avoid the factor 1/2 that appears in the definition of arithmetic degree in [27,
§3.4.3] and the factor 2 that appears in [27, Theorem 3.5.4] when relating Green
currents with Beilinson regulator. The origin of this factor is that the natural
second order differential equation that appears when defining Deligne-Beilinson
cohomology is dD = −2∂∂̄, while the operator used when dealing with real
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valued forms is

d dc =
1

2

1

2πi
dD .

Thus the characteristic classes that appear in the present article only agree
with the ones in the papers of Bismut, Gillet and Soulé after renormalization.
With respect to the work of these authors we have also changed the sign of the
differential equation that characterizes singular Bott-Chern classes. In this way,
the same differential equation appears when considering both, singular Bott-
Chern classes and analytic torsion classes. This change is necessary to combine
them.

A convention that we will use throughout the paper and whose objective is
to simplify the notation in the differential equations that involve direct images,
is the following. If f = (f, T f ) is a projective morphism together with a choice
of hermitian structure on the relative tangent complex Tf , then we will write

f ♭(ω) := f∗(ω •Td(T f )),

where • denotes the product in the Deligne complex, that, for the particular
degrees we are considering agrees with the exterior product of differential forms.

Let us summarize the main contents of this article.
In Section 2 we develop the theory of hermitian structures on objects of the

bounded derived category of coherent sheaves on a smooth algebraic variety
X over C. First of all, we define and characterize the notion of meager com-
plex (Definition 2.8 and Theorem 2.12). Roughly speaking, meager complexes
are bounded acyclic complexes of hermitian vector bundles whose Bott-Chern
classes vanish for structural reasons. We then introduce the concept of tight
morphism (Definition 2.18) and tight equivalence relation (Definition 2.25) be-
tween bounded complexes of hermitian vector bundles. We explain a series of
useful computational rules on the monoid of hermitian vector bundles modulo
tight equivalence relation, that we call acyclic calculus (Theorem 2.27). As
a byproduct we see that the submonoid of acyclic complexes modulo meager
complexes has a natural structure of abelian group, that we denote KA(X)
(Definition 2.31). The group KA(X) is a universal abelian group for additive
Bott-Chern classes (Theorem 2.32). With these tools at hand, we next define
hermitian structures on objects of Db(X). A hermitian metric on an object F
of Db(X) consists in choosing a bounded complex of hermitian vector bundles

E and a quasi-isomorphism E
∼
99K F . We introduce an equivalence relation on

the set of hermitian metrics on F and we say that two hermitian metrics fit tight
(Definition 2.42 and Theorem 2.43) when they are equivalent. Then a hermitian
structure on F is a set of equivalence classes of hermitian metrics on F . The

objects of the category D
b
(X) are objects of Db(X) together with a hermitian

structure, and the morphisms are just morphisms in Db(X). Theorem 2.47 is

devoted to describe the structure of the forgetful functor D
b
(X) → Db(X).

In particular, we show that the group KA(X) naturally acts on the fibers of
the functor, freely and transitively. An important example of use of hermitian

structures is the construction of the hermitian cone of a morphism in D
b
(X)

(Definition 2.48), which is well defined only up to tight isomorphism. We also

study several elementary constructions in D
b
(X). Here we mention the classes

of isomorphisms and distinguished triangles in D
b
(X). These classes lie in the
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group KA(X) and their properties are listed in Theorem 2.67. As an applica-
tion we show thatKA(X) receives classes fromK1(X) (Proposition 2.69). Then
we proceed to construct Bott-Chern classes for isomorphisms and distinguished

triangles in D
b
(X). We conclude the section with the definition of the category

Sm∗/C (Definition 2.111). The objects of this category are smooth complex va-

rieties. The morphisms are pairs f = (f, T f ) formed by a projective morphism
of smooth complex varieties f , together with a hermitian structure on the tan-
gent complex Tf . The remarkable fact is that the hermitian cone construction
enables a composition rule for these morphisms. In fact, the construction of this
category was our main motivation to define the hermitian cone.

Section 3 is devoted to the theory of generalized analytic torsion classes.
First of all we introduce the data on which analytic torsion classes will depend:
the relative metrized complexes (Definition 3.3). Then we recall the results of
[18] on singular Bott-Chern classes, that we translate in the language of derived
categories. Singular Bott-Chern classes are seen as analytic torsion classes for
closed immersions. We review the classical anomaly formulas, and also prove
a version of the anomaly formulas for distinguished triangles. Before studying
analytic torsion classes for trivial projective bundles, we elaborate on regular
coherent sheaves. The results of this chapter can be summarized in Corollary
3.43, where a generating class (Definition 3.42) of the category Db(Pn

X) is ex-
hibited. This will reveal useful to check several properties of analytic torsion
classes for projective spaces. Next we give the definition of a theory of ana-
lytic torsion classes for projective spaces of dimension n (Definition 3.49). The
construction and classification of these theories (Theorem 3.53) depend on the
choice of the characteristic numbers (Definition 3.51). The link between analytic
torsion classes for closed immersions and for projective spaces is made through
the notion of compatibility (Definition 3.86). In Theorem 3.88 we show that
for a given real additive genus S, there exists a choice of characteristic num-
bers such that the theories of analytic torsion classes TS (for closed immersions)
and Tt (for projective spaces of dimension n) are compatible. Several other
formulas relating these two theories are then established, all of them are con-
sequence of the notion of compatibility. The axiomatic definition of generalized
analytic torsion classes is furnished by Definition 3.108. With the help of the
properties of compatible theories, a classification theorem for the generalized
theories is proven (Theorem 3.114). The classification result is complemented
by Theorem 3.121, where a concrete bijection between real additive genera and
generalized theories of analytic torsion classes is provided. We explain the rela-
tionship between our theories of analytic torsion classes and the analytic torsion
forms constructed by Bismut-Köhler (Theorem 3.133), and recover a series of
properties previously proven by other authors. The use of the general theory
developed so far is illustrated with the construction of the dual theory T∨ to
a given theory T of generalized analytic torsion classes (Theorem Definition
3.146). A characterization of self-dual theories (i.e. T∨ = T ) in terms of the
coefficients of the attached real additive genus is stated in Corollary 3.152: self-
duality is equivalent to the vanishing of the even coefficients of the genus. As
an outcome we obtain a conceptual explanation of the vanishing of the even co-
efficients of the R-genus of Gillet and Soulé (Corollary 3.153). Self-duality can
also be characterized in terms of the de Rham complex of smooth morphisms
(Theorem 3.156): a theory T is self-dual if its components of bidegree (2p−1, p),
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p odd, in the Deligne complex vanish on de Rham complexes. The digression
on dual theories ends with a characterization of the theory of analytic torsion
classes of Bismut-Köhler: it is the unique theory vanishing in all degrees on de
Rham complexes. To establish this characterization we need to appeal to the
non-vanishing of the tautological class κg−2 on the moduli stack Mg of smooth
curves of genus g ≥ 2.

We close the article with an application of the existence of generalized an-
alytic torsion classes for projective morphisms. We explain how to recover the
core result of the work of Bismut-Bost [6] on the singularity of Quillen metrics
for degenerating families of curves. In contrast with loc. cit., where the spectral
definition of the Ray-Singer analytic torsion is required, our arguments rely on
the existence of a generalized theory for arbitrary projective morphisms and
some elementary computations of Bott-Chern classes.

We like to point out that the construction of generalized analytic torsion
classes of Section 3 is influenced by the thesis of Zha [51]. This is in particular
true for the use of regular coherent sheaves and the classification of analytic
torsion classes for projective spaces. The use of hermitian derived categories is
original in our approach, as is the correspondence of generalized theories with
real additive genera and the relation with Grothendieck duality.

Further applications of the theory of generalized analytic torsion classes
are left for future work. We plan to prove generalizations of the arithmetic
Grothendieck-Riemann-Roch theorem of Gillet-Soulé [30] and Gillet-Rössler-
Soulé [25] to arbitrary projective morhisms, along the lines of [18].

It is possible to compute explicitly the characteristic numbers of the unique
theory of analytic torsion classes for projective spaces compatible with the ho-
mogeneous one. This computation makes more precise the characterization
of generalized analytic torsion classes. Nevertheless, since this computation is
much more transparent when written in terms of properties of arithmetic Chow
groups and the Riemann-Roch theorem, we leave it to the paper devoted to the
arithmetic Riemann-Roch theorem.

We also plan to study the possible axiomatic characterization of equivariant
analytic torsion classes. Note that the characterization of equivariant singular
Bott-Chern forms has already been obtained by Tang in [45].

In the unpublished e-print [47], L. Weng gives another approach to axiomatic
analytic torsion classes. In his approach, L. Weng only considers smooth mor-
phism between Kähler fibrations. This forces him to include a continuity con-
dition with respect to the deformation to the normal cone as one of the axioms.
The remaining axioms he uses are: the differential equation, functoriality with
respect to cartesian squares, compatibility with respect to the projection for-
mula and two anomaly formulas. A collection of differential forms satisfying
these axioms are called relative Bott-Chern secondary characteristic classes.
Relative Bott-Chern secondary characteristic classes are not unique. The main
result of Weng’s paper is that any two such theories are related by an additive
genus. Moreover he is able to obtain a weak form of the existence theorem for
relative Bott-Cherns secondary characteristic classes.

Acknowledgements: During the elaboration of this paper we have ben-
efited from conversations with many colleagues, that helped us to understand
some points, to clarify others or to find the relevant bibliography. Our thanks
to J.-M. Bismut, J.-B. Bost, D. Burghelea, D. Eriksson, J. Kramer, U. Kühn,
X. Ma, V. Maillot, D. Rössler, C. Soulé.
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2 Hermitian structures on objects of Db(X) and
characteristic classes

2.1 Meager complexes and acyclic calculus

The aim of this section is to construct a universal group for additive Bott-Chern
classes of acyclic complexes of hermitian vector bundles. To this end we first
introduce and study the class of meager complexes. Any Bott-Chern class that
is additive for certain short exact sequences of acyclic complexes (see 2.32) and
that vanishes on orthogonally split complexes, necessarily vanishes on meager
complexes. Then we develop an acyclic calculus that will ease the task to check
if a particular complex is meager. Finally we introduce the group KA, which
is the universal group for additive Bott-Chern classes.

LetX be a complex algebraic variety overC, namely a reduced and separated
scheme of finite type overC. We denote byVb(X) the exact category of bounded
complexes of algebraic vector bundles on X . Assume in addition that X is

smooth over C. Then V
b
(X) is defined as the category of pairs E = (E, h),

where E ∈ ObVb(X) and h is a smooth hermitian metric on the complex of
analytic vector bundle Ean. From now on we shall make no distinction between
E and Ean. The complex E will be called the underlying complex of E. We will
denote by the symbol ∼ the quasi-isomorphisms in any of the above categories.

A basic construction in Vb(X) is the cone of a morphism of complexes.
Recall that, if f : E → F is such a morphism, then, as a graded vector bundle
cone(f) = E[1]⊕F and the differential is given by d(x, y) = (− dx, f(x) + d y).

We can extend the cone construction easily to V
b
(X) as follows.

Definition 2.1. If f : E → F is a morphism in V
b
(X), the hermitian cone of

f , denoted by cone(f), is defined as the cone of f provided with the orthogonal
sum hermitian metric.

When the morphism is clear from the context we will sometimes denote
cone(f) by cone(E,F ).

Remark 2.2. Let f : E → F be a morphism in V
b
(X). Then there is an exact

sequence of complexes

0 −→ F −→ cone(f) −→ E[1] −→ 0,

whose constituent short exact sequences are orthogonally split. Conversely, if

0 −→ F −→ G −→ E[1] −→ 0

is a short exact sequence all whose constituent exact sequences are orthogonally
split, then there is a natural section s : E[1] → G. The image of d s−s d belongs
to F and, in fact, determines a morphism of complexes

fs := d s− s d: E −→ F .

11



Moreover, there is a natural isometry G ∼= cone(fs).

The hermitian cone has the following useful property.

Lemma 2.3. Consider a diagram in V
b
(X)

E
′ f ′

//

g′

��

F
′

g

��
E

f // F .

Assume that the diagram is commutative up to homotopy and fix a homotopy h.
The homotopy h induces morphisms of complexes

ψ : cone(f ′) −→ cone(f)

φ : cone(−g′) −→ cone(g)

and there is a natural isometry of complexes

cone(φ)
∼
−→ cone(ψ).

Morever, let h′ be a second homotopy between g ◦ f ′ and f ◦ g′ and let ψ′ be the
induced morphism. If there exists a higher homotopy between h and h′, then ψ
and ψ′ are homotopically equivalent.

Proof. Since h : E′ → F [−1] is a homotopy between gf ′ and fg′, we have

gf ′ − fg′ = dh+ h d . (2.4)

First of all, define the arrow ψ : cone(f ′) → cone(f) by the following rule:

ψ(x′, y′) = (g′(x′), g(y′) + h(x′)).

From the definition of the differential of a cone and the homotopy relation
(2.4), one easily checks that ψ is a morphism of complexes. Now apply the
same construction to the diagram

E
′ −g′

//

−f ′

��

E

f

��
F ′

g // F .

(2.5)

The diagram (2.5) is still commutative up to homotopy and h provides such
a homotopy. We obtain a morphism of complexes φ : cone(−g′) → cone(g),
defined by the rule

φ(x′, x) = (−f ′(x′), f(x) + h(x′)).

One easily checks that a suitable reordering of factors sets an isometry of com-
plexes between cone(φ) and cone(ψ). Assume now that h′ is a second homotopy

and that there is a higher homotopy s : E
′
→ F [−2] such that

h′ − h = d s− s d .

12



Let H : cone(f ′) → cone(f)[−1] be given by H(x′, y′) = (0, s(x′)). Then

ψ′ − ψ = dH +H d .

Hence ψ and ψ′ are homotopically equivalent.

Recall that, given a morphism of complexes f : E → F , we use the abuse
of notation cone(f) = cone(E,F ). As seen in the previous lemma, sometimes
it is natural to consider cone(−f). With the notation above it will be denoted
also by cone(E,F ). Note that this ambiguity is harmless because there is a
natural isometry between cone(f) and cone(−f). Of course, when more than
one morphism between E and F is considered, the above notation should be
avoided.

With this convention, Lemma 2.3 can be written as

cone(cone(E
′
, E), cone(F

′
, F )) ∼= cone(cone(E

′
, F

′
), cone(E,F )). (2.6)

Definition 2.7. We will denote by M0 = M0(X) the subclass of V
b
(X) con-

sisting of

(i) the orthogonally split complexes;

(ii) all objects E such that there is an acyclic complex F of V
b
(X), and an

isometry E → F ⊕ F [1].

We want to stabilize M0 with respect to hermitian cones.

Definition 2.8. We will denote by M = M (X) the smallest subclass ofV
b
(X)

that satisfies the following properties:

(i) it contains M0;

(ii) if f : E → F is a morphism and two of E, F and cone(f) belong to M ,
then so does the third.

The elements of M (X) will be called meager complexes.

We next give a characterization of meager complexes. For this, we introduce
two auxiliary classes.

Definition 2.9. (i) Let MF be the subclass of V
b
(X) that contains all com-

plexes E that have a finite filtration Fil such that

(A) for every p, n ∈ Z, the exact sequences

0 → Filp+1 E
n
→ Filp E

n
→ GrpFilE

n
→ 0,

with the induced metrics, are orthogonally split short exact sequences
of vector bundles;

(B) the complexes Gr•FilE belong to M0.

(ii) Let MS be the subclass of V
b
(X) that contains all complexes E such

that there is a morphism of complexes f : E → F and both F and cone(f)
belong to MF .
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Lemma 2.10. Let 0 → E → F → G→ 0 be an exact sequence in V
b
(X) whose

constituent rows are orthogonally split. Assume E and G are in MF . Then
F ∈ MF . In particular, MF is closed under cone formation.

Proof. For the first claim, notice that the filtrations of E and G induce a fil-
tration on F satisfying conditions 2.9 (A) and 2.9 (B). The second claim then
follows by Remark 2.2.

Example 2.11. Given any complex E ∈ ObV
b
(X), the complex cone(idE)

belongs to MF . This can be seen by induction on the length of E using Lemma
2.10 and the bête filtration of E. For the starting point of the induction one
takes into account that, if E has only one non zero degree, then cone(idE) is
orthogonally split.

Theorem 2.12. The equality
M = MS

holds.

Proof. We start by proving that MF ⊂ M . Let E ∈ MF and let Fil be any
filtration that satisfies conditions 2.9 (A) and 2.9 (B). We show that E ∈ M by
induction on the length of Fil. If Fil has length one, then E belongs to M0 ⊂ M .
If the length of Fil is k > 1, let p be such that Filp E = E and Filp+1 E 6= E. On
the one hand, GrpFilE[−1] ∈ M0 ⊂ M and, on the other hand, the filtration Fil
induces a filtration on Filp+1 E fulfilling conditions 2.9 (A) and 2.9 (B) and has
length k − 1. Thus, by induction hypothesis, Filp+1E ∈ M . Then, by Lemma
2.10, we deduce that E ∈ M .

Clearly, the fact that MF ⊂ M implies that MS ⊂ M . Thus, to prove the
theorem, it only remains to show that MS satisfies the condition 2.8 (ii).

The content of the next result is that the apparent asymmetry in the defi-
nition of MS is not real.

Lemma 2.13. Let E ∈ ObV
b
(X). Then there is a morphism f : E → F with

F and cone(f) in MF if and only if there is a morphism g : G→ E with G and
cone(g) in MF .

Proof. Assume that there is a morphism f : E → F with F and cone(f) in
MF . Then, write G = cone(f)[−1] and let g : G → E be the natural map. By
hypothesis, G ∈ MF . Moreover, since there is a natural isometry

cone(cone(E,F )[−1], E) ∼= cone(cone(idE)[−1], F ),

by Example 2.11 and Lemma 2.10 we obtain that cone(g) ∈ MF . Thus we have
proved one implication. The proof of the other implication is analogous.

Let now f : E → F be a morphism of complexes with E,F ∈ MS . We want
to show that cone(f) ∈ MS. By Lemma 2.13, there are morphisms of complexes
g : G → E and h : H → F with G, H, cone(g), cone(h) ∈ MF . We consider
the map G→ cone(h) induced by f ◦ g. Then we write

G′ = cone(G, cone(h))[−1].

By Lemma 2.10, we have that G′ ∈ MF . We denote by g′ : G′ → E and
k : G′ → H the maps g′(a, b, c) = g(a) and k(a, b, c) = −b.
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There is an exact sequence

0 → cone(h) → cone(g′) → cone(g) → 0

whose constituent short exact sequences are orthogonally split. Since cone(h)
and cone(g) belong to MF , Lemma 2.10 insures that cone(g′) belongs to MF

as well.
There is a diagram

G′

g′

��

k // H

h

��
E

f // F

(2.14)

that commutes up to homotopy. We fix the homotopy s : G
′
→ F given by

s(a, b, c) = c. By Lemma 2.3 there is a natural isometry

cone(cone(g′), cone(h)) ∼= cone(cone(−k), cone(f)).

Applying Lemma 2.10 again, we have that cone(−k) and cone(cone(g′), cone(h))
belong to MF . Therefore cone(f) belongs to MS.

Lemma 2.15. Let f : E → F be a morphism in V
b
(X).

(i) If E ∈ MS and cone(f) ∈ MF then F ∈ MS.

(ii) If F ∈ MS and cone(f) ∈ MF then E ∈ MS.

Proof. Assume that E ∈ MS and cone(f) ∈ MF . Let g : G → E with G ∈
MF and cone(g) ∈ MF . By Lemma 2.10 and Example 2.11, we know that
cone(cone(idG), cone(f)) ∈ MF . But there is a natural isometry of complexes

cone(cone(idG), cone(f))
∼= cone(cone(cone(g)[−1], G), F ).

Since, by Lemma 2.10, cone(cone(g)[−1], G) ∈ MF , then F ∈ MS .
The second statement of the lemma is proved using the dual argument.

Lemma 2.16. Let f : E → F be a morphism in V
b
(X).

(i) If E ∈ MF and cone(f) ∈ MS then F ∈ MS.

(ii) If F ∈ MF and cone(f) ∈ MS then E ∈ MS.

Proof. Assume that E ∈ MF and cone(f) ∈ MS. Let g : G → cone(f) with G
and cone(G, cone(f)) in MF . There is a natural isometry of complexes

cone(G, cone(f))) ∼= cone(cone(G[−1], E), F )

that shows F ∈ MS .
The second statement of the lemma is proved by a dual argument.

Assume now that f : E → F is a morphism in V
b
(X) and E, cone(f) ∈ MS .

Let g : G→ E with G, cone(g) ∈ MF . There is a natural isometry

cone(cone(G,E), cone(idF ))
∼= cone(cone(G,F ), cone(E,F )),
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that implies cone(cone(G,F ), cone(E,F )) ∈ MF . By Lemma 2.15, we deduce
that cone(G,F ) ∈ MS . By Lemma 2.16, F ∈ MS.

With f as above, the fact that, if F and cone(f) belong to MS so does E, is
proved by a similar argument. In conclusion, MS satisfies the condition 2.8 (ii),
hence M ⊂ MS , which completes the proof of the theorem.

The class of meager complexes satisfies the next list of properties, that follow
almost directly from Theorem 2.12.

Theorem 2.17. (i) If E is a meager complex and F is a hermitian vector
bundle, then the complexes F ⊗ E, Hom(F ,E) and Hom(E,F ), with the
induced metrics, are meager.

(ii) If E
∗,∗

is a bounded double complex of hermitian vector bundles and all

rows (or columns) are meager complexes, then the complex Tot(E
∗,∗

) is
meager.

(iii) If E is a meager complex and F is another complex of hermitian vector
bundles, then the complexes

E ⊗ F = Tot((F
i
⊗ E

j
)i,j),

Hom(E,F ) = Tot(Hom((E
−i
, F

j
)i,j)) and

Hom(F ,E) = Tot(Hom((F
−i
, E

j
)i,j)),

are meager.

(iv) If f : X → Y is a morphism of smooth complex varieties and E is a meager
complex on Y , then f∗E is a meager complex on X.

�

We now introduce the notion of tight morphism.

Definition 2.18. A morphism f : E → F in V
b
(X) is said to be tight if cone(f)

is a meager complex.

Proposition 2.19. (i) Every meager complex is acyclic.

(ii) Every tight morphism is a quasi-isomorphism.

Proof. Let E ∈ MF (X). Let Fil be any filtration that satisfies conditions
2.9 (A) and 2.9 (B). By definition, the complexes GrpFilE belong to M0, so
they are acyclic. Hence E is acyclic.

If E ∈ MS(X), let F and cone(f) be as in Definition 2.9 (ii). Then, F
and cone(f) are acyclic, hence E is also acyclic. Thus we have proved the first
statement. The second statement is a direct consequence of the first one.

Many arguments to prove that a certain complex is meager or a certain mor-
phism is tight involve cumbersome diagrams. In order to ease these arguments
we will develop a calculus of acyclic complexes.

Before starting we need some preliminary lemmas.

Lemma 2.20. Let E, F be objects of V
b
(X). Then the following conditions

are equivalent.
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(i) There exists an object G and a diagram

G

∼

f

����
��

��
�

g

��?
??

??
??

E F,

such that cone(g)⊕ cone(f)[1] is meager.

(ii) There exists an object G and a diagram

G

∼

f

����
��

��
�

g

��?
??

??
??

E F,

such that f and g are tight morphisms.

Proof. Clearly, (ii) implies (i). To prove the converse implication, if G satisfies
the conditions of (i), we put G′ = G ⊕ cone(f) and consider the morphisms

f ′ : G
′
→ E and g′ : G′ → F induced by the first projection G′ → G. Then

cone(f ′) = cone(f)⊕ cone(f)[1],

that is meager because cone(f) is acyclic, and

cone(g′) = cone(g)⊕ cone(f)[1],

that is meager by hypothesis.

Lemma 2.21. The following assertions hold:

(i) any diagram of tight morphisms

E

f ��>
>>

>>
>>

G

g
����

��
��

�

F

can be completed into a diagram of tight morphisms

H

����
��

��
�

��?
??

??
??

E

��?
??

??
??

? G

����
��

��
��

F

(2.22)

which commutes up to homotopy;
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(ii) any diagram of tight morphisms

F

��>
>>

>>
>>

����
��

��
�

E G

can be completed into a diagram of tight morphisms

F

����
��

��
��

��?
??

??
??

?

E

��?
??

??
??

G

����
��

��
�

H

(2.23)

which commutes up to homotopy.

Proof. For the first item, note that there is a natural arrowG→ cone(f). Define

H = cone(G, cone(f))[−1].

With this choice, diagram (2.22) becomes commutative up to homotopy, taking
the projection H → F [−1] as homotopy. We first show that cone(H,G) is
meager. Indeed, there is a natural isometry

cone(H,G) ∼= cone(cone(idG), cone(E,F )[−1])

and the right hand side complex is meager. Now for cone(H,E). By Lemma
2.3, there is an isometry

cone(cone(H,E), cone(G,F )) ∼= cone(cone(H,G), cone(E,F )). (2.24)

The right hand side complex is meager, hence the left hand side is meager as well.
Since, by hypothesis, cone(G,F ) is meager, the same is true for cone(H,E).

The second statement is proved analogously.

Definition 2.25. We will say that two complexes E and F are tightly related
if any of the equivalent conditions of Lemma 2.20 holds.

It is easy to see, using Lemma 2.21, that to be tightly related is an equiva-
lence relation.

Definition 2.26. We denote by V
b
(X)/M the set of classes of tightly related

complexes. The class of a complex E will be denoted [E].

Theorem 2.27 (Acyclic calculus). (i) For a complex E ∈ ObV
b
(X), the

class [E] = 0 if and only if E ∈ M .

(ii) The operation ⊕ induces an operation, that we denote +, in V
b
(X)/M .

With this operation V
b
(X)/M is an associative abelian semigroup.
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(iii) For a complex E, there exists a complex F such that [F ] + [E] = 0, if and
only if E is acyclic. In this case [E[1]] = −[E].

(iv) For every morphism f : E → F , if E is acyclic, then the equality

[cone(E,F )] = [F ]− [E]

holds.

(v) For every morphism f : E → F , if F is acyclic, then the equality

[cone(E,F )] = [F ] + [E[1]]

holds.

(vi) Given a diagram

E
′ f ′

//

g′

��

F
′

g

��
E

f // F

in V
b
(X), that commutes up to homotopy, then for every choice of homo-

topy we have

[cone(cone(f ′), cone(f))] = [cone(cone(−g′), cone(g))].

(vii) Let f : E → F , g : F → G be morphisms of complexes. Then

[cone(cone(g ◦ f), cone(g))] = [cone(f)[1]],

[cone(cone(f), cone(g ◦ f))] = [cone(g)].

If one of f or g are quasi-isomorphisms, then

[cone(g ◦ f)] = [cone(g)] + [cone(f)].

If g ◦ f is a quasi-isomorphism, then

[cone(g)] = [cone(f)[1]] + [cone(g ◦ f)].

Proof. Statements (i) and (ii) are left to the reader. For assertion (iii), observe
that, if E is acyclic then E ⊕ E[1] is meager. Thus

[E] + [E[1]] = [E ⊕ E[1]] = 0.

Conversely, if [F ] + [E] = 0, then F ⊕ E is meager, hence acyclic. Thus E is
acyclic.

For property (iv) we consider the map F ⊕ E[1] → cone(f) defined by the
map F → cone(f). There is a natural isometry

cone(F ⊕ E[1], cone(f)) ∼= cone(E ⊕ E[1], cone(idF )).

Since the right hand complex is meager, so is the first. In consequence

[cone(f)] = [F ⊕ E[1]] = [F ] + [E[1]] = [F ]− [E].

Statement (v) is proved analogously.
Statement (vi) is a direct consequence of Lemma 2.3.
Statement (vii) is an easy consequence of the previous properties.
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Remark 2.28. In f : E → F is a morphism and neither E nor F are acyclic,
then [cone(f)] depends on the homotopy class of f and not only on E and F .
For instance, let E be a non-acyclic complex of hermitian bundles. Consider
the zero map and the identity map 0, id: E → E. Since, by Example 2.11, we
know that cone(id) is meager, then [cone(id)] = 0. By contrast,

[cone(0)] = [E] + [E[−1]] 6= 0

because E is not acyclic. This implies that we can not extend Theorem 2.27 (iv)
or (v) to the case when none of the complexes are acyclic.

Corollary 2.29. (i) Let

0 −→ E −→ F −→ G −→ 0

be a short exact sequence in V
b
(X) all whose constituent short exact se-

quences are orthogonally split. If either E or G is acyclic, then

[F ] = [E] + [G].

(ii) Let E
∗,∗

be a bounded double complex of hermitian vector bundles. If the

columns of E
∗,∗

are acyclic, then

[Tot(E
∗,∗

)] =
∑

k

(−1)k[E
k,∗

].

If the rows are acyclic, then

[Tot(E
∗,∗

)] =
∑

k

(−1)k[E
∗,k

].

In particular, if rows and columns are acyclic

∑

k

(−1)k[E
k,∗

] =
∑

k

(−1)k[E
∗,k

].

Proof. The first item follows from Theorem 2.27 (iv) and (v), by using Remark
2.2. The second assertion follows from the first by induction on the size of the
complex, by using the usual filtration of Tot(E∗,∗).

As an example of the use of the acyclic calculus we prove

Proposition 2.30. Let f : E → F and g : F → G be morphisms of complexes.
If two of f, g, g ◦ f are tight, then so is the third.

Proof. Since tight morphisms are quasi-isomorphisms, by Theorem 2.27 (vii)

[cone(g ◦ f)] = [cone(f)] + [cone(g)].

Hence the result follows from 2.27 (i).

Definition 2.31. We will denote by KA(X) the set of invertible elements of

V
b
(X)/M . This is an abelian subgroup. By Theorem 2.27 (iii) the group

KA(X) agrees with the image in V
b
(X)/M of the class of acyclic complexes.
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The group KA(X) is a universal abelian group for additive Bott-Chern

classes. More precisely, let us denote by V
0
(X) the full subcategory of V

b
(X)

of acyclic complexes.

Theorem 2.32. Let G be an abelian group and let ϕ : ObV
0
(X) → G be an

assignment such that

(i) (Normalization) For every orthogonally split complex E, we have ϕ(E) =
0.

(ii) (Additivity for exact sequences) For every short exact sequence in V
0
(X)

0 −→ E −→ F −→ G −→ 0,

all whose constituent short exact sequences are orthogonally split, the
equality

ϕ(F ) = ϕ(E) + ϕ(G)

holds.

Then ϕ factorizes through a group homomorphism ϕ̃ : KA(X) → G .

Proof. The second condition tells us that ϕ is a morphism of semigroups. Thus
we only need to show that it vanishes on meager complexes. By assumption
it vanishes on orthogonally split complexes. By the second condition and the
argument of Example 2.11, it vanishes on complexes of the form cone(idE).
Again by the second condition, if E is acyclic,

ϕ(E) + ϕ(E[1]) = ϕ(cone(idE)) = 0.

Thus ϕ vanishes on the class M0. Then, once more by the second condition, ϕ
vanishes on the class M .

Remark 2.33. The considerations of this section carry over to the category of
complex analytic varieties. If M is a complex analytic variety, one thus obtains
for instance a group KAan(M). Observe that whenever X is a proper smooth
algebraic variety over C, the group KAan(Xan) is canonically isomorphic to
KA(X).

As an example, we consider the simplest case SpecC and we compute the
group KA(SpecC). Given an acyclic complex E of C-vector spaces, there is a
canonical isomorphism

α : detE −→ C.

If we have an acyclic complex of hermitian vector bundles E, there is an induced
metric on detE. If we put on C the trivial hermitian metric, then there is a
well defined positive real number ‖α‖, namely the norm of the isomorphism α.

Theorem 2.34. The assignment E 7→ log ‖α‖ induces an isomorphism

τ̃ : KA(SpecC)
≃
−→ R.
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Proof. We just give the steps of the proof leaving its verification to the reader.
First, we observe that the assignment in the theorem satisfies the hypothesis of
Theorem 2.32. Thus, τ̃ exists and is a group morphism. Second, an inductive
argument shows that the acyclic complexes

[a] := 0 −→ C
a·
−→ C −→ 0,

for a ∈ R>0, form a system of generators of KA(SpecC). Hence τ̃ is surjective.
Finally, one shows, using suitable exact sequences, that [a] + [b] = [ab]. This
implies that τ̃ is injective.

2.2 Definition of D
b
(X) and basic constructions

Let X be a smooth algebraic variety over C. We denote by Coh(X) the abelian
category of coherent sheaves on X and by Db(X) its bounded derived category.
The objects of Db(X) are complexes of quasi-coherent sheaves with bounded
coherent cohomology. For notational convenience, we also introduce Cb(X),
the abelian category of bounded cochain complexes of coherent sheaves on X .
Arrows in Db(X) will be written as 99K, while arrows in Cb(X) will be denoted
by →. The symbol ∼ will mean either quasi-isomorphism in Cb(X) or isomor-
phism in Db(X). Every functor from Db(X) to another category will tacitly be
assumed to be the derived functor. Therefore we will denote just by f∗, f

∗, ⊗
and Hom the derived direct image, inverse image, tensor product and internal
Hom. Finally, we will refer to locally free sheaves by normal upper case let-
ters (such as F ) whereas we reserve script upper case letters for quasi-coherent
sheaves in general (for instance F).

Remark 2.35. Because X is in particular a smooth noetherian scheme over C,
every object F of Cb(X) admits a quasi-isomorphism F → F , with F an object
of Vb(X). If F ′ is an object in Db(X), then there is an isomorphism F 99K F ′

in Db(X), for some object F in Cb(X). Hence, there exists an isomorphism
F 99K F ′ with F ∈ Vb(X). In general, the analogous statements are no longer
true if we work with complex manifolds, as shown by the counterexample [46,
Appendix, Cor. A.5].

For the sake of completeness, we recall how morphisms in Db(X) between
bounded complexes of vector bundles can be represented.

Lemma 2.36. (i) Let F,G be bounded complexes of vector bundles on X.
Every morphism F 99K G in Db(X) may be represented by a diagram in
Cb(X)

E
f

����
��

��
�� g

  @
@@

@@
@@

F G,

where E ∈ ObVb(X) and f is a quasi-isomorphism.

(ii) Let E, E′,F , G be bounded complex of vector bundles on X and f (f ′) : E (E′) →
F quasi-isomorphisms and g (g′) : E (E′) → G morphisms in Cb(X).
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These data define the same morphism F 99K G in Db(X) if, and only if,
there exists a bounded complex of vector bundles E′′ and a diagram

E′′

α

xxpppppppppppp
β

&&NNNNNNNNNNNN

E
f

����
��

��
��

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX g f ′ E′

rrffffffffffffffffffffffffffffffffff

g′

  A
AA

AA
AA

A

F G,

whose squares are commutative up to homotopy and where α and β are
quasi-isomorphisms.

Proof. This follows from the equivalence of Db(X) with the localization of the
homotopy category of Cb(X) with respect to the class of quasi-isomorphisms
and Remark 2.35.

Proposition 2.37. Let f : E → E be an endomorphism in V
b
(X) that repre-

sents idE in Db(X). Then cone(f) is meager.

Proof. By Lemma 2.36 (ii), the fact that f represents the identity in Db(X)
means that there are diagrams

E
′ α

∼
//

β ∼

��

E

idE

��

E
′ α

∼
//

β ∼

��

E

f

��
E idE

// E, E idE

// E,

that commute up to homotopy. By Theorem 2.27 (iv) and (vi) the equalities

[cone(α)]− [cone(idE)] = [cone(β)]− [cone(idE)]

[cone(α)]− [cone(idE)] = [cone(β)]− [cone(f)]

hold in the group KA(X) (observe that these relations do not depend on the
choice of homotopies).Therefore

[cone(f)] = [cone(idE)] = 0.

Hence cone(f) is meager.

Definition 2.38. Let F be an object of Db(X). A hermitian metric on F
consists of the following data:

– an isomorphism E
∼
99K F in Db(X), where E ∈ ObVb(X);

– an object E ∈ ObV
b
(X), whose underlying complex is E.

We write E 99K F to refer to the data above and we call it a metrized object of
Db(X).

Our next task is to define the category D
b
(X), whose objects are objects of

Db(X) provided with equivalence classes of metrics. We will show that in this
category there is a hermitian cone well defined up to isometries.
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Lemma 2.39. Let E,E
′
∈ Ob(V

b
(X)) and consider an arrow E 99K E′ in

Db(X). Then the following statements are equivalent:

(i) for any diagram

E′′

∼

~~}}
}}

}}
}}

!!C
CC

CC
CC

C

E E′,

that represents E 99K E′, and any choice of hermitian metric on E′′, we
have that

cone(E
′′
, E)[1]⊕ cone(E

′′
, E

′
) (2.40)

is meager;

(ii) there is a diagram

E′′

∼

~~}}
}}

}}
}}

!!C
CC

CC
CC

C

E E′,

that represents E 99K E′, and a choice of hermitian metric on E′′, such
that

cone(E
′′
, E)[1]⊕ cone(E

′′
, E

′
) (2.41)

is meager;

(iii) there is a diagram

E′′

~~}}
}}

}}
}}

!!C
CC

CC
CC

C

E E′,

that represents E 99K E′, and a choice of hermitian metric on E′′, such

that the arrows E
′′
→ E and E

′
→ E

′
are tight morphisms.

Proof. Clearly (i) implies (ii). To prove the converse we assume the existence

of a E
′′
that satisfies equation (2.40) and let E

′′′
be any complex that satisfies

the hypothesis of (i). Then there is a diagram

E
′′′′

α

xxpppppppppppp
β

''NNNNNNNNNNNN

E′′

f

~~}}
}}

}}
}}

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY g f ′ E′′′

rrfffffffffffffffffffffffffffffffffff
g′

!!C
CC

CC
CC

C

E E′

whose squares commute up to homotopy. Using acyclic calculus we have

[cone(g′)]− [cone(f ′)] =

[cone(β)] + [cone(g)]− [cone(α)] − [cone(β)]− [cone(f)] + [cone(α)] =

[cone(g)]− [cone(f)] = 0.
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Now repeat the argument of Lemma 2.20 to prove that (ii) and (iii) are equiv-
alent. The only point is to observe that the diagram constructed in Lemma
2.20 represents the same morphism in the derived category as the original dia-
gram.

Definition 2.42. Let F ∈ ObDb(X) and let E 99K F and E
′
99K F be two

hermitian metrics on F . We say that they fit tight if the induced arrowE 99K E
′

satisfies any of the equivalent conditions of Lemma 2.39

Theorem 2.43. The relation “to fit tight” is an equivalence relation.

Proof. The reflexivity and the symmetry are obvious. To prove the transitivity,
consider a diagram

F
f

����
��

��
�� g

��>
>>

>>
>>

> F
′

f ′

����
��

��
�� g′

  A
AA

AA
AA

E E
′

E
′′
,

where all the arrows are tight morphisms. By Lemma 2.21, this diagram can be
completed into a diagram

F
′′

α

����
��

��
�� β

  @
@@

@@
@@

F
f

����
��

��
�� g

��>
>>

>>
>>

> F
′

f ′

����
��

��
�� g′

  A
AA

AA
AA

E E
′

E
′′
,

where all the arrows are tight morphisms and the square commutes up to ho-
motopy. Now observe that f ◦ α and g′ ◦ β represent the morphism E 99K E′′

in Db(X) and are both tight morphisms by Proposition 2.30. This finishes the
proof.

Definition 2.44. We denote by D
b
(X) the category whose objects are pairs

F = (F , h) where F is an object of Db(X) and h is an equivalence class of
metrics that fit tight, and with morphisms

Hom
D

b
(X)

(F ,G) = HomDb(X)(F ,G).

A class h of metrics will be called a hermitian structure, and may be referenced
by any representative E 99K F or, if the arrow is clear, by the complex E. We

will denote by 0 ∈ ObD
b
(X) a zero object of Db(X) provided with a trivial

hermitian structure given by any meager complex.
If the underlying complex to an object F is acyclic, then its hermitian struc-

ture has a well defined class in KA(X). We will use the notation [F ] for this
class.
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Definition 2.45. A morphism in D
b
(X), f : (E 99K F) 99K (F 99K G), is

called a tight isomorphism whenever the underlying morphism f : F 99K G is
an isomorphism and the metric on G induced by f and E fits tight with F . An

object of D
b
(X) will be called meager if it is tightly isomorphic to the zero

object with the trivial metric.

Remark 2.46. A word of warning should be said about the use of acyclic
calculus to show that a particular map is a tight isomorphism. There is an as-

signment ObD
b
(X) → V

b
(X)/M that sends E 99K F to [E]. This assignment

is not injective. For instance, let r > 0 be a real number and consider the trivial
bundle OX with the trivial metric ‖1‖ = 1 and with the metric ‖1‖′ = 1/r.
Then the product by r induces an isometry between both bundles. Hence, if E

and E
′
are the complexes that have OX in degree 0 with the above hermitian

metrics, then [E] = [E
′
], but they define different hermitian structures on OX

because the product by r does not represent idOX .
Thus the right procedure to show that a morphism f : (E 99K F) 99K (F 99K

G) is a tight isomorphism, is to construct a diagram

G

∼
α

����
��

��
�

β

��>
>>

>>
>>

E F

that represents f and then use the acyclic calculus to show that [cone(β)] −
[cone(α)] = 0.

By definition, the forgetful functor F : D
b
(X) → Db(X) is fully faithful. The

structure of this functor will be given in the next result that we suggestively

summarize by saying that D
b
(X) is a principal fibered category over Db(X)

with structural group KA(X) provided with a flat connection.

Theorem 2.47. The functor F : D
b
(X) → Db(X) defines a structure of cate-

gory fibered in grupoids. Moreover

(i) The fiber F−1(0) is the grupoid associated to the abelian group KA(X).
The object 0 is the neutral element of KA(X).

(ii) For any object F of Db(X), the fiber F−1(F) is the grupoid associated to
a torsor over KA(X). The action of KA(X) over F−1(F) is given by
orthogonal direct sum. We will denote this action by +.

(iii) Every isomorphism f : F 99K G in Db(X) determines an isomorphism of
KA(X)-torsors

tf : F
−1(F) −→ F−1(G),

that sends the hermitian structure E
ǫ

99K F to the hermitian structure

E
f◦ǫ
99K G. This isomorphism will be called the parallel transport along f .

(iv) Given two isomorphisms f : F 99K G and g : G 99K H, the equality

tg◦f = tg ◦ tf

holds.
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Proof. Recall that F−1(F) is the subcategory of D
b
(X) whose objects satisfy

F(A) = F and whose morphisms satisfy F(f) = idF . The first assertion is
trivial. To prove that F−1(F) is a torsor under KA(X), we need to show that
KA(X) acts freely and transitively on this fiber. For the freeness, it is enough

to observe that if for E ∈ V
b
(X) andM ∈ V

0
(X), the complexes E and E⊕M

represent the same hermitian structure, then the inclusion E →֒ E⊕M is tight.
Hence cone(E,E ⊕M) is meager. Since

cone(E,E ⊕M) = cone(E,E)⊕M

and cone(E,E) is meager, we deduce that M is meager. For the transitivity,
any two hermitian structures on F are related by a diagram

E
′′

∼

f
����

��
��

�� ∼

g
  A

AA
AA

AA
A

E E
′
.

After possibly replacing E
′′
by E

′′
⊕ cone(f), we may assume that f is tight.

We consider the natural arrow E
′′
→ E

′
⊕ cone(g)[1] induced by g. Observe

that cone(g)[1] is acyclic. Finally, we find

cone(E
′′
, E

′
⊕ cone(g)[1]) = cone(g)⊕ cone(g)[1],

that is meager. Thus the hermitian structure represented by E
′′
agrees with the

hermitian structure represented by E
′
⊕ cone(g)[1].

The remaining properties are straightforward.

Our next objective is to define the cone of a morphism in D
b
(X). This

will be an object of D
b
(X) uniquely defined up to tight isomorphism. Let

f : (E 99K F) 99K (E
′
99K G) be a morphism in D

b
(X), where E and E

′
are

representatives of the hermitian structures.

Definition 2.48. A hermitian cone of f , to be denoted cone(f), is an object

(cone(f), hf ) of D
b
(X) where:

– cone(f) ∈ ObDb(X) is a choice of cone of f . Namely an object of Db(X)
completing f into a distinguished triangle;

– hf is a hermitian structure on cone(f) constructed as follows. The mor-
phism f induces an arrow E 99K E′. Choose any bounded complex E′′ of
vector bundles with a diagram

E′′

∼
~~}}

}}
}}

}}

!!B
BB

BB
BB

B

E E′

that represents E 99K E′, and an arbitrary hermitian metric on E′′. Put

C(f) = cone(E
′′
, E)[1]⊕ cone(E

′′
, E

′
). (2.49)
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There are morphisms defined as compositions

E
′
−→ cone(E

′′
, E

′
) −→ C(f),

where the second arrow is the natural inclusion, and

C(f) −→ cone(E
′′
, E

′
) −→ E

′′
[1] −→ E[1],

where the first arrow is the natural projection. These morphisms fit into

a natural distinguished triangle completing E 99K E
′
. By the axioms of

triangulated category, there is a quasi-isomorphism C(f) 99K cone(f) such
that the diagram of distinguished triangles

E //___

���
�
� E

′ //___

���
�
�

C(f)

���
�
�

//___ E[1]

���
�
�

F //___ G //___ cone(f) //___ F [1]

commutes. We take the hermitian structure that C(f) 99K cone(f) defines
on cone(f). By Theorem 2.51 below, this hermitian structure does not
depend on the particular choice of arrow C(f) 99K cone(f). Moreover, by
Theorem 2.55, the hermitian structure will not depend on the choices of

representatives of hermitian structures nor on the choice of E
′′
.

Remark 2.50. The factor cone(E
′′
, E)[1] has to be seen as a correction term

to take into account the difference of metrics from E and E
′′
. We would have

obtained an equivalent definition using the factor cone(E
′′
, E)[−1].

Theorem 2.51. Let

F //___

id

��

G //___

id

��

H //___

α

���
�
� F [1] //___

id

��

. . .

F //___ G //___ H //___ F [1] //___ . . .

be a commutative diagram in Db(X), where the rows are the same distinguished
triangle. Let H 99K H be any hermitian structure. Then α : (H 99K H) 99K

(H 99K H) is a tight isomorphism.

Proof. First of all, we claim that if γ : B 99K H is any isomorphism, then
γ−1 ◦ α ◦ γ is tight if, and only if, α is tight. Indeed, denote by G 99K B a
representative of the hermitian structure on B. Then there is a diagram

R

t1

∼

��~~
~~

~~
~~

t2

∼

��@
@@

@@
@@

@

P

w1

∼

����
��

��
��

w2

∼

��?
??

??
??

? Q

w3

∼

����
��

��
��

w4

∼

��?
??

??
??

?

G
′

∼

u
����

��
��

�
∼

v
��?

??
??

??
H

′

∼

f ��@
@@

@@
@@

∼

g
��~~

~~
~~

~
G

′

∼

v
����

��
��

�
∼

u
��?

??
??

??

G //_______ H //_______ H //_______ G
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for the liftings of γ−1, α, γ to representatives, as well as for their composites, all
whose squares are commutative up to homotopy. By acyclic calculus, we have
the following chain of equalities

[cone(u ◦ w1 ◦ t1)[1]] + [cone(u ◦ w4 ◦ t2)] =

[cone(u)[1]] + [cone(v)] + [cone(g)[1]]+

[cone(f)] + [cone(v)[1]] + [cone(u)] =

[cone(g)[1]] + [cone(f)].

Thus, the right hand side vanishes if and only if the left hand side vanishes,
proving the claim. This observation allows to reduce the proof of the lemma
to the following situation: consider a diagram of complexes of hermitian vector
bundles

E

id

��

f // F

id

��

ι // cone(f)
π //

φ∼

���
�
�

E[1]

id

��

// . . .

E
f // F

ι // cone(f)
π // E[1] // . . . ,

which commutes in Db(X). We need to show that φ is a tight isomorphism.
The commutativity of the diagram translates into the existence of bounded
complexes of hermitian vector bundles P and Q and a diagram

cone(f)

π

##H
HH

HH
HH

HH

φ∼

���
�
�
�
�
�
�

F

ι
22

ι
,,

P
j

∼
oo g // Q

u

∼

<<yyyyyyyyy

v
∼

""E
EE

EE
EE

EE
E[1]

cone(f)

π

;;vvvvvvvvv

fulfilling the following properties: (a) j, u, v are quasi-isomorphisms; (b) the
squares formed by ι, j, g, u and ι, j, g, v are commutative up to homotopy; (c)
the morphisms u, v induce φ in the derived category. We deduce a commutative
up to homotopy square

cone(g)

ṽ ∼

��

ũ
∼

// cone(ι)

π̃∼

��
cone(ι)

π̃

∼
// E[1].

The arrows ũ, ṽ are induced by j, u and j, v respectively. Observe they are
quasi-isomorphisms. Also the natural projection π̃ is a quasi-isomorphism. By
acyclic calculus, we have

[cone(π̃)] + [cone(ũ)] = [cone(π̃)] + [cone(ṽ)].

Therefore we find
[cone(ũ)] = [cone(ṽ)]. (2.52)
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Finally, notice there is an exact sequence

0 −→ cone(u) −→ cone(ũ) −→ cone(j[1]) −→ 0,

whose rows are orthogonally split. Therefore,

[cone(ũ)] = [cone(u)] + [cone(j[1])]. (2.53)

Similarly we prove

[cone(ṽ)] = [cone(v)] + [cone(j[1])]. (2.54)

From equations (2.52)–(2.54) we infer

[cone(u)[1]] + [cone(v)] = 0,

as was to be shown.

Theorem 2.55. The object C(f) of equation (2.49) is well defined up to tight
isomorphism.

Proof. We first show the independence on the choice of E
′′
, up to tight isomor-

phism. To this end, it is enough to assume that there is a diagram

E
′′′

∼

~~||
||

||
||

��0
00

00
00

00
00

00
00

E
′′

∼

����
��

��
��

((PPPPPPPPPPPPPPPP

E E
′

such that the triangle commutes up to homotopy. Fix such a homotopy. Then

[cone(cone(E
′′′
, E

′
), cone(E

′′
, E

′
))] = −[cone(E′′′, E′′)],

[cone(cone(E
′′′
, E), cone(E

′′
, E))] = −[cone(E′′′, E′′)].

By Lemma 2.3, the left hand sides of these relations agree and hence this implies

that the hermitian structure does not depend on the choice of E
′′
.

We now prove the independence on the choice of the representative E. Let
F → E be a tight morphism. Then we can construct a diagram

E
′′′

∼

����
��
��
��
��
��
��
�

∼

  B
BB

BB
BB

B

E
′′

∼

~~}}
}}

}}
}}

  A
AA

AA
AA

F
∼ // E E

′
,
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where the square commutes up to homotopy. Choose one homotopy. Taking
into account Lemma 2.3, we find

[cone(cone(E
′′′
, E

′
), cone(E

′′
, E

′
))] = −[cone(E′′′, E′′)],

[cone(cone(E
′′′
, F ), cone(E

′′
, E))] = −[cone(E′′′, E′′)] + [cone(F ,E)]

= −[cone(E′′′, E′′)].

Hence the definitions of C(f) using E or F agree up to tight isomorphism. The
remaining possible choices of representatives are treated analogously.

Remark 2.56. The construction of cone(f) involves the choice of cone(f),
which is unique up to isomorphism. Since the construction of C(f) (2.49) does
not depend on the choice of cone(f), by Theorem 2.51, we see that different
choices of cone(f) give rise to tightly isomorphic hermitian cones. Therefore
cone(f) is well defined up to tight isomorphism and we will usually call it the
hermitian cone of f . When the morphism is clear, we will also write cone(F ,G)
to refer to it.

The hermitian cone satisfies the same relations than the usual cone.

Proposition 2.57. Let f : F 99K G be a morphism in D
b
(X). Then, the natural

morphisms

cone(G, cone(f)) 99K F [1],

G 99K cone(cone(f)[−1],F)

are tight isomorphisms.

Proof. After choosing representatives, there are isometries

cone(cone(G, cone(f)),F [1]) ∼=

cone(cone(idF), cone(idG)) ∼=

cone(G, cone(cone(f)[−1],F)).

Since the middle term is meager, the same is true for the other two.

We next extend some basic constructions in Db(X) to D
b
(X).

Derived tensor product. Let F i = (Ei 99K Fi), i = 1, 2, be objects of

D
b
(X). The derived tensor product F1⊗F2 is endowed with a natural hermitian

structure
E1 ⊗ E2 99K F1 ⊗ F2, (2.58)

that is well defined by Theorem 2.17 (iii). We write F1 ⊗ F2 for the resulting

object in D
b
(X).

Derived internal Hom and dual objects. Let F i = (Ei 99K Fi), i = 1, 2,

be objects of D
b
(X). The derived internal Hom, Hom(F1,F2) is endowed with

a natural hermitian structure

Hom(E1, E2) 99K Hom(F1,F2), (2.59)
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that is well defined by Theorem 2.17 (iii). We write Hom(F1,F2) for the re-

sulting object in D
b
(X).

In particular, denote by OX the structural sheaf with the standard metric

‖1‖ = 1. Then, for every object F ∈ D
b
(X), the dual object is defined to be

F
∨
= Hom(F ,OX). (2.60)

Left derived inverse image. Let g : X ′ → X be a morphism of smooth

noetherian schemes over C and F = (E 99K F) ∈ ObD
b
(X). Then the left

derived inverse image g∗(F) is equipped with the hermitian structure g∗(E) 99K
g∗(F), that is well defined up to tight isomorphism by Theorem 2.17 (iv). As
it is customary, we will pretend that g∗ is a functor. The notation for the

corresponding object in D
b
(X ′) is g∗(F). If f : F1 99K F2 is a morphism in

D
b
(X), we denote by g∗(f) : g∗(F1) 99K g∗(F2) its left derived inverse image

by g.
The functor g∗ preserves the structure of principal fibered category with flat

connection and the formation of hermitian cones. Namely we have the following
result that is easily proved.

Theorem 2.61. Let g : X ′ → X be a morphism of smooth noetherian schemes

over C and let f : F1 99K F2 be a morphism in D
b
(X).

(i) The functor g∗ preserves the forgetful functor:

F ◦ g∗ = g∗ ◦ F

(ii) The restriction g∗ : KA(X) → KA(X ′) is a group homomorphism.

(iii) The functor g∗ is equivariant with respect to the actions of KA(X) and
KA(X ′).

(iv) The functor g∗ preserves parallel transport: if f is an isomorphism, then

g∗ ◦ tf = tg∗(f) ◦ g
∗.

(v) The functor g∗ preserves hermitian cones:

g∗(cone(f)) = cone(g∗(f)).

�

Classes of isomorphisms and distinguished triangles. Let f : F
∼
99K G

be an isomorphism in D
b
(X). To it, we attach a class [f ] ∈ KA(X) that

measures the default of being a tight isomorphism. This class is defined using
the hermitian cone.

[f ] = [cone(f)]. (2.62)

Observe the abuse of notation: we wrote [cone(f)] for the class in KA(X) of
the hermitian structure of a hermitian cone of f . This is well defined, since
the hermitian cone is unique up to tight isomorphism. Alternatively, we can
construct [f ] using parallel transport as follows. There is a unique element
A ∈ KA(X) such that

G = tfF +A.
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We denote this element by G − tfF . Then

[f ] = G − tfF .

By the very definition of parallel transport, both definitions clearly agree.

Definition 2.63. A distinguished triangle in D
b
(X), consists in a diagram

τ = (u, v, w) : F
u

99K G
v

99K H
w
99K F [1]

u
99K . . . (2.64)

in D
b
(X), whose underlying morphisms in Db(X) form a distinguished triangle.

We will say that it is tightly distinguished if there is a commutative diagram

F //___

id

��

G //___

id

��

cone(F ,G) //___

α

���
�
�

F [1] //___

id

��

. . .

F //___ G //_____ H //_____ F [1] //___ . . . ,

(2.65)

with α a tight isomorphism.

To every distinguished triangle in D
b
(X) we can associate a class in KA(X)

that measures the default of being tightly distinguished. Let τ be a distinguished
triangle as in (2.64). Then there is a diagram as (2.65), but with α an isomor-
phism non-necessarily tight. Then we define

[τ ] = [α]. (2.66)

By Theorem 2.51, the class [α] does not depend on the particular choice of

morphism α in D
b
(X) for which (2.65) commutes. Hence (2.66) only depends

on τ .

Theorem 2.67. (i) Let f be an isomorphism in D
b
(X) (respectively τ a

distinguished triangle). Then [f ] = 0 (respectively [τ ] = 0) if and only if
f is a tight isomorphism (respectively τ is tightly distinguished).

(ii) Let g : X ′ → X be a morphism of smooth complex varieties, let f be an

isomorphism in D
b
(X) and τ a distinguished triangle in D

b
(X). Then

g∗[f ] = [g∗f ], g∗[τ ] = [g∗τ ].

In particular, tight isomorphisms and tightly distinguished triangles are
preserved under left derived inverse images.

(iii) Let f : F 99K G and h : G 99K H be two isomorphisms in D
b
(X). Then:

[h ◦ f ] = [h] + [f ].

In particular, [f−1] = −[f ].

(iv) For any distinguished triangle τ in D
b
(X) as in Definition 2.63, the ro-

tated triangle

τ ′ : G
v

99K H
w
99K F [1]

−u[1]
99K G[1]

v[1]
99K . . .

satisfies
[τ ′] = −[τ ].

In particular, rotating preserves tightly distinguished triangles.
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(v) For any acyclic complex F , we have

[F → 0 → 0 → . . . ] = [F ].

(vi) If f : F 99K G is an isomorphism in D
b
(X), then

[0 → F 99K G → . . . ] = [f ].

(vii) For a commutative diagram of distinguished triangles

τ

���
�

� F //___

f∼

���
�
� G //___

g∼

���
�
� H //___

h∼

���
�
� F [1] //___

f [1]∼

���
�
�

. . .

τ ′ F
′ //___ G

′ //___
H

′ //___ F
′
[1] //___ . . . ,

the following relation holds:

[τ ′]− [τ ] = [f ]− [g] + [h].

(viii) For a commutative diagram of distinguished triangles

τ

���
�

� F //____

���
�
� G //____

���
�
� H //____

���
�
� F [1] //___

���
�
�

. . .

τ ′

���
�

� F
′ //____

���
�
� G

′ //____

���
�
� H

′ //___

���
�
� F

′
[1] //___

���
�
�

. . .

τ ′′ F
′′ //___

���
�
� G

′′ //___

���
�
� H

′′ //___

���
�
� F

′′
[1] //___

���
�
�

. . .

F [1] //___

���
�
�

G[1] //___

���
�
�

H[1] //___

���
�
�

F [2] //___

���
�
�

. . .

...
...

...
...

η //____ η′ //____ η′′

(2.68)
the following relation holds:

[τ ]− [τ ′] + [τ ′′] = [η]− [η′] + [η′′].

Proof. The first two statements are clear. For the third, we may assume that f
and g are realized by quasi-isomorphisms

f : F −→ G, g : G −→ H.

Then the result follows from Theorem 2.27 (vii). The fourth assertion is a
consequence of Proposition 2.57. Then (v), (vi) and (vii) follow from equation
(2.66) and the fourth statement. The last property is derived from (vii) by
comparing the diagram to a diagram of tightly distinguished triangles.
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As an application of the class inKA(X) attached to a distinguished triangle,
we exhibit a natural morphism K1(X) → KA(X). This is included for the sake
of completeness, but won’t be needed in the sequel.

Proposition 2.69. There is a natural morphism of groups K1(X) → KA(X).

Proof. We follow the definitions and notations of [19]. From loc. cit. we know
it is enough to construct a morphism of groups

H1(Z̃C(X)) → KA(X). (2.70)

By definition, the piece of degree n of the homological complex Z̃C(X) is

Z̃Cn(X) = ZCn(X)/Dn.

Here ZCn(X) stands for the free abelian group on metrized exact n-cubes and
Dn is the subgroup of degenerate elements. A metrized exact 1-cube is a short
exact sequence of hermitian vector bundles. Hence, for such a 1-cube ε, there
is a well defined class in KA(X). Observe that this class coincides with the

class of ε thought as a distinguished triangle in D
b
(X). Because KA(X) is an

abelian group, it follows the existence of a morphism of groups

ZC1(X) −→ KA(X).

From the definition of degenerate cube [19, Def. 3.3] and the construction of

KA(X), this morphism clearly factors through Z̃C1(X). The definition of the

differential d of the complex Z̃C(X) [19, (3.2)] and Theorem 2.67 (viii) ensure
that dZC2(X) is in the kernel of the morphism. Hence we derive the existence
of a morphism (2.70).

Classes of complexes and of direct images of complexes. In [18, Section
2] the notion of homological exact sequences of metrized coherent sheaves is
treated. In the present article, this situation will arise in later considerations.
Therefore we provide the link between the point of view of loc. cit. and the
formalism adopted here. The reader will find no difficulty to translate it to
cohomological complexes.

Consider a homological complex

ε : 0 → Fm → · · · → F l → 0

of metrized coherent sheaves, namely coherent sheaves provided with hermitian
structures F i = (Fi, F i 99K Fi). We may equivalently see ε as a cohomological

complex, by the usual relabeling F
−i

= F i. This will be freely used in the
sequel, especially in cone constructions.

Definition 2.71. The complex ε defines an object [ε] ∈ ObD
b
(X) that is

determined inductively by the condition

[ε] = cone(Fm[m], [σ<mε]).

Here σ<m is the homological bête filtration and Fm denotes a cohomological
complex concentrated in degree zero. Hence, Fm[m] is a cohomological complex
concentrated in degree −m.
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If E is a hermitian vector bundle on X , then there is an equality

[ε⊗ E] = [ε]⊗ E.

According to Definition 2.44, if ε is an acyclic complex, then we also have the
corresponding class [[ε]] in KA(X). We will employ the lighter notation [ε] for
this class.

Given a morphism ϕ : ε → µ of bounded complexes of metrized coherent
sheaves, the pieces of the complex cone(ε, µ) are natural endowed with hermitian
metrics. We thus get a complex of metrized coherent sheaves cone(ε, µ). Hence

Definition 2.71 provides an object [cone(ε, µ)] in D
b
(X). On the other hand,

Definition 2.48 attaches to ϕ the hermitian cone cone([ε], [µ]), which is well
defined up to tight isomorphism. Both constructions actually agree.

Lemma 2.72. Let ε → µ be a morphism of bounded complexes of metrized
coherent sheaves on X. Then there is a tight isomorphism

cone([ε], [µ]) ∼= [cone(ε, µ)],

Proof. The case when ε and µ are both concentrated in a single degree d is clear.
The general case follows by induction taking into account Definition 2.71.

Assume now that f : X → Y is a morphism of smooth complex varieties and,
for each complex f∗Fi, we have chosen a hermitian structure f∗Fi = (Ei 99K

f∗Fi). Denote by f∗ε this choice of metrics.

Definition 2.73. The family of hermitian structures f∗ε defines an object

[f∗ε] ∈ ObD
b
(Y ) that is determined inductively by the condition

[f∗ε] = cone(f∗Fm[m], [f∗σ<mε]).

We remark that the notation f∗ε means that the hemitian structure is
choosen after taking the direct image and it is not determined by the hermitian
structure on ε.

If F is a hermitian vector bundle on Y , then the obviously defined object
[f∗(ε⊗ f∗F )] satisfies

[f∗(ε⊗ f∗F )] = [f∗ε]⊗ F .

Also, notice that if ε is an acyclic complex on X , then we have the class [f∗ε] ∈
KA(Y ).

Let ε → µ be a morphism of bounded complexes of coherent sheaves on X
and f : X → Y a morphism of smooth complex varieties. Fix choices of metrics
f∗ε and f∗µ. Then there is an obvious choice of metrics on f∗ cone(ε, µ), that we

denote f∗ cone(ε, µ), and hence an object [f∗ cone(ε, µ)] in D
b
(Y ). On the other

hand, we also have the hermitian cone cone([f∗ε], [f∗µ]). Again both definitions
agree.

Lemma 2.74. Let ε → µ be a morphism of bounded complexes of coherent
sheaves on X and f : X → Y a morphism of smooth complex varieties. Assume
chosen families of metrics f∗ε and f∗µ. Then there is a tight isomorphism

cone([f∗ε], [f∗µ]) ∼= [f∗ cone(ε, µ)].

36



Proof. If ε and µ are concentrated in a single degree d, then the statement is
obvious. The proof follows by induction and Definition 2.73.

The objects we have defined are compatible with short exact sequences, in
the sense of the following statement.

Proposition 2.75. Consider a commutative diagram of exact sequences of co-
herent sheaves on X

0

��

0

��
µ′ 0 // F ′

m
//

��

. . . // F ′
l

//

��

0

µ 0 // Fm
//

��

. . . // Fl
//

��

0

µ′′ 0 // F ′′
m

//

��

. . . // F ′′
l

//

��

0

0 0

ξm . . . ξl.

Let f : X → Y be a morphism of smooth complex varieties and choose hermi-
tian structures on the sheaves F ′

j, Fj, F ′′
j and on the objects f∗F ′

j, f∗Fj and
f∗F ′′

j , j = l, . . . ,m. Then the following equalities hold in KA(X) and KA(Y ),
respectively:

∑

j

(−1)j[ξj ] = [µ′]− [µ] + [µ′′],

∑

j

(−1)j[f∗ξj ] = [f∗µ
′
]− [f∗µ] + [f∗µ

′′
].

Proof. The lemma follows inductively taking into account definitions 2.71 and
2.73 and Theorem 2.67 (viii).

Corollary 2.76. Let ε → µ be a morphism of exact sequences of metrized
coherent sheaves. Let f : X → Y be a morphism of smooth complex varieties
and fix families of metrics f∗ε and f∗µ. Then there are equalities in KA(X)
and KA(Y ), respectively

[cone(ε, µ)] = [µ]− [ε], (2.77)

[f∗ cone(ε, µ)] = [f∗µ]− [f∗ε]. (2.78)

Proof. The result readily follows from lemmas 2.72, 2.74 and Proposition 2.75.
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Hermitian structures on cohomology. Let F be an object of Db(X) and
denote by H its cohomology complex. Observe that H is a bounded complex
with 0 differentials. By the preceding discussion and because KA(X) acts
transitively on hermitian structures, giving a hermitian structure on H amounts
to give hermitian structures on the individual pieces Hi. We show that to
these data there is attached a natural hermitian structure on the complex F .
This situation will arise when considering cohomology sheaves endowed with L2

metric structures. The construction is recursive. If the cohomology complex is
trivial, then we endow F with the trivial hermitian structure. Otherwise, let
Hm be the highest non-zero cohomology sheaf. The canonical filtration τ≤m is
given by

τ≤mF : · · · → Fm−2 → Fm−1 → ker(dm) → 0.

By the condition on the highest non vanishing cohomology sheaf, the natural
inclusion is a quasi-isomorphism:

τ≤mF
∼
−→ F . (2.79)

We also introduce the subcomplex

F̃ : · · · → Fm−2 → Fm−1 → Im (dm−1) → 0.

Observe that the cohomology complex of F̃ is the bête truncation H/σ≥mH.

By induction, F̃ carries an induced hermitian structure. Moreover we have an
exact sequence

0 → F̃ → τ≤mF → Hm[−m] → 0. (2.80)

Taking into account the quasi-isomorphism (2.79) and the exact sequence (2.80),
we construct a natural commutative diagram of distinguished triangles inDb(X)

Hm[−m− 1]
0 //___

id

��

F̃ //_______

id

��

F //_______

∼

���
�
� Hm[m]

id

��
Hm[−m− 1]

0 //___ F̃ //___ cone(Hm[−m− 1], F̃) //___ Hm[m].

By the hermitian cone construction and Theorem 2.51, we see that hermitian
structures on F̃ and Hm induce a well defined hermitian structure on F .

Definition 2.81. Let F be an object of Db(X) with cohomology complex
H. Assume the pieces Hi are endowed with hermitian structures. The hermi-
tian structure on F constructed above will be called the hermitian structure
induced by the hermitian structure on the cohomology complex and will be de-
noted (F ,H).

The following proposition is easily checked from the very construction, and
the proof is left to the reader.

Proposition 2.82. Let ϕ : F1 99K F2 be an isomorphism in Db(X). Assume
the pieces of the cohomology complexes H1, H2 of F1, F2 are endowed with
hermitian structures. If the induced isomorphism in cohomology ϕ∗ : H1 → H2

is tight, then ϕ is tight for the induced hermitian structures on F1 and F2.

�
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2.3 The Deligne complexes of differential forms and cur-

rents

The natural context where one can define the Bott-Chern classes and the an-
alytic torsion classes is that of Deligne complexes. For the convenience of the
reader we will summarize in this section the basic facts about the Deligne com-
plexes we will use in the sequel. For more details the reader is referred to [16]
and [17].

Definition 2.83. A Dolbeault complex A = (A∗
R
, dA) is a graded complex of

real vector spaces, which is bounded from below and equipped with a bigrading
on AC = AR ⊗R C, i.e.,

An
C =

⊕

p+q=n

Ap,q,

satisfying the following properties:

(i) The differential dA can be decomposed as the sum dA = ∂+ ∂̄ of operators
∂ of type (1, 0), respectively ∂̄ of type (0, 1).

(ii) It satisfies the symmetry property Ap,q = Aq,p, where denotes complex
conjugation.

The basic example of Dolbeault complex is the complex of differential forms
on a smooth variety X over C, denoted E∗(X)R.

Following [17, §5.2], to a Dolbeault complex one assigns a Deligne complex
denoted D∗(A, ∗). In this paper we will only use the following pieces of the
Deligne complex:

D2p+1(A, p) = (Ap,p+1 ⊕Ap+1,p) ∩ (2πi)pA2p+1
R

,

D2p(A, p) = Ap,p ∩ (2πi)pA2p
R
,

D2p−1(A, p) = Ap−1,p−1 ∩ (2πi)p−1A2p−2
R

,

D2p−2(A, p) = (Ap−2,p−1 ⊕Ap−1,p−2) ∩ (2πi)p−1A2p−3
R

.

The differential of the Deligne complex, denoted by dD : Dn(A, p) → Dn+1(A, p)
is given, in the above degrees by

if η ∈ D2p(A, p), dD η = d η,

if η ∈ D2p−1(A, p), dD η = −2∂∂̄η,

if η = (u, v) ∈ D2p−2(A, p), dD η = −∂u− ∂̄v.

When A is a Dolbeault algebra, that is, A is a graded commutative real differ-
ential algebra and the product is compatible with the bigrading, then D∗(A, ∗)
has a product

• : Dn(A, p)⊗Dm(A, q) −→ Dn+m(A, p+ q)

that is graded commutative with respect to the first degree, it is associative up
to homotopy and satisfies the Leibnitz rule. The only case where we will need
the explicit formula for the product is for ω ∈ D2p(A, p) and η ∈ Dm(A, q).
Then the product is given by

ω • η = ω ∧ η.

39



The Deligne algebra of differential forms on X is defined to be

D∗(X, ∗) := D∗(E∗(X)R, ∗).

Recall that, if X is equi-dimensional of dimension d, there is a natural trace
map

∫
: H2d

c (X,R(d)) → R given by

ω 7−→
1

(2πi)d

∫

X

ω.

To take this trace map into account the Dolbeault complex of currents is
constructed as follows. Denote by E∗

c (X)R the space of differential forms with
compact support. Then Dp,q(X) is the topological dual of Ep,q

c (X) and Dn(X)R
is the topological dual of En

c (X)R. In this complex the differential is given by

dT (η) = (−1)nT (d η)

for T ∈ Dn(X)R. For X equi-dimensional of dimension d we write

Dp,q(X) = Dd−p,d−q(X), Dn(X)R = (2πi)−dD2d−n(X).

With these definitions, D∗(X)R is a Dolbeault complex and it is a Dolbeault
module over E∗(X)R. We will denote

D∗
D(X, ∗) := D∗(D∗(X)R, ∗).

for the Deligne complex of currents on X .
Observe that the trace map above defines an element

δX ∈ D0
D(X, 0).

More generally, if Y ⊂ X is a subvariety of pure codimension p, then the current
integration along Y , denoted δY ∈ D2p

D (X, p) is given by

δY (ω) =
1

(2πi)d−p

∫

Y

ω.

Moreover, if S ⊂ T ∗X0 is a closed conical subset of the cotangent bundle
of X with the zero section removed, we will denote by (D∗

D(X,S, ∗), dD) the
Deligne complex of currents on X whose wave front set is contained in S.

For instance, if we denote by N∗
Y the conormal bundle to Y , then

δY ∈ D2p
D (X,N∗

Y , p).

If ω is a locally integrable differential form, we associate to it a current

[ω](η) =
1

(2πi)dimX

∫

X

η ∧ ω.

This map gives us an isomorphism D∗(X, ∗) → D∗
D(X, ∅, ∗) that we can use

to identify them. For instance, when in a formula there appear sums of currents
and differential forms, we will tacitly assume that the differential forms are
converted into currents by this map.
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Note also that, if f : X → Y is a proper morphism of smooth complex
varieties of relative dimension e, then there are direct image morphisms

f∗ : D
n
D(X, p) −→ Dn−2e

D (X, p− e).

If f is smooth, the direct image of differential forms is defined by, first converting
them into currents and then applying the above direct image of currents. If f
is a smooth morphism of relative dimension e we can convert them back into
differential forms. This procedure gives us 1/(2πi)e times the usual integration
along the fiber.

We shall use the notations and definitions of [18]. In particular, we write

D̃n(X, p) = Dn(X, p)/ dD Dn−1(X, p),

D̃n
D(X, p) = Dn

D(X, p)/ dD Dn−1
D (X, p).

2.4 Bott-Chern classes for isomorphisms and distinguished

triangles in D
b
(X)

In this section we will define Bott-Chern classes for isomorphisms and distin-

guished triangles in D
b
(X).

When characterizing axiomatically Bott-Chern classes, the basic tool to ex-
ploit the functoriality is to use a deformation parametrized by P1. Since we will
need several variants of this argument we next state a version that is general
enough for our purposes.

Let f : X → Y be a morphism of smooth complex varieties. The set of
normal directions of f is defined as follows (see also [18, Sec. 4]).

Definition 2.84. Let T ∗Y0 be the cotangent bundle to Y with the zero section
removed. The set of normal directions of f is the conic subset of T ∗Y0 given by

Nf = {(y, v) ∈ T ∗Y0| d f
tv = 0}.

Let Y ′′ h
→ Y ′ g

→ Y be morphisms of smooth complex varieties such that g
and g ◦ h are smooth. We form the cartesian diagram

X ′′ //

f ′′

��

X ′ //

f ′

��

X

f

��
Y ′′ h // Y ′

g // Y.

The smoothness of g implies that Nf ′ = g∗Nf . Then the smoothness of g ◦ h
implies that Nh ∩ Nf ′ = ∅. Therefore, any current η ∈ D∗

D(Y ′, Nf ′ , ∗) can be
pulled back to a current h∗η ∈ D∗

D(Y ′′, Nf ′′ , ∗).

Theorem 2.85. Let f : X → Y be a morphism of smooth complex varieties.
Let ϕ̃ be an assignment that, to each smooth morphism of complex varieties
g : Y ′ → Y and each acyclic complex A of hermitian vector bundles on X ′ :=
X ×

Y
Y ′ assigns a class

ϕ̃(A) ∈
⊕

n,p

D̃n
D(Y ′, g∗Nf , p)

fulfilling the following properties:
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(i) (Differential equation) the equality

dD ϕ̃(A) = 0

holds;

(ii) (Functoriality) for each morphism of smooth complex varieties h : Y ′′ →
Y ′ with g ◦ h smooth, the relation

h∗ϕ̃(A) = ϕ̃(h∗A);

holds;

(iii) (Normalization) if A is orthogonally split, then ϕ̃(A) = 0.

Then ϕ̃ = 0.

Proof. The argument of the proof of [18, Thm. 2.3] applies mutatis mutandis
to the present situation. One only needs to observe that all the operations with
differential forms of that argument can be extended to the currents that appear
in the present situation thanks to the hypothesis about their wave front sets.

Remark 2.86. In this section we will use Theorem 2.85 in the case when
f = idX , hence Nf = ∅. The general case will be needed when studying analytic
torsion in the next section.

Definition 2.87. An additive genus in Deligne cohomology is a characteristic
class ϕ for vector bundles of any rank in the sense of [18, Def. 1.5] that satisfies
the equation

ϕ(E1 ⊕ E2) = ϕ(E1) + ϕ(E2). (2.88)

Let D denote the base ring for Deligne cohomology (see [18] before Definition
1.5). A consequence of [18, Thm. 1.8] is that there is a bijection between the
set of additive genus in Deligne cohomology and the set of power series in one
variable D[[x]]. To each power series ϕ ∈ D[[x]] it corresponds the unique
additive genus such that

ϕ(L) = ϕ(c1(L))

for every line bundle L.

Definition 2.89. A real additive genus is an additive genus such that the
corresponding power series belong to R[[x]].

Remark 2.90. It is clear that, if ϕ is a real additive genus, then for each vector
bundle E we have

ϕ(E) ∈
⊕

p

H2p
D (X,R(p))

We now focus on additive genera, for instance the Chern character is a real
additive genus. Let ϕ be such a genus. Using Chern-Weil theory, to each
hermitian vector bundle E on X we can attach a closed characteristic form

ϕ(E) ∈
⊕

n,p

Dn(X, p).
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If E is an object of V
b
(X), then we define

ϕ(E) =
∑

i

(−1)iϕ(E
i
).

If E is acyclic, following [18, Sec. 2], we associate to it a Bott-Chern character-
istic class

ϕ̃(E) ∈
⊕

n,p

D̃n−1(X, p)

that satisfies the differential equation

dD ϕ̃(E) = ϕ(E).

In fact, [18, Thm. 2.3] for additive genera can be restated as follows.

Proposition 2.91. Let ϕ be an additive genus. Then there is a unique group
homomorphism

ϕ̃ : KA(X) →
⊕

n,p

D̃n−1(X, p)

satisfying the properties:

(i) (Differential equation)
dD ϕ̃(E) = ϕ(E).

(ii) (Functoriality) If f : X → Y is a morphism of smooth complex varieties,
then

ϕ̃(f∗(E)) = f∗(ϕ̃(E)).

Proof. For the uniqueness, we observe that, if ϕ̃ is a group homomorphism
then ϕ̃(0) = 0. Hence, if E is a orthogonally split complex, then it is meager
and therefore ϕ̃(E) = 0. Thus, the assignment that, to each acyclic complex
bounded E, associates the class ϕ̃([E]) satisfies the conditions of [18, Thm. 2.3],
hence is unique. For the existence, we note that Bott-Chern classes for additive
genera satisfy the hypothesis of Theorem 2.32. Hence the result follows.

Remark 2.92. If
ε : 0 → Fm → · · · → F l → 0

is an acyclic complex of coherent sheaves on X provided with hermitian struc-
tures F i = (Fi, F i 99K Fi), by Definition 2.71 we have an object [ε] ∈ KA(X),
hence a class ϕ̃([ε]). In the case of the Chern character, in [18, Thm. 2.24] there

is defined a class c̃h(ε). It follows from [18, Thm. 2.24] that both classes agree.

That is, c̃h([ε]) = c̃h(ε). For this reason we will denote ϕ̃([ε]) by ϕ̃(ε).

Definition 2.93. Let F = (E
∼
99K F) be an object of D

b
(X). Let ϕ denote an

additive genus. We denote the form

ϕ(F) = ϕ(E) ∈
⊕

n,p

Dn(X, p)

and the class
ϕ(F) = [ϕ(E)] ∈

⊕

n,p

Hn
D(X,R(p)).
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Note that the form ϕ(F) only depends on the hermitian structure and not on a
particular representative thanks to Proposition 2.37 and Proposition 2.91. The
class ϕ(F) only depends on the object F and not on the hermitian structure.

Remark 2.94. The reason to restrict to additive genera when working with
the derived category is now clear: there is no canonical way to attach a rank to
⊕i evenF i (respectively ⊕i oddF i). The naive choice rk(⊕i evenE

i) (respectively
rk(⊕i oddE

i)) does depend on E 99K F . Thus we can not define Bott-Chern
classes by the general rule from [18]. The case of a multiplicative genus such as
the Todd genus will be considered later.

Next we will construct Bott-Chern classes for isomorphisms in D
b
(X).

Definition 2.95. Let f : F 99K G be a morphism in D
b
(X) and ϕ an additive

genus. We define the differential form

ϕ(f) = ϕ(G)− ϕ(F).

Theorem 2.96. Let ϕ be an additive genus. There is a unique way to attach

to every isomorphism in D
b
(X)

f : (F 99K F)
∼
99K (G 99K G)

a Bott-Chern class
ϕ̃(f) ∈

⊕

n,p

D̃n−1(X, p)

such that the following axioms are satisfied:

(i) (Differential equation)
dD ϕ̃(f) = ϕ(f).

(ii) (Functoriality) If g : X ′ → X is a morphism of smooth noetherian schemes
over C, then

ϕ̃(g∗(f)) = g∗(ϕ̃(f)).

(iii) (Normalization) If f is a tight isomorphism, then

ϕ̃(f) = 0.

Proof. For the existence we define

ϕ̃(f) = ϕ̃([f ]), (2.97)

where [f ] ∈ KA(X) is the class of f given by equation (2.62). That ϕ̃ satisfies
the axioms follows from Proposition 2.91 and Theorem 2.61.

We now focus on the uniqueness. Assume such a theory f 7→ ϕ̃0(f) exists.
Fix f as in the statement. Since ϕ̃0 is well defined, by replacing F by one that
is tightly related, we may assume that f is realized by a morphism of complexes

f : F −→ G.

We factorize f as

F
α

−→ G⊕ cone(F ,G)[−1]
β

−→ G,
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where both arrows are zero on the second factor of the middle complex. Since
α is a tight morphism and cone(F ,G)[−1] is acyclic, we are reduced to the case
when F = G ⊕ A, with A an acyclic complex and f is the projection onto the
first factor.

For each smooth morphism g : X ′ → X and each acyclic complex of vector
bundles E on X ′, we denote

ϕ̃1(E) = ϕ̃0(g
∗G⊕ E → g∗G) + ϕ̃(E),

where ϕ̃ is the usual Bott-Chern form for acyclic complexes of hermitian vector
bundles associated to ϕ. Then ϕ̃1 satisfies the hypothesis of Theorem 2.85, so
ϕ̃1 = 0. Therefore

ϕ̃(f) = −ϕ̃(A).

Proposition 2.98. Let f : F 99K G and g : G 99K H be two isomorphisms in

D
b
(X). Then:

ϕ̃(g ◦ f) = ϕ̃(g) + ϕ̃(f).

In particular, ϕ̃(f−1) = −ϕ̃(f).

Proof. Follows from Theorem 2.67 (iii).

The Bott-Chern classes behave well under shift.

Proposition 2.99. Let f : F 99K G be an isomorphism in D
b
(X). Let f [i] : F [i] 99K

G[i] be the shifted isomorphism. Then

(−1)iϕ̃(f [i]) = ϕ̃(f).

Proof. The assignment f 7→ (−1)iϕ̃(f [i]) satisfies the characterizing properties
of Theorem 2.96. Hence it agrees with ϕ̃.

The following notation will be sometimes used.

Notation 2.100. Let F be an object of Db(X) and consider two choices of

hermitian structures F and F
′
. Then we write

ϕ̃(F ,F
′
) = ϕ̃(F

id
99K F

′
).

Thus dD ϕ̃(F ,F
′
) = ϕ(F

′
)− ϕ(F).

Example 2.101. Let F = (F ,F 99K E) be an object of D
b
(X). Let Hi

denote the cohomology sheaves of F and assume that we have chosen hermitian

structures H
i
of each Hi. In the case when the sheaves Hi are vector bundles

and the hermitian structures are hermitian metrics, X. Ma, in the paper [35],
has associated to these data a Bott-Chern class, that we denote M(F ,H). By
the characterization given by Ma of M(F ,H), it is immediate that

M(F ,H) = c̃h(F , (F ,H)),

where (F ,H) is as in Definition 2.81.
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Our next aim is to construct Bott-Chern classes for distinguished triangles.

Definition 2.102. Let τ be a distinguished triangle in D
b
(X),

τ : F
u

99K G
v

99K H
w
99K F [1]

u
99K . . .

For an additive genus ϕ, we define the attached differential form

ϕ(τ ) = ϕ(F)− ϕ(G) + ϕ(H).

Notice that if τ is tightly distinguished, then ϕ(τ ) = 0. Moreover, for any
distinguished triangle τ as above, the rotated triangle

τ ′ : G
v

99K H
w
99K F [1]

−u[1]
99K G[1]

v[1]
99K . . .

satisfies
ϕ(τ ′) = −ϕ(τ ).

Theorem 2.103. Let ϕ be an additive genus. There is a unique way to attach

to every distinguished triangle in D
b
(X)

τ : F
u

99K G
v

99K H
w
99K F [1]

u[1]
99K . . .

a Bott-Chern class
ϕ̃(τ ) ∈

⊕

n,p

D̃n−1(X, p)

such that the following axioms are satisfied:

(i) (Differential equation)
dD ϕ̃(τ ) = ϕ(τ ).

(ii) (Functoriality) If g : X ′ → X is a morphism of smooth noetherian schemes
over C, then

ϕ̃(g∗(τ )) = g∗ϕ̃(τ ).

(iii) (Normalization) If τ is tightly distinguished, then

ϕ̃(τ ) = 0.

Proof. To show the existence we write

ϕ̃(τ ) = ϕ̃([τ ]). (2.104)

Theorem 2.67 implies that it satisfies the axioms.
To prove the uniqueness, observe that, by replacing representatives of the

hermitian structures by tightly related ones, we may assume that the distin-
guished triangle is represented by

F −→ G −→ cone(F ,G)⊕K −→ F [1],

with K acyclic. Then Theorem 2.85 shows that the axioms imply

ϕ̃(τ ) = ϕ̃(K).
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Remark 2.105. The normalization axiom can be replaced by the apparently
weaker condition that ϕ̃(τ ) = 0 for all distinguished triangles of the form

F 99K F
⊥
⊕ G 99K G 99K

where the maps are the natural inclusion and projection.

We leave to the reader the task of translating Theorem 2.67 (iv)-(viii) to
Bott-Chern classes.

2.5 Multiplicative genera, the Todd genus and the cate-

gory Sm∗/C

Let ψ be a multiplicative genus, such that the piece of degree zero is ψ0 = 1.
We write

ϕ = log(ψ).

It is a well defined additive genus, because, by the condition above, the power
series log(ψ) contains only a finite number of terms in each degree.

If θ is either a hermitian vector bundle, a complex of hermitian vector bun-

dles, a morphism in D
b
(X) or a distinguished triangle in D

b
(X) we can write

ψ(θ) = exp(ϕ(θ)).

All the results of the previous sections can be translated to the multiplicative
genus ψ. In particular, for θ an acyclic complex of hermitian vector bundles,

an isomorphism in D
b
(X) or a distinguished triangle in D

b
(X), we define a

Bott-Chern class

ψ̃m(θ) =
exp(ϕ(θ))− 1

ϕ(θ)
ϕ̃(θ).

Theorem 2.106. The characteristic class ψ̃m(θ) satisfies:

(i) (Differential equation)

dD ψ̃m(θ) = ψ(θ)− 1.

(ii) (Functoriality) If g : X ′ → X is a morphism of smooth noetherian schemes
over C, then

ψ̃m(g∗(θ)) = g∗ψ̃m(θ).

(iii) (Normalization) If θ is either a meager complex, a tight isomorphism or
a tightly distinguished triangle, then

ψ̃m(θ) = 0.

Moreover ψ̃m is uniquely characterized by these properties.

Remark 2.107. For an acyclic complex of vector bundles E, using the general
procedure for arbitrary symmetric power series, we can associate a Bott-Chern
class ψ̃(E) (see for instance [18, Thm. 2.3]) that satisfies the differential equation

dD ψ̃(E) =
∏

k even

ψ(E
k
)−

∏

k odd

ψ(E
k
),

47



whereas ψ̃m satisfies the differential equation

dD ψ̃m(E) =
∏

k

ψ(E
k
)(−1)k − 1. (2.108)

In fact both Bott-Chern classes are related by

ψ̃m(E) = ψ̃(E)
∏

k odd

ψ(E
k
)−1. (2.109)

The main example of a multiplicative genus with the above properties is the
Todd genus Td. From now on we will treat only this case. Following the above
procedure, to the Todd genus we can associate two Bott-Chern classes for acyclic
complexes of vector bundles. The one given by the general theory, denoted by

T̃d and the one given by the theory of multiplicative genera, denoted T̃dm.
Both are related by the equation (2.109). Note however that, for isomorphisms

and distinguished triangles in D
b
(X), we only have the multiplicative version.

We now consider morphisms between smooth complex varieties and relative
hermitian structures.

Definition 2.110. Let f : X → Y be a morphism of smooth complex varieties.
The tangent complex of f is the complex

Tf : 0 −→ TX
df
−→ f∗TY −→ 0

where TX is placed in degree 0 and f∗TY is placed in degree 1. It defines an
object, also denoted Tf ∈ ObDb(X). A relative hermitian structure on f is the

choice of an object T f ∈ D
b
(X) over Tf .

The following particular situations are of special interest:

– suppose f : X →֒ Y is a closed immersion. Let NX/Y [−1] be the normal
bundle to X in Y , considered as a complex concentrated in degree 1.
By definition, there is a natural quasi-isomorphism p : Tf

∼
→ NX/Y [−1]

in Cb(X), and hence an isomorphism p−1 : NX/Y [−1]
∼
99K Tf in Db(X).

Therefore, a hermitian metric h on the vector bundle NX/Y naturally

induces a hermitian structure p−1 : (NX/Y [−1], h) 99K Tf on Tf . Let T f

be the corresponding object in D
b
(X). Then we have

Td(T f ) = Td(NX/Y [−1], h) = Td(NX/Y , h)
−1;

– suppose f : X → Y is a smooth morphism. Let TX/Y be the relative
tangent bundle on X , considered as a complex concentrated in degree
0. By definition, there is a natural quasi-isomorphism ι : TX/Y

∼
→ Tf in

Cb(X). Any choice of hermitian metric h on TX/Y naturally induces a

hermitian structure ι : (TX/Y , h) 99K Tf . If T f denotes the corresponding

object in D
b
(X), then we find

Td(T f ) = Td(TX/Y , h).
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Let now g : Y → Z be another morphism of smooth varieties over C. The
tangent complexes Tf , Tg and Tg◦f fit into a distinguished triangle in Db(X)

T : Tf 99K Tg◦f 99K f∗Tg 99K Tf [1].

Definition 2.111. Let Sm∗/C be the category whose objects are smooth com-

plex varieties and whose morphisms are pairs f = (f, T f ), where f is a projective
morphism and T f is a hermitian structure on Tf . When f is given we will de-
note the hermitian structure by Tf . A hermitian structure on Tf will also be
called a hermitian structure on f .

For morphisms f : X → Y and g : Y → Z, the composition is defined as

g ◦ f = (g ◦ f, cone(f∗Tg[−1], Tf)).

In Proposition 2.118 below we prove the associativity of the composition.
Hence Sm∗/C is indeed a category. Moreover, if Sm∗/C denotes the category of

smooth complex varieties and projective morphisms and F : Sm∗/C → Sm∗/C

is the forgetful functor, for any object X we have that

ObF−1(X) = {X},

HomF−1(X)(X,X) = KA(X).

Example 2.112. Let f : X → Y and g : Y → Z, be projective morphisms
of smooth complex varieties. Assume that we have chosen hermitian metrics
on the tangent vector bundles TX , TY and TZ . Denote by f , g and g ◦ f the
morphism of Sm∗/C determined by these metrics. Then

g ◦ f = g ◦ f.

This is seen as follows. By the choice of metrics, there is a tight isomorphism
cone(Tf , Tg◦f ) → f∗Tg. Then the natural maps

Tg◦f → cone(f∗Tg[−1], Tf) → cone(cone(Tf , Tg◦f )[−1], Tf) → Tg◦f

are tight isomorphisms.

Example 2.113. Let f : X → Y and g : Y → Z, be smooth projective mor-
phisms of smooth complex varieties. Chose hermitian metrics on the relative
tangent vector bundles Tf , Tg and Tg◦f . Denote by f , g and g ◦ f the mor-
phism of Sm∗/C determined by these metrics. There is a short exact sequence
of hermitian vector bundles

ε : 0 −→ T f −→ T g◦f −→ f∗T g −→ 0,

that we consider as an acyclic complex declaring f∗T g of degree 0. The mor-
phism f∗Tg[−1] 99K Tf is represented by the diagram

cone(Tf , Tg◦f )[−1]

∼

vvnnnnnnnnnnnn

&&NNNNNNNNNNNN

f∗Tg[−1] Tf .
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Thus, by the definition of a composition we have

Tg◦f = cone(cone(Tf , Tg◦f )[−1], f∗Tg[−1])[1]⊕ cone(cone(Tf , Tg◦f )[−1], Tf).

In general this hermitian structure is different to Tg◦f .
Claim. The equality of hermitian structures

Tg◦f = Tg◦f + [ε] (2.114)

holds.

Proof of the claim. We have a commutative diagram of distinguished triangles

ε Tf //

id

��

Tg◦f //

��

f∗Tg

id

��

//___ Tf [1]

id

��
τ Tf // Tg◦f // f∗Tg //___ Tf [1].

By construction the triangle τ is tightly distinguished, hence [τ ] = 0. Therefore,
according to Theorem 2.67 (vii), we have

[Tg◦f → Tg◦f ] = [ε].

The claim follows.

Let f : X → Y and g : Y → Z be projective morphisms of smooth complex
varieties. By the definition of composition, hermitian structures on f and g
determine a hermitian structure on g ◦ f . Conversely we have the following
result.

Lemma 2.115. Let g and g ◦ f be hermitian structures on g and g ◦ f . Then
there is a unique hermitian structure f on f such that

g ◦ f = g ◦ f. (2.116)

Proof. From the distinguished triangle

Tf 99K Tg◦f 99K f∗Tg 99K Tf [1]

we see that the unique hermitian structure that satisfies equation (2.116) is
cone(Tg◦f , f

∗Tg)[−1].

Remark 2.117. By constrast with the preceding result, it is not true in general
that hermitian structures f and g ◦ f determine a hemitian structure g that
satisfies equation (2.116). For instance, if X = ∅, then any hermitian structure
on g will satisfy this equation.

Proposition 2.118. Let f : X → Y , g : Y → Z and h : Z → W be projective
morphisms together with hermitian structures. Then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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Proof. First of all we observe that if the hermitian structures on f , g and h
come from fixed hermitian metrics on TX , TY , TZ and TW , Example 2.112
ensures that the proposition holds. For the general case, it is enough to see
that if the proposition holds for a fixed choice of hermitian structures f , g, h,
and we change the metric on f , g or h, then the proposition holds for the new
choice of metrics. We treat, for instance, the case when we change the hermitian
structure on g, and leave the rest as an analogous exercise. Denote by g′ the
new hermitian structure on g. Then there exists a unique class ε ∈ KA(Y ) such
that Tg′ = Tg + ε. According to the definitions, we have

Th◦(g′◦f) = cone((g ◦ f)∗Th[−1], cone(f∗(Tg + ε)[−1], Tf)) = Th◦(g◦f) + f∗ε.

Similarly, we find

T(h◦g′)◦f = cone(f∗ cone(g∗Th[−1], Tg)[−1] + f∗(−ε), Tf ) = T(h◦g)◦f + f∗ε.

By assumption, Th◦(g◦f) = T(h◦g)◦f . Hence the relations above show

Th◦(g′◦f) = T(h◦g′)◦f .

This concludes the proof.

To any arrow f : X → Y in Sm∗/C we associate a Todd form

Td(f) := Td(Tf ) ∈
⊕

p

D2p(X, p).

If g : Y → Z is another morphism, it follows from the definition of g ◦ f that

Td(g ◦ f) = f∗Td(g) • Td(f).

If we choose two hermitian structures on f : X → Y , say f and f
′
, then one

obtains an isomorphism θ : Tf → Tf ′ whose Bott-Chern class satisfies

dD T̃dm(θ) = Td(Tf ′)Td(Tf )
−1 − 1.

We will usually write

T̃dm(f, f
′
) := T̃dm(θ).

We finish this section by introducing a notation for the direct image of
currents twisted by the Todd genus. This notation will simplify many formulas
related with analytic torsion classes.

Let f : X → Y be a morphism of smooth complex varieties. Let S be a
closed conic subset of T ∗X0. Then we denote

f∗(S) = {(f(x), η) ∈ T ∗Y0 | (x, (d f)tη) ∈ S} ∪Nf . (2.119)

If g : Y → Z is another morphism of smooth complex varieties, it is easy to see
that we have (g ◦ f)∗(S) ⊆ g∗f∗(S).

Definition 2.120. Let f : X → Y be a morphism in Sm∗/C of relative dimen-
sion e. For each closed conical subset S ⊂ T ∗X0 and each pair of integers n, d,
we denote by

f ♭ : D
n
D(X,S, p) → Dn−2e

D (Y, f∗S, p− e)

the map given by
f ♭(ω) = f∗(ω • Td(f)).
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Proposition 2.121. Let f : X → Y and g : Y → Z be morphisms in Sm∗/C of
relative dimensions e1 and e2 respectively. Let S ⊂ T ∗X0, T ⊂ T ∗Y0 be closed
conical subsets and let h = f ◦ g, of relative dimension e = e1 + e2.

(i) The following diagram is commutative

Dn
D(X,S, p)

f♭ //

h♭

��

Dn−2e1
D (Y, f∗S, p− e1)

g♭

��
Dn−2e

D (Z, h∗S, p− e)
� � // Dn−2e

D (Z, g∗f∗S, p− e).

(ii) let θ ∈ Dm
D (X,S, q) and ω ∈ Dn

D(Y, T, p). Assume T ∩ Nf = ∅ and that
T +f∗S is disjoint with the zero section in T ∗Y0. Then f∗T +S is disjoint
with the zero section and there is an equality of currents

f ♭(f
∗(ω) • θ) = ω • f ♭(θ)

in Dn+m
D (Y,W, p+ q), with

W = f∗(S + f∗T ) ∪ f∗S ∪ f∗f
∗T.

Proof. For the first assertion, it is enough to notice the equality of currents

g♭(f ♭(ω)) = (g ◦ f)∗(ω • f∗ Td(g) • Td(f))).

For the second, it is easy to see that f∗T + S does not cross the zero section,
and hence both sides of the equality are defined. It then suffices to establish the
equality of currents

f∗(f
∗ω • θ) = f∗(ω) • θ.

If θ and ω are smooth, then the equality holds true as an elementary application
of the definitions shows. The general case follows by approximation of θ and ω
by smooth currents and the continuity of the operators f∗ and f∗.

3 Analytic torsion

3.1 Transverse morphisms and relative metrized

complexes

In this section we recall the definition of transverse morphisms and we review
some basic properties. Then we introduce the notion of relative metrized com-
plex, and explain some basic constructions.

Definition 3.1. Let f : X → Y and g : Z → Y be morphisms of smooth com-
plex varieties. We say that f and g are transverse if

Nf ∩Ng = ∅,

where Nf and Ng are the sets of normal directions to f and g respectively as in
Definition 2.84.
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It is easily seen that, if f is a closed immersion, this definition of transverse
morphisms agrees with the definition given in [31, IV-17.13].

If f and g are transverse, then the cartesian product X ×
Y
Z is smooth.

For lack of a good reference we prove the following result.

Proposition 3.2. Let f : X → Y and g : Z → Y be transverse morphisms of
smooth complex varieties. Then they are tor-independent.

Proof. Since the conditions of being transverse and being tor-independent are

both local on Y , X and Z we may assume that the map f factorizes as X
i
→

Y × An p
→ Y , where i is a closed immersion and p is the projection. Let

g′ : Z × An → Y × An be the morphism g × id. If f and g are transverse then
i and g′ are also transverse. While, if i and g′ are tor-independent then f and
g are tor-independent. Therefore we are reduced to the case when f is a closed
immersion.

Since every closed immersion between smooth schemes is regular, we may
assume that Y = SpecA, X = SpecA/I, where I is an ideal generated by
a regular sequence (s1, . . . , sk) and Z = SpecB. The transversality condition
implies that (s1, . . . , sk) is a regular sequence generating IB. Let K be the
Koszul resolution of A/I attached to the above sequence. Then K ⊗A B is the
Koszul resolution of B/IB, hence exact. Therefore, ToriA(A/I,B) = 0 for all
i ≥ 1. Thus f and g are tor-independent.

Definition 3.3. Let f : X → Y be a projective morphism of smooth complex

varieties and f ∈ Hom
Sm∗/C

(X,Y ) an arrow over f . Let F ∈ ObD
b
(X) and

let f∗F ∈ ObD
b
(Y ) be an object over f∗F . The triple ξ = (f,F , f∗F) will

be called a relative metrized complex. When f is a closed immersion we will
also call it an embedded metrized complex. When F and f∗F are clear from the
context we will denote the relative metrized complex ξ by the arrow f .

Let ξ = (f,F , f∗F) be a relative metrized complex and let h : Y ′ → Y be
a morphism of smooth complex varieties that is transverse to f . Consider the
cartesian diagram

X ′ h′

//

f ′

��

X

f

��
Y ′

h
// Y.

(3.4)

Then f ′ is still projective. Moreover, the transversality condition also implies
that the canonical arrow h′

∗
Tf 99K Tf ′ is a hermitian structure on Tf ′ . We

define
h∗f = (f ′, h′

∗
Tf) ∈ Hom

Sm∗/C
(X ′, Y ′). (3.5)

By tor-independence, there is a canonical isomorphism

h∗f∗F 99K f ′
∗h

′∗F .

Therefore h∗f∗F induces a hermitian structure on f ′
∗h

′∗F .

Definition 3.6. The pull-back of ξ by h is the relative metrized complex

h∗ξ = (h∗f, h′
∗
F , h∗f∗F).
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We introduce two elementary operations with relative metrized complexes.

Definition 3.7. Let ξ = (f : X → Y,F , f∗F) be a relative metrized complex.

Let G be an object of D
b
(Y ). There is a canonical isomorphism

f∗(F ⊗ f∗G) 99K f∗F ⊗ G.

Therefore the hermitian structures on f∗F and G induce a natural hermitian
structure on f∗(F ⊗ f∗G). The tensor product of ξ by G is then defined to be
the relative metrized complex

ξ ⊗ G = (f,F ⊗ f∗G, f∗F ⊗ G).

Definition 3.8. Let ξ1 and ξ2 be relative metrized coherent complexes on X ,
with

ξ1 = (f,F1, f∗F1)

ξ2 = (f,F2, f∗F2).

Then the direct sum relative metrized complex is defined to be

ξ1 ⊕ ξ2 := (f,F1 ⊕F2, f∗F1 ⊕ f∗F2).

We finish this section with a base change type formula for currents, involving
transverse morphisms and direct images of the form f ♭.

Proposition 3.9. Let f be a morphism in Sm∗/C of relative dimension e and
S a closed conical subset of T ∗X0. Let g : Y ′ → Y be a morphism of smooth
complex varieties transverse to f . Consider the cartesian diagram

X ′
g′

//

f ′

��

X

f

��
Y ′

g // Y.

(3.10)

Equip f ′ with the hermitian structure induced by the natural isomorphism g∗Tf 99K

Tf ′ (cf. equation (3.5) above). Finally, suppose that Ng′ is disjoint with S.
Then:

(i) Ng and f∗S are disjoint and g∗f∗S ⊂ f ′
∗g

′∗S;

(ii) the following diagram commutes:

Dn
D(X,S, p)

f♭ //

g′∗

��

Dn−2e
D (Y, f∗S, p− e)

g∗

��
Dn

D(X ′, g′
∗
S, p)

f
′

♭ // Dn−2e
D (Y ′, f ′

∗g
′∗S, p− e)

Proof. The first claim is straightforward from the definitions. In particular the
diagram makes sense. For the commutativity of the diagram, we observe that,
since

g′∗ Td(f) = Td(f
′
),
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it suffices to check the equality of currents

g∗f∗(θ) = f ′
∗g

′∗(θ)

for θ ∈ Dn
D(X,S, p).

By the continuity of the operators g∗ (respectively g′
∗
) and f∗ (respectively

f ′∗), it is enough to prove the relation whenever θ is smooth. Moreover, using
a partition of unity argument we are reduced to the following local analytic
statement.

Lemma 3.11. Let f : X → Y and g : Y ′ → Y be transverse morphisms of
complex manifolds. Let θ be a smooth differential form on X with compact
support. Consider the diagram (3.10). Then

g∗f∗(θ) = f ′
∗g

′∗(θ). (3.12)

Proof. The map f can be factored as X
ϕ

−→ X × Y
p2
−→ Y , where ϕ(x) =

(x, f(x)) is a closed immersion and p2, the second projection, is smooth. Using
again the continuity of the operators g∗ (respectively g′

∗
) and f∗ (respectively

f ′∗), we are reduced to prove the equation (3.12) in the case when f is smooth
and in the case when f is a closed immersion. The case when f is smooth is
clear. Assume now that f is a closed immersion. By transversality, f ′ is also a
closed immersion of complex manifolds. We may assume that θ = f∗θ̃ for some
smooth form θ̃ on Y . Then equation (3.12) follows from the chain of equalities

g∗f∗θ = g∗f∗f
∗θ̃ = g∗(θ̃ ∧ δX) = g∗(θ̃) ∧ δX′ = f ′

∗f
′∗g∗θ̃ = f ′

∗g
′∗f∗θ̃ = f ′

∗g
′∗θ.

This concludes the proof of the lemma.

The proposition follows from the lemma.

3.2 Analytic torsion for closed immersions

In the paper [18] the authors study the singular Bott-Chern classes associated
to closed immersions of smooth complex varieties. The singular Bott-Chern
classes are the analogue for closed immersions of the analytic torsion for smooth
morphisms. In fact, they are a particular case of the analytic torsion classes for
arbitrary projective morphisms. For this reason, we will call them also analytic
torsion classes.

In loc. cit. only the singular Bott-Chern classes associated to a single co-
herent sheaf were studied. The aim of this section is to recall the main results
of [18] and to translate them into the language of derived categories.

Definition 3.13. A theory of analytic torsion classes for closed immersions is
an assignment that, to each embedded metrized complex ξ = (f,F , f∗F), where
f : X → Y is a closed immersion of smooth complex varieties, associates a class

T (ξ) ∈
⊕

p

D̃2p−1
D (Y,Nf , p)

satisfying the following conditions.

55



(i) (Differential equation) The equality

dD T (ξ) = ch(f∗F)− f ♭[ch(F)]

holds.

(ii) (Functoriality) For every morphism of smooth complex varieties h : Y ′ →
Y that is transverse to f we have the equality

h∗T (ξ) = T (h∗ξ).

(iii) (Normalization) When X = ∅ (hence F = 0), Y = SpecC, and f∗F = 0,
then

T (f, 0, 0) = 0.

Definition 3.14. Let T be a theory of analytic torsion classes for closed im-
mersions.

(i) We say that T is compatible with the projection formula if, for every em-

bedded metrized complex ξ = (f,F , f∗F), and every object G ∈ D
b
(Y ),

the equation
T (ξ ⊗ G) = T (ξ) • ch(G) (3.15)

holds.

(ii) We say that T is additive if, given two embedded metrized complexes of
the form

ξ1 = (f,F1, f∗F1)

ξ2 = (f,F2, f∗F2),

the equation
T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2) (3.16)

holds.

(iii) We say that T is transitive if, for every embedded metrized complex ξ =
(f,F , f∗F), every closed immersion of smooth complex varieties g : Y →
Z, each choice of an arrow g ∈ Hom

Sm∗/C
(Y, Z) over g, and each choice of

an object (g ◦ f)∗F ∈ ObD
b
(Z) over (g ◦ f)∗F , the equation

T (g ◦ f) = T (g) + g♭(T (f)) (3.17)

holds. Note that in this equation we are using the convention at the end
of Definition 3.3.

Remark 3.18. (i) The normalization condition here and the normalization
condition in [18, Def. 6.9] are equivalent once one assumes that T is well

defined for objects of D
b
. Clearly, the compatibility with the projection

formula implies the normalization condition. Moreover the compatibility
with the projection formula also implies the additivity (see [18, Prop.
10.9])
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(ii) It is easy to see that, to check if a theory is compatible with the projec-
tion formula, it is enough to consider complexes G consisting of a single
hermitian vector bundle G placed in degree 0.

Let X be a smooth complex variety and let N be a hermitian vector bundle
of rank r. We denote by P = P(N ⊕ 1) the projective bundle obtained by
completing N . Let πP : P → X be the projection and let s : X → P be the
zero section. Since N can be identified with the normal bundle to X on P , the
hermitian metric ofN induces a hermitian structure on s. We will denote it by s.
On P we have a tautological quotient vector bundle with an induced metric Q.
For each hermitian vector bundle F onX we have the Koszul resolutionK(F,N)
of s∗F . We denote by K(F ,N) the Koszul resolution with the induced metrics.
See [18, Def. 5.3] for details.

Definition 3.19. Let T be a theory of analytic torsion classes for closed im-
mersions. We say that T is homogeneous if, for every pair of hermitian vector
bundles N and F with rkN = r, there exists a homogeneous class of bidegree
(2r − 1, r) in the Deligne complex

ẽ(F ,N) ∈ D̃2r−1
D (P,Ns, r)

such that
T (s, F ,K(F,N)) • Td(Q) = ẽ(F ,N) • ch(π∗

PF ). (3.20)

Remark 3.21. Observe that Definition 3.19 is equivalent to [18, Def. 9.2]. The
advantage of the definition in this paper is that it treats on equal footing the
case when rkF = 0.

The main result of [18] can be translated into the language of derived cat-
egories as follows. Denote by 11 ∈ D the element represented by the constant
function 1 of D1(SpecC, 1) = R.

Theorem 3.22. (i) There is a unique homogeneous theory of analytic tor-
sion classes for closed immersions, that we denote T h. This theory is
compatible with the projection formula, additive and transitive.

(ii) Let T be any transitive theory of analytic torsion classes for closed im-
mersions, that is compatible with the projection formula. Then there is a
unique real additive genus ST (Definition 2.89) such that, for any embed-
ded metrized complex ξ := (f,F , f∗F), we have

T (ξ)− T h(ξ) = −f∗[ch(F) •Td(Tf) • ST (Tf ) • 11]. (3.23)

(iii) Conversely, any real additive genus S defines, by means of equation (3.23),
a unique transitive theory of analytic torsion classes TS for closed immer-
sions, that is compatible with the projection formula and additive.

Proof. Existence and uniqueness for both T h and TS is the content of [18] when
restricting to triples ξ with Tf = NX/Y [−1], F a hermitian vector bundle placed

in degree 0 and f∗F given by a finite locally free resolution. For the general
case, we thus need to prove that the theories of analytic torsion classes for closed
immersions in the sense of loc. cit. uniquely extend to arbitrary ξ, fulfilling the
desired properties.
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Assume given a theory T in the sense of [18], compatible with the projection
formula and transitive. We will call T the initial theory. First, let us consider

a triple ξ with Tf = NX/Y [−1] and F ∈ ObD
b
(X). Choose a representative

F 99K F of the hermitian structure on F . We then define T (ξ) by induction
on the length of the complex F . First suppose that F = F d[−d] consists of a
single vector bundle placed in degree d. Choose a finite locally free resolution

· · · → E1 → E0 → f∗F
d → 0.

Endow the vector bundles Ei with smooth hermitian metrics. Observe that
there is an induced isomorphism in D

b
(Y )

E[−d]
∼
99K f∗F ,

whose Bott-Chern classes have already been defined. We then put

T (ξ) = (−1)dT (NX/Y , F
d
, E) + c̃h(E[−d]

∼
99K f∗F). (3.24)

This definition does not depend on the particular choice of representative of
the hermitian structure on F , nor on the choice of E, due to Theorem 2.96
(iii), Proposition 2.98 and [18, Cor. 6.14]. The differential equation is sat-

isfied as a consequence of the differential equations for T (NX/Y , F
d
, E) and

c̃h(E[−d]
∼
99K f∗F). The compatibility with pull-back by morphisms h : Y ′ → Y

transverse to f is immediate as well. Finally, notice that by construction, if

ξ
′
= (NX/Y ,F , f∗F

′
), then

T (ξ′) = T (ξ) + c̃h(f∗F
′
, f∗F). (3.25)

Now suppose that T (ξ) has been defined for F of length l, satisfying in addition
(3.25). If F has length l + 1, let F d be the first non-zero vector bundle of F .
Consider the exact sequence of complexes

(ε) 0 → σ>dF → F → F
d
[−d] → 0,

where σ>d is the bête filtration. Observe that as a distinguished triangle, (ε)

is tightly distinguished, hence c̃h(ε) = 0. Choose hermitian metrics on f∗σ
>dF

and f∗F
d[−d]. We thus have a distinguished triangle in D

b
(Y )

(τ ) f∗σ>dF → f∗F → f∗F d[−d] → f∗σ>dF [1] → . . . .

We define

T (ξ) = T (NX/Y , σ
>dF , f∗σ>dF ) + (−1)dT (NX/Y , F

d
, f∗F d)− c̃h(τ ). (3.26)

This does not depend on the choice of hermitian structures on f∗σ
>dF and

f∗F
d, by the analogue to Theorem 2.67 (vii) for c̃h and because (3.25) holds

by assumption for T (NX/Y , σ
>dF , f∗σ>dF ) and T (NX/Y , F

d
, f∗F d). Similarly,

(3.25) holds for the defined T (ξ). The differential equation and compatibility
with pull-back are proven as in the first case. This concludes the proof of the
existence in case that Tf = NX/Y [−1].
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To conclude with the existence, we may now consider a general ξ. Choose a

hermitian metric on the normal bundle NX/Y . Put ξ
′
= (NX/Y [−1],F , f∗F).

We define

T (ξ) = T (ξ
′
) + f ♭[ch(F) • T̃dm(Tf 99K NX/Y [−1])]. (3.27)

It is straightforward from the definition that T (ξ) satisfies the differential equa-
tion and is compatible with pull-back by morphisms transverse to f . We call T
the extended theory.

We now proceed to prove that the extended theory T is transitive and com-
patible with the projection formula. For the projection formula, it suffices by
Remark 3.18 (ii) to prove

T (ξ ⊗G) = T (ξ) • ch(G)

for G a hermitian vector bundle placed in degree 0. This readily follows from
the inductive construction of the extended theory T and the assumptions on the
initial theory T . One similarly establishes the transitivity and the additivity

We conclude by observing that, since Theorem 2.85 implies that the equa-
tions (3.24), (3.25), (3.26) and (3.27) hold, the theory T (ξ) thus constructed for

arbitrary ξ is completely determined by the values T (ξ
′
), with ξ

′
of the form

(NX/Y , F , E) where F is a hermitian vector bundle and E → f∗F is a finite
locally free resolution.

Once we have seen that any theory of singular Bott-Chern classes as in
[18] can be uniquely extended, then statements (ii) and (iii) follow combining
equation (7.3) and Corollary 9.43 in [18]. Note that the minus sign in equation
(3.23) comes from the fact that S(Tf) = −S(NX/Y ).

In [18, §6] there are proved several anomaly formulas satisfied by analytic
torsion classes for closed immersions. We now indicate the translation of these
formulas to the current setting.

Proposition 3.28. Let T be a theory of analytic torsion classes for closed
immersions. Let

ξ = (f : X → Y,F , f∗F)

be an embedded metrized complex.

(i) If F
′
is another choice of hermitian structure on F and ξ1 is the corre-

sponding relative metrized complex, then

T (ξ1) = T (ξ) + f ♭[c̃h(F
′
,F)].

(ii) If f
′
is another choice of hermitian structure on Tf and ξ2 is the corre-

sponding relative metrized complex, then

T (ξ2) = T (ξ) + f
′

♭[ch(F) • T̃dm(f
′
, f)]. (3.29)

(iii) If f∗F
′
is a different choice of hermitian structure on f∗F , and ξ3 is the

corresponding relative metrized complex, then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).
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Proof. We first prove the second assertion. We will reduce to an application
of Theorem 2.85. Let E 99K Tf be a representative of the hermitian structure
on Tf . By Theorem 2.47 (ii), we may assume the hermitian structure on Tf ′ is
represented by the composition

E ⊕A −→ E 99K Tf

where A is a bounded acyclic complex of hermitian vector bundles and E⊕A→
E is the projection. For every smooth morphism g : Y ′ → Y of complex varieties,
consider the cartesian diagram

X ′

f1

��

g′

// X

f

��
Y ′

g
// Y.

(3.30)

We introduce the assignment that, to every such g and each bounded acyclic
complex of hermitian vector bundles B on X ′, assigns the class

ϕ̃(B) =T (g′
∗
ξ)− T

(
(f1, g

′∗Tf + [B]), g′
∗
F , g∗f∗F

)

+ f1∗

[
ch(g′

∗
F)T̃dm

(
(g′

∗
Tf + [B]), g′

∗
Tf

)
Td(g′

∗
Tf + [B])

]
.

Here we recall that [B] stands for the class of B in KA(X ′) and + denotes the

action of KA(X ′) on D
b
(X ′). It is readily seen that ϕ̃ satisfies the hypothesis

of Theorem 2.85. Hence ϕ̃ = 0. This concludes the proof of (ii).
To prove (i), we consider again the cartesian diagram (3.30). We put on f1

the hermitian structure induced by that of f . Let ϕ̃1 be the assignment that,
to each bounded acyclic complex of hermitian vector bundles B on X ′, assigns
the class

ϕ̃1(B) = T (g′
∗
ξ)− T

(
f1, g

′∗F + [B], g∗f∗F
)
− f1♭[c̃h(B)].

The assignment ϕ̃1 satisfies the hypothesis of Theorem 2.85. Hence ϕ̃1 = 0.
This concludes the proof of (i).

Finally, to prove (iii), to each morphism g : Y ′ → Y , transverse to f , we
associate the cartesian diagram (3.30) and we consider the assignment ϕ̃2 that,
to each bounded acyclic complex of hermitian vector bundles B on Y ′, assigns
the class

ϕ̃2(B) = T (g′
∗
ξ)− T

(
f1, g

′∗F , g∗f∗F + [B]
)
+ c̃h(B).

Again, the assignment ϕ̃2 satisfies the hypothesis of Theorem 2.85. Hence ϕ̃2 =
0. This concludes the proof of (iii).

The following result provides a compatibility relation for analytic torsion
classes for closed immersions with respect to distinguished triangles. The state-
ment is valid for additive theories, in particular the ones we are concerned with.
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Proposition 3.31. Let T be an additive theory of analytic torsion classes for
closed immersions. Let f : X → Y be a closed immersion of smooth complex

varieties. Consider distinguished triangles in D
b
(X) and D

b
(Y ) respectively,

(τ ) : F2 → F1 → F0 → F2[1],

(f∗τ) : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],

and define relative hermitian complexes

ξ0 = (f,F0, f∗F0),

ξ1 = (f,F1, f∗F1),

ξ2 = (f,F2, f∗F2).

Then, the following relation holds:
∑

j

(−1)jT (ξj) = c̃h(f∗τ)− f ♭(c̃h(τ )).

Proof. We can assume that the distinguished triangles τ and f∗τ can be repre-
sented by short exact sequences of complexes of hermitian vector bundles

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0,

ν : 0 −→ V 2 −→ V 1 −→ V 0 −→ 0.

Applying the explicit construction at the beginning of the proof of [18, Theorem
2.3] to each row of the above exact sequences, we obtain exact sequences

ε̃i : 0 −→ Ẽi
2 −→ Ẽi

1 −→ Ẽi
0 −→ 0,

ν̃i : 0 −→ Ṽ i
2 −→ Ṽ i

1 −→ Ṽ i
0 −→ 0

over X × P1 and Y × P1 respectively. The restriction of ε̃i (respectively ν̃i)
to X × {0} (respectively Y × {0}) agrees with ε (respectively ν). Whereas
the restriction to X × {∞} (respectively Y × {∞}) is orthogonally split. The
sequences ε̃i and ν̃i form exact sequences of complexes that we denote ε̃ and ν̃.
It is easy to verify that the restriction to X × {∞} (respectively Y × {∞}) are
orthogonally split as sequences of complexes. Moreover, there are isomorphisms
Ṽj 99K f∗Ẽj , j = 0, 1, 2. We denote

ξ̃j = (f × idP1 , Ẽj , Ṽj).

Then, in the group
⊕

p D̃
2p−1
D (Y,Nf , p), we have the equality

0 = dD
1

2πi

∫

P1

−1

2
log tt̄ •

∑

j

(−1)jT (ξ̃j)

= T (ξ1)− T (ξ0 ⊕ ξ2)−
1

2πi

∫

P1

−1

2
log tt̄ •

∑

j

(−1)j ch(Ṽj)

+
1

2πi

∫

P1

−1

2
log tt̄ •

∑

j

(−1)j(f × idP1)∗(ch(Ẽj) • Td(f × idP1))

= T (ξ1)− T (ξ0 ⊕ ξ2) + c̃h(f∗τ)− f∗(c̃h(τ )Td(f)).

Thus the result follows from the additivity.
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We end this chapter with the relation between the singular Bott-Chern
classes of Bismut-Gillet-Soulé [12] and the theory of homogeneous analytic tor-
sion classes. We draw attention to the difference of normalizations. Let us
momentarily denote by τ the theory of singular Bott-Chern classes of Bismut-
Gillet-Soulé. By the anomaly formulas, it may be extended to arbitrary embed-
ded metrized complexes. Let ξ = (f : X → Y,F , f∗F) be a relative metrized
complex, with Y of dimension d. If τ (p−1,p−1) denotes the component of degree
(p− 1, p− 1) of the current τ , we define

TBGS(ξ)(2p−1,p) = −
1

2(2πi)d−(p−1)
τ (p−1,p−1) ∈ D̃2p−1

D (Y,Nf , p). (3.32)

In the above equation, the factor (2πi)(p−1) comes from the difference in the
normalization of characteristic classes. In [12] the authors use real valued classes
while we use twisted coefficients. The factor (2πi)d comes from our convention
about the Deligne complex of currents. The factor 2 comes from the fact that
the second order differential operator that appears in the Deligne complex is
−2∂∂̄ = 2(2πi)ddc, while the second order differential operator that appears
in the differential equation considered by Bismut, Gillet and Soulé is ddc. The
main reason behind this change is that we want the Bott-Chern classes to be
related to Beilinson’s regulator and not to twice Beilinson’s regulator (see [27]
Theorem 3.5.4). Finally, the minus sign comes from the discrepancy of the dif-
ferential equations of the singular Bott-Chern forms of Bismut-Gillet-Soulé and
the analytic torsion forms of Bismut-Köhler. Note that we are forced to change
this sign because we want to merge singular Bott-Chern forms and analytic
torsion forms on a single theory.

We put

TBGS(ξ) =
∑

p≥1

TBGS(ξ)(2p−1,p).

We have the following comparison theorem [18, Thm. 9.25].

Theorem 3.33. For every embedded metrized complex ξ we have the equality

TBGS(ξ) = T h(ξ)

in
⊕

p D̃
2p−1
D (Y,Nf , p).

3.3 Regular coherent sheaves

In this section we recall some properties of regular sheaves. Let X be a scheme
and let Pn

X = PX(V ) be the projective space of lines of the trivial bundle V
of rank n + 1 on X . Let π : Pn

X → X be the natural projection. By abuse of
notation, if G is a sheaf on X , we will denote also by G the inverse image π∗G.

Definition 3.34 ([38], Lecture 14). A quasi-coherent sheaf F on Pn
X is called

regular if Rqπ∗F(−q) = 0 for all q > 0.

The following properties of regular sheaves will be used in the sequel of this
paper (see [39]).

(i) If G is a quasi-coherent sheaf on X , then G ⊗X OPn
X
(k) is regular for all

k ≥ 0.
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(ii) If the scheme X is noetherian and F is a coherent sheaf on Pn
X , then,

Serre’s vanishing theorem implies that for d large enough F(d) is a regular
sheaf.

(iii) Let 0 → F2 → F1 → F0 → 0 be an exact sequence of quasi-coherent
sheaves on Pn

X and d be an integer.

(a) If F2(d) and F0(d) are regular, then F1(d) is regular.

(b) If F2(d+ 1) and F1(d) are regular, then F0(d) is regular.

(c) If F0(d) and F1(d + 1) are regular and the map R0π∗(F1(d)) →
R0π∗(F0(d)) is surjective, then F2(d+ 1) is regular.

(iv) If F is a regular quasi-coherent sheaf on Pn
X , then F(k) is regular for all

k > 0.

(v) If F is a regular quasi-coherent sheaf on Pn
X the canonical map R0π∗F⊗X

OPn
X
→ F is surjective.

The main property of regular sheaves is the next theorem [39, §8.1].

Theorem 3.35. Let F be a regular quasi-coherent sheaf on Pn
X . Then there

exists a canonical resolution

γcan(F) : 0 → Gn(−n) → Gn−1(−n+ 1) → · · · → G0 → F → 0

where Gi (i = 0, . . . , n) are quasi-coherent sheaves on X. Moreover, for every
k ≥ 0, the sequence

0 → Gk → Gk−1 ⊗ Sym1 V ∨ → · · · → G0 ⊗ Symk V ∨ → R0π∗(F(k)) → 0

is exact. In particular, the sheaves Gk are determined by F up to unique iso-
morphism.

Corollary 3.36. Let X be a noetherian scheme and F a coherent sheaf on P
n
X .

Then, for d large enough, we have a resolution

γd(F) : 0 → Gn(−n− d) → Gn−1(−n− d+ 1) → · · · → G0(−d) → F → 0

where Gi, i = 0, . . . , n are coherent sheaves on X.

Example 3.37. The sheaf O(1) is regular. The canonical resolution of this
sheaf is

0 → Λn+1V ∨(−n) → ΛnV ∨(−n+ 1) → · · · → Λ2V ∨(−1) → V ∨ → O(1) → 0.

Twisting this exact sequence by O(−1) we obtain the Koszul exact sequence

0 → Λn+1V ∨(−n− 1) → ΛnV ∨(−n) → · · · → Λ2V ∨(−2) → V ∨(−1) → O → 0,

that we denote K. We will denote by K(k) the twist of the Koszul exact
sequence by O(k).

The next theorem can be found in [51]. We provide a proof for the sake of
completeness.

63



Theorem 3.38. (i) Let F be a regular coherent sheaf on Pn
X , and let γcan(F)

be the canonical resolution of F as in Theorem 3.35. Let

ε1 : 0 → Fn+k(−n− k) → · · · → F1(−1) → F0 → F → 0

be an exact sequence of coherent sheaves, where the Fi are sheaves on X.
Then there exist natural surjective morphisms of sheaves Fi → Gi on X,
0 ≤ i ≤ n such that the diagram

Fn+1(−n− 1)

��

// Fn(−n)

��

// . . . // F0

��

// F

��

// 0

0 // Gn(−n) // . . . // G0
// F // 0

is commutative.

(ii) Let F be a regular coherent sheaf on X, and γcan(F) the canonical reso-
lution. There exists a resolution of F(1) of the form

ε2 : 0 → Sn+k(−n− k) → · · · → S1(−1) → S0 → F(1) → 0

such that S0 . . . ,Sn+k are coherent sheaves on X and the following diagram
of exact sequences is commutative:

Sn+1(−n− 1)

��

// Sn(−n)

��

// . . . // S0

��

// F(1)

��

// 0

0 // Gn(−n+ 1)

��

// . . . // G0(1)

��

// F(1)

��

// 0

0 0 0.

Proof. For the first assertion, let us introduce the sheaves Nj and Kj defined
as the kernels at each term of the sequences γcan and ε1, respectively. Hence,
there are exact sequences

0 → Nj+1(j + 1) → Gj+1 → Nj(j + 1) → 0,

0 → Kj+1(j + 1) → Fj+1 → Kj(j + 1) → 0.

With these notations, observe that N−1 = K−1 = F . By induction, starting
from the left hand side of the long exact sequences, it is easily checked that
Nj(j+1) and Kj(j+1) are regular sheaves, for j ≥ −1. Also, by Theorem 3.35,
we find that Gj+1 = π∗(Nj(j+1)) for j ≥ −1. We proceed by induction. Assume
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for some fixed k ≥ −1 there is a commutative diagram of exact sequences

0

��

0

��

0

��
0 // Pk+1

//

��

Hk+1
//

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Fk+1
//

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 1) // Gk+1
//

��

Nk(k + 1) //

��

0

0 0,

(3.39)

where Hk+1, Pk and Pk+1 are defined as the kernels of the corresponding mor-
phisms. Suppose in addition that Pk(1) is regular. In order to proceed with the
induction, we need to prove

(i) the map Kk+1(k + 2) → Nk+1(k + 2) is surjective,

(ii) the sheaf Pk+1(1) is regular and

(iii) Fk+2 surjects onto Gk+2.

We first claim that Hk+1 surjects onto Pk(1). Indeed, we apply π∗ to the
last two columns of diagram (3.39). Observing that Fk+1, Gk+1 and Hj+1

are actually sheaves on X and recalling that Kk+1(k + 2) is regular (so that
R1π∗Kk+1(k + 1) = 0), we find a commutative diagram of exact sequences

0

��

0

��
Hk+1

//

��

π∗(Pk(1))

��
Fk+1

//

��

π∗(Kk(k + 1))

��

// 0

Gk+1

��

π∗(Nk(k + 1))

��
0 0.

It follows a that the map Hk+1 ։ π∗(Pk(1)) is a surjection. Since Pk(1) is
regular, we have that π∗(Pk(1))⊗OPn

X
։ Pk(1) is also a surjection, thus proving

the claim. This property implies that the sequence

0 → Pk+1 → Hk+1 → Pk(1) → 0
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is exact. Hence the sequence

0 → Pk+1 → Kk+1(k + 1) → Nk+1(k + 1) → 0

is also exact. We deduce that Kk+1(k+2) → Nk+1(k+2) is surjective. Now the
regularity of Hk+1 and Pk(1), and the surjectivity of Hk+1 ։ π∗(Pk(1)) ensure
the regularity of Pk+1(1). In its turn, this shows that the sequence

0 → π∗(Pk+1(1)) → π∗(Kk+1(k + 2)) → π∗(Nk+1(k + 2)) → 0 (3.40)

is exact. Finally, we observe that there is a surjective map

Fk+2
// // π∗(Kk+1(k + 2)), (3.41)

by the regularity of Kk+2(k + 3). From the sequences (3.40)–(3.41), we finally
obtain a surjection

Fk+2
// // π∗(Nk+1(k + 2)) = Gk+2.

This completes the proof of the inductive step. Note that the first step of the
induction (k = −1) is part of the data. Hence we deduce (i).

For the second item, assume that we have constructed the sequence ε2 up to
Sk(−k). Let Kk be the kernel of the map Sk(−k) → Sk−1(−k + 1). We denote
by Nk the successive kernels of the canonical resolution of F as in the proof of
the first statement. Let us assume furthermore that Kk(k + 1) is regular and
that we have an exact sequence

0 → Pk(1) → Kk(k + 1) → Nk(k + 2) → 0

with Pk(1) regular. Recall that we already know that Nk(k + 1) is regular. We
consider as well the surjection

Gk+1(1) // // Nk(k + 2).

We form the fiber product

Tk+1 := Ker(Kk(k + 1)⊕ Gk+1(1) → Nk(k + 2)).

Observe that Tk+1 is regular, because both Nk(k + 1), Kk(k + 1)⊕ Gk+1(1) are
regular and the morphism

π∗(Kk(k)⊕ Gk+1) // // Gk+1 = π∗(Nk(k + 1))

is surjective. Moreover the arrows Tk+1 → Gk+1(1) and Tk+1 → Kk(k + 1) are
surjective. Therefore, if we define Sk+1 = π∗(Tk+1), we have a commutative
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diagram of exact sequences

0

��

0

��

0

��
0 // Pk+1

//

��

Hk+1
//

��

Pk(1)

��
0 // Kk+1(k + 1) //

��

Sk+1
//

��

Kk(k + 1) //

��

0

0 // Nk+1(k + 2) // Gk+1(1) //

��

Nk(k + 2) //

��

0

0 0,

whereHk+1 and Pk+1 are defined as the kernels of the corresponding morphisms.
To proceed the induction we need to show that

(i) the morphism Kk+1(k + 2) → Nk+1(k + 3) is surjective,

(ii) the sheaf Pk+1(1) is regular and

(iii) the sheaf Kk+1(k + 2) is regular.

First, we observe that, by the definition of Sk+1 and the left exactness of direct
images, the map π∗(Sk+1) → π∗(Gk+1(1)) is surjective. Therefore Hk+1(1) is
regular. Moreover, one can check that Sk+1 is the fiber product

Sk+1 = Ker (π∗(Gk+1(1))⊕ π∗(Kk(k + 1)) → π∗(Nk(k + 2))) .

This implies easily that π∗(Hk+1) = π∗(Pk(1)). We also observe that, by defini-
tion of fiber product, Pk(1) = Ker(Tk+1 → Gk+1(1)). Since Sk+1 surjects onto
Tk+1, we deduce that the morphism Hk+1 → Pk(1) is surjective. From this
we conclude that the morphism Kk+1(k + 2) → Nk+1(k + 3) is surjective and
that the sheaf Pk+1(1) is regular. Since Nk+1(k + 3) is regular, we deduce that
Kk+1(k + 2) is regular.

This concludes the proof of the inductive step and, as with the previous
statement, also the proof of the theorem.

We end this section recalling the notion of generating class of a triangulated
category.

Definition 3.42. Let D be a triangulated category. A generating class is a
subclass C of D such that the smallest triangulated subcategory of D that
contains C is equivalent to D via the inclusion.

A direct consequence of Theorem 3.35 is the following result.

Corollary 3.43. The class of objects of the form G(k), with G a coherent sheaf
in X and −n ≤ k ≤ 0, is a generating class of Db(Pn

X).
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3.4 Analytic torsion for projective spaces

Let n be a non-negative integer, V the n + 1 dimensional vector space C
n+1

and Pn := Pn(V ) the projective space of lines in V . We write V for the vector
space V together with the trivial metric. We will denote by V the trivial vector
bundle of fiber V over any base.

We may construct natural relative hermitian complexes that arise by consid-
ering the invertible sheaves O(k), their cohomology and the usual Fubini-Study
metric.

If we endow the trivial sheaf with the trivial metric andO(1) with the Fubini-
Study metric, then the tangent bundle Tπ carries a quotient hermitian structure
via the short exact sequence

0 → OPn
C
→ O(1)n+1 → Tπ → 0. (3.44)

We will denote the resulting hermitian vector bundle by T
FS

π and call it the
Fubini-Study metric of Tπ. We remark that the Fubini-Study metric is the
quotient metric and not the hermitian structure obtained by considering the

exact sequence (3.44) as a resolution of Tπ. The arrow (π, T
FS

π ) in Sm∗/C will

be written πFS.
We endow the invertible sheaves O(k) with the k-th tensor power of the

Fubini-Study metric on O(1). We refer to them by O(k).
We now describe natural hermitian structures on the complexes π∗O(k).

First assume k ≥ 0. Then the sheaf O(k) is π-acyclic, hence

π∗O(k) = H0(Pn
C,O(k))

as a complex concentrated in degree 0. This space is naturally equipped with
the L2 metric with respect to the Fubini-Study metric on O(k) and the volume
form µ = c1(O(1))/n! on P

n
C
. Namely, given global sections s, t of O(k), we put

〈s, t〉L2 =

∫

Pn
C

〈s(x), t(x)〉xµ(x).

Secondly, suppose −n ≤ k < 0. Then π∗O(k) = 0 and we put the trivial
metric on it.

Finally, let k ≤ −n− 1. Then the cohomology of π∗O(k) is concentrated in
degree n and there is an isomorphism,

π∗O(k) ∼= H0(Pn
C,O(−k − n− 1))∨[−n].

Notice that this isomorphism is canonical due to Grothendieck duality and to
the natural identification ωPn

C
= O(−n− 1). Hence we may endow π∗O(k) with

the dual of the L2 metric on H0(Pn
C
,O(−k − n− 1)).

The following notation will be useful.

Notation 3.45. For every integer k, we introduce the relative metrized complex

ξn(k) = (πFS,O(k), π∗O(k)), (3.46)

where O(k) is endowed with the Fubini-Study metric and π∗O(k) with the
hermitian structure above.
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If X is a smooth complex variety, then ξn(k) can be pulled back to Pn
X .

We will employ the same notation to refer to this pull-back relative hermitian
complex.

Let F be a metrized coherent sheaf on X . Then we define F(k) and π∗F(k)
by the equality

ξn(k)⊗F = (πFS,F(k), π∗F(k)).

Definition 3.47. Let X be a complex smooth variety and π : Pn
X → X the

projection. An analytic torsion class for the relative hermitian complex ξ =
(π,F , π∗F) is a class η̃ ∈

⊕
p D̃

2p−1(X, p) such that

dD η̃ = ch(π∗F)− π♭[ch(F)]. (3.48)

The existence of this class is guaranteed by the Grothendieck-Riemann-Roch
theorem, which implies that the two currents at the right hand side of equation
(3.48) are cohomologous. Since the map π is smooth, the analytic torsion class
is the class of a smooth form.

Definition 3.49. Let n be a non-negative integer. A theory of analytic tor-
sion classes for projective spaces of dimension n is an assignment that, to each
relative metrized complex

ξ = (π : Pn
X → X,F , π∗F)

of relative dimension n, assigns a class of differential forms

T (ξ) ∈
⊕

p

D̃2p−1(X, p),

satisfying the following properties.

(i) (Differential equation) The relation

dD T (ξ) = ch(π∗F)− π♭[ch(F)] (3.50)

holds.

(ii) (Functoriality) Given a morphism f : Y −→ X , we form the cartesian
diagram

Pn
Y

πY

��

f ′

// Pn
X

πX

��
Y

f
// X.

Then the equality
T (f∗ξ) = f∗T (ξ)

holds.

(iii) (Additivity and normalization) If ξ1 and ξ2 are relative metrized com-
plexes on X , then

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2).
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(iv) (Projection formula) For any hermitian vector bundle G on X , and an
integer −n ≤ k ≤ 0, the equality

T (ξn(k)⊗G) = T (ξn(k)) • ch(G).

holds.

A theory of analytic torsion classes for projective spaces is an assignment as
before, for all non-negative integers n.

Definition 3.51. Let T be a theory of analytic torsion classes for projective
spaces of dimension n. Fix as base space the point SpecC. The characteristic
numbers of T are

tn,k(T ) := T (ξn(k)) ∈ D̃1(SpecC, 1) = R, k ∈ Z. (3.52)

The characteristic numbers tn,k(T ), −n ≤ k ≤ 0 will be called the main char-
acteristic numbers of T .

The central result of this section is the following classification theorem.

Theorem 3.53. Let n be a non-negative integer and let t = (tn,k)k=−n,...,0 be a
family of arbitrary real numbers. Then there exists a unique theory Tt of analytic
torsion classes for projective spaces of dimension n, such that tn,k(Tt) = tn,k.

Before proving Theorem 3.53, we show some consequences of the definition
of the analytic torsion classes.

First we state some anomaly formulas that determine the dependence of the
analytic torsion classes with respect to different choices of metrics.

Proposition 3.54. Let T be a theory of analytic torsion classes for projective
spaces of dimension n. Let

ξ = (π : Pn
X → X,F , π∗F)

be a relative metrized complex.

(i) If F
′
is another choice of metric on F and ξ1 is the corresponding relative

metrized complex, then

T (ξ1) = T (ξ) + π♭[c̃h(F
′
,F)].

(ii) If π′ is another choice of hermitian structure on π and ξ2 is the corre-
sponding relative metrized complex, then

T (ξ2) = T (ξ) + π′
♭[ch(F) • T̃dm(π′, π)]. (3.55)

(iii) If π∗F
′
is a different choice of metric on π∗F , and ξ3 is the corresponding

relative metrized complex, then

T (ξ3) = T (ξ)− c̃h(π∗F
′
, π∗F).

Proof. The proof is the same than the proof of Proposition 3.28.
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Next we state the behavior of analytic torsion classes for projective spaces
with respect to distinguished triangles.

Proposition 3.56. Let T be a theory of analytic torsion classes for projective
spaces of dimension n. Let X be a smooth complex variety and π : Pn

X → X the

projection. Consider distinguished triangles in D
b
(Pn

X) and D
b
(X) respectively:

(τ ) : F2 → F1 → F0 → F2[1],

(π∗τ) : π∗F2 → π∗F1 → π∗F0 → π∗F2[1],

and define relative metrized complexes

ξ0 = (π,F0, π∗F0),

ξ1 = (π,F1, π∗F1),

ξ2 = (π,F2, π∗F2).

Then, the following relation holds:
∑

j

(−1)jT (ξj) = c̃h(π∗τ)− π♭(c̃h(τ )).

Proof. The proof is similar to the argument for Proposition 3.31, and is thus
left as an exercise.

In view of this proposition, we see that the additivity axiom is equivalent to
the apparently stronger statement of the next corollary.

Corollary 3.57. With the assumptions of Proposition 3.56, if τ and π∗τ are
tightly distinguished, then

T (ξ1) = T (ξ0) + T (ξ2).

Corollary 3.58. Let ξ = (π,F , π∗F) be a relative metrized complex and let
ξ[i] = (π,F [i], π∗F [i]) be the shifted relative metrized complex. Then

T (ξ) = (−1)iT (ξ[i]).

Proof. It is enough to treat the case i = 1. We consider the tightly distinguished
triangle

F 99K cone(idF ) 99K F [1] 99K

and the analogous triangle for direct images. Since cone(idF) and cone(idπ∗F
)

are meager, we have, by the anomaly formulas and the additivity axiom,

T (π, cone(idF), cone(idπ∗F
)) = T (π, 0, 0) = 0.

Hence, the result follows from Corollary 3.57.

Next we rewrite Proposition 3.56 in the language of complexes of metrized
coherent sheaves. Let

ε : 0 → Fm → · · · → F l → 0

be a bounded complex of coherent sheaves on Pn
X provided with hermitian struc-

tures as in Definition 2.71 and assume that there are chosen hermitian structures
on the complexes π∗Fj , j = l, . . . ,m. Let [ε] and [π∗ε] be as in definitions 2.71
and 2.73.

71



Corollary 3.59. With the above hypothesis,

T (π, [ε], [π∗ε]) =
m∑

j=l

(−1)jT (π,F j , π∗Fj).

Moreover, if ε is acyclic, then

T (π, [ε], [π∗ε]) = c̃h(π∗ε)− π♭[c̃h(ε)].

Finally, we show that the projection formula holds in greater generality:

Proposition 3.60. Let T be a theory of analytic torsion classes for projective
spaces of dimension n. Let X be a smooth complex variety, let ξ = (π,F , π∗F)

be a relative metrized complex and let G be an object in D
b
(X). Then

T (ξ ⊗ G) = T (ξ) • ch(G). (3.61)

Proof. By the anomaly formulas, if equation (3.61) holds for a particular choice
of hermitian structures on π, F and π∗F then it holds for any other choice.
Moreover, if we are in the situation of Proposition 3.56 and equation (3.61)
holds for two of ξ0, ξ1, ξ2, then it holds for the third. Using that the objects of
the form H(k), where H is a coherent sheaf on X and k = −n, . . . , 0, constitute
a generating class of Db(Pn

X), we are reduced to prove the equation

T (ξn(k)⊗ G) = T (ξn(k)) • ch(G).

for k = −n, . . . , 0.
Now, if

G2 99K G1 99K G0 99K

is a distinguished triangle in D
b
(X) and equation (3.61) is satisfied for two of

G2, G1, G0, then it is satisfied also by the third. Therefore, since the complexes
of vector bundles concentrated in a single degree constitute a generating class
of Db(X), the projection formula axiom implies the proposition.

Proof of Theorem 3.53 . To begin with, we prove the uniqueness assertion. As-
sume a theory of analytic torsion classes T , with main characteristic numbers
tn,k, −n ≤ k ≤ 0, exists. Then, the anomaly formulas (Proposition 3.54) imply
that, if the value of T (π,F , π∗F) is fixed for a particular choice of hermitian

structures on π, F and π∗F then the value of T (π′,F
′
, π∗F

′
) for any other

choice of hermitian structures is also fixed. By Proposition 3.56, if we know the
value of T (π,F , π∗F), for F in a generating class, then T is determined. By
the projection formula (Proposition 3.60), the characteristic numbers determine
the values of T (ξ(k) ⊗ G), k = −n, . . . , 0. Finally, since by Corollary 3.43, the
objects of the form G(k), k = −n, . . . , 0 form a generating class, we deduce that
the characteristic numbers determine the theory T . Thus, if it exists, the theory
Tt is unique.

In particular, from the above discussion we see the main characteristic num-
bers determine all the characteristic numbers. We now derive an explicit induc-
tive formula for them.

Consider the metrized Koszul resolution

K : 0 → Λn+1V
∨
(−n− 1) → · · · → Λ1V

∨
(−1) → OPn

C
→ 0, (3.62)
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where O(k), for k 6= 0, has the Fubini-Study metric and OPn
C
has the trivial

metric. We will denote by K(k) the above exact sequence twisted by O(k),
k ∈ Z, again with the Fubini-Study metric. Recall the definition of the relative
metrized complexes ξn(k) (3.46). In particular, for every k, we have fixed natural
hermitian structures on the objects π∗O(k − j). According to definitions 2.71

and 2.73, we may consider the classes [K(k)] and [π∗K(k)] in D
b
(Pn

C
) and

D
b
(SpecC), respectively. By Corollary 3.59, for each k ∈ Z we find

n+1∑

j=0

(−1)jT (ξn(k − j)⊗ ΛjV
∨
) = c̃h(π∗K(k))− πFS

♭ [c̃h(K(k))].

Because ΛjV
∨
is isometric to C(

n+1

j ) with the trivial metric, the additivity axiom
for the theory T and the definition of the characteristic numbers tn,k−j provide

T (ξn(k − j)⊗ ΛjV
∨
) = tn,k−j

(
n+ 1

j

)
.

Therefore we derive
n+1∑

j=0

(−1)j
(
n+ 1

j

)
tn,k−j = c̃h(π∗K(k))− πFS

♭ [c̃h(K(k))]. (3.63)

This equation gives us an inductive formula for all the characteristic numbers
tn,k once we have fixed n+1 consecutive characteristic numbers and, in partic-
ular, once we have fixed the main characteristic numbers.

To prove the existence, we follow the proof of the uniqueness to obtain a for-
mula for T (ξ). We start with the main characteristic numbers t = (tn,k)−n≤k≤0.
We define the characteristic numbers tn,k for k ∈ Z inductively using equation
(3.63).

We will need the following results.

Lemma 3.64. Let
η : 0 → F2 → F1 → F0 → 0

be a short exact sequence of metrized coherent sheaves on X. Let k be an integer
let F(k) and π∗F(k) be as in Notation 3.45. Thus we have an exact sequence
η(k) of metrized coherent sheaves on Pn

X and a distinguished triangle π∗η(k).

Then, in the group
⊕

p D̃
2p−1(X, p), it holds

c̃h(π∗η(k)) = πFS
♭ (c̃h(η(k))). (3.65)

Proof. By the Riemann-Roch theorem for the map Pn
C
→ SpecC we have

ch(π∗O(k)) = π∗(ch(O(k))Td(πFS)). (3.66)

Hence, by the properties of Bott-Chern classes and the choice of metrics

c̃h(π∗η(k)) = c̃h(η) • ch(π∗O(k))

= c̃h(η) • π∗(ch(O(k))Td(πFS))

= π∗

(
c̃h(η(k)) • Td(πFS)

)

= πFS
♭ (c̃h(η(k))).
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Lemma 3.67. Let

µ : 0 → Mm(−m− d) → · · · → Ml(−l− d) → 0 (3.68)

be an exact sequence of metrized coherent sheaves on Pn
X, where, for each i =

l, . . . ,m, Mi is a metrized coherent sheaf on X, and Mi(k) is as in Notation
3.45. On π∗Mi(k) we consider the hermitian structures given also by Notation

3.45. Then, in the group
⊕

p D̃
2p−1(X, p) it holds

m∑

i=l

(−1)itn,−d−i ch(Mi) = c̃h(π∗µ)− πFS
♭ (c̃h(µ)). (3.69)

Proof. We first observe that, if there is a commutative diagram of exact se-
quences

0

��

0

��
µ′ 0 // M

′

m(−m− d) //

��

. . . // M
′

l(−l − d) //

��

0

µ 0 // Mm(−m− d) //

��

. . . // Ml(−l − d) //

��

0

µ′′ 0 // M
′′

m(−m− d) //

��

. . . // M
′′

l (−l− d) //

��

0

0 0

ξm
. . . ξl,

and equation (3.69) is true for two of µ, µ′ and µ′′, then it is true for the third.
Indeed, on the one hand we have

m∑

i=l

(−1)itn,−d−i

(
ch(M

′

i)− ch(Mi) + ch(M
′′

i )
)
=

m∑

i=l

(−1)itn,−d−i dD c̃h(ξi).

But, if t ∈ D1(SpecC, 1) = R is a real number, in the group
⊕

p D̃
2p−1(X, p) we

have
t dD c̃h(ξi) = − dD(t • c̃h(ξi)) = 0.

On the other hand

c̃h(π∗µ′)− c̃h(π∗µ) + c̃h(π∗µ′′) =

πFS
♭ (c̃h(µ′))− πFS

♭ (c̃h(µ)) + πFS
♭ (c̃h(µ′′))

by Lemma 3.64.
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Now the proof of the lemma is done by induction on the length of the complex
r = m− l. If r ≤ n then µ(d+ l) has the same shape as the canonical resolution
of the zero coherent sheaf. By the uniqueness of the canonical resolution, it
follows that Mi = 0, for i = l, . . . ,m. Using the above observation to take into
account the possibility to consider non trivial metrics on the zero sheaf, the
lemma is proved in this case.

Assume now that r > n. Let K be the Koszul exact sequence (3.62). Then
K(1)⊗Ml is the canonical resolution of the regular coherent sheaf Ml(1). By
Theorem 3.38 (i) there is a surjection of exact sequences µ → K(−l − d)⊗Ml

whose kernel is an exact sequence of the form

µ′ : 0 → M′
m(−m− d) → · · · → M′

l+1(−d− l − 1) → 0.

We consider on K the metrics of (3.62), for i = l+1, . . . ,m, we choose arbitrary
metrics on M′

i and denote by µ′ the corresponding exact sequence of metrized
coherent sheaves.

By induction hypothesis, µ′ satisfies equation (3.69). Moreover, since the
characteristic numbers tn,k for k 6∈ [0, n] are defined using equation (3.63), the
exact sequence K(−l− d)⊗Ml also satisfies equation (3.69). Hence the lemma
follows from the previous observation.

We now treat the case of complexes concentrated in a single degree. Let F
be a coherent sheaf on Pn

X with a hermitian structure and let π∗F be a choice
of a hermitian structure on the direct image complex. Write

ξ = (πFS,F , π∗F)

for the corresponding relative metrized complex.
Choose an integer d such that F(d) is regular. Then we have the resolution

γd(F) of Corollary 3.36. More generally, let µ be an exact sequence of the form

0 → Sm(−d−m) → · · · → S1(−d− 1) → S0(−d) → F → 0,

where the Si, i = 0, . . . ,m are coherent sheaves on X . Assume that we have
chosen hermitian structures on the sheaves Si. Using Notation 3.45 and defini-
tions 2.71 and 2.73 we have objects [µ] in KA(Pn

X) and [π∗µ] in KA(X). Then
we write

Tt,µ(ξ) =

m∑

j=0

(−1)jtn,j−d ch(Sj)− c̃h(π∗µ) + πFS
♭ (c̃h (µ)) (3.70)

Lemma 3.71. Given any choice of metrics on the sheaves Gi, (respectively G′
i)

i = 0, . . . , n, that appear in the resolution γd(F) (respectively γd+1(F)), denote
by γd and γd+1 the corresponding exact sequences of metrized coherent sheaves.
Then

Tt,γd+1
(ξ) = Tt,γd

(ξ).

In particular, Tt,γd
(ξ) does not depend on the choice of metric on the sheaves

Gi.

Proof. By Theorem 3.38 (ii), there is an exact sequence

µ : 0 → Sn+k(−n− k − d− 1) → · · · → S0(−d− 1) → F → 0, (3.72)
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and a surjection of exact sequences f : µ → γd extending the identity on F .
Here Si, i = 0, . . . , n+ k are coherent sheaves on X with hermitian structures.

By Theorem 3.38 (i) there is a surjection of exact sequences µ −→ γd+1

extending the identity on F , whose kernel is an exact sequence

ε : 0 → Mn+k(−n− k − d− 1) → · · · → M0(−d− 1) → 0, (3.73)

where Mi, i = 0, . . . , n + k are coherent sheaves on X , and we have chosen
arbitrarily an hermitian structure on them. Denote by ηi the rows of the exact
sequence

0 → ε→ µ→ γd+1 → 0.

Observe that ηi = η′i(−i− d− 1) for some short exact sequence η′i on X . When

j ≥ n we denote G
′

j = 0. Then, we have

n+k∑

j=0

(−1)jtn,j−d−1

(
ch(G

′

j)− ch(Sj) + ch(Mj)
)
=

n+k∑

j=0

(−1)jtn,j−d−1 dD c̃h(η′i) = 0. (3.74)

By Proposition 2.75, we have

c̃h(π∗γd+1)− c̃h(π∗µ) + c̃h(π∗ε) =

n+k∑

j=0

(−1)j c̃h(π∗ηj) (3.75)

and

c̃h(γd+1)− c̃h(µ) + c̃h(ε) =

n+k∑

j=0

(−1)j c̃h(ηj). (3.76)

Combining equations (3.74), (3.75) and (3.76) and lemmas 3.64 and 3.67 we
obtain

Tt,µ(ξ) = Tt,γd+1
(ξ). (3.77)

We consider now cone(µ, γd). On it we put the obvious hermitian structure
induced by µ and γd, cone(µ, γd). On π∗ cone(µ, γd), we put the obvious family
of hermitian metrics induced by π∗µ and π∗γd, and denote it as π∗ cone(µ, γd).
By Corollary 2.76 we have

c̃h(cone(µ, γd)) = c̃h(γd)− c̃h(µ), (3.78)

and
c̃h(π∗ cone(µ, γd)) = c̃h(π∗γd)− c̃h(π∗µ). (3.79)

Observe that cone(µ, γd)
i
= S−i−1(i − d) ⊕ G−i(i − d). Combining Lemma

3.67 for cone(µ, γd) with equations (3.78) and (3.79), we obtain

Tt,µ(ξ) = Tt,γd
(ξ), (3.80)

Together with equation (3.77) this proves the lemma.

After this lemma, we are in position to give a definition of Tt.
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Definition 3.81. Let n ≥ 0 be an integer and let tn,j, 0 ≤ j ≤ n be real
numbers. Let ξ = (πFS,F , π∗F) be a relative metrized complex. We next
define Tt(ξ). Let tn,j , j < 0 and j > n be determined by equation (3.63).

The definition is given by induction on the length of the cohomology of F
If the cohomology of F has at most a single non zero coherent sheaf H sitting
at degree k, then F and π∗F determine hermitian structures on H[−k] and
π∗H[−k] respectively. We choose an integer d such that H(d) is regular and we
write

Tt(ξ) = (−1)kTt,γd(H)(π
FS,H, π∗H).

By Lemma 3.71, this does not depend on the choice of d nor on the choice of
metrics on γd(H).

Assume that we have already defined the analytic torsion classes for all
complexes whose cohomology has length less than l and that the cohomology
of F has length l. Let H be the highest cohomology sheaf of F , say of degree
k. Choose auxiliary hermitian structures on H[−k] and π∗H[−k]. There is a
unique natural map H[−k] 99K F . Then we define

Tt(ξ) = Tt(π
FS,H[−k], π∗H[−k])

+ Tt(π
FS, cone(H[−k],F), cone(π∗H[−k], π∗F)).

It follows from Theorem 2.27 (iv) that this definition does not depend on the
choice of the auxiliary hermitian structures.

Finally, we consider the case when Tπ has a metric different from the Fubini-

Study metric. Thus, let ξ = (π,F , π∗F) and write ξ
′
= (πFS,F , π∗F). Then we

put

Tt(ξ) = Tt(ξ
′
) + π♭[ch(F ) • T̃dm(π, πFS)]. (3.82)

This ends the definition of Tt.

It remains to prove that Tt satisfies axioms (i) to (iv). Axiom (i) follows
from the differential equations satisfied by the Bott-Chern classes. Axiom (ii)
follows from the functoriality of the canonical resolution, the Chern forms and
the Bott-Chern classes. Axiom (iii) follows from the additivity of the canonical
resolution and the additivity of the Chern character. Finally Axiom (iv) follows
from the multiplicativity of the Chern character.

We finish this section showing the compatibility of analytic torsion classes
with the composition of projective bundles.

Let X be a smooth complex variety. Consider the commutative diagram
with cartesian square

P
n1

X ×
X
P
n2

X

p1

{{vv
vv

vv
vv

v p2

##H
HH

HH
HH

HH

p

��

P
n1

X

π1

%%J
JJJJJJJJJ

P
n2

X

π2

yytttttttttt

X

On π1 and π2 we introduce arbitrary hermitian structures and on p1 and p2 the
hermitian structures induced by the cartesian diagram.
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Proposition 3.83. Let F be an object of D
b
(Pn1

X ×
X
P
n2

X ). Put arbitrary hermi-

tian structures on (p1)∗F , (p2)∗F , and p∗F . Then

T (π1) + (π1)♭(T (p1)) = T (π2) + (π2)♭(T (p2)), (3.84)

where we are using the convention at the end of Definition 3.3.

Proof. By the anomaly formulas (Proposition 3.54), if equation (3.84) holds for
a particular choice of hermitian structures on F , (p1)∗F , (p2)∗F , and p∗F , then
it holds for any other choice.

Let
F2 99K F1 99K F0 99K

be a distinguished triangle and put hermitian structures on the direct images
as before. Then Proposition 3.56 implies that, if equation (3.84) holds for two
of them, then it also holds for the third. Since the objects of the form G(k, l) :=
p∗G ⊗ p∗1O(k) ⊗ p∗2O(l) are a generating class of Db(Pn1

X ×
X

P
n2

X ), the previous

discussion shows that it is enough to prove the case F = G(k, l), with the
hermitian structure of F induced by a hermitian structure of G and the Fubini-
Study metric on O(k) and O(l), and the hermitian structures on the direct
images defined as in (3.46). In this case the result follows easily from the
functoriality and the projection formula.

3.5 Compatible analytic torsion classes

In this section we study the compatibility between analytic torsion classes for
closed immersions and analytic torsion classes for projective spaces. It turns out
that, once the compatibility between the diagonal embedding of Pn into Pn×Pn

and the second projection of Pn × Pn onto Pn is established, then all the other
possible compatibilities follow. Essentially this observation can be traced back
to [15].

Let n, V , V and P
n(V ) be as in the previous section. We consider the

following diagram

Pn

id $$H
HHHHHHHH

∆ // Pn × Pn
p1 //

p2

��

Pn

π

��
P
n

π1

// SpecC .

On Pn we have the tautological short exact sequence

0 → O(−1) → V → Q→ 0 .

This induces on Pn × Pn the exact sequence

0 → p∗2O(−1) → V → p∗2Q→ 0 .

There is also an injection
p∗1O(−1) →֒ V.

By composition, we obtain a morphism

p∗1O(−1) → p∗2Q,
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hence a section of p∗2Q ⊗ p∗1O(1). The zero locus of this section is the image of
the diagonal. Moreover, the associated Koszul complex is quasi-isomorphic to
∆∗OPn . That is, the sequence

0 → Λn(p∗2Q
∨)⊗ p∗1OPn(−n) → . . .

· · · → Λ1(p∗2Q
∨)⊗ p∗1OPn(−1) → OPn×Pn → ∆∗OPn → 0 (3.85)

is exact.
On TPn and TPn×Pn we consider the Fubini-Study metrics. We denote by ∆

and p2 the morphisms of Sm∗/C determined by these metrics. As in Example

2.112, we have that p2 ◦∆ = idPn , where TidPn
= 0.

The Fubini-Study metric on O(−1) and the metric induced by the tautologi-
cal exact sequence on Q, induce a metric on the Koszul complex that we denote
K(∆). This is a hermitian structure on ∆∗OPn .

Finally on OPn we consider the trivial metric. This is a hermitian structure
on (p2)∗K(∆).

Fix a real additive genus S and denote by TS the theory of analytic torsion
classes for closed immersions that is compatible with the projection formula and
transitive, associated to S ([18, Cor. 9.40], see Theorem 3.22). Moreover, fix
a family of real numbers t = {tnk | n ≥ 0, −n ≤ k ≤ 0} and denote Tt the
theory of generalized analytic torsion classes for projective spaces associated to
this family.

Definition 3.86. The theories of analytic torsion classes TS and Tt are called
compatible if the following formula holds:

Tt(p2,K(∆),OPn) + (p2)♭(TS(∆,OPn ,K(∆))) = 0. (3.87)

The reason behind this definition is that compatible analytic torsion classes
for closed immersions and projective spaces should combine to provide analytic
torsion classes for arbitrary projective morphisms, and these classes should be
transitive. In particular the transitivity condition for the composition idPn =
p2 ◦∆ should give us

0 = T (idPn ,OPn ,OPn) = Tt(p2,K(∆),OPn) + (p2)♭(TS(∆,OPn ,K(∆))).

Theorem 3.88. Let S be a real additive genus. Then there exists a unique
family of real numbers t = {tn,k | n ≥ 0, −n ≤ k ≤ 0} such that the theories
of analytic torsion classes TS and Tt are compatible. The theory Tt will also be
denoted TS.

Proof. The first step is to make explicit equation (3.87) in terms of the main
characteristic numbers t. To this end, first observe that, since the exact sequence

0 → Tp2
→ TPn×Pn → p∗2TPn → 0 (3.89)

is split and the hermitian metric on TPn×Pn is the orthogonal direct sum metric,
we deduce that p2 = π∗

1(π
FS). Next, we denote by K(∆)i the component of

degree i of the Koszul complex, and we define

(p2)∗K(∆)i =

{
OPn , for i = 0,

0, for i > 0.
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Finally using Corollary 3.59, functoriality and the compatibility with the pro-
jection formula, we derive

Tt(p2,K(∆),OPn) =

n∑

i=0

(−1)iTt(p2,K(∆)i, (p2)∗K(∆)i)

=

n∑

i=0

(−1)iTt(π
∗
1ξn(−i)⊗ ΛiQ

∨
)

=

n∑

i=0

(−1)itn,−i ch(Λ
iQ

∨
).

Thus, the second and last step is to solve the equation

n∑

i=0

(−1)itn,−i ch(Λ
iQ

∨
) = −(p2)∗(TS(∆,OPn ,K(∆)) • Td(p2)). (3.90)

Since the left hand side of equation (3.90) is closed, in order to be able to
solve this equation we have to show that the right hand side is also closed. We
compute

dD(p2)∗(TS(∆,OPn ,K(∆)) • Td(p2))

= (p2)∗

(
n∑

i=0

(−1)i ch(K(∆)i)Td(p2)−∆∗(ch(OPn)Td(∆))Td(p2)

)

= (p2)∗

(
n∑

i=0

(−1)ip∗2(ch(Λ
iQ

∨
))p∗1(ch(O(−i)))Td(p2)

)
− 1

=

n∑

i=0

(−1)i ch(ΛiQ
∨
)(p2)∗

(
p∗1(ch(O(−i)))Td(p2)

)
− 1

=

n∑

i=0

(−1)i ch(ΛiQ
∨
)π∗

1π∗
(
ch(O(−i))Td(π)

)
− 1

= 1− 1 = 0.

In the first equality we have used the differential equation of TS . In the sec-
ond equality we have used the definition of the Koszul complex, the equation
ch(OPn) = 1 and the fact that, by the choice of hermitian structures on T∆
and Tp2 we have Td(∆) •∆∗(Td(p2)) = 1. The third equality is the projection
formula and the fourth is base change for cohomology. For the last equality we
have used equation (3.66).

Both sides of equation (3.90) are closed, and are defined up to boundaries,
hence this is an equation in cohomology classes. From the tautological exact
sequence we obtain exact sequences

0 → ΛkQ∨ → ΛkV ∨ → Λk−1Q∨ ⊗O(1) → 0,

that give us equations

ch(ΛkQ∨) =

(
n+ 1

k

)
− ch(Λk−1Q∨) ch(O(1)).
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Hence

ch(ΛkQ∨) =

k∑

i=0

(−1)i
(
n+ 1

k − i

)
ch(O(i)).

Since the classes ch(O(i)) for i = 0, . . . , n form a basis of
⊕

pH
2p
D (Pn,R(p)),

the same is true for the classes ch(ΛiQ∨), i = 0, . . . , n. Therefore, if 11 ∈
H1

D(P
n,R(1)) is the class represented by the constant function 1, the classes

11•ch(ΛiQ∨), i = 0, . . . , n form a basis of
⊕n+1

p=1 H
2p−1
D (Pn,R(p)), which implies

that equation (3.90) has a unique solution.

Remark 3.91. Given a theory T of analytic torsion classes for projective spaces,
obtained from an arbitrary choice of characteristic numbers, in general, it does
not exist an additive genus such that the associated theory of singular Bott-
Chern classes is compatible with T . It would be interesting to characterize the
collections of characteristic numbers that arise from Theorem 3.88.

By definition, compatible analytic torsion classes for closed immersions and
projective spaces satisfy a compatibility condition for the trivial vector bundle
and the diagonal embedding. When adding the functoriality and the projection
formula, we obtain compatibility relations for arbitrary sections of the trivial
projective bundle and arbitrary objects.

Let X be a smooth complex variety, let π : Pn
X → X be the projective space

over X and let s : X → P
n
X be a section. Choose any hermitian structure on Tπ.

Since we have an isomorphism Ts 99K s
∗Tπ[−1], this hermitian structure induces

an hermitian structure on s. Denote by π and s the corresponding morphisms
in Sm∗/C. With this choice of hermitian structures, we have

π ◦ s = (π ◦ s, cone(s∗Tπ[−1], s∗Tπ[−1])) = (idX , 0),

because the cone of the identity is meager.

Proposition 3.92. Let S be a real additive genus. Let TS denote both, the
theory of analytic torsion classes for closed immersions determined by S, and
the theory of analytic torsion classes for projective spaces compatible with it.

Let F be an object of D
b
(X). Put a hermitian structure on s∗F . Then

TS(π, s∗F ,F) + π♭(TS(s,F , s∗F)) = 0. (3.93)

Proof. By the anomaly formulas Proposition 3.28 and Proposition 3.54, if equa-
tion (3.93) holds for a particular choice of hermitian structure of s∗F then it
holds for any other choice. Therefore we can assume that the hermitian struc-
ture of s∗F is given byK(s)⊗π∗F , whereK(s) is the Koszul complex associated
to the section s.

By the projection formulas, if equation (3.93) holds for the trivial bundle

OX then it holds for arbitrary objects of D
b
(X).

We now prove that, if equation (3.93) holds for a particular choice of hermi-
tian structure π, then it holds for any other choice. Thus, assume that equation
(3.93) is satisfied for π and s. Let π′ another choice of hermitian structure on π
and let s′ be the hermitian structure induced on s. On the one hand, we have

TS(π
′,K(s),OX) = TS(π,K(s),OX) + π∗

(
ch(K(s) • T̃dm(π′, π) • Td(π′))

)
.

(3.94)
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On the other hand, we have

TS(s
′,F , s∗F) • Td(π′)

=
(
TS(s,F , s∗F) + s∗(T̃dm(s′, s)Td(s′))

)

•
(
Td(π)− dD(T̃dm(π′, π) • Td(π′))

)

= TS(s,F , s∗F) • Td(π)

+ s∗(T̃dm(s′, s)Td(s′)) • Td(π′)

− TS(s,F , s∗F) • dD(T̃dm(π′, π) • Td(π′)) (3.95)

In the group
⊕

p D̃
2p−1
D (Pn

X , Ns, p) we have

TS(s,F , s∗F) • dD(T̃dm(π′, π) • Td(π′))

=
(
ch(K(s))− s∗(Td(s))

)
•
(
T̃dm(π′, π) • Td(π′)

)
. (3.96)

We now observe that, by the definition of the hermitian structure of s and s′

we have the relation

Td(s) • s∗T̃dm(π′, π) = −T̃dm(s′, s) • Td(s′). (3.97)

By combining equations (3.93), (3.94), (3.96) and (3.97) we obtain

TS(π
′, s∗F ,F) = −π∗

(
TS(s

′,F , s∗F) • Td(π′)
)
. (3.98)

We now prove equation (3.93) for a particular choice of hermitian structures.
Let f : X → P

n denote the composition of s with the projection P
n
X → P

n. Then
we have a commutative diagram with cartesian squares

Pn ×X
id×f //

π

��

Pn × Pn

p2

��

X

s

ccHHHHHHHHH

id

{{vvvvvvvvv f
// Pn

∆

::uuuuuuuuu

id

$$I
IIIIIIII

X
f

// Pn

Let ∆ and p2 be as in Definition 3.86. On π and s we put the hermitian
structures induced by ∆. Since the Koszul complex K(s) = (idPn ×f)∗K(∆),
by Proposition 3.9 and functoriality, equation (3.93) in this case follows from
equation (3.87).

We now study another compatibility between analytic torsion classes for
closed immersions and projective spaces. Let ι : X → Y be a closed immersion
of smooth complex varieties. Consider the cartesian square

Pn
X

π1

��

ι1 // Pn
Y

π

��
X ι

// Y
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Choose hermitian structures on π and ι and put on π1 and ιi the induced
hermitian structures.

Proposition 3.99. Let S be a real additive genus. Let TS denote both, the
theory of analytic torsion classes for closed immersions determined by S, and
the theory of analytic torsion classes for projective spaces compatible with it. Let

F be and object of D
b
(Pn

X). Put hermitian structures on (π1)∗F , (ι1)∗F and
(π ◦ ι1)∗F . Then

TS(π) + π♭(TS(ι1)) = TS(ι) + ι♭(TS(π1)). (3.100)

Proof. By the anomaly formulas, if equation (3.100) holds for a particular choice
of metrics on (π1)∗F , (ι1)∗F and (π ◦ ι1)∗F , then it holds for any choice. Be-
cause the sheaves G(k), with G a coherent sheaf on X , constitute a generating
class of Db(Pn

X) and by propositions 3.31 and 3.56, we reduce to the case F is
of the form G(k). We choose arbitrary hermitian structures on G and ι∗G. Fur-
thermore, we assume O(k), (π1)∗O(k) and π∗O(k) endowed with the hermitian
structures of Notation 3.45. From these choices and the projection formula, the
objects (π1)∗F , (ι1)∗F and (π◦ι1)∗F automatically inherit hermitian structures.
Indeed, it is enough to observe the natural isomorphisms

(π1)∗F ∼= G ⊗ (π1)∗O(k) (3.101)

(ι1)∗(π
∗
1G ⊗ ι∗1O(k)) ∼= π∗(ι∗G)⊗O(k) (3.102)

(π ◦ ι1)∗F ∼= π∗(π
∗ι∗G ⊗ O(k)) ∼= ι∗G ⊗ π∗O(k). (3.103)

We now work out the left hand side of equation (3.100). By the projection
formula for the theory TS for projective spaces, and taking equations (3.101)–
(3.103) into account, we easily find

TS(π) = tn,k • ch(ι∗G). (3.104)

By the functoriality of the theory TS for closed immersions and the projection
formula, we also have

TS(ι1) = π∗TS(ι,G, ι∗G) • ch(O(k)).

Hence we infer

π♭(TS(ι1)) = TS(ι,G, ι∗G) • π∗(ch(O(k)) • Td(π)). (3.105)

Now for the right hand side of (3.100). By the projection formula for the theory
TS for closed immersions, we have

TS(ι) = TS(ι,G, ιG) • ch(π∗O(k)). (3.106)

Similarly, we obtain
TS(π1) = tn,k • ch(G),

and hence
ι♭(TS(π1)) = tn,k • ι∗(ch(G) • Td(ι)). (3.107)

Finally, the difference of the left hand side and the right hand side of (3.100)
equals (3.104)−(3.107)+(3.105)−(3.106), that can be equivalently written as

tn,k • dD TS(ι,G, ι∗G)− TS(ι,G, ι∗G) • dD tn,k =

− dD(tn,k • TS(ι,G, ι∗G)) = 0

in the group ⊕pD̃
2p−1
D (Y,Nι, p).
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3.6 Generalized analytic torsion classes

In this section we will extend the definition of analytic torsion classes to arbi-
trary morphisms of smooth complex varieties. Our construction is based on the
construction of analytic torsion classes by Zha in [51].

Definition 3.108. A theory of generalized analytic torsion classes is an assign-
ment that, to each morphism f : X → Y in Sm∗/C and each relative metrized
complex

ξ = (f,F , f∗F),

assigns a class of currents

T (ξ) ∈
n+1⊕

p=1

D̃2p−1
D (Y,Nf , p)

satisfying the following properties:

(i) (Differential equation) The following equality holds

dD η = ch(f∗F)− f ♭[ch(F)] (3.109)

for any current η ∈ T (ξ).

(ii) (Functoriality) For every morphism g : Y ′ → Y that is transverse to f ,
the equation

g∗T (ξ) = T (g∗ξ)

holds.

(iii) (Additivity and normalization) If ξ1 and ξ2 are relative metrized com-
plexes on X , then

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2).

(iv) (Projection formula) If ξ is a relative metrized complex, G an object of

D
b
(Y ) then

T (ξ ⊗ G) = T (ξ) • ch(G).

(v) (Transitivity) If f : X → Y and g : Y → Z are morphisms in Sm∗/C and

(f,F , f∗F) and (g, f∗F , (g ◦ f)∗F) are relative metrized complexes, then

T (g ◦ f) = T (g) + g♭(T (f)). (3.110)

If T is a theory of generalized analytic torsion classes, then by properties
(i)–(iii) it automatically satisfies several anomaly formulas analogue to those
in propositions 3.28 and 3.54, as well as compatibility formulas with respect
to distinguished triangles as in propositions 3.31 and 3.56. The proofs are the
same in the general case.

Proposition 3.111. Let T be a theory of generalized analytic torsion classes.
Let

ξ = (f,F , f∗F)

be a relative metrized complex.
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(i) If F
′
is another choice of metric on F and ξ1 is the corresponding relative

metrized complex, then

T (ξ1) = T (ξ) + f ♭[c̃h(F
′
,F)].

(ii) If f
′
is another choice of hermitian structure on f and ξ2 is the corre-

sponding relative metrized complex, then

T (ξ2) = T (ξ) + f
′

♭[ch(F) • T̃dm(f
′
, f)]. (3.112)

(iii) If f∗F
′
is a different choice of metric on f∗F , and ξ3 is the corresponding

relative metrized complex, then

T (ξ3) = T (ξ)− c̃h(f∗F
′
, f∗F).

�

Proposition 3.113. Let T be a theory of generalized analytic torsion classes.
Let f : X → Y be a morphism in Sm∗/C. Consider distinguished triangles in

D
b
(X) and D

b
(Y ) respectively:

(τ ) : F2 → F1 → F0 → F2[1],

(f∗τ) : f∗F2 → f∗F1 → f∗F0 → f∗F2[1],

and define relative metrized complexes

ξ0 = (f,F0, f∗F0),

ξ1 = (f,F1, f∗F1),

ξ2 = (f,F2, f∗F2).

Then, the following relation holds:

∑

j

(−1)jT (ξj) = c̃h(π∗τ )− f ♭(c̃h(τ )).

�

The main result of this section is the following classification theorem.

Theorem 3.114. Let S be a real additive genus. Then there exists a unique
theory of analytic torsion classes that agrees with TS when restricted to the class
of closed immersions. We will denote such theory by TS. In particular, there
is a unique theory of generalized analytic torsion classes that agrees with T h

when restricted to the class of closed immersions. This theory will be called
homogeneous. Moreover, if T is a theory of generalized analytic torsion classes,
then there exists a real additive genus S such that T = TS.

Proof. We first prove the uniqueness. Let T be a theory of analytic torsion
classes that agrees with TS for the class of closed immersions. Since the restric-
tion of T to projective spaces, by the transitivity axiom, is compatible with TS,
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by Theorem 3.88, it also agrees with TS. Finally, the transitivity axiom implies
that T is determined by its values for closed immersions and projective spaces.

We now prove the existence. For the moment, let TS be the theory of
analytic torsion classes for closed immersions and projective spaces determined
by S. Let f : X → Y be a morphism in Sm∗/C, and let ξ = (f,F , f∗F) be
a relative metrized complex. Since f is assumed to be projective, there is a
factorization f = π ◦ ι, where ι : X → Pn

Y is a closed immersion and π : Pn
Y → Y

is the projection. Choose auxiliary hermitian structures on ι, π and ι∗F . Then
we define

TS(ξ) = TS(π) + π♭(TS(ι)) + f ♭

[
ch(F) • T̃dm(f, π ◦ ι)

]
(3.115)

To simplify the notations, in the sequel we will also refer to it simply by T (ξ).
The anomaly formulas easily imply that this definition does not depend on
the choice of hermitian structures on ι, π and ι∗F . We next show that this
definition is independent of the factorization of f . Let f = π1 ◦ ι1 = π2 ◦ ι2 be
two different factorizations, being Pni , the target of ιi, i = 1, 2. Since equation
(3.115) is independent of the choice of auxiliary hermitian structures, by Lemma
2.115, we may assume that f = π1 ◦ ι1 = π2 ◦ ι2.

We consider the commutative diagram with cartesian square

X
j1 //

idX

""E
EEE

EEE
EEE

X ×
Y
P
n2

Y
k1 //

q1

��

P
n1

Y ×
Y
P
n2

Y

p1

��
X

ι1 //

f
&&MMMMMMMMMMMMM P
n1

Y

π1

��
Y

where j1(x) = (x, ι2(x)), p1 is the first projection and q1 and k1 are defined
by the cartesian square. The hermitian structure of π2 induces a hermitian
structure on p1 that, in turn, induces a hermitian structure on q1. The hermitian
structure of ι1 induces a hermitian structure on k1 and the hermitian structure
of ι2 induces one on j1. We will denote the corresponding morphisms of Sm∗/C

by p1, q1, k1 and j1. We consider also the analogous diagram obtained swapping
1 and 2. Finally, we write p = π1 ◦ p1 = π2 ◦ p2 and j = k1 ◦ j1 = k2 ◦ j2. Then
we have

T (π1) + (π1)♭(T (ι1)) = T (π1) + (π1)♭(T (ι1)) + f ♭

(
T (q1) + (q1)♭(T (j1))

)

= T (π1) + (π1)♭
(
T (ι1) + (ι1)♭(T (q1))

)
+ p♭(k1)♭(T (j1))

= T (π1) + (π1)♭
(
T (p1) + (p1)♭(T (k1))

)
+ p♭(k1)♭(T (j1))

= T (p) + p♭(T (j)).

Analogously, we obtain

T (π2) + (π2)♭(T (ι2)) = T (p) + p♭(T (j)).

Hence TS is well defined for all relative metrized complexes. It remains to
prove that it satisfies the properties of a theory of analytic torsion classes. The
properties (i) to (iv) are clear. We thus focus on property (v).
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Let f : X → Y and g : Y → Z be morphisms in Sm∗/C. We choose factor-

izations of g ◦ f and g:

X
� � i //

g◦f   A
AA

AA
AA

A Pm
Z

p

��
Z

Y
� � ℓ //

g ��@
@@

@@
@@

@ Pn
Z

r

��
Z,

where the hermitian structures on p and r come from fixed hermitan structures
on the tangent bundles TPm

C
and TPn

C
, and the hermitian structures i and ℓ are

obtained by using Lemma 2.115. We define ϕ : X → Pm
C

to be the arrow
obtained from i by composing with the projection to Pm

C
. Then we see that the

morphism j := (ϕ, f) : X → Pm
Y is a closed immersion. Indeed, it is enough to

realize that the composition

X
(ϕ,f) // Pm

Y

(id,g) // Pm
Z

agrees with the closed immersion i and that G := (id, g) is separated (since
proper). We can thus decompose f as

X
� � j //

f   A
AA

AA
AA

A Pm
Y

q

��
Y.

Again, in this factorization the hermitian structure q comes from the previously
fixed hermitian structure on TPm

C
and the hermitian structure j is obtained by

using Lemma 2.115. Because g ◦ f = p ◦ i and by the very construction of T for
arbitrary projective morphisms (3.115), we have

T (g ◦ f) = T (p) + p♭(T (i)). (3.116)

We proceed to work on T (i). For this we write the commutative diagram

X
� � j //
� o

i ��?
??

??
??

? Pm
Y

� � k //

G

��

Pm
Pn
Z

Pn
Pm
Z

π

��
Pm
Z

id // Pm
Z .

Here we recall that G = (id, g) and we have also put k = (id, ℓ). Below, G,
k and π will be endowed with the obvious hermitian structures. With these
choices, we observe that i = G ◦ j and G = π ◦ k. Taking this into account,
the construction of T and the fact that T = TS is transitive for compositions of
closed immersions, we find

T (i) =T (π ◦ k ◦ j)

=T (π) + π♭(T (k)) +G♭(T (j))

=T (G) +G♭(T (j)).

(3.117)
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Therefore, from equations (3.116), (3.117) and applying the identity p♭G♭ = g♭q♭
we derive

T (g ◦ f) = T (p) + p♭(T (G)) + g♭q♭(T (j)). (3.118)

We claim that
T (p) + p♭(T (G)) = T (g) + g♭(T (q)). (3.119)

Assuming this for a while, we combine (3.118) and (3.119) into

T (g ◦ f) = T (g) + g♭(T (q) + q♭(T (j))) = T (g) + g♭(T (f)). (3.120)

Hence we are lead to prove (3.119). For this we construct the commutative
diagram with cartesian squares

Pm
Y

� � ℓ̃ //

q

��

Pm
Z ×Z Pn

Z
r̃ //

p̃

��

Pm
Z

p

��
Y

� � ℓ // Pn
Z

r // Z.

Observe that G = r̃ ◦ ℓ̃. Recall now Proposition 3.83 and Proposition 3.99. We
then have the chain of equalities

T (p) + p♭(T (G)) =T (p) + p♭(T (r̃) + r̃♭(T (ℓ̃)))

=T (r) + r♭(T (p̃) + p̃♭(T (ℓ̃))

=T (r) + r♭(T (ℓ) + ℓ♭(T (q)))

=T (g) + g♭(T (q)).

This proves the claim.
The last assertion of the statement of the theorem is obvious from the unique-

ness part.

Theorem 3.121. (i) Let T be a theory of generalized analytic torsion cla-
sses. Then there is a unique real additive genus S such that, for any
relative metrized complex ξ := (f,F , f∗F), we have

T (ξ)− T h(ξ) = −f∗[ch(F) •Td(Tf) • S(Tf ) • 11]. (3.122)

(ii) Conversely, any real additive genus S defines, by means of equation (3.122),
a unique theory of generalized analytic torsion classes TS.

Proof. We prove the first item, the second being immediate. Let S be the real
additive genus corresponding to T , provided by Theorem 3.114. Then (3.122)
holds for embedded metrized complexes. Because T and T h are both transitive,
it suffices to show that (3.122) holds whenever f : Pn

X → X is a trivial projective
bundle. Observe T and T h satisfy the same anomaly formulas. Then, since the
sheaves G(k), k = −n, . . . , 0 form a generating class for Db(Pn

X), and by the
projection formula for T and T h, we easily reduce to the case ξ = ξ(k). Let tn,k,
thn,k be the characteristic numbers of T , T h respectively. We have to establish
the equality

tn,−i − thn,−i = −π∗(ch(O(−i))Td(π)S(Tπ)), i = −n, . . . , 0. (3.123)
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This is an equation of real numbers. By functoriality, this equation is equivalent
to the analogous equation in ⊕pH

2p−1
D (Pn

C
,R(p)), for the second projection p2 :

P
n
C
×P

n
C
→ P

n
C
instead of π. Because the classes ch(ΛiQ∨) constitute a basis for

⊕pH
2p−1
D (Pn

C
,R(p)), (3.123) is equivalent to the equation in cohomology

∑

i

(−1)i(tn,−i − thn,−i) ch(Λ
iQ

∨
) =

− p2∗(
∑

i

(−1)i ch(p∗1O(−i)⊗ Λip∗2Q
∨
)Td(p2)S(Tp2

) • 11). (3.124)

Recalling the exact sequence (3.85), minus the right hand side of (3.124) be-
comes

p2∗(ch(∆∗OPn)Td(p2)S(Tp2
) • 11) =

p2∗(∆∗(ch(OPn)Td(∆))Td(p2)S(Tp2
) • 11) = S(TPn) • 11.

On the other hand, using the compatibility condition (Definition 3.86), the left
hand side of (3.124) can be equivalently written as

T (p2,∆∗OPn ,OPn)− T h(p2,∆∗OPn ,OPn) =

− p2♭(T (∆,OPn ,∆∗OPn)− T h(∆,OPn ,∆∗OPn)). (3.125)

Since the statement is known for closed immersions, the right hand side of
(3.125) can be written

p2∗(∆∗(ch(OPn)Td(T∆)S(T∆) • 11)Td(p2)) = −S(TPn) • 11.

To derive this equality we used that the genus S is additive, so we have the
relation in Deligne cohomology

S(T∆) = S(TPn)−∆∗S(TPn×Pn) =

S(TPn)−∆∗p∗1S(TPn)−∆∗p∗2S(TPn) = −S(TPn).

This concludes the proof.

3.7 Higher analytic torsion forms of Bismut and Köhler

We now explain the relationship between the theory of analytic torsion forms
of Bismut-Köhler [13] and the theory of generalized analytic torsion classes
developed so far.

Let π : X → Y be a smooth projective morphism (a projective submersion)
of smooth complex varieties. Let ω be a closed (1, 1) form on X that induces
a Kähler metric on the fibers of π. Then (π, ω) is called a Kähler fibration.
The form ω defines a hermitian structure on Tπ, and we will abusively write
π = (π, ω) for the corresponding morphism in Sm∗/C.

Let F be a hermitian vector bundle on X such that for every i ≥ 0, Riπ∗F is
locally free. We consider on Riπ∗F the L2 metric obtained using Hodge theory
on the fibers of π. The object of the derived category π∗F together with the
hermitian structure induced by the L2 metric (Definition 2.81) will be denoted

89



by π∗FL2 . Then ξ = (π, F , π∗FL2) is an example of relative metrized complex.
The relative metrized complexes that arise in this way will be said to be Kähler.

In the paper [13], Bismut and Köhler associate to every Kähler relative
metrized complex ξ a differential form, that we temporarily denote by τ(ξ).
Since in [13] the authors use real valued characteristic classes, while we use
characteristic classes in the Deligne complex, we have to change the normal-
ization of this form. To this end, if τ(ξ)(p−1,p−1) is the component of degree
(p− 1, p− 1) of τ(ξ), then we put

TBK(ξ)(2p−1,p) =
1

2
(2πi)p−1[τ(ξ)(p−1,p−1)] ∈ D̃2p−1

D (Y, ∅, p).

We recall that [·] converts differential forms into currents according with the
conventions in Section 2.3 (compare with equation (3.32)). We define

TBK(ξ) =
∑

p≥1

TBK(ξ)(2p−1,p).

The first main result of [13] is that this class satisfies the differential equation

dDT
BK(ξ) = ch(π∗FL2)− π♭[ch(F )].

Thus, TBK(ξ) is an example of analytic torsion class.
Let now ω′ be another closed (1, 1) form on X that induces a Kähler metric

on the fibers of π. We denote π′ = (π, ω′). Let F
′
be the vector bundle F

with another choice of metric and define π∗F
′

L2 to be the object π∗F with the

L2 metric induced by ω′ and F
′
. We write ξ

′
for the Kähler relative metrized

complex (π′, F
′
, π∗F

′

L2).
The second main result of [13] is the following anomaly formula.

Theorem 3.126 ([13] Theorem 3.10). The following formula holds in the group⊕
p D̃

2p−1
D (Y, ∅, p):

TBK(ξ
′
)− TBK(ξ) = c̃h(π∗FL2 , π∗F

′

L2) + π′
♭

[
ch(F ) • T̃dm(π′, π)− c̃h(F , F

′
)
]
.

In the book [3], Bismut studies the compatibility of higher analytic torsion
forms with complex immersions. Before stating his result we have to recall
the definition of the R-genus of Gillet and Soulé [29]. It is the additive genus
attached to the power series

R(x) =
∑

m odd
m≥1

(
2ζ′(−m) +

(
1 +

1

2
+ · · ·+

1

m

)
ζ(−m)

)
xm

m!
. (3.127)

Let T−R/2 be the theory of analytic torsion classes for closed immersions asso-

ciated to −1
2 R.

Remark 3.128. The fact that we obtain the additive genus −R/2 instead
of R is due to two facts. The signs comes from the minus sign in equation
(3.23), while the factor 1/2 comes from the difference of the normalization of
Green forms used in this paper and the one used in [27]. Note however that
the arithmetic intersection numbers computed using both normalizations agree,
because the definition of arithmetic degree in [27, §3.4.3] has a factor 1/2 while
the definition of arithmetic degree in [17, (6.24)] does not.
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Consider a commutative diagram of smooth complex varieties

X

f   @
@@

@@
@@

ι // Y

g

��
Z

where f and g are projective submersions and ι is a closed immersion. Let F
be a hermitian vector bundle on X such that the sheaves Rif∗F are locally free
and let

0 → En → · · · → E0 → ι∗F → 0

be a resolution of ι∗F by hermitian vector bundles. We assume that for all i, j,
Rig∗Ej is locally free. We will denote by E the complex En → · · · → E0. Let
ωX and ωY be closed (1, 1) forms that define a structure of Kähler fibration on
f and g respectively. As before we write f = (f, ωX) and g = (g, ωY ). The
exact sequence

0 −→ Tf −→ f∗Tg −→ NX/Y −→ 0

induces a hermitian structure on NX/Y . We will denote ι the inclusion ι with

this hermitian structure. Finally we denote by f∗FE the hermitian structure
on f∗F induced by the hermitian structures g∗EjL2 , j = 0, . . . , n.

Then, adapted to our language, the main result of [3] can be stated as follows.

Theorem 3.129 ([3] Theorem 0.1 and 0.2). The following equation holds in

the group
⊕

p D̃
2p−1
D (Z, ∅, p):

TBK(f, F , f∗FL2
) =

n∑

j=0

(−1)jTBK(g, Ej , f∗EjL2
)

+ g♭(T−R/2(ι, F , E)) + c̃h(f∗FE , f∗FL2).

We can particularize the previous result to the case when F = 0. Then E
and g∗E are acyclic objects. The hermitian structures of Ej and g∗EjL2 induce

hermitian structures on them. We denote these hermitian structures as E and
g∗EL2 .

Corollary 3.130. Let E be a bounded acyclic complex of hermitian vector bun-
dles on Y such that the direct images Rig∗Ej are locally free on Z. Then there

is an equality in
⊕

p D̃
2p−1
D (Z, ∅, p)

n∑

j=0

(−1)jTBK(g, Ej , g∗EjL2) = c̃h(g∗EL2)− g♭(c̃h(E)).

We will also need a particular case of functoriality and projection formula
for the higher analytic torsion forms of Bismut-Köhler proved by Rössler [43].

The relative metrized complexes ξn(k) of Notation 3.45 are Kähler. There-
fore we can apply the construction of Bismut-Köhler to them. We denote

tBK
n,k = TBK(ξn(k)). (3.131)

By Corollary 3.130, the numbers tBK
n,k satisfy the relation (3.63). Hence they are

determined by the main characteristic numbers tBK
n,k for −n ≤ k ≤ 0.
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Theorem 3.132 ([43] Lemma 7.15). Let π : Pn
X → X be a trivial projective

bundle. Let G be a hermitian vector bundle on X. Then

TBK(ξn(k)⊗G) = tBK
n,k • ch(G).

Proof. In [43] this result is proved for k ≫ 0. Using Corollary 3.130 and the
Koszul resolution (3.62) one can extend the result to all k ∈ Z.

We have all the ingredients we need to prove the main result of this section.

Theorem 3.133. Let T−R/2 be the theory of generalized analytic torsion classes

associated to the additive genus −1
2 R. Then, for every Kähler relative metrized

complex ξ, we have
TBK(ξ) = T−R/2(ξ).

In particular T−R/2 extends the construction of Bismut-Köhler to arbitrary pro-
jective morphisms of smooth complex varieties and arbitrary smooth metrics.

Proof. Let tBK = {tBK
n,k | n ≥ 0,−n ≤ k ≤ 0} and let TtBK be the theory of

analytic torsion classes for projective spaces associated to it. Let π : Pn
X → X

be a relative projective space and let ξ = (π,E, π∗EL2) be a Kähler relative
metrized complex. By choosing d ≫ 0 we may assume that all the coherent
sheaves of the resolution γd(F ) of Corollary 3.36 are locally free. Using theorems
3.132 and 3.126, Proposition 3.54 and corollaries 3.59 and 3.130 we obtain that

TBK(ξ) = TtBK (ξ).

By Theorem 3.129 we see that the theories TtBK and T−R/2 are compatible
in the sense of Definition 3.86. Therefore, TBK = T−R/2 when restricted to
projective spaces.

Finally, by factoring a smooth projective morphism as a closed immersion
followed by the projection of a relative projective space, Theorem 3.129 implies
that TBK = T−R/2 for all smooth projective morphisms.

Remark 3.134. (i) The construction of Bismut-Köhler applies to a wider
class of varieties and morphisms: complex analytic manifolds and proper
Kähler submersions. However for the comparison we have to restrict to
smooth algebraic varieties and smooth projective morphisms.

(ii) The results of Bismut and his coworkers are more precise. Here the class
TBK(ξ) is well defined up to the image of dD. In contrast, the higher
analytic torsion form of Bismut and Köhler is a well defined differential
form, local on the base and whose class modulo dD agrees with TBK(ξ).

As a consequence of Theorem 3.133, we obtain the following results that,
although they should follow from the definition of higher analytic torsion classes,
we have not been able to find them explicitly in the literature.

Corollary 3.135. Let f : X → Y be a smooth projective morphism of smooth
complex varieties, and let ξ = (f, E, f∗EL2) be a Kähler relative metrized com-
plex.

(i) Let g : Y ′ → Y be a morphism of smooth complex varieties. Then

TBK(g∗ξ) = g∗TBK(ξ).

92



(ii) Let G be a hermitian vector bundle on Y . Then

TBK(ξ ⊗G) = TBK(ξ) • ch(G).

�

The last consequence we want to discuss generalizes results already proved
by Berthomieu-Bismut [1, Thm 3.1] and Ma [35, Thm. 0.1], [36, Thm. 0.1].
However we note that while we stay within the algebraic category and work with
projective morphisms, these authors deal with proper Kähler holomorphic sub-
mersions of complex manifolds. Let g : X → Y and h : Y → Z be morphisms in
the category Sm∗/C, such that the composition f = h◦g is a smooth morphism.

We choose a structure of Kähler fibration on f , that we denote f
′
. Let E be a

hermitian vector bundle on X and assume that the higher direct images Rif∗E

are locally free. Then we may consider the analytic torsion TBK(f
′
) attached

to the Kähler relative metrized complex (f
′
, E, f∗EL2). Also, we choose an aux-

iliary hermitian structure on g∗E. We can consider the torsion classes TR/2(g)

and TR/2(h) of the relative metrized complexes (g, E, g∗E) and (h, g∗E, f∗EL2).
We make the following additional assumption in some particular situations:

(*) The morphisms g and h are Kähler fibrations, the higher direct images
Rig∗E and Rjh∗R

ig∗E are locally free and the auxiliary hermitian struc-
ture on g∗E is the L2 hermitian structure.

When the hypothesis (*) is satisfied we denote by h∗g∗EL2 the L2 hermitian
structure attached to the Kähler structure on h and the L2 metric on g∗EL2 .
Observe then that this last structure may differ from the L2 structure on f∗EL2 .

In this situation we can consider the torsion classes TBK(g) and TBK(h
′
) at-

tached to (g, E, g∗EL2) and (h, g∗EL2 , h∗g∗EL2). Observe that by Proposition
3.54, we have the relation

TBK(h
′
) = TR/2(h)− c̃h(h∗g∗EL2 , f∗EL2).

By the properties of the generalized analytic torsion classes, the following
statement is immediate.

Corollary 3.136. Let the assumptions be as above. Then we have the equality

TBK(f
′
) = T−R/2(h) + h♭(T−R/2(g)) + f

′

♭(ch(E) • T̃dm(f
′
, f)).

If in addition the hypothesis (*) is satisfied, then we have an equality

TBK(f
′
) = TBK(h

′
) + h♭(T

BK(g))

+ f
′

♭(ch(E) • T̃dm(f
′
, f)) + c̃h(h∗g∗EL2 , f∗EL2).

�

Since T−R/2 extends the theory of analytic torsion classes TBK , we will
denote T−R/2 by TBK for arbitrary relative metrized complexes.
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3.8 Grothendieck duality and analytic torsion

The aim of this section is to study the compatibility of the analytic torsion with
Grothendieck duality.

Definition 3.137. Let F = (F , E 99K F) be an object of D
b
(X). Then the

rank of F is
rk(F) =

∑

i

(−1)i dim(Ei).

This is just the Euler characteristic of the complex. The determinant of F is
the complex

det(F) =
⊗

i

(
ΛdimEi

E
i
)(−1)i

[− rk(F)].

It consists of a single line bundle concentrated in degree rk(F).

Definition 3.138. Let f : X → Y be a morphism in Sm∗/C of relative dimen-
sion e. The metrized dualizing complex, is the complex given by

ωf = (detTf )
∨.

This complex is concentrated in degree −e. The underlying object of Db(X)
will be denoted by ωf . If we are interested in the dualizing sheaf as a sheaf
and not as an element of Db(X) we will denote it by ωf or ωX/Y . Finally, if
T = SpecC, we will denote ωf (respectively ωf) by ωX (respectively ωX).

Definition 3.139. Let D∗(∗) be the Deligne complex associated to a Dolbeault
complex. Then the sign operator

σ : D∗(∗) −→ D∗(∗)

is given by σ(ω) = (−1)pω for ω ∈ Dn(p).

The sign operator satisfies the following compatibilities.

Proposition 3.140. (i) Let (D∗(∗), dD) be a Deligne algebra. Then the sign
operator is a morphism of differential algebras. That is

dD ◦ σ = σ ◦ dD,

σ(ω • η) = σ(ω) • σ(η).

(ii) Let F be an object of D
b
(X). Then the following equalities are satisfied

σ ch(F) = ch(F
∨
), (3.141)

σ ch(det(F)) = ch(det(F)∨) = ch(det(F))−1, (3.142)

σTd(F) = (−1)rk(F) Td(F) • ch(det(F)∨. (3.143)

Proof. The first statement is clear because if ω ∈ Dn(p) and η ∈ Dm(q) then
dD ω ∈ Dn+1(p) and ω • η ∈ Dn+m(p+ q).
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For the second statement, let E 99K F be the hermitian structure of F .
Write

E
+
=
⊕

i even

E
i
,

E
−
=
⊕

i odd

E
i
.

Since this statement is local on X , we can chose trivializations of E
+

and E
−

over an open subset U . LetH+ andH− be the matrices of the hermitian metrics

on E
+
and E

−
. The curvature matrices of E

+
and E

−
are given by

K± = K±(F) = −∂(H±)−1∂H±.

The entries of these two matrices are elements of D2(U, 1). The characteristic
forms can be computed from the curvature matrix:

ch(F) = tr(exp(K+))− tr(exp(K−)),

ch(det(F)) = (−1)rk(F) det(exp(K+)) • det(exp(K−))−1,

Td(F) = det

(
K+

1− exp(−K+)

)
• det

(
K−

1− exp(−K−)

)−1

.

The sign in the second equation comes from the fact that det(F) is concentrated

in degree rk(F). Therefore, since σ(K±) = −K± = K±(F
∨
), we have

σ ch(F) = σ tr(exp(K+))− σ tr(exp(K−))

= tr(exp(K+(F
∨
))) − tr(exp(K−(F

∨
))) = ch(F

∨
),

σ ch(det(F)) = det(exp(−K+)) • det(exp(−K−))−1 = ch(det(F))−1,

and

σTd(F) = det

(
−K+

1− exp(K+)

)
• det

(
−K−

1− exp(K−)

)−1

= det

(
K+

1− exp(−K+)

)
• det(exp(−K+))

• det

(
K−

1− exp(−K−)

)−1

• det(exp(−K−))−1

= Td(F) • ch(det(F))−1.

Corollary 3.144. Let [E] ∈ KA(X). Then we have the equality

c̃h(E
∨
) = σc̃h(E).

Proof. Due to Proposition 3.140, the assignment sending [E] to σc̃h(E) satisfies

the characterizing properties of c̃h.
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In the particular case of a projective morphism between smooth complex
varieties or, more generally, smooth varieties over a field, Grothendieck duality
takes a very simple form (see for instance [32, §3.4] and the references therein).
If F is an object of Db(X) and f : X → Y is a projective morphism of smooth
complex varieties, then there is a natural functorial isomorphism

f∗(F
∨ ⊗ ωf ) ∼= (f∗F)∨. (3.145)

The compatibility between analytic torsion and Grothendieck duality is given
by the following result.

Theorem Definition 3.146. Let T be a theory of generalized analytic tor-
sion classes. Then the assignment that, to each relative metrized complex ξ =
(f,F , f∗F), associates the class

T∨(ξ) = σT (f,F
∨
⊗ ωf , f∗F

∨
)

is a theory of generalized analytic torsion classes that we call the theory dual
to T .

Proof. We have to show that, if T satisfies the conditions of Definition 3.108,
then the same is true for T∨. We first check the differential equation. Let e be
the relative dimension of f .

dD T
∨(ξ) = dD σT (f,F

∨
⊗ ωf , f∗F

∨
)

= σ dD T (f,F
∨
⊗L

ωf , f∗F
∨
)

= σ ch(f∗F
∨
)− σf∗

[
ch(F

∨
⊗L

ωf ) • Td(f)
]

= ch(f∗F)− (−1)ef∗

[
σ ch(F

∨
) • σ(ch(det(Tf )

∨) • Td(Tf ))
]

= ch(f∗F)− f∗
[
ch(F) • Td(f)

]

The functoriality and the additivity are clear. We next check the projection

formula. Let G be an object of D
b
(Y ). Then

T∨(ξ ⊗ G) = σT (f,F
∨
⊗ f∗G

∨
⊗L

ωf , f∗F
∨
⊗L G

∨
)

= σ
(
T (f,F

∨
⊗L

ωf , f∗F
∨
) • ch(G

∨
)
)

= T∨(ξ) • ch(G).

Finally we check the transitivity. Let g : Y → Z be another morphism in Sm∗/C.

By the definition of g ◦ f we have

ωg◦f = f∗
ωg ⊗

L
ωf . (3.147)

Therefore,

f∗
(
F∨ ⊗L

ωg◦f

)
= f∗

(
F∨ ⊗L f∗

ωg ⊗
L
ωf )

)

= f∗
(
F∨ ⊗L

ωf )
)
⊗L

ωg

= (f∗F)∨ ⊗L
ωg.
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On f∗ (F∨ ⊗ ωg◦f ) we put the hermitian structure of f∗F
∨
⊗ ωg. With this

choice we have

T∨(g ◦ f) = σT (g ◦ f,F
∨
⊗L

ωg◦f , (g ◦ f)∗F
∨
)

= σT (g, f∗F
∨
⊗L

ωg, (g ◦ f)∗F
∨
)

+ σg♭T (f,F
∨
⊗L

ωf ⊗L f∗
ωg, f∗F

∨
⊗L

ωg)

= T∨(g, f∗F , (g ◦ f)∗F)

+ σg∗(T (f,F
∨
⊗L

ωf , f∗F
∨
) • ch(ωg) • Td(g))

= T∨(g) + g♭T
∨(f).

Therefore, T∨ satisfies also the transitivity property. Hence is a generalized
theory of analytic torsion classes.

Definition 3.148. A theory of generalized analytic torsion classes T is called
self-dual when the equation

T∨ = T (3.149)

holds.

We want to characterize the self-dual theories of generalized analytic torsion
classes.

Theorem 3.150. The homogeneous theory of generalized analytic torsion classes
is self-dual.

Proof. By the uniqueness of the homogeneous theory, it is enough to prove
that, if T is homogeneous then T∨ is homogeneous. Let X be a smooth complex
variety and letN be a hermitian vector bundle of rank r onX . Put P = P(N⊕1)
and let s : X → P be the zero section and π : P → X the projection. Let Q be
the tautological quotient bundle with the induced metric and K(s) the Koszul
resolution associated to the section s. Since the normal bundle NX/P can be
identified with N , on the map s we can consider the hermitian structure given
by the hermitian metric on N . Then detQ is a complex concentrated in degree
r. Moreover

s∗ detQ = detN = ωs.

The Koszul resolution satisfies the duality property

K(s)∨ = K(s)⊗ detQ.

The theory T is homogeneous if and only if the class

T (s,OX ,K(s)) • Td(Q)

is homogeneous of bidegree (2r − 1, r) in the Deligne complex. Then

T∨(s,OX ,K(s)) • Td(Q) = σT (s,ωs,K(s)∨) • Td(Q)

= σT (s, s∗ detQ,K(s)⊗ detQ) • Td(Q)

= σ(T (s,OX ,K(s)) • ch(detQ)) • Td(Q)

= σT (s,OX ,K(s)) • ch(detQ
∨
) • Td(Q)

= (−1)rσ(T (s,OX ,K(s)) • Td(Q))
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is homogeneous of bidegree (2r− 1, r) in the Deligne complex, which proves the
theorem.

Proposition 3.151. Let

S(x) =

∞∑

n=0

anx
n ∈ R[[x]]

be a power series in one variable with real coefficients. Denote by S the cor-
responding real additive genus and by TS the associated theory of analytic tor-
sion classes. Then the dual theory T∨

S has corresponding real additive genus
Sσ(x) := −S(−x).

Proof. Let ξ = (f,F , f∗F) be a relative metrized complex. If e is the relative
dimension of f , then we have σf∗ = (−1)ef∗σ. Then the proposition readily
follows from the definition of T∨

S , the self-duality of T h and Proposition 3.140.

We can now characterize the self-dual theories of analytic torsion classes.

Corollary 3.152. The theory of analytic torsion classes TS attached to the real
additive genus S(x) =

∑
n≥0 anx

n is self-dual if and only if an = 0 for n even.

Proof. By the proposition, T∨
S = TSσ , hence T is self-dual if, and only if, Sσ = S.

The corollary follows.

In particular we recover the following fact, which is well known if we restrict
to Kähler relative metrized complexes.

Corollary 3.153. The theory of analytic torsion classes of Bismut-Köhler TBK

is self-dual.

Proof. We just remark that the even coefficients of the R-genus vanish (3.127),
and apply the preceding characterization of self-duality.

We now elaborate on an intimate relation between self-duality phenomena
and the analytic torsion of de Rham complexes. Let f : X → Y be a smooth
projective morphism of smooth algebraic varieties, of relative dimension e. Let
TX/Y denote the vertical tangent bundle, endowed with a hermitian metric.

Write f for the corresponding morphism in Sm∗/C. On the locally free sheaves
Ωp

X/Y = ΛpΩX/Y we put the induced hermitian structures. We introduce the

metrized de Rham complex

0 → OX
0
→ ΩX/Y

0
→ Ω

2

X/Y
0
→ . . .

0
→ Ω

e

X/Y → 0

with 0 differentials. In fact, we are really considering the de Rham graded sheaf
and converting it into a complex in a trivial way. We refer to the corresponding

object of D
b
(X) by Ω

•

X/Y (Definition 2.71). The individual terms Ω
p

X/Y will
be considered as complexes concentrated in degree p.

Lemma 3.154. The objects (Ω
•

X/Y )
∨⊗ωf and Ω

•

X/Y [2e] are tightly isomorphic.

Proof. This is obvious.
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For every p, q, the cohomology sheaf Rqf∗Ω
p
X/Y is locally free, because the

Hodge numbers hp,q of the fibers of f (which are projective, hence Kähler) are
known to be locally constant. Every stalk of this sheaf is endowed with the
usual L2 metric of Hodge theory. This family of L2 metrics on Rqf∗Ω

p
X/Y glue

into a smooth metric. Because the Hodge star operators ∗ act by isometries, it
is easily shown that Serre duality becomes an isometry for the L2 structures:
the isomorphism

(Rqf∗Ω
p
X/Y )

∨ ∼
−→ Re−qf∗((Ω

p
X/Y )

∨ ⊗ ωf ) = Re−qf∗Ω
e−p
X/Y

preserves the L2 hermitian structures. For every p, let f∗Ω
p
X/Y denote the object

of D
b
(Y ) with the metric induced by the L2 metrics on its cohomology pieces

(Definition 2.81). Here f∗ stands for the derived direct image. By Proposition
2.82, Grothendieck duality

(f∗Ω
p
X/Y )

∨ ∼
−→ f∗Ω

e−p
X/Y [2e]

is a tight isomorphism. Finally, let [f∗Ω•
X/Y ] be the object ofD

b
(Y ) provided by

Definition 2.73. The next statement is easily checked from the very construction
of Definition 2.73.

Lemma 3.155. Grothendieck duality defines a tight isomorphism [f∗Ω•
X/Y ]

∨ ∼=

[f∗Ω•
X/Y ][2e] in D

b
(Y ).

Theorem 3.156. Let T be a theory of analytic torsion classes. The following
assertions are equivalent:

(i) the theory T is self-dual;

(ii) for every f , T f , Ω
•

X/Y and [f∗Ω•
X/Y ] as above and for every odd inte-

ger p ≥ 1, the part of bidegree (2p − 1, p) (in the Deligne complex) of

T (f,Ω
•

X/Y , [f∗Ω
•
X/Y ]) vanishes.

Proof. Assume first of all that T is self-dual. We apply the definition of T∨, the
self-duality assumption and lemmas 3.154 and 3.155. We find the equality

T (f,Ω
•

X/Y , [f∗Ω
•
X/Y ]) = σT (f,Ω

•

X/Y [2e], [f∗Ω
•
X/Y ][2e])

= (−1)2eσT (f,Ω
•

X/Y , [f∗Ω
•
X/Y ])

= σT (f,Ω
•

X/Y , [f∗Ω
•
X/Y ]).

The sign operator σ changes the sign of the components of bidegree (2p− 1, p)

for odd p. Hence T (f,Ω
•

X/Y , [f∗Ω
•
X/Y ])

(2p−1,p) vanishes for p ≥ 1 odd.

For the converse implication, let S(x) =
∑

n≥0 anx
n be the real additive

genus attached to T via Theorem 3.121. After Corollary 3.152, we have to
show that the coefficients an with n even vanish. Let us look at a smooth
morphism f : X → Y of relative dimension 1, with an arbitrary metric on Tf .
Then, developing the power series of ch and Td and taking into account that
Ω1

X/Y = T∨
f = ωX/Y , we compute

f∗[ch(Ω
•
X/Y )Td(Tf)S(Tf ) • 11] =

∑

n≥0

(−1)n+1anf∗[c1(ωX/Y )
n+1 • 11].
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Therefore, for p ≥ 1 odd, we have

(−1)pap−1f∗[c1(ωX/Y )
p • 11] =

(T (f,Ω•
X/Y , [f∗Ω

•
X/Y ])− T h(f,Ω•

X/Y , [f∗Ω
•
X/Y ]))

(2p−1,p,p) = 0. (3.157)

Hence it is enough that for every odd integer p ≥ 1, we find a relative curve
f : X → Y such that f∗(c1(ωX/Y )

p) 6= 0 in the cohomology group H2p(Y,C).
Let d = p − 1 and choose Y to be a smooth projective variety of dimension d.
Let L be an ample line bundle on Y and take X = P(L ⊕ OY ). Consider the
tautological exact sequence

0 −→ O(−1) −→ f∗(L⊕OY ) −→ Q −→ 0.

We easily derive the relations

π∗c1(L) = c1(Q)− c1(O(1)) (3.158)

c1(O(−1))c1(Q) = 0. (3.159)

Moreover we have
c1(ωX/Y ) = −c1(Q)− c1(O(1)). (3.160)

From (3.158)–(3.160) and because d = p− 1 is even, we compute

c1(ωX/Y )
d = c1(Q)d + c1(O(1))d = π∗c1(L)

d.

Therefore we find
c1(ωX/Y )

p = π∗c1(L)
dc1(ωX/Y ). (3.161)

Finally, f is a fibration in curves of genus 0, hence f∗(c1(ωX/Y )) = −2. We
infer that (3.161) leads to

f∗(c1(ωX/Y )
p) = −2c1(L)

d.

This class does not vanish, since Y is projective of dimension d and L is ample.

We end with a characterization of the theory of analytic torsion classes of
Bismut-Köhler.

Theorem 3.162. The theory of analytic torsion classes of Bismut-Köhler TBK

is the unique theory of generalized analytic torsion classes such that, for every
Kähler fibration f : X → Y in Sm∗/C, we have the vanishing

TBK(f,Ω
•

X/Y , [f∗Ω
•
X/Y ]) = 0.

Proof. That the theory TBK vanishes for de Rham complexes of Kähler fibra-
tions is a theorem of Bismut [5]. For the uniqueness, let T be a theory of
generalized analytic torsion classes vanishing on de Rham complexes of Kähler
fibrations. Denote by S(x) =

∑
k≥0 akx

k its corresponding genus. If f is a
relative curve with a structure of Kähler fibration, then by Theorem 3.121

T h(f,Ω
•

X/Y , [f∗Ω
•
X/Y ]) =

∑

k≥0

(−1)kakf∗[c1(ωX/Y )
k+1 • 11]. (3.163)
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It is enough to find, for every k ≥ 0, a relative curve f such that f∗(c1(ωX/Y )
k+1)

does not vanish. The elementary construction in the proof of Theorem 3.156
works whenever k is even, but one easily sees it fails for k odd. Fortunately,
there is an alternative argument. Let g ≥ 2 and n ≥ 3 be integers. Consider
the fine moduli scheme of smooth curves of genus g with a Jacobi structure of
level n [21, Def. 5.4], to be denoted Mn

g . Let π : Cn
g → Mn

g be the universal
curve. An example of Kähler fibration structure on π is provided by Teichmüller
theory (see for instance [49, Sec. 5]). By [22, Thm. 1], the tautological class
κg−2 := π∗(c1(ωπ)

g−1) ∈ H2(g−2)(Mn
g ,C) does not vanish. Taking g = k + 2

and f = π, we conclude the proof of the theorem.

We note that in the previous theorem, the existence is provided by Bismut’s
theorem. It would be interesting to have a proof of the existence of a theory
satisfying the condition of Theorem 3.162 from the axiomatic point of view.

3.9 The category D̂b(X,S)

As a first example of application of a theory of generalized analytic torsion
classes, we construct direct images of metrized complexes. It turns out that

the natural place to define direct images is not the category D
b
(·) but a new

category D̂b(·) that is the analogue to the arithmetic K-theory of Gillet and
Soulé [28].

LetX be a smooth complex variety. In sections 2.1 and 2.2 we introduced the

group KA(X) and the category D
b
(X). The fibers of the forgetful morphism

D
b
(X) → Db(X) have a structure of KA(X)-torsor, for the action of KA(X)

by translation of the hermitian structures (Theorem 2.47). At the same time,

the groupKA(X) acts on the group⊕pD̃
2p−1
D (X, p) by translation, via the Bott-

Chern character c̃h (Proposition 2.91). Observe that all Bott-Chern classes live
in these groups, as for the analytic torsion classes. It is thus natural to build a
product category over KA(X). This product category is the natural place to
define direct images of hermitian vector bundles.

Definition 3.164. Let S ⊂ T ∗X0 be a closed conical subset. We define

D̂b(X,S) = D
b
(X)×KA(X)

⊕

p

D̃2p−1
D (X,S, p)

to be the category whose objects are equivalence classes [F , η] of pairs (F , η) in

ObD
b
(X)×⊕pD̃

2p−1
D (X,S, p), under the equivalence relation

(F , η) ∼ (F + [E], η − c̃h(E))

for [E] ∈ KA(X), and with morphisms

Hom
D̂b(X)([F , η], [G, ν]) = HomDb(X)(F ,G).

Observe that if S ⊂ T are closed conical subsets of T ∗X0, then D̂b(X,S) is

naturally a full subcategory of D̂b(X,T ).
In the sequel, we extend the main operations in Db(X) to the categories

D̂b(X,S). In particular, we use the theory of generalized analytic torsion classes
to construct push-forward morphisms attached to morphisms in Sm∗/C.
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The category D̂b(X,S) has a natural additive structure. More generally,
if S, T are closed conical subsets of T ∗X0, then there is an obvious addition
functor

D̂b(X,S)× D̂b(X,T )
⊕
−→ D̂b(X,S ∪ T ).

Observe the object [0, 0] is a neutral element for this operation. Assume that
S + T is disjoint with the zero section in T ∗X . Then there is a product defined
by the functor

Ob D̂b(X,S)×Ob D̂b(X,T )
⊗
−→ Ob D̂b(X, (S + T ) ∪ S ∪ T )

([F , η], [G, ν]) 7−→ [F ⊗ G, ch(F) • ν + η • ch(G) + dD η • ν]

(3.165)

and the obvious assignment for morphisms. This product is commutative up
to natural isomorphism. It induces on D̂b(X, ∅) a structure of commutative
and associative ring category. Also, [OX , 0] is a unity object for the product

structure. More generally, the category D̂b(X,S) becomes a left and right

D̂b(X, ∅) module. Under the same assumptions on S, T we may define an

internal Hom. For this, let [F , η] ∈ Ob D̂b(X,S) and [G, ν] ∈ Ob D̂b(X,T ).
Then we put

Hom([F , η], [G, ν]) = [Hom(F ,G), (σ ch(F)) • ν + (ση) • ch(G) + (dD ση) • ν],

where we recall that σ is the sign operator (Definition 3.139). Using Corollary
3.144, it is easily seen this is well defined. In particular, we put

[F , η]∨ := Hom([F , η], [OX , 0]) = [F
∨
, ση].

The shift [1] on D
b
(X) induces a well defined shift functor on D̂b(X,S),

whose action on objects is

[F , η][1] = [F [1],−η].

There is a Chern character

ch : Ob D̂b(X,S) −→
⊕

p

D̃2p
D (X,S, p)

[F , η] 7−→ ch(F) + dD η,

which is well defined because dD c̃h(E) = ch(E) for [E] ∈ KA(X). The Chern
character is additive and compatible with the product structure:

ch([F , η]⊗ [G, ν]) = ch([F , η]) • ch([G, ν]).

Notice the relations

ch([F , η]∨) = σ ch([F , η]),

ch([F , η][1]) = − ch([F , η]).
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We may also define Bott-Chern classes for isomorphisms and distinguished
triangles. Let ϕ̂ : [F , η] 99K [G, ν] be an isomorphism in D̂b(X,S), whose un-

derlying morphism in Db(X) we denote ϕ. While the class c̃h(ϕ : F 99K G)
depends on the representatives (F , η), (G, ν), the class

c̃h(ϕ̂) := c̃h(ϕ : F 99K G) + ν − η

is well defined.

Lemma 3.166. Let ϕ̂ : [F , η] 99K [G, ν] be an isomorphism in D̂b(X,S), with
underlying morphism ϕ in Db(X). Then, the following conditions are equiva-
lent:

(i) there exists [E] ∈ KA(X) such that ϕ induces a tight isomorphism between

F + [E] and G, and ν = η − c̃h(E);

(ii) we have

c̃h(ϕ̂) = 0.

Proof. This is actually a tautology. Because KA(X) acts freely transitively on
the possible hermitian structures on F , there exists a unique [E] ∈ KA(X) such
that F + [E] is tightly isomorphic to G via the morphism ϕ. Then we have

c̃h(ϕ̂) = c̃h(E) + ν − η.

The lemma follows.

Definition 3.167. Let ϕ̂ be an isomorphism in D̂b(X,S). We say that ϕ̂ is
tight if the equivalent conditions of Lemma 3.166 are satisfied.

In particular, if ϕ : F 99K G is a tight isomorphism in D
b
(X), then ϕ induces

a tight isomorphism [F , η] 99K [G, ν] if and only if η = ν.
The following lemma provides an example involving the notion of tight iso-

morphism.

Lemma 3.168. Let [F , η] ∈ D̂b(X,S) and [G, ν] ∈ D̂b(X,T ). Assume that S+
T does not cross the zero section. Then there is a functorial tight isomorphism

[F , η]∨ ⊗ [G, ν] ∼= Hom([F , η], [G, ν]).

�

Assume now given a distinguished triangle

τ̂ : [F , η] 99K [G, ν] 99K [H, µ] 99K [F , η][1].

Let τ denote the distinguished triangle F 99K G 99K H 99K in D
b
(X). Then we

put
c̃h(τ̂ ) = c̃h(τ ) + η − ν + µ.

By Theorem 2.67 (vii), this class does not depend on the representatives and is
thus well defined.

We next consider the functoriality of D̂b(X,S) with respect to inverse and
direct images.
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Let f : X → Y be a morphism of smooth complex varieties. Let T ⊂ T ∗Y0
be a closed conical subset disjoint with Nf . Then we have a left inverse image
functor f∗ whose action on objects is

f∗ : Ob D̂b(Y, T ) −→ Ob D̂b(X, f∗T )

[F , η] 7−→ [f∗F , f∗η].

That this assignment is well defined amounts to the functoriality of c̃h.
Let f be a morphism in the category Sm∗/C. The definition of a direct

image functor attached to f depends upon the choice of a theory of generalized
analytic torsion classes. Let T be such a theory. Then we define a functor f∗
whose action on objects is

f∗ : Ob D̂b(X,S) −→ Ob D̂b(Y, f∗S)

[F , η] 7−→ [f∗F , f ♭(η)− T (f,F , f∗F)],
(3.169)

where f∗F is an arbitrary choice of hermitian structure on f∗F . By the anomaly
formulas, this definition does not depend on the representative (F , η) nor on the
choice of hermitian structure on f∗F .

Theorem 3.170. Let f : X → Y and g : Y → Z be morphisms in Sm∗/C. Let
S ⊂ T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets.

(i) Let [F , η] ∈ Ob D̂b(X,S). Then there is a functorial tight isomorphism

(g ◦ f)∗([F , η]) ∼= g∗f∗([F , η]).

(ii) (Projection formula) Assume that T ∩ Nf = ∅ and that T + f∗S does

not cross the zero section of T ∗Y . Let [F , η] ∈ Ob D̂b(X,S) and [G, ν] ∈

Ob D̂b(Y, T ). Then there is a functorial tight isomorphism

f∗([F , η]⊗ f∗[G, ν]) ∼= f∗[F , η]⊗ [G, ν]

in D̂b(Y,W ), where

W = f∗(S + f∗T ) ∪ f∗S ∪ f∗f
∗T.

(iii) (Base change) Consider a cartesian diagram

X ′ h′

//

f ′

��

X

f

��
Y ′ h // Y.

Suppose that f and h are transverse and that Nh′ is disjoint with S.
Equip f ′ with the hermitian structure induced by the natural isomorphism
h∗Tf 99K Tf ′ . Let [F , η] ∈ Ob D̂b(X,S). Then there is a functorial tight
isomorphism

h∗f∗[F , η] ∼= f
′

∗h
′∗[F , η]

in D̂b(Y ′, f ′
∗h

′∗S).
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Proof. For the proof of the first and the second assertions, it is enough to take
into account Proposition 2.121, the transitivity and the projection formula for
T . For the third item, one uses the functoriality of the analytic torsion classes
together with Proposition 3.9.

We close this section with an extension of Grothendieck duality to D̂b. We
need to introduce a last functor. Let f : X → Y be a morphism is Sm∗/C. To

enlighten notations, we denote by ωf the object [ωf , 0] in D̂b(X, ∅) (Definition
3.138). Suppose given a closed conical subset T ⊂ T ∗Y0 such that T ∩Nf = ∅.

Then we define the functor f
!
whose action on objects is

f
!
: Ob D̂b(Y, T ) −→ Ob D̂b(X, f∗T )

[F , η] 7−→ f∗[F , η]⊗ ωf .

Observe the equality

[G, ν]⊗ ωf = [G ⊗ ωf , ν • ch(ωf )]. (3.171)

Now fix a theory of generalized analytic torsion classes. To the morphism f
there is an attached direct image functor f∗. We may as well consider the dual

theory (Theorem Definition 3.146). Then we denote by f
∨

∗ the direct image
functor associated to f and the dual theory.

Theorem 3.172 (Grothendieck duality for D̂b). Let f : X → Y be a morphism
in Sm∗/C. Let S ⊂ T ∗X0 and T ⊂ T ∗Y0 be closed conical subsets such that T ∩

Nf = ∅ and T + f∗S is disjoint with the zero section. Let [F , η] ∈ Ob D̂b(X,S)

and [G, σ] ∈ Ob D̂b(Y, T ). Then there is a functorial tight isomorphism

Hom(f∗[F , η], [G, ν]) ∼= f
∨

∗Hom([F , η], f
!
[G, ν])

in D̂b(Y,W ), where

W = f∗(S + f∗T ) ∪ f∗S ∪ f∗f
∗T.

In particular, we have

(f∗[F , η])
∨ ∼= f

∨

∗ ([F , η]
∨ ⊗ ωf ). (3.173)

Proof. By Lemma 3.168 and Proposition 3.170, we are reduced to establish
the functorial tight isomorphism (3.173). The proof follows readily from the
definitions, Grothendieck duality and the following two observations. First of
all, if T is the theory of analytic torsion classes, then by the very definition of
T∨ we find

σT (f,F , f∗F) = T∨(f,F
∨
⊗ ωf , f∗(F

∨ ⊗ ωf )),

where the metric on f∗(F∨ ⊗ ωf ) is chosen so that Grothendieck duality pro-
vides a tight isomorphism

f∗F
∨ ∼= f∗(F∨ ⊗ ωf ).
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Secondly, for direct images of currents, we compute

σf ♭(η) = σf∗(η • Td(Tf )) =(−1)ef∗(ση • σTd(Tf ))

=f∗(ση • ch(ωf ) • Td(Tf)).

Here e is the relative dimension of f , and to derive the last equality we appeal
to Proposition 3.140. To conclude, we recall equation (3.171).

Corollary 3.174. Let T be a self-dual theory of generalized analytic torsion
classes.

(i) Then there is a functorial isomorphism

(f∗[F , η])
∨ ∼= f∗([F , η]

∨ ⊗ ωf ).

(ii) If the hermitian structure of f comes from chosen metrics on TX, TY and
ωX , ωY are equipped with the induced metrics, then there is a commutative
diagram

D̂b(X,S)

f
∗

��

(·)∨⊗ωX // D̂b(X,S)

f
∗

��
D̂b(Y, f∗S)

(·)∨⊗ωY// D̂b(Y, f∗S).

Proof. The first claim is immediate from Theorem 3.172. The second item
follows from the first one and the projection formula (Proposition 3.170).

3.10 Analytic torsion for degenerating families of curves

As a second example of application of the theory developed in this article,
we describe the singularities of the analytic torsion for degenerating families
of curves. The results we prove are particular instances of those obtained by
Bismut-Bost [6], Bismut [4] and Yoshikawa [50]. However our approach is more
elementary: we combine the geometry of such families and the existence of our
analytic torsion classes for arbitrary projective morphisms. The existence of
analytic torsion classes for arbitrary projective morphisms allows us to avoid
the use of the spectral theory of the laplacian operator. For simplicity we will
restrict to fibrations in curves over a curve.

Relative curves with ordinary double points. Let S be a smooth complex
curve and f : X → S a projective morphism of smooth complex varieties, whose
fibers are reduced curves with at most ordinary double singular points. We
assume that f is generically smooth. Following Bismut-Bost [6, Sec. 2(b)], we
call such a family an f.s.o. (famille à singularités ordinaires). The singular
locus of f , to be denoted Σ, is a zero dimensional reduced closed subset of X .
Its direct image ∆ = f∗(Σ) is the Weil divisor

∆ =
∑

p∈S

npp,
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where np is the number of singular points of the fiber f−1(p). We will abusively
identify ∆ with its support. With these notations, we put V = S \∆. Locally
for the analytic topology, the morphism f can be written in complex coordinates
either as f(z0, z1) = z0 or f(z0, z1) = z0z1 [6, Sec. 3(a)]. In the second case,
the point of coordinates (z0, z1) = (0, 0) belongs to the singular locus Σ.

For a vector bundle F over X , we denote by P(F ) the projective space of
lines in F . The differential df : TX → f∗TS induces a section OX → ΩX⊗f∗TS.
Because f is smooth overX \Σ, this section does not vanish on X \Σ. Therefore
there is an induced map

µ : X \ Σ −→ P(ΩX ⊗ f∗TS) ∼= P(ΩX),

called the Gauss map. Notice that this map was already used in the works of
Bismut [4] and Yoshikawa [50].

We next study the blow-up of X at Σ and relate it to the Gauss map. Let
X̃ = BlΣ(X) be this blow-up and denote by π : X̃ → X the natural projection.
Let E be the exceptional divisor of π. This is a disjoint union

E =
⊔

p∈Σ

Ep, Ep
∼= P(TpX),

with the reduced scheme structure.

Lemma 3.175. Denote by f̃ : X̃ → S the composite f ◦ π. Then f̃ is an f.s.o.
If Σ′ is the singular locus of f̃ , then Σ′ → Σ is a 2 to 1 finite covering. In
particular, we have

f̃∗(Σ
′) = 2∆.

Proof. The local description of the blow-up easily shows that if p ∈ E is a
singular point of f̃ , then there exist analytic coordinates (z0, z1) centered at p
such that E is the divisor z0 = 0 and f(z0, z1) = z0z1. Furthermore, for every
p ∈ Σ, there are exactly two points p1, p2 ∈ Σ′ with π(p1) = π(p2) = p. They
correspond to the directions in TpX of the two branches of f−1(f(p)) through
p.

For every p ∈ Σ, there is an identification TpX ∼= ΩX,p provided by the
hessian of f , which is a non-degenerate bilinear form on TpX .

Lemma 3.176. There is a commutative diagram

Ep = P(TpX)
∼ //

� _

��

P(ΩX,p)� _

��
X̃

µ̃ //

π

��

P(ΩX)

p

wwppppppppppppp

X X \ Σ.

µ

OO

? _oo

Denote by O(−1) the tautological divisor either on P(ΩX) or on Ep. Then there
is a natural isomorphism

µ̃∗O(−1) |Ep
∼= O(−1).
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Proof. This is easily checked by the local description of the blow-up at a point.

Consider now the short exact sequence of vector bundles on P(ΩX)

0 → O(−1) → p∗ΩX → Q→ 0,

where Q is the universal quotient bundle. Observe that Q is of rank 1. The
dual exact sequence is

0 → U → p∗TX → O(1) → 0,

where U is the universal vector subsheaf. We will denote by η the induced exact
sequence on X̃

η : 0 → µ̃∗U → π∗TX → µ̃∗O(1) → 0, (3.177)

From this exact sequence and the definition ωX/S = ωX ⊗ f∗TS , we derive a
natural isomorphism

µ̃∗U ⊗ π∗ωX/S
∼= µ̃∗O(−1)⊗ f̃∗TS. (3.178)

Lemma 3.179. We have

µ̃∗O(−1)⊗ f̃∗TS = O(E). (3.180)

Proof. First of all we observe that µ̃∗U ⊗ π∗ωX/S is trivial on the open W =

X̃ \ E. Indeed, by construction of the Gauss map we have

µ̃∗U |W= ker(df : TX → f∗TS) |W= ω∨
X/S |W.

Hence by equation (3.178) we can write

µ̃∗O(−1)⊗ f̃∗TS = O(
∑

p∈Σ

mpEp).

To compute the multiplicities mp we take into account that µ̃∗O(−1) |Ep=

O(−1), (Ep · f̃∗TS) = 0 and (Ep · Ep) = −1:

−mp = deg(µ̃∗O(−1)⊗ f̃∗TS) |Ep= −1 + 0 = −1.

The lemma follows.

Later we will need the commutative diagram of exact sequences

η |W : 0 // µ̃∗U |W //

α

��

TX |W //

β

��

µ̃∗O(1) |W //

γ

��

0

ε : 0 // ω∨
X/S |W // TX |W // f∗TS |W // 0.

(3.181)

After the identification µ̃∗O(−1) ⊗ f̃∗TS = O(E) provided by the lemma, the
morphism γ is the restriction to W of the natural inclusion µ̃∗O(1) → µ̃∗O(1)⊗
O(E). This fact will be used below.
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Hermitian structures and analytic torsion classes. We now proceed to
introduce the hermitian vector bundles and the analytic torsion classes we aim
to study. We fix a theory of generalized analytic torsion classes T .

Let f : X → S, f̃ : X̃ → S be f.s.o. as above. Recall that we write W =
X \ Σ = X̃ \ E and V = S \∆, so that f−1(V ) ⊂ W . We endow the tangent
spaces TX and TS with smooth hermitian metrics. We will denote by f the
corresponding morphism in the category Sm∗/C. On the open subsetW = X\Σ,
there is a quasi-isomorphism

ω∨
X/S |W= ω

∨
X/S [1] |W→ Tf

induced by the identification ω∨
X/S |W= ker(TX |W→ f∗TS). On ω∨

X/S |W , and

in particular on ω∨
f−1(V )/V , we will put the metric induced by TX |W . We will

write f
′
: f−1(V ) → V for the corresponding morphism in Sm∗/C. Observe

that the restriction of f to W , and hence to f−1(V ), may be identified with the

restriction of f̃ . Let F be an object in D
b
(X) and fix a hermitian structure on

f∗F . Then we consider the relative metrized complexes

ξ = (f,F , f∗F),

ξ
′
= (f

′
,F |f−1(V ), f∗F |V ),

and the corresponding analytic torsion classes

T (ξ) ∈
⊕

p

D̃2p−1
D (S,Nf , p),

T (ξ
′
) ∈

⊕

p

D̃2p−1
D (V, ∅, p).

By the functoriality of analytic torsion classes and the anomaly formulas, we
have

T (ξ
′
) = T (ξ) |V −f ♭[ch(F |f−1(V ))T̃dm(ε |f−1(V ))]. (3.182)

Here ε is the exact sequence in (3.181), with the hermitian metrics we have just
defined. From now on we will lighten the notations by omitting the reference
to f−1(V ) and V in the formulas.

We consider the hermitian structures on the sheaves U and O(1) on P(ΩX)
induced by p∗TX . We will write η for the exact sequence in (3.177) and α, β
and γ for the vertical isomorphisms in diagram (3.181), all provided with the
corresponding metrics. Notice that α and β are isometries. By the properties

of the Bott-Chern class T̃dm, we have

T̃dm(ε) = T̃dm(η) + Td(η)T̃dm(γ). (3.183)

Hence, from (3.182)–(3.183) and identifying f with f̃ over V , we have

T (ξ
′
) = T (ξ)− f̃∗[π

∗ ch(F)π∗ Td(f)T̃dm(η)]

− f̃∗[π
∗ ch(F)π∗ Td(f)Td(η)T̃dm(γ)]. (3.184)

It will be convenient to have a precise description of T̃dm(γ) at our disposal.
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The class T̃dm(γ). For shorthand, we write L := µ̃∗O(1) and ‖ · ‖0 for its
hermitian structure constructed before. We denote by ‖ · ‖1 the metric on O(E)

such that the isomorphism O(E)1 = L
−1

0 ⊗ f̃∗TS (Lemma 3.179) is an isometry.
Recall that γ gets identified with the restriction to W of the natural inclusion
L→ L⊗O(E). We let ‖ · ‖∞ be the hermitian metric on L |W such that γ is an
isometry. Hence, if 1 denotes the canonical section of O(E) and ℓ is any section
of L |W , then we have

‖ℓ‖∞ = ‖ℓ‖0‖1‖1.

To simplify the notations, we will skip the reference toW . With this convention,
we have on W

T̃dm(γ) = T̃dm(L0
id
→ L∞).

To compute a representative of this class, we fix a smooth function h : P1
C
→ R

such that h(0) = 0 and h(∞) = 1. Then we proceed by a deformation argument.
Let q : W×P1

C
→W be the projection to the first factor. On the line bundle q∗L

we put the metric that, on the fiber at the point (w, t) ∈ W ×P1
C
, is determined

by the formula

‖ℓ‖(w,t) = ‖ℓ‖0,w‖1‖
h(t)
1,w .

We will write ‖ · ‖t for this family of metrics parametrized by P1
C
. Define

Td(L0 → L∞) =
1

2πi

∫

P1
C

−1

2
log(tt)(Td(q∗Lt)− Td(q∗L0)).

Then
Tdm(γ) = Td−1(L0)Td(L0 → L∞) (3.185)

represents the class T̃dm(γ). Let us develop Tdm(γ). If Ot denotes the trivial

line bundle on W × P1
C
with the norm ‖1‖t = ‖1‖

h(t)
1 , then we compute

Td(q∗Lt)− Td(q∗L0) =
1

2
c1(Ot) +

1

6
c1(Ot)q

∗c1(L0) +
1

12
c1(Ot)

2.

By the very definition of c1, we find

c1(Ot) = ∂ ∂ log ‖1‖2t = ∂ ∂(h(t) log ‖1‖21)

=h(t)c1(O(E)1) + log ‖1‖21 ∂ ∂ h(t)

+ ∂ h(t) ∧ ∂ log ‖1‖21 + ∂ log ‖1‖21 ∧ ∂ h(t).

We easily obtain

1

2πi

∫

P1
C

−1

2
log(tt)

1

2
c1(Ot) = −

1

2
log ‖1‖1, (3.186)

1

2πi

∫

P1
C

−1

2
log(tt)

1

6
q∗c1(L0)c1(Ot) = −

1

6
log ‖1‖1c1(L0). (3.187)

With some more work, we have

1

2πi

∫

P1
C

−1

2
log(tt)

1

12
c1(Ot)

2 = −
a

6
log ‖1‖1c1(O(E)1)

+
b

3
∂(log ‖1‖1 ∂ log ‖1‖1),

(3.188)
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where

a =
1

2πi

∫

P1
C

log(tt)
1

2
∂ ∂(h(t)2),

b =
1

2πi

∫

P1
C

log(tt) ∂ h(t) ∧ ∂ h(t). (3.189)

We observe that

a =
1

2πi

∫

P1
C

log(tt)
1

2
∂ ∂(h(t)2) =

1

2
,

which is independent of h. All in all, equations (3.185)–(3.188) provide the

following expression for the representative Tdm(γ) of T̃dm(γ):

Tdm(γ) = Td−1(L0)
(
−

1

2
log ‖1‖1 −

1

6
log ‖1‖1c1(L0)

−
1

12
log ‖1‖1c1(O(E)1)

+
b

3
∂(log ‖1‖1 ∂ log ‖1‖1)

)
(3.190)

where b is given by (3.189).

The component of Deligne bidegree (1, 1). Given a current η ∈ Dn
D(X, p),

we will call (n, p) its Deligne bidegree, while we will call the Dolbeault bidegree
to the bidegree in the Dolbeault complex. When it is clear from the context to
which bidegree we are referring, we call it bidegree.

We now study the singularities of the component of Deligne bidegree (1, 1) of

T (ξ
′
) near the divisor ∆. For this we first recall the decomposition of equation

(3.184). Observe that D̃1
D(V, ∅, 1) gets identified with the space of smooth real

functions on V . In the sequel, for an element ϑ ∈ ⊕pD̃
2p−1
D (∗, p), we write

ϑ(2r−1,r) to refer to its component of bidegree (2r − 1, r). By construction of
the Deligne complex, an element of Deligne bidegree (2r− 1, r) is just a current
of Dolbeault bidegree (r − 1, r − 1).

Lemma 3.191. Let Ω ⊂ C be an open subset and ϑ a current of Dolbeault
bidegree (0, 0) on Ω. Let ∆ be the standard laplacian. If the current ∆ϑ is
represented by a locally bounded measurable function, then ϑ is represented by a
continuous function.

Proof. The assertion is a well-known fact. See for instance [48, Lemma 2.1, Cor.
2.2].

Proposition 3.192. The current T (ξ)(1,1) ∈ D̃1
D(S,Nf , 1) is represented by a

continuous function on S.

Proof. The differential equation satisfied by T (ξ)(1,1) is

dD T (ξ)
(1,1) = ch(f∗F)(2,1) − f∗[ch(F)Td(f)](2,1). (3.193)

In local coordinates, the operator dD = −2 ∂ ∂ is a rescaling of the laplacian
∆. By the lemma, it is enough we prove that the current at the right hand
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side of (3.193) is represented by a locally bounded measurable differential form.
Because ch(f∗F)(2,1) and ch(F)Td(f) are smooth differential forms, we are
reduced to study currents of the form f∗[θ]

(2,1), where θ is a smooth differential
form. By a partition of unity argument, we reduce to the case where f : C2 →
C is the morphism f(z0, z1) = z0z1 and θ is a differential form of Dolbeault
bidegree (2,2) with compact support. Then we need to prove that the fiber
integral

G(w) =

∫

z0z1=w

θ

is a bounded form in a neighborhood of w = 0. Write

θ = h(z0, z1)dz0 ∧ dz0 ∧ dz1 ∧ dz1.

We reduce to study integrals of the form

G(w) =

(∫

|w|<|z0|<1

h(z0, z0/w)
|w|2

|z0|4
dz0 ∧ z0

)
dw ∧ dw.

The property follows from an easy computation in polar coordinates.

Proposition 3.194. Let θ be a differential form of Dolbeault bidegree (1,1) on

X̃. Then the current f̃∗[θ] is represented by a continuous function on S.

Proof. This is [6, Prop. 5.2].

Corollary 3.195. The current f̃∗[π
∗ ch(F)π∗ Td(f)T̃dm(η)] is represented by

a continuous function on S.

Proof. It suffices to observe that the differential form π∗ ch(F)π∗ Td(f)T̃dm(η)

is actually smooth on the whole X̃ .

According to (3.184), it remains to study the current

f̃∗[π
∗ ch(F)π∗ Td(f)Td(η)T̃dm(γ)] |V .

The main difference with the situation in Corollary 3.195 is that the class

T̃dm(γ) is not defined on the whole X̃ , but only onW = X̃ \E. In the following
discussion we will use the representative Tdm(γ) defined in (3.185) at the place

of T̃dm(γ). In view of equations (3.186)–(3.188), the first result we need is the
following statement.

Proposition 3.196. Let θ be a smooth and ∂, ∂ closed differential form on X̃,
of Dolbeault bidegree (1, 1). Let w be an analytic coordinate in a neighborhood

of p ∈ ∆ with w(p) = 0. Write Dp = E ∩ f̃−1(p). Then, the current

f̃∗[log ‖1‖1θ]−

(
1

2πi

∫

Dp

θ

)
[log |w|]

is represented by a continuous function in a neighborhood of p. In particular, if
θ is cohomologous to a form π∗ϑ, where ϑ is a smooth and ∂, ∂ closed differential
form on X, then f̃∗[log ‖1‖1θ] is represented by a continuous funcion on S.
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Proof. Recall that the Poincaré-Lelong formula provides the equality of currents

dD[log ‖1‖
−1
1 ] = [c1(O(E)1)]− δE .

Moreover, the operator dD commutes with proper push-forward. Therefore,
taking into account that θ is ∂ and ∂ closed, in a small neighborhood of p one
derives the equation

dD f̃∗[log ‖1‖1θ] =

(
1

2πi

∫

Dp

θ

)
δp − f̃∗[c1(O(E)1)θ]. (3.197)

On the other hand, again the Poincaré-Lelong equation gives

dD[log |w|] = δp. (3.198)

From (3.197)–(3.198), we see that

dD

(
f̃∗[log ‖1‖1θ]−

(
1

2πi

∫

Dp

θ

)
[log |w|]

)
= −

1

2
f̃∗[c1(O(E)1)θ].

Finally, by Proposition 3.194, the current f̃∗[c1(O(E)1)θ] is represented by a
continuous function on S. Hence the first assertion follows from Lemma 3.191.
For the second assertion, we just observe that, in this case,

∫

Dp

θ =

∫

Dp

π∗ϑ = 0.

The proof is complete

Corollary 3.199. Notations being as above, the following estimates hold in a
neighborhood of p

f̃∗[log ‖1‖1c1(π
∗TX)] = O(1),

f̃∗[log ‖1‖1c1(O(E)1)] = −np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(L0)] = np[log |w|] +O(1),

f̃∗[log ‖1‖1c1(µ̃
∗U)] = −np[log |w|] +O(1),

where np is the multiplicity of ∆ at p and O(1) denotes the current represented
by a locally bounded function.

Proof. After the proposition, it is enough to recall equations (3.178)–(3.180)
and the intersection numbers (Dp ·Dp) = (Dp ·E) = −np.

Corollary 3.200. With the notations above, we have the development in a
neighborhood of p,

f̃∗[π
∗ ch(F)π∗ Td(f)Td(η)T̃dm(γ)](3,2) = rk(F)

np

6
[log |w|] +O(1),

where O(1) denotes the current represented by a locally bounded function.
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Proof. We take into account the expression (3.190) for the representative Tdm(γ),
the developments of the smooth differential forms ch(F), Td(f), Td(η) and
Td−1(L0), and then apply Corollary 3.199. We find

f̃∗[π
∗ ch(F)π∗ Td(f)Td(η)T̃dm(γ)](3,2) =

rk(F)
np

6
[log |w|] + rk(F)

b

3
f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] +O(1).

To conclude we observe that, on V , the term f̃∗[∂(log ‖1‖1 ∂ log ‖1‖1)] vanishes.

Indeed, the morphism f̃∗ is smooth on V with one dimensional fibers. Hence
this current is represented by the function

V ∋ s 7→
1

2πi

∫

f̃−1(s)

∂(log ‖1‖1 ∂ log ‖1‖1) =

1

2πi

∫

f̃−1(s)

d(log ‖1‖1 ∂ log ‖1‖1) = 0.

This ends the proof.

The results of this section are summarized in the following statement.

Theorem 3.201. Let p ∈ ∆ and let np be the number of singular points of
f : X → S lying above p. Let w be a local coordinate on S, centered at p. Then,
in a neighborhood of p, we have the estimate

T (ξ
′
)(1,1) = −

rkF

6
np[log |w|] +O(1),

where O(1) is the current represented by a locally bounded function.

Proof. It is enough to put together equation (3.184), Proposition 3.192, Corol-
lary 3.195 and 3.200.

Corollary 3.202. Assume that F = E is a vector bundle placed in degree 0,
and that R1f∗E = 0 on S. Endow f∗E with the L2 metric on V depending on E

and the metric on ωf−1(V )/V . Write ξ′′ = (f
′
, E, f∗EL2) for the corresponding

relative metrized complex on V . Let p and w be as in the theorem. Then we
have

T (ξ
′′
)(1,1) = −

rk(F)

6
np[log |w|] +O(log log |w|−1)

as w → 0.

Proof. Introduce an auxiliary smooth hermitian metric on the vector bundle

f∗E on S, and let ξ
′
= (f

′
, E, f∗E) be the corresponding relative metrized

complex. Then the theorem applies to ξ
′
. By the anomaly formulas, on V we

have
T (ξ

′′
)(1,1) = T (ξ

′
)(1,1) + c̃h(f∗E, f∗EL2)(1,1).

By [6, Prop. 7.1], the L2 metric has logarithmic singularities near w = 0 and

c̃h(f∗E, f∗EL2) = O(log log |w|−1)

as w → 0. This proves the corollary.
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Remark 3.203. The corollary is to be compared with [6, Thm. 9.3]. The
difference of sign is due to the fact that Bismut and Bost work with the inverse
of the usual determinant line bundle. The approach of loc. cit. is more analytic
and requires the spectral description of the Ray-Singer analytic torsion.
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determinant bundles I, Comm. Math. Phys. 115 (1988), 49–78.

[10] , Analytic torsion and holomorphic determinant bundles II, Comm.
Math. Phys. 115 (1988), 79–126.

[11] , Analytic torsion and holomorphic determinant bundles III, Comm.
Math. Phys. 115 (1988), 301–351.

[12] , Complex immersions and Arakelov geometry, The Grothendieck
Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA,
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[25] H. Gillet, D. Rössler, and C Soulé, An arithmetic Riemann-Roch theorem
in higher degrees, Ann. Inst. Fourier 58 (2008), no. 6, 2169–2189.
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